
Acad mic :

TRABAJO FIN DE MASTER EN INGENIERÍA INDUSTRIAL

AUTHOR:

SUPERVISOR:

2018-19

IVÁN LLOPIS BELTRÁN

JESÚS ANDRÉS PICÓ MARCO (UPV)

PIERRE NUGUES (LTH)

SUPERVISOR:

AI APPLIED TO KNOWLEDGE GRAPHS:
NLP AS A MEAN TO ENHANCE THE

GRAPH

AUTHOR:

SUPERVISOR:

AI applied to Knowledge Graphs: NLP as a
mean to enhance the graph

Iván Llopis Beltrán
iv1122ll-s@student.lu.se

November 5, 2019

Master’s thesis work carried out at Volvo Cars Corporation.

Supervisors: Jesús Andrés Picó Marco, jpico@ai2.upv.es
Pierre Nugues, pierre.nugues@cs.lth.se

Examiner: Elin Anna Topp, elin_anna.topp@cs.lth.se

mailto:iv1122ll-s@student.lu.se
mailto:jpico@ai2.upv.es
mailto:pierre.nugues@cs.lth.se
mailto:elin_anna.topp@cs.lth.se

Resumen

Esta máster tesis intenta solucionar el problema de modelado automático de
relaciones entre documentos. Normalmente, los documentos son clasificados
por etiquetas. Sin embargo, raro es el caso donde las relaciones entre dichos
documentos son parte de la base de datos. El estudio detrás de este proyecto
intenta estimar las relaciones que pueda haber entre documentos de texto me-
diante el uso de técnicas de modelado por tópicos, como term frequency -
inverse document frequency, latent semantic analysis, latent Dirichlet alloca-
tion y word embeddings. La máster tesis presenta un estudio sobre similitud
de documentos y pasa a detallar su implementación en un caso real en la em-
presa de automóviles Volvo Cars. Se programa una interfaz gráfica de usuario
en Python para que el usuario interactúe con el sistema. Además, los resul-
tados son presentados a través de una comparación de las técnicas elegidas
en este proyecto en el método de evaluación propuesto, el cuál está basado en
un parámetro de cobertura y uno llamado de precisión basado en el rango so-
bre un set de validación. Los resultados obtenidos son extendidos mediante la
exploración de métodos de clustering con teoría de grafos con el objetivo de
descubrir comunidades de documentos basados en estas relaciones.

Palabras clave: inteligencia artificial, grafos de conocimiento, procesamiento de
lenguaje natural, modelado por tópicos, similitud de documentos, word embeddings,
algoritmos de grafos

Resum

Aquesta máster tesis intenta solventar el problema de modelat automàtic de
relacions entre documents. Normalment, els documents son classificats per
etiquetes. No obstant, extrany es el cas en el que les relacions son part de la
base de dades. L’estudi darrere d’aquest projecte intenta estimar les relacions
que hi poden haver entre documents de text mitjançant l’ús de tècniques de
modelat per tòpics, com term frequency - inverse document frequency, latent
semantic analysis, latent Dirichlet allocation i word embeddings. La máster
tesis presenta un estudi sobre semblança de documents i passa a detallar la seva
implementació en un cas real a l’empresa d’automòbils Volvo Cars. Es pro-
grama una interfície gràfica d’usuari en Python per a que l’usuari interactue
amb el sistema. Ademés, els resultats son mostrats a través d’una comparació
de les técniques elegides en el métode d’evaluació propost, basant-se aquest en
un paràmetre de cobertura i un de precisió basat en el rang sobre un set de val-
idació. Els resultats obtinguts són estesos mitjançant l’exploració de métodes
de clustering amb teoria de grafs i amb l’objectiu de descobrir comunitats de
documents basades en aquestes relacions.

Paraules clau: inteligència artificial, grafs de coneixement, processament de llen-
guatge natural, modelat per tòpics, semblança de documents, word embeddings, al-
goritmes de grafs

Abstract

This Master’s thesis attempts to solve the problem of document relation mod-
elling. Normally, documents are classified by tags. However, rare is the case
where document relations are tagged in the database. The study in this project
attempts to estimate relations among text documents by means of topic mod-
elling techniques, such as term frequency - inverse document frequency, latent
semantic analysis, latent dirichlet allocation and word embeddings. The Mas-
ter’s thesis presents a study of document similarity and jumps into implemen-
tation details over a real use-case at Volvo Cars. We program a graphical user
interface in Python to interact with the system. We present the results with a
comparison of the techniques in the evaluation method, which we base on a
recall score and the rank biased precision metrics over a validation set. The
results are enhanced by exploring clustering techniques with graph theory in
order to discover communities within the documents.

Keywords: artificial intelligence, knowledge graphs, natural language processing,
topic modelling, document similarity, word embeddings, graph algorithms

2

Acknowledgements

I would like to thank Fabien Batejat, who has been my supervisor at Volvo Cars Corpo-
ration and Konstantin Lindström, intelligence engineer at VCC, for their inestimable help
and support during this Master’s thesis. Their guidance, insight and experience have made
the difference during this entire project. They have made me better as a person and as an
engineer. This would not have been possible without them.

I would like to thank Pierre Nugues, my supervisor at Lund University, for his guidance
supervising this Master’s thesis. His unquestionable brilliance and experience in the field
made this project an enhancing experience.

I would also like to thank Deniz Eca Aktan and Ali Ebrahimzadeh for their help on the
technical side and their indefatigable will and good mood every single day of work.

Also, to my colleagues at Volvo Cars for making this such an amazing experience full
of truly smart minds, but even more, great coworkers.

Finally, to my mum. The reason behind everything. To whom I owe my past, my
present and my future. My inspiration and my courage. To you.

3

4

Contents

1 Introduction 7
1.1 The problem . 7
1.2 Previous work . 8
1.3 Graph databases . 8
1.4 Objectives . 8

2 State of the art 11
2.1 Topic modelling . 12
2.2 Algorithms . 12

2.2.1 Term frequency - inverse document frequency 13
2.2.2 Latent semantic analysis (LSA) 15
2.2.3 Latent Dirichlet allocation (LDA) 17
2.2.4 Word embeddings . 18

2.3 Document similarity . 24
2.3.1 Euclidean distance . 24
2.3.2 Cosine similarity . 24

2.4 Knowledge graphs . 25
2.4.1 Community finding algorithms 26

3 Implementation 29
3.1 Data processing . 30

3.1.1 Managing data . 30
3.1.2 Cleaning the data . 31
3.1.3 Creating the dictionary . 32

3.2 Implementation of algorithms . 33
3.2.1 Term frequency - inverse document frequency 33
3.2.2 Latent semantic analysis & latent Dirichlet allocation 34
3.2.3 Word embeddings . 36
3.2.4 Ensemble method . 38
3.2.5 Community finding . 39

5

CONTENTS

3.3 Graphical user interface . 40

4 Evaluation 45
4.1 Algorithms results . 46

4.1.1 Term frequency - inverse document frequency 46
4.1.2 Latent semantic analysis (LSA) 47
4.1.3 Latent Dirichlet allocation (LDA) 49
4.1.4 Word embeddings . 53
4.1.5 Ensemble method . 55
4.1.6 Community finding . 55

5 Conclusions 57
5.1 Discussions . 57

5.1.1 Algorithms results . 57
5.1.2 Run time . 58
5.1.3 Scalability . 59

5.2 Improvements and future work . 59
5.2.1 Doc2Vec . 59
5.2.2 Knowledge-base algorithm . 60

5.3 Conclusions . 61

Bibliography 63

6

Chapter 1
Introduction

We live in the Information Age. We have passed from static sources of knowledge, i.e.
books, to a dynamic continuously growing connected system spinning around the infor-
mation technology. Huge powerful databases are being built every day. Text documents
are one of the most typical forms of communication in the world. Institutions amass enor-
mous amounts of documents that we need to categorize. Knowing the relations among
them, if they exist, may also help having a better understanding of the information. One
could use document relation for finding patents that are related to one patent of interest or
matching curriculum vitae to a job position, for example. Potentially, this could be applied
to any use case that requires predicting relations among documents.

1.1 The problem
There are a lot of applications that need human supervision over text documents in our
daily lives. In this Master’s thesis, we will attempt to solve the problem of document
relation, where we will automatically predict relations among documents in the database.
A potential solution to this problem is the techniques found in topic modelling. This field
of natural language processing has proven very powerful for processing and analyzing text
documents. We will ignore any kind of pre-categorization of the documents, if it exists,
in order to avoid bias in the predictions. Finally, we will apply the study to a real use-case
at Volvo Cars Corporation.

Volvo Cars use-case: Volvo Cars Corporation is constantly searching for new trends
that could be an incorporation in future projects. One way to do this job is by exploring
and evaluating thoroughly information appearing in the news. The information is pro-
cessed and used inside the company in many data-systems. The process starts by reading
articles that appear in a news feed and classify them in categories that are suitable for the
company. The next step goes through combining similar or related articles that infer po-
tential concepts that could be developed as projects. This is a mentally demanding task

7

1. Introduction

for a human and it requires the ability to identify and relate different pieces of information
together. It is worth exploring solutions in order to provide with autonomy the process
of information integration and enhancing the data. The current size of the dataset is 374
articles. Although the dataset is planned to be gradually growing, for this entire Master’s
thesis we will not consider the case of a growing dataset.

1.2 Previous work
The world of topic modelling is something that fortunately has been treated previously.
The first ones started by simply counting words (the so-called bag of words) as a way
to discover if language had an internal pattern (Harris, 1954). This subject evolved to
weight word occurrences depending on the commonality of a word in a corpus. The term
frequency-inverse document frequency (TF-IDF) technique takes advantage of information
retrieval to weight the significance of a word in a text (Ramos, 2003).

Some other techniques were developed during the last decades. They are still relevant
and of great interest in the field. Methods, such as latent semantic analysis (LSA), latent
Dirichlet allocation (LDA) or explicit semantic analysis (ESA) are highly used for com-
puting document similarity and detecting document relevance (Deerwester et al., 1990;
Blei et al., 2003; Gabrilovich and Markovitch, 2007).

Another big advance in natural language processing is Word embeddings, which is a
method for text vectorization that is trained by analyzing the pattern of word appearances
in a corpus (Mikolov et al., 2013). Some work has also been done using the power of a
knowledge base, like the document published by Schuhmacher and Ponzetto (2014), in
which they use a large publicly available knowledge base to compute document similarity.

1.3 Graph databases
Graph databases are a type of database that represent their information as interlinked ele-
ments. An element of the database is a node. Nodes can be connected to other nodes in the
database through the so-called relationships. These databases do not allow only to have
framework where we can store our documents, but also the relations we find throughout the
thesis. Furthermore, the fact that is a graph allows for the usage of graph algorithms, which
can be really useful for analytics over the database. We will use this type of databases to
store the predicted relations among documents as well as graph community finding algo-
rithms to discover clusters of documents in the network created by such predictions.

1.4 Objectives
The objective in this Master’s thesis is to study algorithms to solve the problem of doc-
ument characterization. We will attempt to provide a way to analyze commonalities be-
tween documents using topic modelling techniques to find the main themes that define a
document. These topics will be used to automatically predict the relations of documents.
We will predict the degree of relation through similarity metrics. For that, we will need

8

1.4 Objectives

a mathematical representation that we can use to compare documents. We can use topic
modelling to characterize documents and obtain vector representations of the documents
based on the topics extracted. We will also design a graphical user interface to present
the documents and the predicted related documents. Finally, we will explore the capabili-
ties of graph algorithms to reveal insights about the internal structure of the data through
community finding algorithms to cluster documents.

This project will present an implementation on the Volvo Cars use case described pre-
viously on prediction of related news articles. A human can use the predictions obtained
from the algorithms as recommendations to help finding related articles more easily. Volvo
Cars will then be able to use this study as a tool in the definition of new projects in the
strategic plan. The tool could also be applied to other projects in the company that require
document relation, such as matching job positions to candidates through the CV. The re-
search community may find useful the comparison of techniques employed to calculate
document similarity over a small-sized dataset as well as the approaches taken using an
ensemble method and graph community finding algorithms to improve the quality of the
predictions. All the work described in this Master’s thesis has been performed by the
author of this report.

9

1. Introduction

10

Chapter 2

State of the art

The field of artificial intelligence is growing at an outstanding velocity. The number
of problems where it is applied is broader every day. Its applications go from predict-
ing the stock market evolution, machine translation or robotics to game theory, planning
and scheduling. Artificial intelligence is all about creating a smart and adaptable system.
When the system adapts or ’learns’ from experience, we call it machine learning (ML).
This field has been explored intensively during the last decade, were researchers have been
investigating new use cases in which to apply deep learning (DL) to. One example of ap-
plication is creating pieces of art generated while emulating another artist’s style (Gatys
et al., 2016). We will center our efforts on the field of AI dedicated to the analysis and
processing of text: natural language processing (NLP).

Most algorithms in NLP rely on analyzing text to find an internal structure and the har-
mony that exists among its words. Processing this structure typically aims for generation,
translation, classification or comprehension of human language. An example of classifi-
cation is attempting to automatically predict the meaning of sentences, where a machine
evaluates texts and classifies them among a discrete amount of categories, as for instance:
predicting ’positive’ or ’negative’ posts in a review-aggregation portal of movies (Pang and
Lee, 2008). This example is called sentiment prediction. An agent can also process text
with the objective of analyzing the occurrences of words and their frequency. This gives
a sense of the internal structure of the language. If a group of words occur consistently
together, they belong to the same context or perhaps these words create a theme. This field
is called topic modelling. Topic modelling will be the main pillar of this Master’s thesis.
We will use and compare some classic techniques with some other rather modern ones
applied to document relation. The specific case that we will use is the Volvo Cars use case
described in Chapter 1.

