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Abstract 

Even though this experiment was already studied beforehand, some irregularities were 

found so in this new study some of them have been solved, and also in more realistic 

conditions as the testing bench has a size closer to the reality. The aim of this study of the 

excitation mechanism of a revolving gravity wave is to see how it behaves, how the wave 

develops among the time, how the amplitudes vary depending on some variables fixed 

and compare the results. The increasement of the amplitude versus the time and the 

decreasing of the number of waves rotating in the surface have been studied in three cases. 

Keeping as a constant during all the experiment the height difference between the calm 

water and the rotating disc above it, the speeds of 500, 600 and 700 revolutions per minute 

have been compared. 
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1. Introduction. 

Gravity waves are waves generated by the disturbance of a fluid subjected to the force of 

gravity as a restoring force. When a fluid is disturbed under the action of gravity and is 

moved away from its initial state of equilibrium, the fluid responds by forming waves that 

try to bring the system back to equilibrium.  

In the experiment a partially water filled vertical cylinder of radius R induced by a rotating 

disc with an angular speed 𝜔. Above a critical angular velocity, a circulating gravity wave 

forms [1]. 

 

Figure 1: Potential flow solution equation. 

Before starting the experiments, the aim of the project was settled. This time, we look at 

how the amplitude changes with time, and how the wave behaves in its different states 

and which patrons are repeated, how many waves are rotating at the same time in the 

surface of the water, so, the study is based on: 

- How the amplitude variates with the time. 

- How long takes the wave to reach its final and permanent state, and how it 

behaves trough the different intermediate states. 

- Number of waves at any point of time. 

These tests are done depending on a unique variable and maintain steady the rest of 

parameters. Every time the variable is changed, the test is repeated and discussed three or 

four times. The variable is: 

- Speed (in r.p.m) of the motor. 

- Height difference of the flat surface of the water and the rotating disc is kept 

constant and equal to 180mm. 

 

 

 

 



  
 

6 
 

2. Wave modes. 

Sloshing means any motion of the free liquid surface inside its container. It is caused by 

any disturbance to partially filled liquid containers. Depending on the type of disturbance 

and container shape, the free liquid surface can experience different types of motion 

including simple planar, nonplanar, rotational, irregular beating, symmetric, asymmetric, 

quasi-periodic and chaotic. When interacting with its elastic container, or its support 

structure, the free liquid surface can exhibit fascinating types of motion in the form of 

energy exchange between interacting modes. Modulated free surface occurs when the 

free-liquid-surface motion interacts with the elastic support structural dynamics in the 

neighborhood of internal resonance conditions. Under low gravity field, the surface 

tension is dominant, and the liquid may be oriented randomly within the tank depending 

essentially upon the wetting characteristics of the tank wall. The basic problem of liquid 

sloshing involves the estimation of hydrodynamic pressure distribution, forces, moments 

and natural frequencies of the free-liquid surface. These parameters have a direct effect 

on the dynamic stability and performance of moving containers.  

 

Figure 2: wave form. 

A liquid’s motion inside its container has an infinite number of natural frequencies, but it 

is the lowest few modes that are most likely to be excited by the motion of a vehicle. Most 

studies have therefore concentrated on investigating forced harmonic oscillations near the 

lowest natural frequencies, predicted by the fluid field linear equations. However, 

nonlinear effects result in the frequency of maximum response being slightly different 

from the linear natural frequency and dependent on amplitude. Nonlinear effects include 

amplitude jump, parametric resonance, chaotic liquid surface motion, and nonlinear 

sloshing mode interaction due to the occurrence of internal resonance among the liquid 

sloshing modes. The nonlinearities associated with free-surface motion inside moving 

containers are different from those nonlinear water waves in ocean and Canals.  
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The total velocity potential function, 𝜙, can be split into a disturbance potential function 

(𝜙̃) and a potential function (𝜙0), in the form: 

𝜙 = 𝜙̃ + 𝜙0                                                               (1)                                                            

For a bare wall cylindrical tank as shown in the picture Figure 3, a possible solution of 

the Laplace equation, which satisfies the wall and bottom boundary conditions listed in 

relations (2) and (3) which regards to the disturbance potential function (𝜙̃), is (4) where 

𝛼𝑚𝑛 and 𝛽𝑚𝑛 are time dependent to be determined from the free-surface  

𝛿𝜙̃

𝛿𝑟
|

𝑟=𝑅

= 0                                                             (2) 

𝛿𝜙̃

𝛿𝑧
|

𝑧=−ℎ

= 0                                                           (3) 

𝜙̃(𝑟, θ, z, t) = ∑ ∑[𝛼𝑚𝑛(𝑡) cos 𝑚θ + 𝛽
𝑚𝑛

(𝑡) sin 𝑚θ]𝐽𝑚
(𝜆𝑚𝑛𝑟)

cosh[𝜆𝑚𝑛(𝑧 + ℎ)]

cosh 𝜆𝑚𝑛ℎ
         (4)

∞

𝑛=1

∞

𝑚=0

 

 

initial conditions, 𝐽𝑚( ) is the Bessel function of the first kind of order m, 𝜆𝑚𝑛=𝜉𝑚𝑛 ∕ 𝑅 

are the roots of 
𝛿𝐽𝑚(𝜆𝑚𝑛𝑟)

𝛿𝑟
⁄ |

𝑟=𝑅
= 0.  

