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Abstract 14 

Although the harmful effects of excessive exposure to solar ultraviolet (UV) radiation 15 

are well known, the recommended dose of UV radiation is beneficial for the synthesis 16 

of vitamin D by the skin, in addition to being useful in the treatment of various illnesses 17 

and mental problems. Numerous studies have shown that vitamin D performs important 18 

functions in the human organism, such as absorbing calcium and phosphorous and 19 

contributing to the immune system, among others. Several studies have found that a 20 

high percentage of various groups of the Spanish population suffer from vitamin D 21 

deficiency, and since very few natural foods contain vitamin D, it was considered 22 

important to determine whether groups such as schoolchildren, outdoor workers and 23 

athletes, receive enough solar radiation to produce adequate levels of vitamin D in their 24 

daily activities. It was found that the amount of vitamin D (in IU) produced by personal 25 

effective solar UV doses could exceed the recommended dose of 1000 IU/day in spring 26 

and summer, while the winter estimate (about 220 IU/day) is only one quarter of the 27 

recommended dose. These results suggest that most people would not receive the 28 
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recommended daily vitamin D dose in winter from exposure to solar UV radiation, the 29 

main source of vitamin D. 30 

 31 

Keywords: ultraviolet radiation, ultraviolet erythemal irradiance, ultraviolet vitamin D 32 

irradiance, vitamin D dose.  33 
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1. Introduction 37 
 38 

The harmful effects of excessive exposure to solar UV radiation are well known, but 39 

there are also benefits from UV radiation, since exposing the skin to solar UV radiation 40 

can have significant benefits on health and in particular on cardiovascular health (Chen 41 

et al., 2010; Weller 2017) and stimulates vitamin D synthesis (Engelsen, 2010; Holick, 42 

2004, 2005, 2007; Holick et al., 2007).  An adequate dose of vitamin D seems to be 43 

beneficial against multiple sclerosis, cardiovascular disease, autoimmune diseases, 44 

infectious diseases and many types of cancers (Garland et al., 2014; Grant et al., 2015; 45 

Hossein-Nezhad and Holick, 2013; Juzeniene et al., 2011; McDonnell et al., 2016; 46 

Pludowski et al., 2013) in addition to improving human well-being and skeletal health, 47 

especially important in growing children. There is also evidence that links suboptimal 48 

vitamin-D levels with depressive disorders, although further studies are necessary in 49 

this field (Humble, 2010).  50 

“Vitamin D” refers to a group of compounds of which the most important are vitamin 51 

D3 and D2. The main natural sources of vitamin D (chiefly D3) comes through UVB 52 

irradiation of 7-dehydrocholesterol in the skin, as very few foods contain this vitamin 53 

(Holick et al., 2011; Juzeniene et al., 2011). As the vitamin D obtained from the diet and 54 

epidermal metabolite are biologically inactive, it has to be activated by hydroxylation in 55 

the liver and kidneys. An individual’s vitamin D status can be measured in serum by the 56 

25-hydroxyvitamin D (25(OH)D) produced by the liver (Holick, 2007).  57 

Although Spain receives many hours of sunshine every year, a number of studies 58 

have found that a high percentage of various groups of the Spanish population suffer 59 

from vitamin D deficiency (Cutillas-Marco et al., 2013; Galán et al., 2011; González 60 

Molero et al., 2011; Hernández-Ostiz et al., 2016; Mata-Granados et al., 2008; 61 

Rodríguez-Rodríguez et al., 2011; Rodríguez-Sangrador et al., 2008). Recent 62 
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observational studies defined vitamin D deficiency as a 25(OH)D serum level of 50 63 

nmol/L or less, vitamin D sufficiency as 75 nmol/L or higher and vitamin D 64 

insufficiency from 50  to 75 nmol/L (Cashman et al., 2016;  Garland et. al., 2014; 65 

Hossein-Nezhad and Holick, 2013; McDonnell et al., 2016). Mata-Granados et al. 66 

(2008) found that 65% of the participants in their study, carried out in spring, showed 67 

vitamin D deficiency. In another study on elderly women (53 subjects), Rodríguez-68 