11

2. State of the art

2.1 Topic modelling
Topic modelling consists of the extraction of topics that describe a document, normally by
means of statistical methods. If the topics are predefined, the concept extraction is a su-
pervised categorization task. If the topics are not predetermined, it becomes unsupervised
inference. One way to find relations among documents is through similarity of topics.
Texts that talk about the same topics are likely to be related, whilst documents speaking
about completely different ones are prone to not be. For example, if we read one document
about guitars and one document about pianos, we can identify instruments as a topic in
common.

Figure 2.1: Example of an ideal topic modelling categorization
where three topics have been identified.

There are fundamentally three aspects that shape the type of topics discovered: the
number of topics, the dataset and the algorithm used to infer them. The number of topics
is the amount of latent dimensions to be found during inference. The content of the dataset
also shapes the topics. The more varied the content is, the more general the topics tend
to be. In the previous example, the topic identified could have been music instead of
instruments if the dataset included more instances of words related to that topic. Another
tool to find relations is knowledge-bases, where complex structured information is part of
the system’s database. However, that falls outside the scope of this Master’s thesis.

The use-case where we will apply the study on is unsupervised, where the relations
must be inferred and the topics must be discovered. In Section 2.2 we will name different
techniques and we will explore their possibilities on document characterization.

2.2 Algorithms
There were many techniques mentioned in Section 1.2 related to topic modelling. We will
study some of those techniques to compare documents and compute document similarity.
Specifically: term frequency - inverse document frequency, latent semantic analysis, latent
Dirichlet allocation and word embeddings. Term frequency - inverse document frequency
and latent semantic analysis are two well established techniques: the first one character-
izes documents by relevance of the words employed and the latter one by topics inferred
from the database. Latent Dirichlet allocation is a more recent technique derived from
latent semantic analysis that uses Bayesian probability to infer the topics. Finally, word
embeddings is a state-of-the-art technique that has been receiving a lot of input from the
research community during the last years and that uses training to encode meaning into a

12

2.2 Algorithms

vector representation of words. We selected techniques with the purpose of studying the
problem of document relation from two different perspectives: at word level and at topic
level, while exploring the capabilities from a classic perspective and from a more mod-
ern one. We explain the theoretical background in this section, whilst the implementation
details and software will be explained in Chapter 3.

2.2.1 Term frequency - inverse document frequency
This technique is a derivation from the bag of words model. A bag of words (BoW) is a
representation where a document is characterized as a set that describes the occurrence of
tokens in the document (Harris, 1954). We can take as an example the next two texts:

Text 1 EU puts weight behindWi-Fi over 5G for connected cars. As the indus-
try decides what connectivity should be used for connected cars, the EU
appears to be putting its weight behind Wi-Fi over 5G.

Text 2 European Union (EU) has agreed to cut carbon emissions from cars by
37.5% within a decade. The new targets are part of a wide EU push to
reduce total greenhouse gas emissions.

The texts need to pass through a process of tokenization, where the terms appearing in
the texts are extracted. For simplicity, the typical stop words have been filtered out. Then
the bags of words represent the occurrences of those terms in the documents. The bags of
words for the documents in the example look like:

BoW_Text1 = {"5G": 2, "appears": 1, "behind": 2, "cars": 2,
"connected": 2, "connectivity": 1, "decides": 1, "EU": 2,
"industry": 1, "puts": 1, "putting": 1, "used": 1,
"weight": 2, "Wi-Fi": 2}

BoW_Text2 = {"cars": 1, "EU": 2, "37.5%": 1, "agreed": 1,
"carbon": 1, "cut": 1, "decade": 1, "emissions": 2,
"European": 1, "gas": 1, "greenhouse": 1, "new": 1, "part": 1,
"push": 1, "reduce": 1, "targets": 1, "total": 1, "Union": 1,
"wide": 1, "within": 1}

Term Frequency - Inverse Document Frequency, or tf-idf, is a technique that also
models documents by terms. A document in tf-idf is represented by a vectorization of
the tokens appearing in that document. The terms are weighed by their relevance to the
document in the corpus. This is done by calculating the term frequency and the inverse
document frequency.

Term frequency is the number of times that a word occurs in the document. The higher
the frequency, the higher the impact the word is likely to have in the general concept of
the document. The formula for calculating the term frequency varies, as there are several
ways to compute this. Typically:

t f (t, d) =
ft,d

number o f words in d
(2.1)

13

2. State of the art

where t f (t, d) refers to the term frequency factor of a term t in a document d in the tf-idf
and ft,d refers to the frequency of the term t in the document (the number of occurrences).

Inverse document frequency is the part of the computation that weights the words re-
garding the amount of documents in which they appear. Explained in a different form, a
term that appears in every single document is not plausible to be defining in a text. On
the contrary, a term that appears in a small amount of documents in the corpus will most
probably be a term that says a lot about its content. Mathematically, it takes the form:

id f (t,D) = log
N

|{d ∈ D : t ∈ d}|
(2.2)

with id f (t,D) being the inverse document frequency for a term t, N being the number
of documents in the corpus and the denominator being the number of documents in the
corpus that include the term t. We can see that a term td that is used by the entire dataset
will receive an id f (td ,D) = 0 due to the logarithmic function. This is done to convey that
the more a term is used in the dataset, the less relevant it is to characterize a document.
The combination of both aspects is the Term Frequency - Inverse Document Frequency:

t f id f (t, d,D) = t f (t, d) · id f (t,D). (2.3)

The modelling of a document using TF-IDF will output a vector of terms that are
weighted regarding the term frequency in the document and the inverse document fre-
quency in the corpus. The higher the weight of a term, the most significant the term is
for that specific document in the corpus. This is useful to find keywords in a text. The
use of keywords are central in search engines and for summarizing content and relating
documents. The tf-idf representation for the previous example is:

tfidf_Text1 = {"5G": 0.3849, "appears": 0.1924, "behind":
0.3849, "cars": 0.0, "connected": 0.3849, "connectivity":
0.1924, "decides": 0.1924, "EU": 0.0, "industry": 0.1924,
"puts": 0.1924, "putting": 0.1924, "used": 0.1924,
"weight": 0.3849, "Wi-Fi": 0.3849}

tfidf_Text2 = {"cars": 0.0, "EU": 0.0, "37.5%": 0.2182, "agreed
": 0.2182, "carbon": 0.2182, "cut": 0.2182, "decade": 0.2182,
"emissions": 0.4364, "European": 0.2182, "gas": 0.2182,
"greenhouse": 0.2182, "new": 0.2182, "part": 0.2182, "push":
0.2182, "reduce": 0.2182, "targets": 0.2182, "total": 0.2182,
"Union": 0.2182, "wide": 0.2182, "within": 0.2182}

Note that the words cars and EU have weight zero in the tf-idf representation as both
documents mention or speak about them. Hence, they are not representative or relevant
for the document in the example. However, words likeWi-FI, 5G or connected are actually
relevant for text 1. Tf-idf expresses documents by vectors of tokenswithweights associated
to their relevance. These vectors can now be compared among themselves to compute
document similarity.

Tf-idf has been previously used in academy to extract keywords based on the relevance
of words, not only in English but in other languages as well, like Chinese (Juanzi et al.,

14

2.2 Algorithms

2007). Many commercial applications use tf-idf in their systems. A clear case of appli-
cation is software that has a search engine incorporated. Search engines that allow the
user to find data elements by keywords will typically implement a version of term fre-
quency - inverse document frequency to do the search. The words inserted by the user
will be matched against the keywords extracted from the documents in the database. The
specifics on how to handle the search and compute the comparison can be done in differ-
ent ways. It is sometimes tricky to deduce how as commercial applications often keep the
details of their systems private. Academic examples using tf-idf are easier to find, with ap-
plications within search (Bao et al., 2009; Fu et al., 2015) and text classification (Trstenjak
et al., 2014; van Zaanen and Kanters, 2010; Han and Karypis, 2002) among others. Tf-idf
is a well established technique that is widely applied on text classification, text summa-
rization and search. The methods used in this thesis to compute document similarity will
be explained in Section 2.3.

2.2.2 Latent semantic analysis (LSA)

The previous method explained a way to vectorize documents based on a word-by-word
fashion. A document including the words ’car’ and ’human’ will have an entirely different
representation than a document including the words ’automobile’ and ’person’. Each word
is a different position in the dictionary. This means that there does not exist a semantic
sense in the document vectorization.

Latent Semantic Analysis (LSA) is a technique that reduces the dimensionality of the
tf-idf vectors in order to infer more general topics. The methodology starts with a tf-idf
transformation. Then a term-document matrix (X) is constructed with the occurrences of
the terms in the dataset. In the previous example it would be:

Text 1 Text 2
5G 2 0

agreed 0 1
appears 1 0
behind 2 0
...

wide 0 1
Wi-Fi 2 0
within 0 1

Table 2.1: Term-document matrix of the corpus in the example.

The rows of the matrix correspond to terms in the dictionary of the corpus and the
columns correspond to documents (see Table 2.1). The next step is a rank lowering of
the dimension of the term-occurrence matrix. The technique performs a singular value

15

2. State of the art

decomposition (SVD) over the document vectorization (Deerwester et al., 1990):

X = UΣVT

x1,1 . . . x1, j . . . x1,n
...

xi,1 . . . xi, j . . . xi,n
...

xm,1 . . . xm, j . . . xm,n


=



u1

 . . .

ul



 ·

σ1 . . . 0
...
0 . . . σl

 ·

[

v1
]

...[
vl

]
 (2.4)

The σi are the singular values and ui, vi the singular vectors. An approximation with
rank k can be obtained by selecting the k largest singular values with their corresponding
singular vectors fromU and V. The result is an approximation of lower rank of the previous
system with smallest error:

Xk = UkΣkVT
k (2.5)

A document vector (d j) can now be transformed into the reduced semantic space (d̂ j)
through:

d̂ j = Σ−1
k UT

k d j (2.6)
The dimensions of a document vectorization in this reduced vector space represent

more general concepts than singular words and can be used to compare documents. These
concepts are named latent topics. The amount of dimensions selected (k) is typically
called number of topics. A characterization over the texts in the previous example using
two latent topics is:

lsa_Text1 = {"Topic #0": 5.5136, "Topic #1": 2.1447}

lsa_Text2 = {"Topic #0": 2.7568, "Topic #1": -4.2895}

where the learnt topics are:

Topic #0: 0.435*"eu" + 0.363*"cars" + 0.290*"5g" + 0.290*"
connected" + 0.290*"weight" + 0.290*"behind" + 0.290*"wi-fi"
+ 0.145*"emissions" + 0.145*"appears" + 0.145*"used" +
0.145*"puts" + 0.145*"industry" + 0.145*"putting" + 0.145*"
decides" + 0.145*"connectivity" + 0.073*"european" + 0.073*"
gas" + 0.073*"part" + 0.073*"greenhouse" + 0.073*"targets"

Topic #1: -0.373*"emissions" + 0.187*"behind" + 0.187*"connected
" + 0.187*"wi-fi" + 0.187*"weight" + -0.187*"european" +
-0.187*"gas" + -0.187*"decade" + 0.187*"5g" + -0.187*"
greenhouse" + -0.187*"part" + -0.187*"within" + -0.187*"
reduce" + -0.187*"targets" + -0.187*"total" + -0.187*"union"
+ -0.187*"wide" + -0.187*"agreed" + -0.187*"new" + -0.187*"
carbon"

16

2.2 Algorithms

The numbers accompanying the terms are the values obtained from the singular values
and the reduced eigenvectors (Σ−1

k UT
k) from the rank lowering. The terms appearing in

the definition of a topic represent the frequency in which those terms have occurred in a
document (d j). An issuewith latent semantic analysis, just like what happens with TF-IDF,
is that the topics are not capable of capturing polysemy. A word with multiple meanings
is treated equally regardless of the context. This limitation appears in almost all of the
techniques explained in this chapter, however it is mitigated by the fact that normally words
have a predominant meaning or context. However, it fights synonymy. Latent semantic
analysis will likely put words that are synonyms in the same topic as they will be used in
the same cases.

Latent semantic analysis has also proven worthy in the industry and the research com-
munity along the years. This technique has been used to do information filtering (Foltz,
1990), search and semantic analysis, including others like text summarization (Steinberger
and Ježek, 2004). One example is in research, where LSA has been used to predict from
what text a subject learned the information and for grading the quality of information cited
in an essay (Foltz, 1996). Previously the standard for text comparison and search engines
was tf-idf until LSA came along. Those engines were based on keyword matching, which
were extracted using tf-idf. These engines relied on the commonality of lexemes in the
elements, not capturing semantic context. There are studies focused on the comparison of
these two techniques (Zhang et al., 2011). Tf-idf is still used nowadays by most commer-
cial applications to perform search by keywords. Some efforts have been done in the field
to combine this technique with other architectures, like neural networks for text classifi-
cation (Yu et al., 2008) or knowledge-bases to compute the representations of the latent
semantic analysis vector space (Guo et al., 2003). However, the contributions that are
most relevant to this work are the ones related to document recommendation (Gordon and
Dumais, 1998) and text clustering (Wei et al., 2008). Researching in the community, we
can find studies with a similar approach to the one we use in this Master’s thesis (Behrens
et al., 2003; Landauer et al., 2004) and other ones that take a different perspective on the
matter (Song and Park, 2009). It would be interesting to apply these methods to the Volvo
Cars use case, however it falls outside the scope of this Master’s thesis to apply all of them.