The analysis can be significantly simplified if the fluid field equations are linearized for 

small displacements. The normal mode frequencies are determined from the linearized 

free-surface boundary condition 

𝛿𝜙̃

𝛿𝑡
− 𝑔𝜂 = 0                                                              (5) 

Differentiating once with respect to time and using equation 𝑞 = −𝛻𝜙 gives 

𝛿2𝜙̃

𝛿𝑡2
+ 𝑔

𝛿𝜙̃

𝛿𝑧
= 0                                                            (6) 

If the functions 𝛼𝑚𝑛 and 𝛽𝑚𝑛 are expressed as harmonics, sin 𝜔𝑚𝑛
𝑡, one can obtain the 

natural frequencies of the liquid free-surface by substituting equation (4) into (6) 

𝜔𝑚𝑛
2 =

𝑔𝜉𝑚𝑛

𝑅
tanh(𝜉𝑚𝑛ℎ ∕ 𝑅)                                            (7) 

The above expression approaches a constant value for h/R>2, given by the following 

relation 

𝜔𝑚𝑛
2 =

𝑔𝜉𝑚𝑛

𝑅
, for 𝜉𝑚𝑛ℎ 𝑅⁄ > 2.65                                           (8) 

If one considers surface tension, the linearized dynamic free-surface condition combined 

with the kinematic condition (6) gives, after using Laplace’s equation, 
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𝛿2𝜙̂

𝛿𝑡2
+ 𝑔

𝛿𝜙̃

𝛿𝑧
+

𝜎

𝜌

𝛿3𝜙̂

𝛿𝑧3
= 0                                                     (9) 

In this case the natural frequency is given by the expression 

𝜔𝑚𝑛
2 = [

𝑔𝜉𝑚𝑛

𝑅
+

𝜎𝜉3

𝜌𝑅3
] tanh(𝜉𝑚𝑛ℎ 𝑅⁄ )                                         (10) 

This result is valid for the slip contact line and it reveals that the surface tension causes 

an increase in the normal mode frequencies. 

 

Figure 3: cylindrical container. 

The fluid surface elevation 𝜂 measured from the undisturbed free surface is obtained from 

the equation (5) using (4)  

𝜂 =
1

𝑔
∑ ∑[𝛼̅𝑚𝑛 cos 𝑚𝜃 + 𝛽̅𝑚𝑛 sin 𝑚𝜃]

∞

𝑛=1

∞

𝑚=0

𝐽𝑚(𝜆𝑚𝑛𝑟)cosh (𝜆𝑚𝑛ℎ)(𝜔𝑚𝑛
 cos 𝜔𝑚𝑛𝑡)    (11) 

where 𝛼̅𝑚𝑛 and 𝛽̅𝑚𝑛 are constant coefficients to be determined from initial conditions. 

The symmetric mode shape takes form 

𝜂(𝑟, 𝜃, 𝑡) =
1

𝑔
∑ ∑ 𝛼̅𝑚𝑛 cos 𝑚𝜃

∞

𝑛=1

∞

𝑚=0

𝐽𝑚(𝜆𝑚𝑛𝑟)cosh (𝜆𝑚𝑛ℎ)(𝜔𝑚𝑛
 cos 𝜔𝑚𝑛𝑡)          (12) 

For the first mode, m = 0, the motion is symmetric about the origin in the form of angular 

ridges and furrows. In this case, the roots of 𝑑𝐽0(𝜉0𝑛𝑟 𝑅⁄ ) 𝑑𝑟|𝑟=𝑅⁄ = 0 are 𝜉0𝑛=3.832, 

7.0156, 10.173, …, 𝜋(𝑛 + 0.25). The corresponding nodal circles are determined by 

setting 𝜂 = 0, or 𝐽0(𝜉0𝑛𝑟 𝑅⁄ ) = 0, which gives 𝜉0𝑛𝑟 𝑅⁄ = 2.404, 5.517, 8.648, … The 

corresponding radii of nodal circles are r = 0.628R, 0.786R, 0.85R. [2] 
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3. Mathematical description. 

To get an understanding of the mechanism of stimulation, the mathematical description 

will be discussed here. In the following chapters, however, this is done only for the 

orbiting gravity wave. The movement of the air, which is fanned by the rotating disk, is 

not explained in more detail. The resulting turbulent boundary layers, between air and 

disk and air and water surface, which are called Ekman layers, are not dealt with in this 

work. 

3.1. Potential theory. 

To describe the moving liquid, it is initially assumed that the surface tension and the 

friction forces on the cylinder wall are negligible. It is considered a liquid density ρ in the 

gravitational field g, wherein in the equilibrium state, the surface is perpendicular to the 

gravitational acceleration. 

In order to describe the observations mathematically, the potential theory is needed. To 

use this theory, it is still necessary to make the assumptions that the flow is incompressible 

and stationary. Due to the fact that no inflow takes place and the frictional forces on the 

cylinder wall are negligible, the flow is also free of vortices (ω = ∇u = 0). Furthermore, 

according to the Helmholtz vortex theorems: "If a substantial fluid element is vortex-free, 

then it remains vortex-free for all times: ω (t = 0) = 0 ⇒ ω (t> 0) = 0."  

For a simpler explanation, the more detailed connection of the potential theory in the x-y 

coordinate system will be dealt with below. The same considerations can also be applied 

to the cylindrical coordinate system, which will be used later to describe the rotating 

gravity shaft. 

In order to solve the potential equation or Laplace equation, there must be a potential 

function Φ which satisfies the following two conditions. The partial derivative according 

to the x-coordinate must be equal to the velocity in the x-direction and the partial 

derivative of the y-coordinate must be equal to the velocity in the y-direction. 