Sangrador et al. (2008) found that vitamin D deficiency affected 80% of the sample in 69 

both summer and winter. Rodríguez-Rodríguez et al. (2011) analyzed the vitamin D 70 

status of 103 schoolchildren, of whom 51% presented vitamin D deficiency. In 71 

Valencia, in a study with 215 patients with melanoma, Hernández-Ostiz et al. (2016) 72 

found that 66.5% of the patients had insufficient levels over a period of a year. In a 73 

study on a larger sample (1262 participants) over one year, Gonzalez Molero et al. 74 

(2011) concluded that one third of the Spanish population could be at risk of vitamin D 75 

deficiency. This deficiency in the Spanish population could be due to insufficient 76 

exposure to the sun from the use of high-factor sunscreens in summer and warm 77 

clothing in winter. Other factors to be taken into account are the age of the individuals, a 78 

dark skin pigmentation, and obesity (Binkley et al., 2007; Godar et al., 2011; 79 

Hernández-Ostiz et al., 2016; Holick, 2004, 2005, 2007; Ovesen et al., 2003). Some 80 

studies also found that the vitamin D content in the Spanish diet was insufficient and 81 

concluded that the Spanish population had an inadequate intake (Gonzalez-Rodríguez et 82 

al., 2013; Ortega et al., 2012). 83 

Since most of the vitamin D present in our organism comes through UVB 84 

irradiation (Holick et al., 2011; Juzeniene et al., 2011), vitamin-D deficiency is 85 

associated with low solar UV radiation, which in northern mid-latitudes occurs from 86 

October to March (Difffey, 2010; Rhodes et al., 2010; Seckmeyer et al., 2013; Webb et 87 
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al., 1988; Webb et al., 2010; Webb et al., 2011). Different authors have suggested that 88 

there is sufficient UV radiation in the northern mid-latitude winter to produce the 89 

required dose of vitamin D, although for this it would be necessary to expose larger 90 

areas than the usual exposure at that time of year, hands and face only (Serrano et al., 91 

2017; McKenzie et al., 2009).   92 

Most of the data used in the present study (except those from the ski school) 93 

were obtained in the Valencia region on the east coast of Spain (coordinates 0º 22' W, 94 

39º 28 ' N). Due to its geographical situation Valencia has a subtropical Mediterranean 95 

climate and receives large UV radiation doses throughout the year. The average annual 96 

temperature is 22.8 °C during the day (State Meteorology Agency) with mild winters 97 

and long warm to hot summers.  98 

 Our aim was thus to estimate whether the dose of UV solar radiation received by 99 

several groups of the population of Valencia in their daily activities would be sufficient 100 

to produce an adequate dose of vitamin D, assuming that optimal vitamin D levels are 101 

easily maintained by a daily intake of 1000 IU of this vitamin (Bischoff-Ferrari et al., 102 

2006; Holick, 2004, 2007; McKenzie et al., 2009). The personal UV erythemal (UVER) 103 

dose measurements (in J/m2) obtained in previous studies for various groups were used 104 

to estimate the effective solar UV radiation in the production of vitamin D (UVD) (in 105 

J/m2) applying the factors proposed by Pope et al. (2008). Finally, considering Holick’s 106 

guidelines (2002, 2007), the vitamin D dose was calculated in IU. 107 

 108 

2. Material and Methods 109 

2.1. Subjects 110 

The measurements used had been obtained in previous studies, mostly carried out in 111 

Valencia on different groups of people. UV sensitive spore-film dosimeters (Bio-Sense 112 
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VioSpor blue line, Bornheim, Germany) were used to measure personal UVER doses. 113 

One of these studies involved children at school (Serrano et al., 2011) with the aim of 114 

quantifying their exposure to UVER radiation in the course of their activities. They 115 

wore the UV dosimeters attached either to their shoulders or wrists from 9 am to 5 pm 116 

(local time). This study took place with two age groups in two primary schools in 117 

Valencia, Spain. Since the aim was to study the exposures on days of maximum solar 118 

radiation, the readings were taken on cloudless days. The school was asked not to 119 

change their normal activities during the measurement sessions. Two other studies also 120 

involved children, one during a summer school (Serrano et al., 2012a) and another 121 

(Serrano et al., 2013) at the Panticosa (Huesca) ski resort. Table 1 gives the dates and 122 

seasons in which the measurements were taken at each school, together with the 123 

numbers of the children who participated in the study. 124 

<Table 1>  125 
Other studies carried out in Valencia focused on outdoor workers and athletes, 126 

such as gardeners and lifeguards (Serrano et al., 2009), cyclists (Serrano et al., 2010), 127 

construction workers (Serrano et al., 2012b), environmental workers (Serrano et al., 128 