2.2.3 Latent Dirichlet allocation (LDA)
Latent Dirichlet allocation, or LDA, is a generative statistical type of topic modelling. It is
based on topic extraction, just like latent semantic analysis. It is a generative probabilistic
model of a corpus in which documents are represented as a combination of latent topics.
Topics are defined as a distribution of words that define them. This technique was devel-
oped by David Blei, Andrew Ng and Michael I. Jordan in 2003. It is very used in natural
language processing and topic modelling applications, which is this Master’s thesis’ main
focus.

The process starts with a definition of Dirichlet distribution variable θ of dimension-
ality k that is assumed. This is known as the number of topics. All words are indexed in
a dictionary. A word with index u is represented as a vector w where the u-th element
wu = 1 and the rest wv = 0 for u 6= v. The probabilities of which each word belongs to a
certain topic zn k-dimensional is represented through a matrix β, where each element βi j
represents the probability that term j belongs to topic i. This matrix has dimensionality

17

2. State of the art

k x V, where k is the number of topics and V the number of terms in the corpus D. The
characterization of documents goes through calculating the matrix β. For that, there is the
relation (Blei et al., 2003):

βi j ∝

M∑
d=1

Nd∑
n=1

φ∗dniw
j
dn (2.7)

where wdn represents the n-th word in the d-th document in the corpus and φ∗dni is a varia-
tional parameter that can be calculated with:

(γ∗, φ∗) = arg min D(q(θ, z | γ, φ) || p(θ, z | w, α, β)) (2.8)

and

q(θ, z | γ, φ) = q(θ | γ)
N∏

n=1

q(zn | φn) (2.9)

Latent Dirichlet allocation is used in this Master’s thesis for document vectorization by
using the number of occurrences of the terms with the probabilities obtained through the
matrix β. The algorithm is quite complex and visiting it in detail falls outside the scope of
this thesis. Fortunately, there are some libraries that allow to perform this algorithm with
nomajor issues, such as Gensim. This library will be introduced in Chapter 3. The number
of topics k will be one of the parameters to tune when using the library. A vectorization of
a document using this technique follows the same structure as LSA, where the elements of
the vector represents the magnitude in which the document speaks about each topic. As
an example:

lda_Text1 = {"Topic #0": 6.6413, "Topic #1": -3.2123}

Latent Dirichlet allocation has been widely used in the field of topic modelling along
the last decade and a half. It has been used on different cases of text analysis, like journal-
istic texts (Jacobi et al., 2015) or even to analyze therapy dialogue (Howes et al., 2013).
This algorithm has been applied to other cases of detection, such as fraud detection in the
telecommunications industry (Xing and Girolami, 2007), bug detection of source code
(Lukins et al., 2008) or spam filtering (Bíró et al., 2008) with great results. This technique
has become a standard over the years and applied in a lot of different cases. In academy,
it has been used, for example, in communication research (Maier et al., 2018). There are
other studies that combine the power of LDA with other known frameworks, such as word
embeddings (Das et al., 2015).

2.2.4 Word embeddings
The two previous techniques offered methods to vectorize entire documents based on the
singular words in the corpus and general concepts extracted from the texts (named as top-
ics in LSA). Each element in a vector representation was defined by a floating value. The
technique presented in this section approaches the same concept by providing a vector-
ization for singular words individually: the word embeddings. The size of a vectorized
word representation (embedding from now on) depends entirely on the user: a term can

18

2.2 Algorithms

be represented by a vector of three elements or three thousand. The properties yielded by
those will change completely, as words are embedded with certain properties.

Figure 2.2: 2D projection of a portion related to academic terms
of a vector space using word embeddings. The projection was cre-
ated using t-Distributed Stochastic Neighbor Embedding (t-SNE).
From: https://www.datacamp.com/community/tutorials/lda2vec-
topic-model

The embeddings are based on the frequency and context in which they appear in the
dataset. This allows the estimation of the strength of the relationships among words, being
stronger in those words that are likely to appear together and weaker in those that are
unrelated or unlikely to appear in the same sentence. The aim of word embeddings is
to identify semantic regularities of terms in human language. This fact does not solve
the polysemy issue, but puts words in context by giving similar encodings to words that
consistently occur together (Fig. 2.2).

The word embeddings have also relational properties: any transformation relating two
words will keep a similar semantic relation for other two words in a different context (Fig.
2.3). For example, the same vector defines the path to go from the word embedding ofmale
to the word embedding of female as to go from the word embedding of king to the word
embedding of queen. It is the same semantic relationship, which is marked as the same
dimensional transformation in the vector space. Using the same philosophy, the vector that
connects the word embeddings for cat and dogwill connect the word embeddings for tiger
and wolf. The semantic relations will depend on the dimensionality of the embeddings
and the corpus used during training.

Word embeddings have been previously used in semantic search and information re-
trieval applications; for example, name entity recognition (NER) tagging or question-
answering engines, where a query from a customer is matched against one of the pre-

19

2. State of the art

Figure 2.3: Semantic relationships in word embeddings: gender
transformation (left) and comparative-superlative transformation
(right).
From: https://github.com/stanfordnlp/GloVe

conceived answers. The first proper representation for words in this context was cre-
ated by Tomas Mikolov in Mikolov et al. (2013). This model used in topic modelling
is named Word2vec. The training of this technique can be done as continuous bags of
words (CBOW) or as a skip-gram. If trained as CBOW, the Word2vec embeddings are
obtained by training a neural network with one hidden layer where the input is a sequence
of text and the output is the prediction of the next word. This is done by using a sliding
window over the texts of the corpora. The sliding window has a look at a number n of
words at a time. The first (n-1) words are introduced in the neural network as the input
in the order that they appear in the text. The output is a prediction of the last word in the
sliding window, which is the next word in the sequence (see Fig. 2.4). The training of
such neural network obtains encodings of the relations existing among the words in the
dataset. The embedding for a word is obtained from the activation values of in the hidden
layer after training.

The other way of training aWord2vecmodel is called the skip-grammodel. In the skip-
gram model, the neural network is not focused on predicting the last word in the window
from the previous ones in the sliding window. The target word is the one at the center of
the window and the aim is to predict the rest of the words surrounding the target word,
the context words (see Fig. 2.5). This is the first formal word embeddings model publicly
available ever created. The embeddings in Word2Vec are obtained from the analysis of
the surrounding words. It relies on local information of the language.

However, there are other models that have followed Word2Vec in the following years.
One of them is Stanford’s Global Vectors (GloVe) in 2014 (Pennington et al., 2014). This
model shares some similarities to Word2Vec in terms that the approach is also to train a
neural network to obtain the representations for word embeddings based on the context
with other words in the corpus. In this case, the number of layers is two, corresponding to
two layers of embeddings: wi and w j . GloVe is however a model that relies on the analysis
of co-occurrence with all the other words in the corpus. It does that by constructing a
matrix of co-occurrences of terms X, where each element Xi j corresponds to the number
of times that word i co-occurred with word j. This matrix is symmetric. A sentence, for

20

2.2 Algorithms

Figure 2.4: Training schema for Word2Vec embeddings
as the continuous bag of words (CBOW) model. From:
https://medium.com/scaleabout/a-gentle-introduction-to-
doc2vec-db3e8c0cce5e

Figure 2.5: Training schema for Word2Vec embeddings as the
skip-gram model.

example, "red flowers have red petals", would have the co-occurrence matrix:
From this table, they construct the factor:

F(wi,w j , w̃k) =
Pik

P jk
(2.10)

where Pik represents the probability that word i appears in the context of word k, which
is calculated by dividing the number of co-occurrences of word i and word k (Xik) by the
number of occurrences of word i (Xi). This factor represents the ratio of the relation of a
word k against words i and j. This contextual information extracted from such relations
will be transformed into the embeddings. In order to do so, the model constructs the neural

21

2. State of the art

red flowers have petals
red 0 1 1 1

flowers 1 0 1 0
have 1 1 0 0
petals 1 0 0 0

Table 2.2: Co-occurrence matrix for the sentence "red flowers
have red petals".

network which cost function is (Pennington et al., 2014):

J =
∑
i, j

Xi(wT
i w̃ j − logXi j)2 (2.11)

GloVe relies on global information in contrast to Word2Vec that aimed at a local scope
of contextual relations. For this reason, we have selected Global Vectors over Word2Vec
as one of the models to study in the Volvo Cars use case for document relation using word
embeddings. The embeddings can be trained by oneself, but fortunately there models of
pre-trained embeddings available for use. This will be the path that we take in Chapter 3,
where we will use pre-trained GloVe embeddings.

GloVe is not the only alternative to Word2Vec. In the recent years, other models of
word embeddings have been investigated using alternative approaches. BERT (Bidirec-
tional Encoder Representations from Transformers) is a model of word embeddings from
2018 that has reached state-of-the-art results in text classification, even beating previous
well established models of word embeddings, such as GloVe and Word2Vec. For this rea-
son, we also include BERT as one of the models for the study of document relation using
word embeddings.

BERT is a dynamic model of word embeddings (Devlin et al., 2018). The representa-
tions obtained with GloVe or Word2Vec, even that powerful, are static. This means that a
word embedded by one of these two models is not able to adapt its meaning to the differ-
ent contexts it might have. However, BERT is a model that produces word representations
dynamically regarding the words surrounding a specific occurrence. For example, in this
two sentences:

“The robbery ended up with a shot in the air.” –Sentence 1.

“The guys went to a bar to drink a shot.” –Sentence 2.

In this case, the word shot has a different meaning depending on the context. Static
word embeddings models are not able to capture polysemy. The embeddings are fixed.
Dynamic embedding models like BERT are informed by the surrounding words, such as
robbery or bar, of which context is the one that should define the representation for the
word, shot in this case. The representations of BERT are obtained by means of the so-
called transformers. A transformer is essentially an encoder-decoder architecture model
that uses attention patterns to forward sequences to the decoder (Vaswani et al., 2017).
This system allows the encoder to learn the relative positions of the words in a sequence.
That is, learning the contextual relation to the surroundings in a sentence, for example.

22

2.2 Algorithms

The details of BERT fall outside the scope of the Master’s thesis. There exist pre-trained
embeddings of BERT that one can use on their own database. During this project we will
use pre-trained BERT embeddings for computing document similarity.

Figure 2.6: LSTM architecture with three cells where the state is
transported between cells and the carrier along the sequence.

The last model that we will use is called Flair (Akbik et al., 2018). Flair is a con-
textualized word embeddings model designed for sequence labeling. It is built on long
short-term memory (LSTM) networks to train the embeddings. LSTM is an architecture
of recurrent neural networks specialized on data sequences, such as text documents, video
or audio. Typically, there is the problem of vanishing gradients, where the features learnt
by a neural network tend to zero along the time due to the complexity of the network
and the computations involved in the process. Recurrent neural networks are composed
by cells, where each cell computes one output of the sequence of data. Recurrent neu-
ral networks have a variable called state that represents the internal state of one cell in
the recurrent network. This state is passed from one cell to the next one in order to in-
fer information from the previous element in the sequence. LSTMs have what is called a
carry, which transports information previous time-steps in the sequence of data (Fig. 2.6).
This allows to keep the features learnt to continue in the long term, fighting the vanishing
gradients problem. Flair embeddings uses long short-term memory for extracting word
representations by applying it to a sequence labeling architecture.

There are also pre-trained models for this architecture that we will use for comput-
ing document relations. We have selected this model to use it as a direct comparison to
other state-of-the-art models, such as BERT, and standard models (like GloVe) to predict
document relations. The implementation details will be presented in Chapter 3.

Word embeddings have been implemented in numerous applications since their con-
ception. The representations obtained express the meaning and context of human lan-
guage, or at least they attempt to. Human language is complicated and intricate, however
the means that we have available to represent all its complexity improve over time. It is no
surprise that this technique has been widely used in the field since then. One of the first
applications where word embeddings showed their power is machine translation, where
word embeddings have been used to capture the meaning of texts across languages (Zou
et al., 2013; Cho et al., 2014). They are also used by companies in their semantic search, if

23

2. State of the art

they have an AI-powered search engine. One can find mentions to word embeddings and
occasionally LSA in the descriptions of their technologies. Word embeddings are used all
along NLP. We can find classical tasks such as word tagging (Lample et al., 2016), text
classification (Yu et al., 2017) and text relation (Kiela et al., 2015). However, there are
also very interesting not so classic applications where word embeddings have shown their
potential (Roy et al., 2016; Zhou et al., 2015; Chen et al., 2017), even in other fields such
as speech recognition (Bengio and Heigold, 2014). The presence in the community, the
power to capture semantic relations and meaning and the good results that they are show-
ing in research papers are the main three reasons why we have chosen word embeddings
to apply on document similarity.

2.3 Document similarity
The explanations given up to this point are about techniques to obtain vectors from doc-
uments. The next step is how to use these representations to calculate similarity. The
similarity between two vectors can be evaluated in different ways. The ones used for this
Master’s thesis are: cosine similarity and Euclidean distance.

2.3.1 Euclidean distance
Euclidean distance is a direct representation of the absolute magnitude that separates the
endpoints of two vectors in a vector space (see Fig. 2.7). This magnitude is represented
by the norm of the vector that connects both cursors:

Euclidean_dist(~v1, ~v2) = ‖~v1 − ~v2‖2. (2.12)

In terms of topic modelling, each location in the vector space would be a specific
meaning that represents the document. Documents that speak about similar topics are
likely to point around the same region in this space. Obviously, a document usually does
not speak only about one single topic, however this premise typically upholds.