𝑢𝑥 =
𝛿𝛷

𝛿𝑥
, 𝑢𝑦 =

𝛿𝛷

𝛿𝑦
     (13) 

Substituting these two components (1) in the equation for vortex freedom 

𝛿𝑢𝑥

𝛿𝑥
−

𝛿𝑢𝑦

𝛿𝑦
= 0     (14) 

therefore, this is fulfilled: 

𝛿2𝛷

𝛿𝑦𝛿𝑥
−

𝛿2𝛷

𝛿𝑥𝛿𝑦
= 0.     (15) 

The derivation of the equation for the condition of vortex freedom for a mass point m is 

explained in detail in [5, pp. 222 - 224]. If one puts these two velocity components into 

the continuity equation as well 
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𝛿𝑢𝑥

𝛿𝑥
+

𝛿𝑢𝑦

𝛿𝑦
= 0     (16) 

the potential equation or Laplace equation is obtained, which satisfies the differential 

equation of the vortex freedom. 

𝛿2𝛷

𝛿2𝑥
+

𝛿2𝛷

𝛿2𝑦
= 0.     (17) 

With the Laplace operator, the equation for spatial flows is then 

∆𝛷 = 0.      (18) 

In order to satisfy the continuity equation (4), a function Ψ, the current function, is 

searched for. Therefore, the speed components must satisfy the following condition. 

𝑢𝑥 =
𝛿𝛹

𝛿𝑦
, 𝑢𝑦 = −

𝛿𝛹

𝛿𝑥
     (19) 

the second derivative is also fulfilled  

𝛿2𝛹

𝛿𝑦𝛿𝑥
−

𝛿2𝛹

𝛿𝑥𝛿𝑦
= 0.     (20) 

If the velocity components are subsequently inserted into the equation for freedom from 

vertebrae (2), the differential equation of the current function is obtained 

𝛿2𝛹

𝛿2𝑥
+

𝛿2𝛹

𝛿2𝑦
= ∆2𝛹 = 0.     (21) 

The lines at Ψ = constant represent the streamlines. The tangents at each point of these 

lines agree with the direction of the respective velocity vector. The lines at Φ = constant 

represent the potential lines. 

 

3.2. Equations. 

In this section, the equations already mentioned above are again written in cylindrical 

coordinates. According to the fundamental theorem of vector analysis it follows that one 

can express a vortex-free velocity field u (r, φ, z, t) = 0 as velocity potential. The velocity 

field u has the following form in cylindrical coordinates 

𝑢 = 𝑢𝑒𝑟 + 𝑣𝑒𝜑 + 𝑤𝑒𝑧                                                  (22) 

Shown as potential results 

u (r, φ, z, t) = 𝛻𝜙                                                     (23) 

Together with the continuity equation (∇u = 0) the potential equation follows 

𝛻2𝜙 = 0                                                                (24) 
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With the Laplace operator, the Laplace equation in cylindrical coordinates is form 

𝛥𝜙 =
𝛿𝜙

𝛿𝑟2
+

1

𝑟

𝛿𝜙

𝛿𝑟
+

1

𝑟2

𝛿𝜙

𝛿𝜑2
+

𝛿𝜙

𝛿𝑧2
                                        (24) 

 

3.3. Boundary conditions. 

In order to be able to solve the Laplace equation (24), it is necessary to find boundary 

conditions for it. Initially, a cylindrical coordinate system is defined, with the origin of 

the coordinates being on the quiescent water surface and the z-axis pointing upwards. The 

first boundary condition is obtained by assuming that the radial velocity component of 

the wave at the edge of the cylinder must be zero. 

𝛿𝜙(𝑟 = 1)

𝛿𝑟
= 0                                                        (25) 

Furthermore, the speed in the z direction at the cylinder bottom is also zero. From this 

follows the second boundary condition with  

𝛿𝜙(𝑧 = −ℎ)

𝛿𝑧
= 0                                                      (26) 

To find a kinematic boundary condition, it is necessary to associate the vertical deflection 

of the surface with the velocity potential. With the assumption that every fluid element 

which was initially on the surface will also be on the surface at any later time, the equation 

can be written on the free surface with z = h (r, φ, t). This means that the position in the 

z-direction depends only on the radial distance r, the angle φ and the time t. 

Deriving this equation over time, one obtains the velocity component w in the z-direction. 

𝛿𝑧

𝛿𝑡
= 𝑤 =

𝛿ℎ

𝛿𝑡
+ 𝑢⃗⃗𝛻ℎ⃗⃗ =

𝛿ℎ

𝛿𝑡
+ 𝑢

𝛿ℎ

𝛿𝑟
+ 𝑣

𝛿ℎ

𝛿𝜑
                              (27) 

𝑤 =
𝛿ℎ

𝛿𝑡
+ 𝑢

𝛿ℎ

𝛿𝑟
+

𝜑̇

𝑟

𝛿ℎ

𝛿𝜑
                                                 (28) 

The dynamic boundary condition follows from the Bernoulli equation. If the pressure at 

the surface is equalized by 𝑝 = 𝑝0 and the time-dependent constant is drawn into the 

potential, the fourth boundary condition results 

𝛿𝜙

𝛿𝑡
+

1

2
((

𝛿𝜙

𝛿𝑟
)

2

+
1

𝑟2
(

𝛿𝜙

𝛿𝜑
)

2

+ (
𝛿𝜙

𝛿𝑧
)

2

) + 𝑔ℎ = 0                        (29) 

 

3.4. Linearized problem. 

To find the solution of the Laplace equation by means of the boundary conditions found 

above is not easy, since the boundary conditions contain several quadratic terms. 
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Assuming that the amplitudes are small compared to the radius h << R, the nonlinear 

quadratic terms are eliminated, and the linearized boundary conditions are obtained. The 

kinematic boundary condition on the surface is thus simplified 

𝛿𝜙

𝛿𝑧
=

𝛿ℎ

𝛿𝑡
                                                               (30) 

The dynamic boundary condition for z = 0 is now 

𝛿𝜙

𝛿𝑡
= −ℎ                                                              (31) 

If you derive the latter again over time, you can equate it with equation (30) and you get 

𝛿𝜙

𝛿𝑧
+

𝛿2𝜙

𝛿𝑡2
= 0                                                       (32) 

3.5. Product approach. 

It is assumed that it is a rotating wave of immutable form, with the angular velocity ω, 

which can be described by the following two equations. 