2014), and golfers (Gurrea et al., 2014). Table 2 gives the dates and times in which the 129 

measurements were taken and the number of individuals who participated. All the 130 

subjects, except the environmental agents, wore the UV dosimeters throughout their 131 

daily activities on cloudless days. They were also asked not to make any changes to 132 

their normal routines during the measurements. The gardeners wore the dosimeters on 133 

their shoulders, the lifeguards attached to the wrist and the cyclists on their helmets. 134 

Half the construction workers wore the dosimeters on their shoulders and half on the 135 

chest. The environmental agents wore dosimeters from 8 am to 3 pm and from 3 pm to 136 

10 pm in different shifts, on the wrist, head or shoulder, while the golfers had two 137 

dosimeters, one on top of their caps and another on the wrist.  138 
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<Table 2> 139 

  140 

2.2. Methods 141 

According to Eq. (1) below, the daily personal UVER dose in J/m2 was converted to 142 

vitamin D doses (UVD) in J/m2 using action spectrum conversion factors (ASCFs) 143 

(Pope et al., 2008), which are function of the latitude, season of the year and ozone 144 

content of the atmosphere. 145 

2 2( / ) ( / )UVD J m UVER J m ASCF= ⋅  (1) 146 

The UVER dose was obtained from the measurements made in the above-cited 147 

studies. The ASCF values, shown in Tables 1 and 2, were obtained (Pope et al., 2008) 148 

for 40ºN (approximate latitude of Valencia) taking into account the ozone content of the 149 

atmosphere in the period of each of the cited studies in Section 2.1, and the season of 150 

the year in which the measurements were taken. The ozone data was obtained from the 151 

Ozone Monitoring Instrument (NASA) for each day of the studies, and its average value 152 

for each measurement period is shown in Tables 1 and 2. 153 

Following the CIE guidelines (2014) which proposed a newly defined minimum 154 

vitamin D dose (MDD), the MDD (J/m2) needed to produce the daily recommended 155 

dose of vitamin D (1000 IU) was estimated considering that pale-skinned full-body 156 

exposure (Type II) under strong sunlight (UVI = 10) produces 1000 IU in less than 1 157 

min (Mckenzie et al., 2009). This criterion is based on studies by Holick (2002, 2007), 158 

who found that 1 minimal erythemal dose (MED) on skin type II (250 J/m2) for full 159 

body exposure was similar to an oral dose of vitamin D in the range 10000-25000 IU. 160 

When UVI=10 (UVER=0.25 W/m2), the MED would be accumulated in 16.7 min, so  161 

considering a mean vitamin D dose of 17500 IU, 1 minute would be enough to receive 162 

an UVER dose of around 15 J/m2 and about 1000 IU of vitamin D. The corresponding 1 163 
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min UVD dose would be 30 J/m2, since the ratio (R) of UVD to UVER at UVI 10 is 164 

approximately 2 (McKenzie et al., 2009). Then, 30 J/m2 would be the MDD dose for 165 

skin type II and full body exposure. Using the following Eq. (2), the MDD for other 166 

skin types and body exposures would be estimated, where PBE is the exposed body 167 

fraction and according to Eq. (3) below, STF is the skin type factor used to adjust for 168 

skin types other than type II. In Eq. (3) a MED is the minimum UVER dose which 169 

causes erythema with sharply defined edges 24 hours after sun exposure whose values 170 

depend on skin type (Fitzpatrick, 1988) shown in Table 3. 171 

2
2 30(J/m )(J/m )MDD

STF PBE
=

⋅
                     (2) 172 

2

2

250(J/m )
(J/m )

STF
MED

=                                  (3) 173 

<Table 3> 174 

As skin type III is considered the commonest type among the Spanish population, 175 

then STF=250/350, except for the golfers, who were mostly from northern Europe and 176 

lighter skinned (skin type II; STF=1). PBE was estimated following the Lund-Browder 177 

chart used to assess sunburned body surface area (Lund and Browder, 1944). For the 178 

children in winter it was face, neck and hands; in autumn the lower arms were added, 179 

and in spring the lower legs; and for the children at the ski school face and neck only. 180 