2.3.2 Cosine similarity
There are other ways to make a comparison among vectors. In Section 2.3.1 we compared
the distance from one end to the other end of the pointer locations of the vectors. An-
other magnitude that can be measured for comparison is the angle that is formed between
them (see Fig. 2.7). This magnitude is a representation of how much two vectors differ.
In the case of application to document embeddings, the cosine similarity symbolizes the
difference of general meaning of documents at their core. The cosine similarity can be
calculated as:

Cosine_sim(~v1, ~v2) =
~v1 · ~v2

‖~v1‖ · ‖~v2‖
. (2.13)

24

2.4 Knowledge graphs

Following this description, one could assume each possible direction in the n-dimensional
vector space as one meaning. In this case, the length of the vectors do not have an impact
in the cosine similarity, as the angle does not change. However, as seen in Section 2.2,
each word in the embedding space occupies one single position. A word embedding will
represent a different token when applying a transformation. Hence, the length of the vector
does have an impact on word embeddings, even if the cosine similarity remains the same.
Other methods to compute text similarity are the ones described inWu and Palmer (1994);
Resnik (1995); Lin (1998), which address semantic similarity in texts by different means.

Cosine similarity Euclidean
distance

Figure 2.7: Vector distance measurements: Cosine similarity
(left) and Euclidean distance (right) distance representation be-
tween a couple of 2D vectors.

2.4 Knowledge graphs
A knowledge graph is a type of linked database where its entities are represented by nodes
(Ehrlinger and Wöß, 2016). Nodes can have properties attached, represented as key-value
pairs. Nodes can also have a label. Labels help to keep the information structured. One
can connect two nodes in the database through a relationship. For example, we can have
a node that represents a student named "James Balaguer" with label Person and a node
that represents the city of Lund with label City . We can have them connected through a
relationship of type :LIVES_IN to indicate that James lives in the city of Lund (see Fig.
2.8).

Figure 2.8: Example of a simple graph database with two nodes
connected by a relationship.

25

2. State of the art

The database can have more than one node with the same label. The properties of an
entity are attached to the entity, so we can have nodes and relationships with common key-
value attributes (we can have two students named James Balaguer for example). Nodes
can share any amount of relationships. Relationships are directional. They can have prop-
erties and labels associated too. Properties can be used to provide information about a
relationship (see Fig. 2.9). Graph databases are related to cloud computing and big data.
Their information retrieval is not dependent of the size of the database. Another property
is that graph theory methods are also available, which will be used to perform clustering
of documents. Graph theory also allows for analysis of relevance of documents in the
database. These type of methods are called centrality algorithms. The similarity study
leads to establishing relations among articles, which are be represented as relationship
links in the graph database. The article connections sometimes form communities that
can be used to find non-direct relations to other documents.

Figure 2.9: Example of a simple graph database with different
types of nodes and relationships, with properties attached.

2.4.1 Community finding algorithms
Community finding in knowledge graphs is a type of clustering for discovering groups,
or communities, in the network. A community is a group of nodes, normally interlinked,
that have some properties in common and that can be related to a theme. The number of
communities is not predefined, the process finds them through an iterative convergence
process. There exist several community finding methods available for knowledge graphs.
The ones investigated here are derived from graph theory. The ones that have been imple-
mented are label propagation and Louvain. Other community finding methods should be
explored in a future work phase.

Label propagation: label propagation is a semi-supervised algorithm that assigns
random labels to datapoints. The algorithm propagates those labels. If nodes with distinct

26

2.4 Knowledge graphs

label concur to one datapoint, the node label that has more links connected to that datapoint
wins and its label gets assigned to the node (Raghavan et al., 2007). Label propagation
has strength in the running time and the amount of information required.

Louvain: Louvain is a method for community detection that maximizes a modularity
score. This score evaluates how densely connected the datapoints are in a community,
compared to how they would be in a random network (Blondel et al., 2008). Louvain has
what is called an "intuitive" community structure step in the algorithm. This feature pro-
vides the algorithm with the capability to find small communities, even in larger networks.
These algorithms are explained in more detail in the book of Hodler and Needham (2019).

Figure 2.10: Example of a community found with graph algo-
rithms.

These graph algorithms are prone to perform well on complex networks, as they tend
to have community structure. However, all algorithms have trouble with convergence to
the global maximum as the database grows, due to increasing complexity of the network.
Community finding algorithms are useful to find more related articles that are not directly
found by the topic modelling algorithms.

27

2. State of the art

28

Chapter 3

Implementation

This chapter focuses on the implementation of the techniques explained in Chapter 2 ap-
plied to the Volvo Cars Corporation use case. The implementation of this solution has
been done in Python and can be separated into four main sections: Data processing, Im-
plementation of algorithms, Knowledge graph and Graphical user interface. A picture of
the system’s architecture appears in Fig. 3.1.

The code is available at: https://github.com/ivllopis/MScThesis/.

Figure 3.1: System architecture of the Master’s thesis project.

29

3. Implementation

3.1 Data processing
The preparation of data is a common task in any digital project that uses data. The quality
of this data turns out to be a key factor. Specially in artificial intelligence, obtaining a clean
stream of input data is actually as important as the algorithms themselves. The documents
must be processed and analyzed by means of the algorithms explained (see Section 2.2) in
order to be matched by similarity. This section explains the processing methods that we
have used on the news articles.

3.1.1 Managing data
The input data to this system is news articles obtained with a news aggregator. The infor-
mation is received by means of an application programming interface (API). The request
call to the API returns the documents’ information in a structured format through the re-
sponse. The fields of information from the response that we use in the system is:

• Title: String representing the title of a document.

• Content: String representing the source material.

• Url: URL to the source material of the news article.

The graph database will serve as placeholder for the documents and the solutions from
the algorithms. The relevant pieces of information regarding documents are stored as
nodes in the graph, while the predicted relations by the algorithms are represented as re-
lationships. We have assigned a type (label) Article to the nodes storing documents. Each
Article node contains the following information as properties of the node:

• Title: title of the article (string).

• Content: content of the document extracted from the source (string).

• Processed: content of the document after being processed and tokenized. This in-
formation is obtained by applying the processing method explained in section 3.1.2
over the content, without applying the lemmatization step. This represents the list
of tokens that provides the document with meaning (list of strings).

• Processed_stem: content of the document after being processed, tokenized and stemmed.
This information is obtained by applying the processing method explained in section
3.1.2 over the content. This represents the list of stemmed tokens that provides the
document with meaning (list of strings).

• Keywords: keywords extracted from the document using tf-idf (list of strings).

• Community: cluster discovered with community finding algorithms (string).

• Url: URL to the source material of the news article.

• Id: ID of the node in the database. The database assigns one automatically to every
node.

30

3.1 Data processing

The software used during thisMaster’s thesis is Neo4j, which is one of themost popular
graph database platforms. It uses the Cypher Query Language for querying information.
Neo4j APOC library is a tool designed to extend the functionality of Neo4j. The data inte-
gration process requires this library to use the periodic commit command, which is used to
load information by batches into the database. The pieces of information that we require
will be retrieved with queries to the database. The models trained during implementation
are saved in disk (see Fig. 3.1). For the analysis of community finding (see Section 3.2.5),
the Graph Algorithms Playground library is also required.

3.1.2 Cleaning the data
The information does not normally come in a format well suited for direct analysis. The
texts have to be filtered from the tokens that do not provide the documents with substantial
information. One can do processing of text in a wide variety of ways depending on the
project. The processing methodology presented in this section is the one chosen to follow
in this Master’s thesis. This methodology is summarized in the next steps: markup extrac-
tion, lower casing, tokenization, extraction of punctuation marks and stop words, parsing
special keys and lemmatization.

Markup extraction. The content obtained from the API response is HTML code.
This source material includes markups that do not contain valuable information about the
meaning of the content. We have used the html library in Python for decoding HTML en-
tities into characters. For markup extraction, we have used regular expressions to identify
and filter out XML tags.

Lower casing. Most words mean the same regardless of their form. Lower-casing
allows unifying in the same token words that are capitalized, upper-cased and lower-cased.
For that purpose, we have used the native method for string variables called lower().

Tokenization. This is the process of splitting a string into a list of tokens, or terms.
We have used the tokenizer included in the Natural Language Toolkit (NLTK) library.

Extraction of punctuation marks and stop words. Punctuation marks and stop
words are two types of tokens that do not contain valuable information for topic mod-
elling. Articles, prepositions and pronouns are examples of stop words. We have used the
list of stop words available in NLTK and the list of punctuation marks included in Python
to filter those tokens out from the processed content.

Parsing special keys. There are certain tokens that have more characterization power
by the context that they represent than by the token itself. An example of these are number
related tokens, such as dates or amounts of money, where the important element for doc-
ument relation is not the specific amount but that it represents an amount of money. We
have parsed these elements into special keys: ’#date’ and ’#amountofmoney’, respectively.
We have performed this parsing using regular expressions.

Lemmatization. Stemming is the action of reducing a token to its lexeme, to its most
basic form. For example, the stemmed version of the word ’cities’ is ’citi’. This is also a
way of unifying words that arguably have similar meaning. One of the analysis we have
performed is whether lemmatization of the corpora has an impact on the results of the im-
plemented algorithms. For that purpose, we have used a stemmer included in the Natural
Language Toolkit called Porter Stemmer. The results of the analysis can be checked in

31

3. Implementation

Chapter 4.

An example of the application of this methodology on a document is:

Source content:
<div><img title="Stupid Smart Cities With Molly Sauter" src="

https://cdn-images-1.medium.com/fit/t/1638/2048/1*
Ng3VxdA_KnxaB7KMJyKIKg.jpeg">
<div><div>

<p>Medium</p>
<p>’Stupid Smart Cities’ With Molly Sauter</p>
<p>Is your city the next VC guinea pig in the technocratic

experiment to grow cities and extract their value?</p>
</div>
</div></div>
Processed content:
[’medium’, ’stupid’, ’smart’, ’citi’, ’molli’, ’sauter’, ’citi’,
’next’, ’vc’, ’guinea’, ’pig’, ’technocrat’, ’experi’, ’grow’,
’citi’, ’extract’, ’valu’]

3.1.3 Creating the dictionary
There are two important elements that we use when creating the topic models: the dic-
tionary and the bag of words (BoW). The dictionary is a collection of unique tokens that
describe the terms used in the corpus. Gensim has a dictionary object in their library
(gensim.corpora.dictionary) with special functions:

• The collection frequencies (cfs): amount of instances of a certain token in the corpus.

• The document frequencies (dfs): amount of documents that contain a certain token.

• Filters of several classes: filters that allow to remove tokens by frequency or by id.

• Bag of words (doc2bow): transformation of a document into its bag of words.

The implementation starts by processing the documents as explained in Section 3.1.2.
The processed documents (corpus) are then introduced to Gensim’s dictionary object with:

import gensim.corpora.dictionary.Dictionary as Dictionary
dictionary = Dictionary(documents=corpus, prune_at=2000000)

The dictionary is mainly used for transforming documents into bags of words as well
as for tracking token frequencies (number of instances) in the corpus. We filter out the
tokens with frequency one or two as those tokens will not be significant in the corpus. This
filtering is done using the cfs function mentioned before (see the code for more details).
The output of a dictionary in Gensim looks like this:

32

3.2 Implementation of algorithms

Loading dictionary...
Dictionary loaded.
Dictionary(6878 unique tokens: [’2025’, ’32’, ’3d’, ’abstract’,

’accord’]...)
Loading corpus...
Corpus loaded.
MmCorpus(374 documents, 6878 features, 97868 non-zero entries)

The transformation of a document into its bag of words is done with the dictionary
function in Gensim doc2bow. This BoW is a list of tuples (id, f requency) where the id
refers to the identification number of a token in the dictionary and the frequency refers to
the number of times that the token appears in the document. Following the example in
Section 3.1.2, its bag of words would look like this:

Bag of words:
[(159, 1), (296, 3), (297, 1), (298, 1), (299, 1), (300, 1),
(301, 1), (302, 1), (303, 1), (304, 1), (305, 1), (306, 1),
(307, 1)]

3.2 Implementation of algorithms
The algorithms explained are numerous, while having several variations each. Gensim is
an open source NLP library for topic modelling that provides already built-in implemen-
tations for several of the techniques mentioned in Section 2.2 (Rehurek and Sojka, 2010).
We have decided to use pre-trained models for word embeddings as the amount of data re-
quired to obtain reliable models is out of range in the use case used in this Master’s thesis.
The usage of libraries and pre-trained models has been distributed in the following way:

• For the techniques TF-IDF, LSA and LDA, the implementations are done using Gen-
sim’s open source library.

• For word embeddings, several models have been studied using pre-trained embed-
dings from GloVe, BERT and Flair.