𝜙(𝑟, 𝑧, 𝜑, 𝑡) = 𝑎(𝑟)𝑍(𝑧) sin(𝑛𝜑 − 𝜔𝑡)                                   (33) 

ℎ(𝑟, 𝜑, 𝑡) = 𝑎(𝑟)ℎ0 cos(𝑛𝜑 − 𝜔𝑡)                                         (34) 

Substituting these two equations for the shape of the wave into equation (32) gives the 

following relationship 

𝜔2 =
𝑍′(0)

𝑍(0)
                                                             (35) 

This equation will be discussed later. To solve the Laplace equation, which is a partial 

differential equation with multiple variables, the product approach is used. 

𝜙 = 𝑃(𝑟)𝜙(𝜑)𝑍(𝑧)                                                        (36) 

𝛥𝜙 = 𝑃′′𝜙𝑍 +
1

𝑟
𝑃′𝜙𝑍 +

1

𝑟2
𝑃′𝜙′′𝑍 + 𝑃𝜙𝑍′′ = 0                                 (37) 

𝑃′′𝜙𝑍 +
1

𝑟
𝑃′𝜙𝑍 +

1

𝑟2
𝑃′𝜙′′𝑍 + 𝑃𝜙𝑍′′ = 0 

dividing by P  

1

𝑃
𝜙𝑍 (𝑃′′ +

1

𝑟
𝑃′) +

1

𝑟2
𝜙′′𝑍 + 𝜙𝑍′′ = 0 

Dividing by 𝜙 

1

𝑃
𝑍 (𝑃′′ +

1

𝑟
𝑃′) +

1

𝑟2

1

𝜙
𝜙′′𝑍 + 𝑍′′ = 0 

by Z 
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1

𝑃
(𝑃′′ +

1

𝑟
𝑃′) +

1

𝑟2

1

𝜙
𝜙′′ +

1

𝑍
𝑍′′ = 0 

Setting for 𝑘 = −
1

𝜙
𝜙′′ and 𝜇 =

1

𝑍
𝑍′′ you get the two differential equations  

1

𝜙
𝜙′′ = −𝑘                                                          (38) 

And  

1

𝑍
𝑍′′ = 𝜇                                                                (39) 

𝑍′′ − 𝜇2𝑍 = 0 

With the boundary condition that the velocity component on the ground must be zero 

𝑍′(−ℎ𝑤) = 0, the solution for the differential equation is obtained 

𝑍(𝑧) =
cosh(𝜇(𝑧 + ℎ𝑤))

cosh(𝜇ℎ𝑤)
 

and thus the solution for equation (32) 

𝑍′(0)

𝑍(0)
= 𝜇 tanh(𝜇ℎ𝑤) = 𝜔2                                       (40) 

The Laplace equation simplifies with the two variables k and μ 

1

𝑃
(𝑃′′ +

1

𝑟
𝑃′) −

1

𝑟2
𝑘 + 𝜇2 = 0 

multiplying by  
𝑃

𝜇2 

1

𝜇2
(𝑃′′ +

1

𝑟
𝑃′) + 𝑃 (1 −

𝑘

𝑟2𝜇2
) = 0 

Assuming the periodicity from the solution of the differential equation (38) sets you k=𝑛2 

1

𝜇2
(

𝑑𝑃

𝑑𝑟2
+

1

𝑟

𝑑𝑃

𝑑𝑟
) + 𝑃 (1 −

𝑛2

𝑟2𝜇2
) = 0 

In the next step, μr = x and 𝑃(𝑟) = 𝑃̅(𝑥) are set. Furthermore applies 
1

𝜇

1

ⅆ𝑟
=

1

ⅆ𝑥
 . 

It follows 

𝑑𝑃̅(𝑥)

𝑑𝑥2
+

1

𝑥

𝑑𝑃̅(𝑥)

𝑑𝑥
+ (1 −

𝑛2

𝑥2
) 𝑃̅(𝑥) = 0 

With 𝑃(𝑟) = 𝑃̅(𝑥) = 𝐽𝑛(𝑥) = 𝑃̅(𝜇𝑟) = 𝐽𝑛(𝜇𝑟) we obtain the Bessel function 

𝐽′′𝑛 +
1

𝑟
𝐽′𝑛 −

𝑛2

𝑟2
𝐽𝑛 + 𝐽𝑛 = 0                                            (41) 
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With the boundary condition on the cylinder jacket (r = 1) follows 

𝐽𝑛
′ (𝜇𝑟) = 0 

𝐽𝑛
′ (𝜇) = 0 

 

3.6. Bessel function. 

3.6.1. Introduction. 

The problem of diffraction of plane waves from a circular cylinder of infinite extent has 

been solved both for electromagnetic and sound waves. Only slight modifications are 

necessary to obtain a corresponding solution for water waves incident on a circular pile. 

An exact mathematical solution is presented for the linearized problem of water waves of 

small steepness incident on a circular cylinder [3]. 

Bessel's equation arises when finding separable solutions to Laplace's equation and the 

Helmholtz equation in cylindrical or spherical coordinates. Bessel functions are therefore 

especially important for many problems of wave propagation.  

In solving problems in cylindrical coordinate systems, one obtains Bessel functions of 

integer order (α = n); in spherical problems, one obtains half-integer orders (α = n +1/2). 

In this paper we will describe the problem in cylindrical coordinates. Because this is a 

second-order differential equation, there must be two linearly independent solutions [4]. 