For the cyclists and environmental workers in summer it was face, neck, hands, lower 181 

arms and lower legs, and for lifeguards and construction workers, these areas plus half 182 

the upper arms and half the upper legs. As the gardeners kept their legs covered due to 183 

their type of work, their face, neck, hands and lower arms were considered in summer. 184 

In winter, for cyclists, only face and neck, and for golfers, face, neck and hands 185 

(Engelsen, 2010; Godar et al., 2011).The figures for these exposures are shown in 186 

Tables 1 and 2. 187 
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 188 

Table 4 shows the MDD calculated according Eq. (2) for each skin type and for 189 

different PBEs. In winter, with 11.5% PBE, an individual with skin type III would need 190 

an MDD of 370 J/m2, but in summer with 43% PBE the same individual would need a 191 

dose of 98 J/m2.  192 

<Table 4>  193 

 Finally, Eq.(4) was used to estimate the amount of daily vitamin D produced 194 

from a personal median daily UVER exposure: 195 

10002

2

UVD( J/m / day ) IU AFVitaminD( IU / day )
MDD( J/m ) SPF

⋅
= ⋅ (4) 196 

where AF is the age factor and SPF is the sun protection factor of any sun block applied  197 

over the entire exposed body surface. 198 

The children’s age factor was AF=1, for lifeguards AF=0.9 (around 25 years old), 199 

for golfers AF=0.6 (adults from 50-70 years old) and for other adults AF=0.7 (adults 200 

from 30-50 years old) (Godar et al., 2011). 201 

Regarding SPF, two possibilities were considered, skin without protection (SPF=1) 202 

and the use of sun protective cream (SPF=15 in spring/autumn and SPF=30 in summer) 203 

over the entire exposed body surface. These values were chosen following the 204 

guidelines of the Spanish Ministry of Health which recommends the appropiate SPF for 205 

each skin type according to the UV index. 206 

 207 

2.3. Statistical analysis 208 

Data is analysed using the Statgraphics Plus Statistical Package v5.1 software and is 209 

expressed as median (25–75 percentiles).  210 

 211 

 212 
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 213 

3. Results  214 

The daily dose of vitamin D (IU/day) estimated by Eq.(4) from daily exposure to 215 

UV solar radiation obtained from the cited studies is shown in Tables 5 and 6.  216 

Table 5 gives the vitamin D daily dose estimated for schoolchildren in their 217 

normal school activities, summer school and ski school. Considering the non-use of 218 

sunscreen, in spring the calculated doses of vitamin D for children in outdoor school 219 

activities would exceed the recommended dose of 1000 IU/day, with median values 220 

between 1100 and 1900 IU. In autumn the doses would range from 330 to 660 IU/day, 221 

depending on the age of the child and the school at which the measurements were 222 

carried out. However, the winter dose would range from 150 to 230 IU, only one fifth of 223 

the recommended dose. In summer, the median vitamin D dose for the children at the 224 

summer school would be 2700 IU, well above the recommended dose.  225 

<Table5> 226 

<Table 6> 227 

The daily vitamin D dose estimated for adults in the different activities is shown 228 

in Table 6. Considering not using sunscreen, the median vitamin D dose estimated in 229 

summer would vary between the gardeners’ 1500 IU/day and the lifeguards’ 11000 230 

IU/day. It can be seen that all the subjects would exceed the recommended daily dose in 231 

summer. In winter, the median vitamin D dose estimated would be about 250 IU/day for 232 

cyclists and golfers, in a similar pattern to the children in winter, or around a quarter of 233 

the recommended daily dose. 234 

Considering an adequate application of sunscreen over the exposed body 235 

surface, the dose of vitamin D obtained by the same groups was estimated.  In spring 236 

and summer the estimated median doses of vitamin D for children would be between 73 237 
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and 130 IU/day, whereas that in autumn and winter the doses would range from 10 to 44 238 

IU/day (Table 5). For adults, estimated median doses of vitamin D would range from 50 239 

to 370 in summer, and around 16 IU/day in winter (Table 6). 240 

 241 

4. Discussion 242 

It should be remembered that there is uncertainty about the applicability of the vitamin 243 