3.2.1 Term frequency - inverse document frequency
TF-IDF uses the frequency of tokens in the corpus to weight the values obtained in the
bag of words (see Section 2.2.1). The implementation of this algorithm is performed in
Gensim by creating an instance of the model tfidf :

from gensim.models import TfidfModel

#convert corpus to BoW format
bow = [dictionary.doc2bow(document) for document in corpus]

33

3. Implementation

#fit TF-IDF model
model_tfidf = TfidfModel(bow)

The way to apply this model to a document is by simply passing a text in BoW format
to the instance we have just created:

#TF-IDF transformation of a BoW document
document_tfidf = model_tfidf[document_bow]

If we apply this to the example in Section 3.1.3, the TF-IDF transformation is:

Bag of words:
[(159, 1), (296, 3), (297, 1), (298, 1), (299, 1), (300, 1),
(301, 1), (302, 1), (303, 1), (304, 1), (305, 1), (306, 1),
(307, 1)]

TF-IDF transformation:
[(159, 0.0677), (296, 0.2169), (297, 0.1068), (298, 0.2546),
(299, 0.1110), (300, 0.4141), (301, 0.2659), (302, 0.3592),
(303, 0.1385), (304, 0.4141), (305, 0.4141), (306, 0.1385),
(307, 0.3271)]

where each element is a tuple (id,weight) representing the identification number of the
token and the weight associated with the TF-IDF transformation, respectively.

The library also provides a class for calculating the cosine similarity among vector
representations in the form of lists of tuples (such as TF-IDF, LSA or LDA). This class is
called Similarity in Gensim (gensim.similarities.docsim.Similarity). The parameter cor-
pus in this class refers to the LSA, LDA or TF-IDF transformation of the corpus and
num_features to the length of the dictionary. The result is a matrix M, where each ele-
ment M[i,j] represents the cosine similarity between the document with index i and the
document with index j. The index of a document is stored as a node property called id in
the graph database (see Section 3.1.1).

3.2.2 Latent semantic analysis & latent Dirichlet al-
location

The procedure for LSA and LDA is similar to the process for TF-IDF. The starting point is
the same: they require a dictionary and the bag of words of the corpus. Gensim provides
also built-in functions to calculate the LSA model and the LDAmodel without any further
difficulty. The statistical processes and the dimensionality reduction that they require are
done automatically when creating the models:

from gensim.models import LsiModel, LdaModel

#fit LSA model
lsa = LsiModel(corpus, id2word = dictionary, num_topics =

ntopics)

34

3.2 Implementation of algorithms

#fit LDA model
lda = LdaModel(corpus, id2word = dictionary, num_topics =

mtopics)

There are a few parameters that one can tune for these models when creating them:

• corpus – Stream of tokenized documents. These tokens must appear in the dictio-
nary, otherwise they will be ignored.

• num_topics – Number of topics to identify (latent dimensions).

• id2word – Optional. ID to word mapping. Dictionary to be used.

• chunksize – Optional. Number of documents to be used in each training chunk.

• distributed – Optional. If True, distributed mode (parallel execution on several
machines) will be used.

Then a decomposition is created for the number of topics preset, where topics for LSA
tend to be more specific and for LDA more general. The cosine similarity among doc-
uments can be computed as explained at the end of Section 3.2.1. Some of the topics
inferred during the analysis with latent semantic analysis are:

First 12 topics found with LSA:

[(0,
’0.533*"amountofmoney" + 0.301*"usa" + 0.228*"citi" + 0.221*"

data" + 0.159*"use" + 0.124*"compani"’),
(1,
’0.528*"amountofmoney" + 0.341*"usa" + -0.226*"data" + -0.189*"

use" + -0.135*"ai" + -0.126*"compani"’),
(2,
’0.478*"citi" + 0.343*"00" + -0.271*"emiss" + -0.247*"use" +

-0.227*"data" + -0.152*"co2"’),
(3,
’0.434*"data" + -0.411*"emiss" + 0.248*"ai" + -0.218*"co2" +

-0.200*"electr" + -0.174*"citi"’),
(4,
’0.294*"data" + -0.281*"compani" + 0.261*"00" + 0.232*"ai" +

0.218*"citi" + 0.212*"emiss"’),
(5,
’-0.419*"debt" + -0.344*"trillion" + -0.256*"80" + -0.250*"60"

+ -0.223*"70" + -0.211*"50"’),
(6,
’-0.499*"data" + 0.442*"ai" + 0.199*"use" + 0.177*"car" +

-0.164*"compani" + 0.148*"case"’),
(7,

35

3. Implementation

’0.366*"citi" + -0.221*"say" + -0.203*"said" + 0.182*"scooter"
+ 0.174*"vehicl" + 0.161*"urban"’),

(8,
’-0.265*"compani" + -0.254*"franchis" + -0.231*"00" + -0.214*"

busi" + -0.207*"ai" + 0.196*"said"’),
(9,
’0.412*"car" + -0.261*"citi" + 0.217*"data" + 0.201*"vehicl" +

-0.165*"compani" + -0.144*"said"’),
(10,
’0.240*"market" + 0.237*"growth" + -0.226*"said" + -0.219*"

compani" + 0.214*"europ" + -0.203*"use"’),

(11,
’0.210*"franchis" + -0.209*"scooter" + -0.186*"00" + -0.178*"

said" + -0.177*"growth" + 0.175*"urban"’)]

The more topics one seeks for in the computation of LSA and LDA, the more spe-
cific those topics will be, in principle. This is a statistical computation and the procedure
that extracts those topics by combining words can sometimes lead to nonsensical or non-
physically existing topics. These topics still make sense mathematically to encapsulate the
documents into (for more information, see Section 2.2.2).

3.2.3 Word embeddings
The document relation for this model is done through word embeddings. We have opted
for using GloVe, a popular dictionary of embeddings trained over a corpus of billions of
words (Pennington et al., 2014). The semantic meaning is inferred into word embeddings
from the frequency of occurrence of such words. The more probable that two tokens
are to appear together in a sentence, the more similar their embeddings will be, while
respecting some other side relations among these embeddings (see Section 2.2.4 for more
information). GloVe is a so-called static embedding model, where the vectors obtained
for the words are fixed, i.e. not context sensible. For this reason, we will explore some
variants using some dynamic word embedding models, such as BERT (Devlin et al., 2018)
and Flair (Akbik et al., 2018).

Pre-trained GloVe embeddings can be downloaded from their website (https://nlp.stanf
ord.edu/projects/glove/). We store these token representations as nodes into the knowledge
graph. The nodes are of type Word and have two properties:

• Name: the name of the token.

• Embedding: vector representation of the embedding for that word.

Combination of word embeddings
Word embeddings are representations of tokens. Since the documents have already been
processed, the remaining tokens in the corpus are those which confer meaning to the texts.
In order to obtain vectors that represent documents, we require some sort of combination
method that takes into account the embeddings from the words that compose a document.
There are some approaches regarding this:

36

3.2 Implementation of algorithms

• Addition: adding the word embeddings will create a vector with the value of the
individual words of the text. This is a similar approach as how humans read texts,
which is in fact the stacked composition of its words. However, the Euclidean dis-
tance of texts with significant difference in length could be big even when they are
related as the documents will point to locations quite apart in the vector space.

• Addition with weights: the same approach, however with weights attached when
computing the summation. An example of this could be using the weights from the
TF-IDF decomposition. The idea is to emphasize the embeddings of the document’s
keywords. The previous problem with the length still appears, as we do not apply
normalization to the vectors.

• Average: the average of the embeddings. This is a technique widely used in the field.
Calculating the average of the embeddings belonging to the words composing a text
to create the vector representation of the document fights the problem of documents
with different length.

Comparison of words
An alternative way to compute document distances is to match words by pairs and calcu-
late the total Euclidean distance. For example, we could calculate the Euclidean distance
among subjects, verbs and objects of two texts in order to evaluate the document distance
between them. We could match words in pairs by meaning instead. Let us assume two
sentences:

“Autonomous vehicles could free up some parking space in cities.” –Sentence 1.

“Self-driving cars could make city congestion a lot worse”. –Sentence 2.

The subjects of these two sentences are autonomous vehicles and self-driving cars.
The predicates speak about parking space in cities and city congestion. We can compute
the distance among the word embeddings in the vector space for these words and add the
values to compute the distance between texts. If we had a third sentence to compare:

“Oxford investigates effects of digital technology on well-being”. –Sentence 3.

The distance between autonomous vehicles and self-driving cars is smaller than be-
tween Oxford and autonomous vehicles, just the same as the distance between parking
space in cities and city congestion is likely to be smaller than between parking space in
cities and digital technology. This leads up to an Euclidean distance smaller between
sentence 1 and sentence 2 than between sentence 1 and sentence 3. A possible issue is
how to deal with documents with different lengths or with different grammatical structure.
Kusner et al. (2015) have an interesting way to compute document distances from word
embeddings that cope with such problems. This procedure has been applied to compute
the Euclidean distance among documents in one model, where the Relaxed Word Moving
Distance (RWMD) has been used. The rest of the models have been computed using the
average of the embeddings using different combinations of words from the texts as input:

37

3. Implementation

the entire processed corpus or the keywords appearing in the title as well as using different
types of embeddings: BERT, GloVe, Flair or combinations. The results can be checked in
Chapter 4.

When you use a static word embedding model the representation is unique, so we
could save the vector in the graph and query it whenever we need it. This is different for
BERT and Flair embeddings. The token representation changes with the sentence, the
rest of the tokens around it will infer a specific meaning, modifying the representation of
the embedding (Devlin et al., 2018) (Akbik et al., 2018). This gets rid of the polysemy
problem that we talked about. However, since these embeddings are computed “on the
fly”, we will see that the results are not outstanding and that GloVe generally obtains the
best results. In some of the models we will attempt to improve them by combining the
embeddings from GloVe, BERT and Flair. The library of Flair embeddings allow to stack
different types of embeddings, which can be used for such matter.

3.2.4 Ensemble method
The models implemented assess similarity among the documents existing in the dataset.
For each document, we have sorted all the other documents by similarity and assigned
a rank to that relation: the document with the highest similarity score receives rank 1,
the document with the second highest similarity score receives rank 2, and so on. What
we have established is a recommendation system where we have the similarity among
documents ordered by rank. These results have been stored as relationships in the graph.
The relationships are labeled with the algorithm that we have used to predict the relation
and have the rank attached as a property of that relation (see Fig. 3.2).

Figure 3.2: Example of documents in the knowledge graph with
relationships from the algorithms and their rank attached. All
other connections are left out for readability.

38

3.2 Implementation of algorithms

The user may select one of the algorithms implemented to request recommendations
for a document. However, in this section we want to study the result of using an ensemble
method. An ensemble method is a combination of the outcomes of diverse algorithms.
The ensemble equation used in this Master’s thesis is the following:

ensemble_weighti, j =
1
m

m∑
k=1

max(rank) − rankalg
i, j

max(rank) − 1
, (3.1)

where m is the total amount of algorithms considered in the ensemble method and rankalg
i, j

is the rank between the document with ID i and the document with ID j obtained through
the algorithm alg. For instance, rankTF−IDF

1,2 is the rank of the relation from document with
ID 1 to the document with ID 2 obtainedwith term frequency - inverse document frequency.
If the relation between document i and document j has not been predicted by algorithm
alg, then rankalg

i, j is equal to max(rank). In the example of Fig. 3.2, rankTF−IDF
1,2 = 5

and rankLSA
1,2 = max(rank). Max(rank) refers to the maximum rank considered in the

ensemble method. Normally, only a few other documents are related for each document in
the dataset. Max(rank) is a form of limiting the recommendations in order to not allowing
many false positive recommendations. We have selected max(rank) to be equal to 10 for
this dataset. In the example showed in Fig. 3.2, the ensemble weight from the document
1 to document 3 would be:

ensemble_weight1,3 =
1
3

(
10 − 1
10 − 1

+
10 − 4
10 − 1

+
10 − 5
10 − 1

)
= 0.740 (3.2)

This ensemble method provides a weight in the recommendations in the range [0,1].
The only algorithms that we have considered in the ensemble method are: TF-IDF, LSA
and word embeddings (m = 3). This is due to the fact that LDA performed significantly
worse than the rest of the algorithms in the evaluation results (see Chapter 4, Table 4.6).
The results from the ensemble method are stored as relationships labeled as RELATES_TO
where the weights are attached as properties of the relations (see Fig. 3.3).

3.2.5 Community finding
The ensemble method provides with the knowledge of all the algorithms together a trust-
worthy solution to the recommendations. These recommendations among articles in the
knowledge graph create a network. This network represents the map of articles in the
database, with its internal connections and communities. The library of tools in Neo4j
provides some of the most well known algorithms for community finding: label propaga-
tion, Louvain, triangle counting, strongly connected components and balanced triads. The
ones implemented in this Master’s thesis have been Louvain and label propagation.

The run of the algorithms have been done with the Graph Algorithms Playground tool
in Neo4j. The algorithms require a data-type of nodes which we want to find the com-
munities for and the type of relationships to consider in the community finding (see Fig.
3.4). The nodes are of type Article, which is the format that we have selected to store
the information of the documents (see Section 3.1.1). We have selected the relationships
obtained from the ensemble method as the network to be considered in the community

39

3. Implementation

Figure 3.3: Example of documents in the knowledge graph with
relationships from the ensemble method and their weight attached.

finding. The community found for each Article node is stored in a property of the node
called community.

Figure 3.4: Graph Algorithms Playground menu, in Neo4j.

3.3 Graphical user interface
The problem and the approach towards solving it have been described. It is time to define
how the user will interact with the system. This is what we call a graphical user interface

40

3.3 Graphical user interface

(GUI). A GUI is the application, the piece of software that the user will use to trigger the
actions and visualize the information that the system provides. Through this application a
user will be able to read documents, search for a specific one, either by title or by category,
and obtain the most related documents for a selected document, plus some extra features
in order to provide some more insights (listed afterwards) (Fig. 3.5).

Figure 3.5: Graphical user interface designed with Tkinter.