The fluid is frictionless. The ratio of the height of the waves to their length is sufficiently 

small so that all quantities involving the parameter (H/L) in the second or higher powers 

may be neglected without sensible error, thus giving rise to the so called linear theory. 

The waves are incident on a vertical circular cylinder which extends to the bottom. The 

depth of the water is finite [3]. 

 

 

 

 

 

 

 

Figure 4: 3D illuminated grayscale surface of Bessel function order 0. 

 

 

https://en.wikipedia.org/wiki/Laplace%27s_equation
https://en.wikipedia.org/wiki/Helmholtz_equation
https://en.wikipedia.org/wiki/Spherical_coordinates
https://en.wikipedia.org/wiki/Wave_propagation
https://en.wikipedia.org/wiki/Linearly_independent


  
 

15 
 

3.6.2. Bessel equation. 

Bessel functions, first defined by the mathematician Daniel Bernoulli and then 

generalized by Friedrich Bessel, are the canonical solutions u(x) of Bessel's differential 

equation. 

In this section we will deal with the study of the ordinary differential equation 

𝑥2𝑢′′(𝑥) + 𝑥𝑢′(𝑥) + (𝑥2 − 𝛼2)𝑢(𝑥) = 0                                 (42) 

with 𝛼 ≥ 0, which is called the Bessel equation of order 𝛼. It is an ordinary differential 

equation of order two with non-constant coefficients. 

The solutions are the Bessel function of the first kind 𝐽±𝛼(𝑥), of the second kind 𝑌𝛼(𝑥) 

(also called Weber’s function), and of the third kind 𝐻𝛼(𝑥) (Hankel functions). Each one 

is a regular function of x throughout the x-plane cut along the negative real axis, and for 

a fixed x ≠ 0 each is an integral function of 𝛼. When 𝛼= ± n, 𝐽𝛼(𝑥) has no Branch point 

and is an integral function of x. 

 

Figure 5: Bessel function of first and second kind 𝐽𝛼  and 𝑌𝛼. 

Bessel functions for integer α are also known as cylinder functions or the cylindrical 

harmonics because they appear in the solution to Laplace's equation in cylindrical 

coordinates. 

To solve equation (42) we propose a solution that can be written in the form 

𝑢(𝑥) = ∑ 𝑎𝑚𝑥𝑚+𝑏         (𝑎0 ≠ 0)                                            (43)

∞

𝑚=0

 

where the exponent b and the coefficients  𝑎𝑚 must be calculated. 

Substituting (43) in (42) and after doing some calculations it is arrived at that the function 

(44), which is denominated Bessel function of first kind (𝛼), is the solution for the 

equation (42) [5]. 

https://en.wikipedia.org/wiki/Daniel_Bernoulli
https://en.wikipedia.org/wiki/Friedrich_Bessel
https://en.wikipedia.org/wiki/Canonical_form
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Cylindrical_harmonics
https://en.wikipedia.org/wiki/Cylindrical_harmonics
https://en.wikipedia.org/wiki/Laplace%27s_equation
https://en.wikipedia.org/wiki/Cylindrical_coordinates
https://en.wikipedia.org/wiki/Cylindrical_coordinates
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The ordinary Bessel functions of order α, called simply functions of Bessel of order α are 

solutions of the Bessel equation. There are two simple ways of expressing the general 

solution of the Bessel differential equation with parameter α, which are associated with 

the ordinary Bessel functions of first and second kinds (𝐽𝛼 and 𝑌𝛼 respectively). 

 

Figure 6: rotating chain takes the shape of the function 𝐽0. 

 

3.6.3. Bessel functions of the first kind:  𝑱𝜶. 

Bessel functions of the first kind, denoted as 𝐽𝛼(x), are solutions of Bessel’s differential 

equation that are finite at the origin (x = 0) for integer or positive 𝛼 and diverge as x 

approaches zero for the negative non-integer 𝛼. It is possible to define the function by its 

series expansion around x = 0, which can be found applying the Frobenius method to 

Bessel’s equation:  

𝐽𝛼(𝑥) = ∑
(−1)𝑚

𝑚! 𝛤(𝑚 + 𝛼 + 1)
(

𝑥

2
)

2𝑚+𝛼

∞

𝑚=0

                                    (44) 

 

where Γ(z) is the gamma function, a shifted generalization of the factorial function to non-

integer values. 

These functions comply with: 

• If 𝛼 ∉ ℤ, then 𝐽𝛼(x) and 𝐽−𝛼(x) are linearly independent, and therefore a 

general solution of the Bessel equation can be expressed as a linear 

combination of them. 

• If 𝛼 = 𝑛 ∈ ℤ,  then it is fulfilled: 

𝐽−𝑛(x) = (−1)𝑛𝐽𝑛(𝑥),       ∀𝑛 ∈ ℤ 

so the two solutions are no longer linearly independent. In this case, the 

second linearly independent solution will be a Bessel function of the 

second kind. 

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Factorial


  
 

17 
 

The graphs of Bessel functions look roughly like oscillating sine or cosine functions that 

decay proportionally to 1 ∕ √𝑥 , although their roots are not generally periodic, but they 

are asymptotically for large values of x [4]. 

 

Figure 7: Plot of Bessel function of the first kind, Jα(x), for integer orders α = 0, 1, 2. 