D action spectrum and the appropriate wavelength at which it should begin (McKenzie 244 

et al., 2009). Besides, in the daily vitamin D dose calculations (IU/day) shown in Tables 245 

5 and 6, Holick’s indications (2002, 2007) were adopted on the equivalence between the 246 

exposure to 1 MED and the oral dose of vitamin D of between 10000 and 25000 IU, 247 

using the average value. It should also be noted that Holick's indications are based on 248 

studies carried out since the 1980s, so that their precise conditions are difficult to verify 249 

from the literature (Dowdy et al., 2010), so the minimum UVD dose (MDD) required to 250 

reach the recommended daily dose of vitamin D should be considered as only 251 

approximate.  252 

  However, this information may not be at all relevant, since experimental studies 253 

have shown that vitamin D levels from solar exposure can be different from one person 254 

to another even within the same skin type, as a result of genetic predisposition (Abboud 255 

et al, 2017; Lucas et al., 2013; Touvier et al.  2015; Wang et al., 2010). 256 

Otherwise, several authors (McKenzie et al., 2012) have suggested that there is a 257 

saturation effect that protects against overdoses in vitamin-D production for exposures 258 

greater than approximately 0.5 MED. 259 

Besides, it should also be taken into account that solar irradiance is not omni-260 

directional as in artificial sources with vertical lamps in a phototherapy unit, but that the 261 

downwelling component prevails (Webb et al., 2011), and some authors consider 262 
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(Dowdy et al., 2010) it may be necessary to increase exposure times. The UV dose 263 

received by the different body parts has been measured in several studies (Webb et al., 264 

2011) and the results show that vertical body areas (legs, arms, torso) receive about 30–265 

60% of the dose received on a horizontal surface (tops of shoulders, feet, head) when 266 

the sun is high in the sky. The areas between the vertical and horizontal can receive 267 

more irradiance than a horizontal surface when facing the sun because they can be 268 

perpendicular to the sunlight. The amount of radiation received also depends on factors 269 

that cannot be tabulated, such as posture, body shape, and type of clothing worn.  270 

Other factors to consider are that not all skin areas synthesize vitamin D with the 271 

same efficiency (Holick et al., 2007; Meinhardt-Wollweber and Krebs, 2012), and that 272 

obese subjects can lock vitamin D into their fatty tissues (Holick, 2004; 2005; 2007). 273 

However, these factors were not considered in the calculations.   274 

Taking into account all the different imprecise conditions, the results obtained in 275 

this study regarding the calculated vitamin D doses should be taken with caution and be 276 

considered as estimated values only. 277 

 The daily UV solar exposure would seem to be sufficient for the daily vitamin 278 

D requirements of adults in summer and children in spring if sunscreen is not used. In 279 

autumn, children would receive half the recommended dose, which differed between the 280 

schools considered, which could have been related to the different activities or to the 281 

different school layouts. The EP school building, whose children received lower doses, 282 

faces south and casts a shadow over the playground when the solar height is low in 283 

autumn. The PC school has trees and shade, but in autumn the children presumably flee 284 

from the shade to be in the sun, to which must be added the fact that the readings were 285 

taken on different days. 286 
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The dose estimated in winter both for children and adults considering SPF=1, 287 

would be only around one fifth of the recommended dose, so that it could be said that in 288 

winter neither children nor adults obtain the recommended daily dose of vitamin D in 289 

their normal activities. These findings agree with recent studies indicating that a high 290 

percentage of the Spanish population suffers vitamin D deficiency. One study (Serrano 291 

et al., 2017) found that in the winter months around noon, more than two hours of 292 

exposing face, neck and hands are required to obtain the recommended daily dose of 293 

vitamin D. This time is so long that it seems unrealistic to consider that the 294 

recommended dose can be achieved in winter. However, the same study (Serrano et al., 295 