The application has been designed with Tkinter, the standard Python GUI package.
Tkinter is not the only module used for GUI design in Python. It is, however, the most
commonly used. Tkinter works on top of Tcl/Tk, so it is required that this module is
installed in the system. The application is event-sensible. This means that it is possible for
the user to use some events in the keyboard to act on the GUI. For example: press Enter
when typing the title of a document to start the search, use the wheel of the mouse to scroll
the list of documents or let the application know which window has the user left its mouse
on.

Also, the application lets you preview the articles with a button at the top-right corner.
The system will help the user quickly find the principal ideas of the article by highlight-
ing some words in the pre-visualization. These keywords are predicted by the TF-IDF
algorithm, where the words with high weight are extracted (Fig. 3.6).

The system can also provide some interesting features that the user can access to obtain
some insights about either the documents or the predictions done by the algorithms. The
user opens this menu by clicking in the icon in the middle, below the lists of documents
(Fig. 3.7).

41

3. Implementation

Figure 3.6: Graphical user interface using the preview mode to
read a document where the keywords are highlighted in yellow.

The list of features contains:

Figure 3.7: Insight menu in the GUI.

42

3.3 Graphical user interface

• Read source material: Opens a tab in the default web browser and read the article
from the source material.

• Idea of the document: Creates a word cloud with the core ideas behind a document
(see Fig. 3.8). This is done using the corpus of the article. The word cloud has been
created using the python library (https://github.com/amueller/word_cloud), together
with Pandas, Numpy and Matplotlib.

• What else is in the topic?: Uses the community finding analysis to search for the
most commonly used words in the community of the selected article and constructs
a word cloud out of it based on the general ideas in the community. This helps give
an idea of what one can find in the same community of the article. The words in
the community are selected with the support of TF-IDF to include the most rele-
vant terms (keywords). The word cloud has been created using the python library
(https://github.com/amueller/word_cloud), together with Pandas, Numpy and Mat-
plotlib.

• Why are they related?: The system performs an analysis to extract a list of tokens
that relate the two documents selected (one in the left column and one in the right
column), if they exist. They are found by matching the keywords of the documents
that were extracted using TF-IDF. The ones that are in common are mentioned as
the reasons why these two documents are related (see Fig. 3.9).

Figure 3.8: Summary of the idea of an article by means of a word
cloud in the GUI.

At the bottom-right corner of the application there is the menu of algorithms. The user
may select which algorithm they want to use to obtain recommendations. One may also
select how many recommended algorithms they want to retrieve by writing a number in
the field next to Find Closest. The recommendations are not affected by the categories
selected in the search bar. Those are exclusively for searching articles in the database.

43

3. Implementation

Figure 3.9: The application predicting the relation between two
articles using the insight button.

44

Chapter 4
Evaluation

The first problem that most AI practitioners encounter is the lack of data available to use
during training. This is because there is not a lot of high quality data, and if there is, it is
not normally tagged. This problem arose in this Master’s thesis, where the data available
did not contain a training set of tagged relations. The way that this problem has been
addressed is based on a similar approach as used by Losada et al. (2016). The method
that we employed creates a test set by using the algorithms implemented in Section 3.2
to discover relations. We have considered the recommendations from these models and
clustered the documents that were similar to create the test set.

The evaluation method analyzes the ability of the techniques at performing related
recommendations. The metric used is a recall where the recommendations from the algo-
rithms are compared against the clusters of the test set:

recall =
1

number_o f _clusters

∑
i=1

number_o f _relevant_retrieved_relations
number_o f _elements_in_cluster i

. (4.1)

By using this score, we can tune the algorithms’ parameters in order to obtain the
models with the best results in the evaluation. However, this evaluation magnitude does
not take into account the order of the recommendations as the recommendations are not
ranked. For that, we will use a similar approach as Losada et al. (2016), where the evalua-
tion metric takes into account the rank of the recommendations. The coefficient that they
used is called Ranked-biased precision (RBP) and it is calculated like this (Losada et al.,
2016):

RBPlosada = (1 − p)
∑
i=1

ui · pi−1, (4.2)

where p is the probability to switch algorithm ("bandit" in Losada et al. (2016)) for the
next recommendation, i is the rank of the recommendation and ui is the utility of a single
recommendation at rank i. The metric that we use follows the same concept of scoring

45

4. Evaluation

the utility of a recommendation by its rank. The utility u is a coefficient that evaluates
the relevance of a recommendation. If a recommendation leads to a related document the
utility will be u = 1. If the recommendation leads to a non-related document the utility
will be u = 0. The utility is weighted based on the rank of the recommendation with a
decay factor δ. This is done to evaluate the recommendations according to the rank. The
equation to calculate the RBP in this project takes the form:

RBP =
∑
i=1

ui · δ
i−1, (4.3)

where the utility ui for a document recommendation will be considered relevant (ui = 1)
if the recommended document appears in the cluster defined in the test-set, not relevant
otherwise. The decay factor is to be decided by the user. We have decided to use 0.85 as
the decay factor. The last metric, RBP x Recall, is a parameter that uses multiplication
to entail the features from both the recall score and RBP: accuracy and rank order. The
results obtained by performing this evaluation method are showcased in Section 4.1.

4.1 Algorithms results
In Chapter 3 we went through the implementation process for the Volvo Cars use-case
of document similarity. It is time to evaluate the performance of the algorithms. The
comparison of topic modelling techniques (TF-IDF, LSA, LDA) will be centered around
the number of topics as well as whether a stemmed version of the documents makes an
improvement in the results. The core of the comparison for word embeddings will be the
pre-trained models as well as whether the usage of cosine similarity or Euclidean distance
as the metric for assessment of document relation is significant in the evaluation results.

4.1.1 Term frequency - inverse document frequency
The term frequency - inverse document frequency algorithm allows a few different meth-
ods to be implemented. We can compute the term frequency (tf) as binary, raw count,
term frequency or log normalization. And for the inverse document frequency (idf), we
use the unary version, the inverse document frequency or the inverse document frequency
smooth. The optimization and testing of all the versions of the algorithms falls out of the
scope of this project.

The version that we used for the tf-idf model is the recommended one for documents
that vary in size, which uses normalization over their length. In the list mentioned above,
this is called term frequency for the tf, and inverse document frequency for the idf. The eval-
uation results can be checked in Table 4.1 where we show a comparison between the non-
stemmed version of the words (NST) versus the stemmed version. The stemmed model
has approximately 1.2% increase in the recall score and 4.3 % in the RBP x Recall score.
This result is not very significant and could vary with a dataset of a different size, although
the indication here is to use the stemmed model of the TF-IDF.

46

4.1 Algorithms results

Algorithm Recall Score RBP RBP x Recall
TF-IDF 0.79 91.86 72.15

TF-IDF_NST 0.78 89.03 69.16

Table 4.1: Results of the evaluation on the TF-IDF method.

4.1.2 Latent semantic analysis (LSA)
The latent semantic analysis (LSA) performs a reduction over the complexity of the tf-
idf that is defined by the number of topics preset. It is obvious that this number will be
decisive when training the models. In this section, we study the impact of the number of
latent dimensions in the implementation of LSA models. In order to obtain meaningful
models, we use two different heuristics to find numbers of topics to train our LSA models:
coherence model and maximum recall score.

Coherence model
This is a technique used for evaluation of topic models. The pipeline is divided in four
phases: segmentation, probability estimation, confirmationmeasure and aggregation. Gen-
sim implements this technique as part of the models section in its library. Gensim’s coher-
ence model implementation is based on the pipeline from the paper Röder et al. (2015).

Figure 4.1: Coherence model analysis regarding number of topics
for Latent Semantic Analysis (stemmed version).

The coherence model outputs a measure of coherence of the topic model over the
dataset, which in a sense is an estimation of a magnitude that establishes some parallelism
with the inferred suitability of the topic model. This has been used as a tool to measure
the coherence of the model correlated with the number of topics of the LSA model.

The analysis displays the topic coherence of the model for each choice of number of
topics (Fig. 4.1). The coherence will increase in front of (or around) a more suitable
number of topics for the topic model. As can be seen, the topic coherence have two peaks

47

4. Evaluation

Figure 4.2: Coherence model analysis regarding number of topics
for Latent Semantic Analysis (non-stemmed version).

around 15 and 20, with a maximum coherence for 5 topics. The evaluation results are
displayed for the LSA model tuned at these three number of topics (Table 4.2).

Maximum recall score
This heuristic uses the recall score to tune the model. The evaluation in this case is done
by using a wide range of topic models tuned at different number of topics to maximize the
recall evaluation score.

This is obviously the model that will give the best evaluation score as it uses that mea-
sure to tune the model. However, an interesting point of view would be to compare the
recommendations of this model to the ones resulting from other models on a different
corpus.

Results summary for LSA
This part summarizes the results from the LSA models tuned with the different heuristics
explained above. The evaluation is made through the metrics explained at the beginning
of the chapter and the results appear in Table 4.2 and Table 4.3. The nomenclature used at
the table stands for:

(x) = number of topics used for the model
chm = obtained through the coherence model
rc = obtained using the maximum recall score

The best model occurs for the model obtained through maximum recall analysis, as the
maximum values in all recall, RBP and RBP x recall are achieved for this model. For the
non-stemmed version it corresponds to 40 topics and for the stemmed version to 37 topics
using the Gensim library. One thing that can be observed is that there is not a big impact
in the results from using the stemmed version over the non-stemmed version of the corpus

48

4.1 Algorithms results

Figure 4.3: Recall score regarding number of topics for latent se-
mantic analysis using stemmed tokens in the model (green) versus
non-stemmed tokens (cyan).

Figure 4.4: RBP score regarding number of topics for latent se-
mantic analysis using stemmed tokens in the model (green) versus
non-stemmed tokens (cyan).

until we start increasing the number of topics above 60 (Fig. 4.3 - Fig. 4.5).

4.1.3 Latent Dirichlet allocation (LDA)
Coherence model
Latent Dirichlet allocation is a variation of latent semantic analysis (see Chapter 2 for
more information). Their internal structure work in a similar way: both require a number
of "topics" or "concepts" to work and transform the corpora into a vectorization of those
concepts. The coherence model applied can also be applied to LDA for this reason (Röder

49

4. Evaluation

Figure 4.5: RBP x Recall score regarding number of topics for la-
tent semantic analysis using stemmed tokens in the model (green)
versus non-stemmed tokens (cyan).

Algorithm Recall Score RBP RBP x Recall
LSA_chm (5) 0.50 34.67 17.41
LSA_chm (15) 0.64 60.33 38.32
LSA_chm (20) 0.67 68.63 45.65
LSA_rc (37) 0.73 78.91 57.58

Table 4.2: Results of the evaluation of latent semantic analysis of
stemmed tokens, where the numbers between brackets correspond
to the number of topics used to train the model.

Figure 4.6: Coherence model analysis regarding number of topics
for latent Dirichlet allocation (stemmed version).

et al., 2015). The results of the coherence model can be checked in Fig. 4.6. The results
are very noisy, whilst the results are significantly lower in the evaluation scores than the

50

4.1 Algorithms results

Algorithm Recall Score RBP RBP x Recall
LSA_chm_nst (5) 0.44 27.92 12.34
LSA_chm_nst (15) 0.63 60.51 37.92
LSA_chm_nst (20) 0.70 72.39 50.33
LSA_rc_nst (40) 0.73 80.08 58.77

Table 4.3: Results of the evaluation of latent semantic analysis of
non-stemmed tokens, where the numbers between brackets corre-
spond to the number of topics used to train the model.

rest of the algorithms.

Maximum recall score
This method attempts to find the model which gives the maximum recall score. This does
not transform this model into the best model in the other metrics (RBP, RBP x Recall).
The peak of maximum recall score can be found with a model of around 8 topics. This
goes according to the intuition that the LDA method finds concepts (general) instead of
topics, like LSA. However, as we can see, the signals of the analysis are noisy, just like all
the other metrics we have evaluated for this algorithm (Fig. 4.7 - Fig. 4.9). The global
results of the algorithm can be checked in Table 4.4.

Figure 4.7: Recall score regarding number of topics for latent
Dirichlet allocation using stemmed tokens in the model (green)
versus non-stemmed tokens (yellow ochre).

Results summary for LDA
This part summarizes the results from the LDA models tuned with the different heuristics
explained above. The results have been restricted to the stemmed version as the results
showed by the graphs of the maximum recall score did not show an improvement over

51

4. Evaluation

Figure 4.8: RBP score regarding number of topics for latent
Dirichlet allocation using stemmed tokens in the model (green)
versus non-stemmed tokens (yellow ochre).

Figure 4.9: RBP x Recall score regarding number of topics for
latent Dirichlet allocation using stemmed tokens in the model
(green) versus non-stemmed tokens (yellow ochre).

the stemmed model (Fig. 4.7 - Fig. 4.9) and in order to save time for more studies. The
nomenclature used in the table stands for:

(x) = number of topics used for the model
chm = obtained through the coherence model
rc = obtained using the maximum recall score

The best model occurs for the model obtained through maximum recall analysis, as
the maximum values in all recall, RBP and RBP x recall are achieved for this model. That
corresponds to 8 concepts using Gensim. One thing that can be observed is that there is not

52

4.1 Algorithms results

Algorithm Recall Score RBP RBP x Recall
LDA_chm (5) 0.45 25.71 11.57
LDA_chm (10) 0.43 23.34 10.03
LDA_chm (15) 0.41 20.54 8.42
LDA_rc (8) 0.60 35.89 21.53

Table 4.4: Results of the evaluation of latent Dirichlet allocation
of stemmed tokens, where the numbers between brackets corre-
spond to the number of topics used to train the model.

a big impact in the results from using the stemmed version over the non-stemmed version
of the corpus due to the abundant noise existing in the results (Fig. 4.7 - Fig. 4.9).