 

In the next table, the values for the roots of the derivative of the Bessel function are 

solved, thanks to NAG C Library, so that, the x value for the maximums and minimums 

of the function for different values of m are calculated: 

 

𝜇𝑚𝑘 k=1 2 3 4 5 

m=1 1.8411853 5.3314457 8.5363183 11.706006 14.863590 

2 3.0542342 6.7061352 9.9694694 13.170372 16.347523 

3 4.2011847 8.0152380 11.345926 14.585849 17.788749 

4 5.3175481 9.2823973 12.681909 15.964108 19.196030 

5 6.4156109 10.519862 13.987189 17.312843 20.575515 

6 7.5012605 11.734936 15.268182 18.637444 21.931716 

7 8.5778307 12.932386 16.529366 19.941854 23.268054 

8 9.6474158 14.115519 17.774013 21.229063 24.587198 

9 10.711428 15.286738 19.004594 22.501399 25.891278 

10 11.770871 16.447853 20.223032 23.760716 27.182022 

 

Table 1: Zeroing the derivative of 𝐽𝛼. 
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where m are the different values that 𝛼 takes, and k the values in the x-axis when the 

derivative of 𝐽𝛼 is made 0. 

 

3.6.4. Bessel’s integrals 

For integer values of n, we have the following integral representation: 

𝐽𝑛(𝑥) =
1

𝜋
∫ − cos(𝑛𝜏 − 𝑥 sin 𝜏) 𝑑𝜏

𝜋

0

                                  (45) 

That can also be written as: 

𝐽𝑛(𝑥) =
1

2𝜋
∫ 𝑒−ⅈ(𝑛𝜏−𝑥 sin 𝜏) 𝑑𝜏

𝜋

−𝜋

                                          (46) 

This was the approach that Bessel used, and from this definition he derived several 

properties of the function. This integral definition can be extended to non-integer orders 

by adding another integral term [4]: 

𝐽𝛼(𝑥) =
1

𝜋
∫ − cos(𝛼𝜏 − 𝑥 sin 𝜏) 𝑑𝜏

𝜋

0

−
lim(𝛼𝜋)

𝜋
∫ 𝑒−𝑥 sinh(𝑡)−𝛼𝑡 𝑑𝑡

∞

0

          (47) 

 

 

 

 

Figure 8: illustrative example of a wave taken the shape of the Bessel function of order 

0. 
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4. Description of set-up. 

4.1. Testing bench and cylinder. 

All the necessary equipment is located at the laboratory of the Institute of Energy 

Technology and Thermodynamics, E302, and it’s there where all the tests have been 

executed and studied. The testing bench was already installed there because it was used 

for other experiments years before. It consists on a structure formed by a plastic 

transparent cylinder held by steel bars whose dimensions are: height 102cm and ø40cm. 

In the bottom of the wall of the cylinder two holes are found, the first one is for the inlet 

of water, and next to it, another one for its outlet, both manipulated by manual valves in 

order to fill the cylinder with the exact amount of water. At the top of the cylinder there 

is a steel thick heavy disc fixed indirectly with screws in which the power unit is located. 

It is necessary to be careful with the pressures inside the cylinder since the disc is perfectly 

attached to the cylinder. Two extra holes were perforated during the experiments to 

introduce smoke into the bench (it is explained later). 

This testing bench is used to simulate a pumping storage power plant in phase change 

operation in its simplest form . This allows us to observe and study the waves in 

simplified conditions. 

A graph paper has been taped to the pipe on the outside on the front part. It has allowed 

us to measure the amplitudes in the photographs taken and also to determinate the initial 

level of the water. 

 

 

Figure 9: schematic representation of the experimental setup. 

2 

1 

3 4 
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4.2. Propulsion.  

Movement of water and so the creation of the waves inside the container is due to a 

rotating disc on top of it. This disc has a profile in “+” welded to him, and it rotates 

because of a motor screwed to it. This motor on the top of the external disc is connected 

to a standard inverter which also controls the nominal speed (in r.p.m.) of the motor. This 

frequency inverter is MOVITRAC® SEW EURODRIVE (4/U, 5/V, 6/W) and it’s 

connected to the electrical network, in which we are able to choose the speed of the motor 

and also its direction of rotation. The motor rotates the disc inside the tube. The chosen 

motor is AEG , Typ AM 80 N2, (1,1Kw, cosφ=0,84, 4,7V, 2,7A, f=50Hz). The speeds of 

the motor are varied between 500 rpm and 700 rpm (in intervals of 100). We will see how 

the behavior of the wave changes depending on the speed. Initially the first speed to study 

was 400 rpm but it took too much time to form the wave, so we started to study from 500 

rpm directly (and so we reach 700 rpm instead of 600).  

NUMBER OBJECT ADDITIONAL 

INFORMATION 

1 ZYLINDER Ø= 40 cm, height 102cm 

2 ROTATING DISC - 

3 WATER INLET - 

4 WATER OUTLET - 

5 SUPPORT Steel profiles 

6 MOTOR AEG, 1.1Kw, f=50Hz 

 

Table 2: Objects of the experimental setup. 

 

4.3. Camera. 

 

To record the movements and behavior of the waves inside the cylinder we used the 

camera Photron FASTCAM Mini Ax 50, in which the objective NIKON, AF Nikkor 

50mm, 1:1,4D. The camera was placed in a tripod in different positions in order to get 

the best view needed. At the beginning it was placed above the level of the inactive water 

and with a small angle, which made possible to focus on the hole top surface and take 

some pictures of the wave forms. After that, we approached the camera to the cylinder, 

we wanted to focus only the front part of it to make possible a better lecture of the 

Figures 10 and 11: 

photo of Photron 

FASTCAM camera, 

and 

IMAGINGSOURCE 

camera. 
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amplitudes. The videos recorded are a superposition of thousands black-and-white 

images, with a good resolution. 