2017) found that there is sufficient UV radiation in the northern mid-latitudes in winter 296 

to produce the recommended vitamin D dose, in agreement with the findings of other 297 

research groups (McKenzie et al., 2009).  298 

The proper use of an SPF15 sunscreen can reduce Vitamin D doses by 93% (Eq. 299 

4), so with protective sun cream the values of vitamin D dose estimated for children and 300 

adults would be very low (tables 5 and 6). As most people apply less than the 301 

recommended sunscreen dose, the estimated values of vitamin D would be intermediate 302 

between those calculated for SPF = 1 and that calculated for SPF = 15. 303 

On the other hand, there is some evidence that exercise promotes storage of 304 

25(OH)D in muscle (Abboud et al.,  2013; Abboud et al., 2017; Scragg et al., 1992 ), so 305 

that it would be possible that adequate levels of vitamin D could be maintained 306 

throughout the winter months, which means the winter vitamin D of those who 307 

participle in sports activities could be higher than that estimated in this study. However, 308 

several studies have found a high percentage of the Spanish population with vitamin D 309 

insufficiency, among them professional football players (Galan et al. 2011), two- thirds 310 
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of which had vitamin D insufficiency in mid-winter, so further studies would be 311 

necessary in this area. 312 

 313 

5. Conclusions 314 

 Taking into account that the estimated daily vitamin D doses obtained in winter 315 

and autumn from the sun in routine daily activities are in the order of one-fifth to one-316 

half of the recommended doses even without using sunscreen, and considering the 317 

above-mentioned possible inaccuracies, it would be advisable to increase the dietary 318 

intake of vitamin D. As many specialist recommend (Gonzalez-Rodríguez et al., 2013; 319 

Ortega et al., 2012; Rodríguez-Rodríguez et al., 2011; Rodríguez-Sangrador et al., 2008; 320 

Seckmeyer et al., 2013; Zittermann, 2010) this could be achieved by consuming foods 321 

with high vitamin D content, such as oily fish or cod liver oil, taking vitamin D-fortified 322 

daily products such as milk and cereals, or resorting to vitamin D supplements under 323 

medical supervision. Also, but always with due attention to possible harmful effects, it 324 

is suggested that larger areas of the skin exposed to the sun than is normal in autumn 325 

and winter could achieve higher end of summer 25(OH)D levels (Webb et al., 2010) 326 

without increasing the risk of skin cancer, although further studies are needed in this 327 

field.  328 
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 574 

Table 1  575 

Measurement dates of each school group and period of the study, number of children who participated in 576 

the study and action spectrum conversion factors (ASCF). 577 

Group (number of 

children) 
Measurement Dates Measurement Period 

ASCF 

*P.C. (30) 26-30 May 2008 Spring 2008 0.96 

E.P. (6) 29,30 April; 20,21,26,28,29 May 2008 Spring 2008 0.98 

P.C. (34) 16,21,27 October 2008; 3-5 November 2008;  

27,28 January 2009; 3,4,11,18 February 2009 

Autumn 2008 

Winter 2008-09 

0.91 

0.64 

E.P. (6) 13,27 October 2008; 3,10,12,13 November 2008;  

28 January 2009; 3,4,11,18,19 February 2009 

Autumn 2008 

    Winter 2008-09 

0.94 

0.64 

P.C. (27) 24-26 March; 1,3,6,8 April; 21,22,25-29 May 

2009 

Spring 2009 0.94 

E.P. (6) 25-27 March; 3,6,23 April; 25-29 May 2009 Spring 2009 0.94 

Summer school (15) 8,10,11,18,22,23,29,30 July 2008 Summer 2008 1.08 

Ski school (10) 27-30 December 2010 Winter 2010 0.67 

*School and, in brackets, number of children who participated in the study. 578 

579 
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Table 2 580 

Measurement dates of each group and number of individuals who participated in the study. Action spectrum 581 

conversion factors (ASCF), percentage of body exposure (PBE) and age factor (AF) of each adult group 582 

and period of the study. 583 

Group Measurement Dates 
 ASCF 

PBE AF 

Gardeners (4)* 16,17,19,20 June 2008 (6 am-1 pm)**  1.05 20 0.7 

Lifeguards (5) 30 June; 1-3,7,8 July 2008 (10 am-7:30 pm)  1.08 43 0.9 

Cyclists  Summer (5) 

Cyclists  Winter (5) 
 

7,14 June; 5,19 July 2008 (7:40 am-2:40 pm) 

7,14,21 February; 7 March 2009 (8:40 am-2 pm) 

 1.05 

0.63 

34.5 

4.5 

0.7 

0.7 

Construction workers (11) 7-9, 12,13 July 2010 (8 am-7 pm)  1.05 43 0.7 

Environmental agents (8) 13,14,21,22,28,29 June; 30,31, August;  