4.1.4 Word embeddings
This section will focus on the exposition of results for the models described in Section
3.2.3. The models have been based on three main types of embeddings (BERT, GloVe and
Flair). The metrics used have been either cosine similarity (Section 2.3.2) or Euclidean
distance (Section 2.3.1) based on the average of the embeddings of one document, with the
exception of one model that has been trained with the method described in Kusner et al.
(2015). This method is called Relaxed Word Moving Distance (RWMD), term referred to
from now on.

Results summary for word embeddings
Several models have been explored by trying different combinations of such systems (see
Table 4.5). The metrics are the same ones that we have been using for the rest of the algo-
rithms: recall score, RBP and RBP x Recall. The nomenclature for the models follow the
syntax below.

Metric
cs = the metric used in the recommendations is Cosine Similarity
eu = the metric used in the recommendations is Euclidean Distance

Embeddings model
glove = the model has been implemented using pre-trained embedding representations

from Global Vectors for Word Representation (GloVe)

flair = the model has been implemented using pre-trained embedding with on-the-fly
dynamic training using representations from Flair embeddings

bert = the model has been implemented using pre-trained embedding with on-the-fly
dynamic training using representations from BERT embeddings

Source
stn = the GloVe embeddings are obtained from the website of NLP Stanford Edu

53

4. Evaluation

Algorithm Recall Score RBP RBP x Recall
Word-embeddings_eu_glove_stn 0.65 69.22 44.86
Word-embeddings_cs_glove_stn 0.65 69.93 45.62

Word-embeddings_eu_glove_stn_title 0.61 58.63 35.99
Word-embeddings_cs_glove_stn_title 0.62 59.75 36.92

Word-embeddings_eu_flair 0.52 41.59 21.42
Word-embeddings_cs_flair 0.51 42.00 21.27

Word-embeddings_eu_flair_glove_news 0.57 52.60 29.80
Word-embeddings_cs_flair_glove_news 0.58 53.74 30.91
Word-embeddings_eu_flair_glove_multi 0.57 52.60 29.80
Word-embeddings_cs_flair_glove_multi 0.58 54.90 31.58
Word-embeddings_eu_bert_glove_stn 0.68 74.75 51.01
Word-embeddings_cs_bert_glove_stn 0.69 75.83 52.07

Word-embeddings_rwmd_stn 0.72 77.00 55.19

Table 4.5: Results of the evaluation of word embeddings models.

(https://nlp.stanford.edu/projects/glove/,Wikipedia 2014 + Gigaword 5, 300d)

multi = the Flair embeddings are obtained from Zalando Research using pre-trained
embedding representations extracted fromMultilanguage ’Mix of corpora’ sourcematerial

news = the Flair embeddings are obtained from Zalando Research using pre-trained
embedding representations extracted from news articles source material

Note: If not specified by one of these terms, the representations have been extracted
from the pre-trained embeddings existing in the library of Zalando Research

(https://github.com/zalandoresearch/flair)

Other terms
rwmd = the metric used in the recommendations is Euclidean Distance calculated with

the Relaxed Word Moving Distance (RWMD) method (instead of the average of the em-
beddings in the corpus)

title = the input to calculate the recommendations has been the embeddings of the key-
words appearing in the title of the document instead of the average of the embeddings in
the corpus. The keywords have been predicted using the TF-IDF algorithm.

The values obtained from evaluation of the models show a few insights:

• The best model is obtained using the Relaxed Word Moving Distance (RWMD)
method. This method exposed in Kusner et al. (2015) shows the best results in all
three metrics with an improvement of 10.7% in the Recall score and 21% in the
Recall x RBP score, compared to using only GloVe. However, it is by far the most
time consuming computationally (around x4 the time of the second best model).

54

4.1 Algorithms results

• TheCosine similaritymetric does not show any significant advantage over Euclidean
distance, at least in the observations extracted from the models explored in this Mas-
ter’s thesis.

• Flair embeddings does not seem to improve the results in any of the models. How-
ever, BERT has improved the results compared to using only GloVe embeddings by
6% in the Recall score and by 14% in the Recall x RBP score.

• Using the full length of the corpus seems to have better impact in performance than
using a smaller part of the corpus, such as, for example, the keywords in the title.

• Using a different source material in the pre-trained embeddings does not seem to
have a significant impact in performance either, given a sufficiently large size of
source material.

4.1.5 Ensemble method
The ensemble method attempts to portray a better solution than the individual algorithms
separately by ensembling the results. In this way, the method avoids being biased towards
only one aspect of topic modelling. There are many ways in which the algorithms could
have been combined. The objective was to have a weight between 0 and 1 and to emphasize
overlapping of recommendations. The result for this method can be seen in Table 4.6.

One insight that can be retrieved from this ensemble method is that the result obtained
from the evaluation on the test set is under the ones obtained with tf-idf. This is a combina-
tion of several algorithms, hence the result gets slightly dragged down by the results from
LSA and word embeddings (LDAwas not included in the ensemble). In terms of RBP and
RBP x Recall, the results from the ensemble method are parallel to those of tf-idf. The
expectation is that this method could surpass the individual models with a bigger dataset,
improvements on the ensemble equation or by running over a test set that has not been
seen by the algorithms during training. This is the real power of ensemble methods.

4.1.6 Community finding
The results of the communities found with label propagationwere too specific. Each com-
munity was composed of one or two documents, below the size of the sub-communities
observed when composing the test set for evaluation. Hence, the results found with label
propagation have been considered not reliable as for the communities expected for this
use case. The communities found with the Louvain algorithm are more promising. The
amount of communities that were discovered is fifteen. This goes in line of the more gen-
eral themes that we were expecting to find in the graph. All the relationships perform a
role in the final result. Hence, false positive recommendations can negatively affect the
communities found by the algorithm. To reduce the amount of these, we have filtered out
the relationships of the ensemble method with weight below 0.35 (see Fig. 4.10).

Louvain is a type of clustering method; it does not provide recommendations like the
other methods provided. We have addressed this problem by using the ensemble method as
the recommendation system in order to evaluate the RBP. We use the communities found
to calculate the recall score. The results can be checked in Table 4.6.

55

4. Evaluation

Figure 4.10: Communities found with the Louvain algorithm af-
ter filtering out relationships with weight below 0.35. Each com-
munity is represented with a different color. Visualization done in
Linkurious Enterprise.

Technique name Recall Score RBP RBP x Recall
TF-IDF 0.79 91.86 72.15
LSA 0.73 80.08 58.77
LDA 0.60 35.89 21.53

Word embeddings 0.72 77.00 55.19
Ensemble method 0.78 92.06 71.91
Community finding 0.88 92.06 80.75

Table 4.6: Comparison of the evaluation results of the best model
from each algorithm.

56

Chapter 5
Conclusions

This chapter focuses on the insights gained from the study performed in this Master’s
thesis. Some conclusions to the specific algorithms have already been explained in the
previous chapter, however, here we will focus on some of the conclusions and their con-
sequences.

We will also have a look at some matters that were not seen in Chapter 4, as they were
not considered as restrictions or design parameters for the discussed models. A future
perspective of the system, specially if put in production, has to take these aspects into
account.

5.1 Discussions
This section will talk about the limitations of the algorithms that have been explained and
help establish some conclusions about them.

5.1.1 Algorithms results
One of the first things that have been observed is that the fact of using cosine similarity
or Euclidean distance has not had a defining impact in the results. The same behaviour
occurs with using stemmed versus non-stemmed words, although in some cases it might
indicate something for a different scenario.

TF-IDF This algorithm has proved very interesting, being useful not only as a topic
modelling algorithm, but also as a tool to provide other parts of the systemwith text parsing
capabilities: keywords, relevance, insights or even enhancement to other topic modelling
algorithms. There has not been observed a significant improvement from using stemmed
words versus non-stemmed words.

57

5. Conclusions

LSA In the evaluation plots of Latent Semantic Analysis there has not been observed
a big impact in the results from using the non-stemmed version over the non-stemmed
version of the corpus until we start increasing the number of topics above certain threshold.
This might be an indication that using a stemmed version of LSA might be useful over
using a non-stemmed model for larger datasets. Perhaps this topic modelling technique
might capture some topics that other algorithms cannot with more information.

LDA This algorithm has fallen behind in the evaluation results compared to other al-
gorithms. One thing that has been observed during testing is that most of the time, the
articles were assigned to the same topic ("concept"), leading to cosine similarity of one.
What this means is that, either there is not enough data as for finding other concepts that
distinguish the articles in the dataset or that the dataset was entirely overfocused on one
subject.

Word embeddings The mechanism behind word embeddings is very interesting as
seen in Chapter 2. The possibilities of obtaining more information from the semantic
analysis can be enhanced with such properties of word embeddings. The best model has
been found using a classical model of pre-trained embeddings with a state-of-the-art opti-
mization algorithm to transform word embeddings into document distances. There is still
a lot of space to research new methods and investigate new ways to calculate document
distances from word embeddings to push the results even further. BERT has proven to
improve the results compared to other models when using the average of the embeddings
to calculate document representations. A possible way to obtain better results would be to
explore new methods to optimally calculate document distances from word embeddings
in combination with high quality word embeddings representations.

5.1.2 Run time
This is the time needed to run some part of the system. A large latency in the execution can
be stressful or annoying for the users, hence the execution time of the application during
usage should be between certain boundaries of acceptability for the user. The range of
admissible latency is defined by the company depending on the frequency of execution
of that part of code and the alternatives available. In this section, we are not going to
compute response times, however we will mention some problems that should be taken
into consideration.

Reducing the amount of computations on the fly to the minimum is, of course, one way
to reduce latency. There are ways to store intermediate results, models and information
that has to be used repeatedly once it is computed. The training of models is also a part
that usually takes a lot of computation time. The model that used optimization for word
embeddings needed x4 more time than the second best model of that algorithm. That was
around 90 hours for a single computer with 8GB of RAM. The number of computations
required for a new document grows fast ((n-1) computations for a dataset with n elements
for each new document). The optimization is costly time-wise; some actions should be
taken as the dataset grows. Some recommendations are: using a relaxed version of the
optimization algorithm (for example, Relaxed Word Moving Distance (RWMD) was used
in this Master’s thesis for this exact reason), improving the power of the machine, either by
using a machine with more computational power or by using distributed computing, using
CUDA to take advantage of GPU computing or using a different method that is cheaper

58

5.2 Improvements and future work

computationally.

5.1.3 Scalability
The scalability is another issue to take into account when putting a system into production
stage. Normally, a system will grow over time, including more data, performing more
tasks or adding more features that require larger systems. Everything could end up not
fitting into memory; the usage of generators may be useful.

In terms of algorithms, dictionaries often include thousands of terms. The ones used
here included more than 6,000 tokens in the stemmed model and around 10,000 in the
non-stemmed version. The vector representations extracted from tf-idf have that same
length. The algorithmmight break when the size of the dictionary is too big as for handling
the document vectors created. Latent semantic analysis and latent Dirichlet allocation
might improve their performance with a larger corpus with the possibility to find more
meaningful topics or concepts. The size of the dictionary might still cause some trouble if
it is too large nonetheless. Other techniques have to be researched that could take advantage
of big data, such as graph algorithms, deep learning or knowledge-base solutions.

5.2 Improvements and future work
There is a lot of space for improvement, algorithmic-wise, data management-wise and
capability-wise. The community finding algorithms explained in Section 3.2.5 do not
allow for community overlap. This might be an issue in our use-case, where we might
be interested in finding overlapping themes or sub-themes inside a theme. Other methods
to be investigated in the future can solve this issue. There are other features that a user
might find useful, more information about relations and other methods to compute more
relations, while adapting to the aspects mentioned in Section 5.1. There are a couple of
algorithms that have been researched, but that could not be implemented in the scope of
this Master’s thesis. These algorithms are briefly explained in the next sections.

5.2.1 Doc2Vec
The vectorization of a document (Doc2vec) is the extension of the idea explained in Section
2.2.4 to a full text. This technique was exposed byMikolov in Le andMikolov (2014) only
one year after creating the word representation Word2vec.

The idea is to train a vector representation of a document. This is a technique that
followed Word2Vec. The vectorization of an entire document, the doc2Vec, is achieved
by adding a new vector alongside the vectors representing the words during training; this
time representing the full document itself (Fig. 5.1).

The result will be representations for documents that will keep the context of the words
included, as they will be bound to the n-grams containing those words. The representa-
tion will be closer to similar documents in the vector space and it can be used for topic
modelling, such as document matching or document similarity.

These vector representations depend highly on the corpus that they have been trained
upon. The form that those will take will depend on the word embeddings that at the same

59

5. Conclusions

Figure 5.1: Training schema for Doc2Vec embeddings as contin-
uous bag of words (PV-DM model).
From: https://medium.com/scaleabout/a-gentle-introduction-to-
doc2vec-db3e8c0cce5e

time are based on the n-grams surrounding them, giving context to the document vectors.
The representations of documents are obtained by training a neural network. The database
of documents of the Volvo Cars use case contains 374 documents. Using this technique to
obtain document representations was discarded due to an insufficient amount of training
data to obtain good results with a neural network.