For a long time, it was tried to observe the development of the surface of the wave and 

its amplitudes not only in the borders of the cylinders, but also in the middle of the surface, 

crossing from side to side going through the center. For this, a laser was needed. Then the 

data could have been passed to a software and graphics could have been done. We tried 

a lot of settings to make it work, but the laser was not visible enough for the camera. We 

thought about making smoke inside the pipe, between the water surface and the rotating 

disc (taking care of the pressures inside) in order to make bigger the color differences 

between water surface and background. The smoke was generated first from a cigarette 

(a man smoking on a small plastic tube connected to the inside on the cylinder), then from 

incense sticks (they fitted in the small holes that the disc has, so it was possible to get the 

smoke inside), and finally with some pills makers of smoke, but they made so much 

smoke. None of these options were able to make the laser light seen through the camera. 

 

The camera was controlled with the software provided by Photrom Fastcam Viewer, 

which allows many settings. The videos were filmed at the beginning at 500 fps (frames 

per second). Due to these high frame rates, very large files have already been created in 

a very short time, which consequently had long storage times (around 5 minutes each 

record) because the memory storage of the camera is small and the frames must be copied 

to the computer then. As it was necessary to film the whole development of the wave, it 

was necessary to add another camera, recording in parallel, whose storage is directly 

saved in the computer memory. 

IMAGINGSOURCE DFK 23GP021 is the camera I’m talking about. It allowed us to save 

long videos directly in the computer through the software that was downloaded, IC 

CAPTURE 2.4. In parallel, the Photron FASTCAM was used to take pictures at singular 

moments. The resolution of this camera turned to be so low and the images recorded were 

useless. Besides, after recording some videos, the memory of the computer was full. All 

the data saved was deleted and start again. 

The final setting we were looking for was finally was found in the FASTCAM software. 

Videos of 2 seconds were filmed in intervals of 15-23 seconds in the camera memory at 

125fps.  

  

 

4.4. Laser. 

It was used for the firsts test we made. It was necessary to have the vision of the behavior 

of the wave in its complete form, as it was supposed to let us know the shape and 

amplitude of the wave right in the middle, not only in the borders. A support for the lent 

with the laser was necessary to be designed. This lent enabled to distort the light of the 

laser and make it perpendicular to the water surface, so the laser light illuminated the hole 
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surface. The light of the laser wasn’t visible by its own, so it was necessary to manage 

some settings to make it more visible, as I explained before, making smoke was the thing 

we more studied, but we didn’t get good results, so we leave the laser light out of the 

experiment. For a day we also try with a halogen light, but this was too weak and didn’t 

make almost any effect. 

 

Figure 12: set-up 

5. EXPERIMENTAL WORK AND 

DISCUSSION. 

5.1. Study of the wave amplitude.  

5.1.1. Realization and duration of recordings. 

During the time spent in the laboratory, setting the FASTCAM camera and PHOTRON 

software took most of it. Trying different configurations such as the light (artificial and 

natural) and positions of the tripod also, was not an easy task as it depended on the 

environmental conditions and in the fact that every day the equipment had to be saved 

and so the next time it was necessary to start again. The fact that the memory of the camera 

was not enough for taking long recordings of the experiment slowed down the 

investigation, as it was not possible to proceed till the configuration needed was found. 

In the definitive position, the camera only focused in the front part of the cylinder, 

selecting the central line as the reference point for measure the amplitudes. The 

chronometer was located 2cm below the water reference line.   

This was about recording short videos (2 sec) with an interval of about 15-20 secs between 

each one. The interval depended on the speed of the motor. 

The instructions to follow were the following:  

 - Camera option: 1 Partition. 

 - Frames per second: 125fps (≈43 sec of recording in total). 

 - Trigger Mode // Random // number of frames: 250 frames. 
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 - [View] // [Time-Lapse Bar] // ON // select Interval and Number of Repetitions. 

The measurements depending on the rotation speed were: 

 -500 rpm: the time that the wave needed 

to develop itself completely was the longest 

one, so the intervals between records had to be 

longer to fit in the camera memory till the wave 

reached its maximum. The intervals were of 20 

(tests 1, 2 and 3) and 25 secs (test 4). 

 -600 rpm: the maximum value of the 

amplitude was reached in a shorter time than 

with 500 rpm, which is obvious. We made one 

recording with intervals of 25sec between 

recordings to see if any discordance occurs after 

reaching the permanent mode. The following 

test were made in intervals of 17sec. 

        Figure 13: snapshot of the wave at 500 rpm. 

 -700 rpm: tests 1, 2 and 3 with intervals of 17 sec, and the last one, 13 sec, so we 

could take more intermediate points since anyways the water touched the disc quite some 

time before the video ended. 

 

 

5.1.2. Analysis of the experiment. 

The evaluation and study of the recordings was performed with the displayer of Windows 

10, which allowed me to stop the video image by image whenever I wanted, so it was 

easy to measure the amplitudes in every instant. Also, it was easy to save single pictures 

from the videos.  

A waiting time of 15 minutes was chosen between every recording. The chronometer and 

the recording of the video started simultaneously, and, around two seconds later, the 

motor started rotating. This was the faster I could press the button of the motor.  It was 

necessary to assign the same time between the end and the beginning of each video, as 

the water on the bottom of the cylinder kept on moving despite the surface seemed 

standing. In this way, the initial conditions were as similar as possible in every test. For 

this reason, we discarded the first video of all, so there are only 3 videos at 500 rpm 

instead of 4. 

The data taken from the videos at each speed are compiled in the following charts 

implemented in Excel, at different speeds. 

The goal of these measurements is to see how the amplitude on the generated wave 

develops depending on the speed of the motor with a constant height difference (180mm). 
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The data was repeated 3 or 4 times per speed. We got the points enough for make the 

charts along the development of the waves. 