6,7,13,14 September 2012 

 1.07 34.5 0.7 

Golfers (7) 7,8,15,21-23,29,31 January 2013 (10 am-3 pm)  0.71 9.5 0.6 

*In brackets, number of individuals who participated in the study. 584 

** Local Time 585 

  586 
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Table 3 587 

General characteristics of skin types and Minimal Erythemal Dose (J/m2) according to COST-713 588 

(Vanicek et al., 2000). 589 

Skin type Tan Burn Minimal Erythemal Dose  

(J/m2) 

I Never Always 200 

II Sometimes Sometimes 250 

III Always Rarely 350 

IV Always Never 450 

 590 

  591 
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Table 4 592 

Minimum daily UVD dose (MDD) according to skin type and body exposure. 593 

Skin type   MDD (J/m2)  
 

 

 
PBE=0.045 PBE=0.065 PBE=0.115 PBE=0.138 PBE= 0.25 PBE=0.43 

 

I 533 369 209 174 96 56 

 
      

II 667 462 261 217 120 70 

 
      

III 933 646 365 304 168 98 

 
      

IV 1200 831 470 391 216 126 

     
  

  594 
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Table 5 595 

Percentage of body exposure (PBE) and age factor (AF) of each age group of children and period of the 596 

study. 597 

Group PBE AF 

Children 6-8 years winter 

Children 10-11 years winter 

Children 6-11 years spring 

Children 6-8 years autumn  

Children 10-11 years autumn  

Children 9-12 years ski school 

Children 7-12 years summer school 
 

 

13.8 

11.5 

30.0 

19.8 

17.5 

6.5 

42.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

 598 

  599 



29 
 

Table 6 600 

UVER dose, vitamin D dose (VDD), both in J/m2 and vitamin D(IU) per day of different school groups. 601 

 UVER dose 

(J/m2) 

VDD (J/m2) Vit D (IU/day)  

Spring 2008    

6-8 y School P.C. 260 (180-370)* 250 (170-350) 1800 (1200-2500) 

6-8 y School E.P. 270 (210-390) 270 (210-380) 1900 (1500-2700) 

10-11y School P.C. 200 (160-270) 190 (150-260) 1400 (1100-1800) 

Spring 2009    

6-8 y School P.C. 170 (110-210) 160 (110-200) 1100 (760-1400) 

6-8 y School E.P. 180 (100-220) 170 (97-210) 1200 (690-1500) 

10-11y School P.C. 150 (90-210) 150 (91-210) 1100 (650-1500) 

Autumn 2008    

6-8 y School P.C. 130 (100-170) 110 (92-160) 540 (430-750) 

6-8 y School E.P. 76 (45-100) 71 (42-97) 330 (200-460) 

10-11y School P.C. 170 (130-190) 160 (120-170) 660 (530-720) 

Winter 2008-09    

6-8 y School P.C. 94 (60-110) 60 (39-72) 200 (130-240) 

6-8 y School E.P. 110 (58-160) 70 (37-99) 230 (120-330) 

10-11y School P.C. 86 (48-100) 55 (31-65) 150 (85-180) 

Summer School 280 (180-400) 270 (160-420) 270 (160-420) 

Snow School 210 (160-280) 140 (110-190) 220 (160-290) 

*Data are expressed as median (25-75 percentiles).  

    

 602 

  603 
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Table 7 604 

UVER dose, vitamin D dose (VDD), both in J/m2 and vitamin D (IU) per day of different groups. 605 

  UVER dose 

(J/m2) 

VDD (J/m2) Vit D (IU/day)  

Summer     

Gardeners  410 (380-470)* 460 (380-490) 1500 (1300-1600) 

Lifeguards  1100 (970-1400) 1200 (1100-1500) 1100 (970-1400) 

Cyclists  1600 (1400-1800) 1700 (1500-1900) 5600 (5100-6300) 

Construction workers   610 (420-1200) 640 (440-1300) 4600 (3100-9300) 

Environmental agents   310 (190-450) 330 (200-480) 1900 (1200-2800) 

Winter     

Cyclists  540 (390-650) 340 (240-410) 250 (180-310) 

Golfers  210 (170-250) 120 (100-150) 240 (200-280) 

 *Data are expressed as median (25-75 percentiles).  

 606 
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