5.2.2 Knowledge-base algorithm

This type of algorithms uses the power of a knowledge-base to extract information about
the relations between two pieces of corpora. The terms extracted during pre-processing
are put in a graph and related through the knowledge-base. This type of architecture pro-
vides a system with information that would be difficult to extract otherwise. How to use
this information and combine it to compute document similarity evaluations would be a
different aspect of the problem.

There are some attempts at solving this problem, such as the research performed by
Schuhmacher and Ponzetto (2014), where they create amethod to compute documentmod-
eling with a knowledge-base solution. DBpedia is an example of a knowledge-base with
information extracted from Wikipedia. This is the product of a collaboration of Leipzig
University, Open Link Software and the Free University of Berlin in 2007. An impor-
tant aspect is to keep the database updated, so new relevant information may contribute to
obtain information from the corpora.

60

5.3 Conclusions

5.3 Conclusions
The work behind this project shows very different aspects in the problem of automatic
document relation applied to the Volvo Cars use case, in which we use different methods
to characterize and cluster news articles that the company can use to define projects in the
long term. We have seen that there exist different ways to do document segmentation (by
words, by topics, etc.). We have also seen that each type has many approaches that we can
take to achieve such characterization, each with its own characteristics.

One conclusion that we can extract from the study is that the size of the dataset will have
a relatively big influence the speed of the algorithms. The dimensionality of the resulting
models could also become a problem in a larger database. Some algorithms, such as tf-idf,
might break when the size of the dictionary is large enough, as it would create vectors with
high dimensionality. In that case, other algorithms such as LSA or LDA could be more
suitable, as the inferred topics would have more semantic information in their creation.

Another conclusion that we have experienced during the project is that the way we
implement the cleaning of raw data as well as the parsing of tokens to special keys showed
a significant impact on the quality of the recommendations obtained. Surprisingly for us,
text processing has a noteworthy impact on the results and should be considered a very
important step in any project.

Regarding the techniques used, we have seen that tf-idf, despite being the oldest of
the techniques presented, it is the one that obtained the best results on document relation
for this database. There is space for improvement. Close results have been obtained by
using modern state-of-the-art word embedding techniques with an appropriate algorithm
to calculate document distances, specially when used in synergy with other algorithms.
Graph algorithms havemeant a significant improvement to the natural language processing
algorithms, as seen with the community finding algorithms. They can be a good addition
to support further analysis. Processing data using lemmatization did not have a significant
impact in the results of document relation. A similar lack of impact has been observed from
changing similarity metric, where both cosine similarity and Euclidean distance were very
aligned in the comparison of results.

As an observation, there is typically a lack of available labeled data that can be used for
training document relations. The evaluation of the results of the algorithms has been one
of the trickiest parts in the project. Being all unsupervised methods and having no infor-
mation about the ideal relations that should be found among the articles, the assessment of
the validity of models and the comparison have been a challenge, including finding proper
metrics to do so. Besides, it took some time to build a test set that reflected the quality of
such predictions. The creation of this test set has its own risks in itself due to the fact that
when we did such assessment of relations, we could have introduced some personal bias
in the system.

As for the expectations of the project, a qualitatively look at the results answers the
question of whether we could do automatic document relation using natural language pro-
cessing in order to obtain related documents given a source element. The application of
such algorithms over the Volvo Cars use case obtained promising results. We could predict
recommendations of related news articles given a query document that we are interested
in. Moreover, the analysis of documents with community finding graph algorithms over
the recommendations from the topic models allowed to find even more related documents

61

5. Conclusions

that could not be found through the algorithms. We have given a solution to the problem
that the company had, even providing an application with a GUI that can be used in their
systems to assist their employees in the strategic planning.

62

Bibliography

Akbik, A., Blythe, D., and Vollgraf, R. (2018). Contextual string embeddings for sequence
labeling. 27th International Conference on Computational Linguistics, pages 1638–
1649.

Bao, Z., Ling, T. W., Chen, B., and Lu, J. (2009). Effective xml keyword search with
relevance oriented ranking. 2009 IEEE 25th International Conference on Data Engi-
neering.

Behrens, C. A., Egan, D. E., Ho, Y.-Y., Lochbaum, C., and Rosenstein, M. (2003). Au-
tomatic recommendation of products using latent semantic indexing of content. US
Patents.

Bengio, S. and Heigold, G. (2014). Word embeddings for speech recognition.
INTERSPEECH-2014, 15th Annual Conference of the International Speech Commu-
nication Association, pages 1053–1057.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
machine Learning research, 3:993–1022.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfold-
ing of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008.

Bíró, I., Szabó, J., and Benczú, A. A. (2008). Latent dirichlet allocation in web spam
filtering. AIRWeb ’08 Proceedings of the 4th international workshop on Adversarial
information retrieval on the web, pages 29–32.

Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017). Reading wikipedia to answer
open-domain questions. ACL2017.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv:1406.1078.

63

BIBLIOGRAPHY

Das, R., Zaheer, M., and Dyer, C. (2015). Gaussian lda for topic models with word embed-
dings. Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), 1:795–804.

Deerwester, S., Dumais, S., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990).
Indexing by latent semantic analysis. Journal of the Society for Information Science,
41(6):391–407.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Ehrlinger, L. andWöß,W. (2016). Towards a definition of knowledge graphs. SEMANTiCS
Posters, Demos, SuCCESS.

Foltz, P. W. (1990). Using latent semantic indexing for information filtering. COCS ’90
Proceedings of the ACM SIGOIS and IEEE CS TC-OA conference on Office information
systems, pages 40–47.

Foltz, P. W. (1996). Latent semantic analysis for text-based research. Behavior Research
Methods, Instruments, & Computers, 28(2):197–202.

Fu, Z., Sun, X., Liu, Q., Zhou, L., and Shu, J. (2015). Achieving efficient cloud search
services: Multi-keyword ranked search over encrypted cloud data supporting parallel
computing. IEICE TRANSACTIONS on Communications, E98-B(1):190–200.

Gabrilovich, E. and Markovitch, S. (2007). Computing semantic relatedness using
wikipedia-based explicit semantic analysis. International Joint Conference on Artifi-
cial Intelligence.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image style transfer using convolutional
neural networks. The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2414–2423.

Gordon, M. D. and Dumais, S. (1998). Using latent semantic indexing for literature based
discovery. Journal of the American Society for Information Science.

Guo, D., Berry, M. W., Thompson, B. B., and Bailin, S. (2003). Knowledge-enhanced
latent semantic indexing. Information Retrieval, 6(2):225–250.

Han, E.-H. and Karypis, G. (2002). Centroid-based document classification: Analysis and
experimental results. European Conference on Principles of Data Mining and Knowl-
edge Discovery, pages 424–431.

Harris, Z. (1954). Distributional structure. WORD, 10(2-3):146–162.

Hodler, A. E. and Needham, M. (2019). Graph Algorithms: Practical Examples in Apache
Spark and Neo4j. O’Reilly Media, 1 edition.

64

BIBLIOGRAPHY

Howes, C., Purver, M., and McCabe, R. (2013). Investigating topic modelling for therapy
dialogue analysis. Proceedings of IWCS 2013 Workshop on Computational Semantics
in Clinical Text (CSCT 2013), pages 7–16.

Jacobi, C., van Atteveldt, W., and Welbers, K. (2015). Quantitative analysis of large
amounts of journalistic texts using topic modelling. Digital Journalism, 4:89–106.

Juanzi, L., Qi’na, F., and Kuo, Z. (2007). Keyword extraction based on tf/idf for chinese
news document. Wuhan University Journal of Natural Sciences, 12(5):917–921.

Kiela, D., Hill, F., and Clark, S. (2015). Specializing word embeddings for similarity
or relatedness. Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, page 2044–2048.

Kusner, M. J., Sun, Y., Kolkin, N. I., and Weinberger, K. Q. (2015). From word embed-
dings to document distances. International Conference on Machine Learning.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C. (2016). Neural
architectures for named entity recognition. Proceedings of NAACL 2016.

Landauer, T. K., Laham, D., and Derr, M. (2004). From paragraph to graph: Latent se-
mantic analysis for information visualization. Proceedings of the National Academy of
Sciences of the United States of America, 1:5214–5219.

Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and documents.
International conference on machine learning.

Lin, D. (1998). An information-theoretic definition of similarity. Icml.

Losada, D. E., Parapar, J., andÁlvaro Barreiro (2016). Feeling lucky? multi-armed bandits
for ordering judgements in pooling-based evaluation. Proceedings of the 31st annual
ACM.

Lukins, S. K., Kraft, N. A., and Etzkorn, L. H. (2008). Source code retrieval for bug
localization using latent dirichlet allocation. 2008 15th Working Conference on Reverse
Engineering.

Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B.,
Heyer, G., Reber, U., Häussler, T., Schmid-Petri, H., and Adam, S. (2018). Applying
lda topic modeling in communication research: Toward a valid and reliable methodol-
ogy. Communication Methods and Measures - Issue 2-3: Computational Methods for
Communication Science, 12(2-3):93–118.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed repre-
sentations of words and phrases and their compositionality. Advances in Neural Infor-
mation Processing Systems, 26:1–9.

Pang, B. and Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and
Trends in Information Retrieval, 2(1-2):1–135.

65

BIBLIOGRAPHY

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543.

Raghavan, U. N., Albert, R., and Kumara, S. (2007). Near linear time algorithm to detect
community structures in large-scale networks. Physical Review E 25th Anniversary
Milestones.

Ramos, J. (2003). Using tf-idf to determine word relevance in document queries. Pro-
ceedings of the Conference on Research and Development in Information Retrieval.

Rehurek, R. and Sojka, P. (2010). Software framework for topic modelling with large
corpora. Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frame-
works, pages 45–50.

Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy.
Proceedings of the 14th International Joint Conference on Artificial Intelligence, pages
1–6.

Roy, D., Paul, D., Mitra, M., and Garain, U. (2016). Using word embeddings for automatic
query expansion. arXiv:1606.07608.

Röder, M., Both, A., and Hinneburg, A. (2015). Exploring the space of topic coherence
measures. Conference on Web search and data 2015.

Schuhmacher, M. and Ponzetto, S. P. (2014). Knowledge-based graph documentmodeling.
Proceedings of the 7th ACM international conference on Web search and data mining,
pages 543–552.

Song, W. and Park, S. C. (2009). Genetic algorithm for text clustering based on latent
semantic indexing. Computers & Mathematics with Applications, 57(11–12):1901–
1907.

Steinberger, J. and Ježek, K. (2004). Using latent semantic analysis in text summarization
and summary evaluation. Proc. ISIM.

Trstenjak, B., Mikac, S., and Donko, D. (2014). Knn with tf-idf based framework for text
categorization. Procedia Engineering, 69:1356–1364.

van Zaanen, M. and Kanters, P. (2010). Automatic mood classification using tf*idf based
on lyrics. 11th International Society forMusic Information Retrieval Conference (ISMIR
2010).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Łukasz
Kaiser, and Polosukhin, I. (2017). Attention is all you need. Advances in Neural Infor-
mation Processing Systems 30 (NIPS 2017).

Wei, C.-P., Yang, C. C., and Lin, C.-M. (2008). A latent semantic indexing-based approach
to multilingual document clustering. Decision Support Systems, 45(3):606–620.

66

BIBLIOGRAPHY

Wu, Z. and Palmer, M. (1994). Verbs semantics and lexical selection. Proceeding ACL ’94
Proceedings of the 32nd annual meeting on Association for Computational Linguistics,
pages 133–138.

Xing, D. andGirolami, M. (2007). Employing latent dirichlet allocation for fraud detection
in telecommunications. Pattern Recognition Letters, 28(13):1727–1734.

Yu, B., ben Xu, Z., and hua Li, C. (2008). Latent semantic analysis for text categorization
using neural network. Knowledge-Based Systems, 21(8):900–904.

Yu, L.-C., Wang, J., Lai, K. R., and Zhang, X. (2017). Refining word embeddings for sen-
timent analysis. Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, page 534–539.

Zhang, W., Yoshida, T., and Tang, X. (2011). A comparative study of tf*idf, lsi and multi-
words for text classification. Expert Systems with Applications, 38(3):2758–2765.

Zhou, G., He, T., Zhao, J., and Hu, P. (2015). Learning continuous word embedding
with metadata for question retrieval in community question answering. Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), page 250–259.

Zou, W. Y., Socher, R., Cer, D., and Manning, C. D. (2013). Bilingual word embeddings
for phrase-basedmachine translation. Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, page 1393–1398.

67

	Introduction
	The problem
	Previous work
	Graph databases
	Objectives

	State of the art
	Topic modelling
	Algorithms
	Term frequency - inverse document frequency
	Latent semantic analysis (LSA)
	Latent Dirichlet allocation (LDA)
	Word embeddings

	Document similarity
	Euclidean distance
	Cosine similarity

	Knowledge graphs
	Community finding algorithms

	Implementation
	Data processing
	Managing data
	Cleaning the data
	Creating the dictionary

	Implementation of algorithms
	Term frequency - inverse document frequency
	Latent semantic analysis & latent Dirichlet allocation
	Word embeddings
	Ensemble method
	Community finding

	Graphical user interface

	Evaluation
	Algorithms results
	Term frequency - inverse document frequency
	Latent semantic analysis (LSA)
	Latent Dirichlet allocation (LDA)
	Word embeddings
	Ensemble method
	Community finding

	Conclusions
	Discussions
	Algorithms results
	Run time
	Scalability

	Improvements and future work
	Doc2Vec
	Knowledge-base algorithm

	Conclusions

	Bibliography
	Página en blanco