In the chart (1), where the amplitudes at 500 rpm are described, we see almost a linear 

increase of the function. The amplitude gets bigger with the time at almost constant 

velocity, we don’t see big jumps in the points taken. The final amplitude occurs at around 

130mm as we can see in the Test 3, in which we took more time to measure. We can see 

that this amplitude gets constant from this value on in a time of 400 seconds. In any 

moment the wave reaches the rotating disc on the top. In test number 3, we can see that 

at the end, the amplitude decreases around 5 mm from the primary permanent state. 

With the values picked for 600 rpm (chart (2)) we see that the waves increase faster than 

in the case before, reaching the height of 165mm in a time of 220 sec approx. Both in  

 

Chart 1: Amplitude vs Time, 500 rpm, 180mm. 

600 and 700 rpm the total amplitude of the wave was not possible to see, since before 

achieving the permanent state, the wave touched the disc. At 700 rpm the top was reached 

at 150 seconds. The big change of the waves amplitude is between the time of 150 and 

200 seconds for 600 rpm, and 125 to 150 seconds in the tests at 700 rpm, where the 

amplitude goes from 40 mm to 160mm, and from 80 mm to 170 mm, respectively.  
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Chart 2: Amplitude vs Time, 600 rpm, 180mm. 

In the last chart, the three speeds are compared. Three randomized tests have been chosen, 

one per speed. It can be clearly seen that, at lower speeds, the wave formation time is 

longer. There is not a big-time difference between 600 and 700 rpm to get the disc of the 

cylinder. The behavior of these two speeds is more similar comparing with the 500 rpm. 

 

  

Chart 3: Amplitude vs Time, 700 rpm, 180mm. 
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Due to the fact that the wave 

crashed with the profile of the 

disc, we can see some 

irregularities one the water 

reaches the amplitude of 165-

175mm. The height at this 

point varies between 160 and 

180 mm, since the profile has 

a measure of 20mm. on the 

video, we see that sometimes 

the water passed above the 

disc and splashed out on the 

surface above it. 

 

Figure 14: we can see the 

water above the disc at a speed 

of 700rpm. 

 

 

Chart 4: Amplitude vs Time. Comparison between 500, 600 and 700 rpm, 180mm. 
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5.2 Number of waves.  

In this part of the thesis, the number of waves at every instant is going to be counted and 

their shapes described. The same videos that were used to measure the amplitudes in the 

previous section, have been used now to quantify the number waves in the surface of the 

water during the development of it till we can see a unique one. This last permanent wave 

occurs before the maximum amplitude is reached. In the charts we see that the number of 

waves decreases with the time. As the videos were recorded in intervals between 13 and 

25, depending on the speed, as it was explained before, in the case of speed 500 rpm, 

where the wave takes shape in a longer time and also the intervals between videos is 

bigger, a big quantity of small waves was formed in the surface, which was complicated 

to count, so, in this case of 500 rpm, the method to get to the result was a rule of three. 

Assuming the periodicity of every wave, I counted how many waves were in the graph 

paper in the front part, measure how many millimeters they occupied and then divide the 

perimeter and multiply by the number of waves. Practical example given with the next 

picture.  

 

 

Figure 15: snapshot of Test 2 at 500 rpm. 

In the strip between these two red lines three waves are visible. These three waves have 

a length in the perimeter of the cylinder of 25 cm, so, as it was said before, assuming the 

periodicity of every wave we have and assuming that this 3 waves are repeated every 

25cm: 

-cylinder perimeter: 2𝜋R=2𝜋·20=125’66cm 

- number of waves: 3 

-length of all waves: 25 cm 

So,  

125′66

25
× 3 = 15′07 ≈ 15 waves 
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During the second snap of recording (at time 20sec approx.) we have around 15 waves in 

the surface of the water in this second test at 500 rpm. The same process was repeated 

por the rest of the trials at 500 rpm. This proceeding was not necessary for the tests at 600 

and 700 rpm, because the wave was more developed by this time of 20 seconds and it was 

easy to count how many oscillations were quantitatively.  

 

 

   

a)                                            b)                                            c) 

  

                                        d)                                            e) 

Figure 16: snapshots of a) 6, b) 5, c) 3, d) 2 and e) 1 wave. 600 rpm, 180mm. 

Following charts show the number of waves per test depending on time. 

 

 

Chart 5: Number of waves vs Time, 500 rpm. 
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In the case of 600 rpm, in tests number 2, 3 and 4, the first-time shot was at 17 seconds 

and it was difficult to quantify the waves, as they were really small and irregular, so I 

skipped this 17 seconds point in the chart. 

 

Chart 6: Number of waves vs Time, 600 rpm. 

 

The time necessary to attain the last single wave depends on the speed. The higher the 

speed of the motor is, the sooner the single wave appears. It is possible to see that it 

happens at a time of 225 secs (500 rpm) and around 150 secs at 600 rpm. There are some 

irregularities in the experiment at 700 rpm. The last wave in this case appears at quite 

different values depending on the test. In test number 1 occurs at 136 secs, during the 

second, at 119 secs, and during the third and fourth attempt in a time of about 100 seconds. 

 

Chart 7: Number of waves vs Time, 700 rpm. 
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Once a single wave has been formed, it remains being one without exception. Without 

counting this case, the mode that takes the most time is when two waves are rotating in 

the surface of the water inside the cylinder. This time is also bigger when smaller is the 

speed: at 500 rpm, two waves behave playing for 150 seconds; at 600, around 60 seconds 

and, at 700, depending on the case, barely 40 seconds.  

The jumps in the number of waves are more abrupt at 500 rpm, where we can see that in 

a time of 20 seconds, the number decreases from 15 waves to six. This does not happen 

in the last experiment, at 700 rpm, where at second 17 there are 5 waves, and seventeen 

seconds later we have only one less (test 1, 700 rpm). 
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