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Abstract Recently, Unmanned Aerial Vehicles (UAVs)

have become a cheap alternative to sense pollution va-

lues in a certain area due to their flexibility and ability

to carry small sensing units. In a previous work, we pro-

posed a solution, called Pollution-driven UAV Control

(PdUC), to allow UAVs to autonomously trace pollu-

tant sources, and monitor air quality in the surroun-

ding area. However, despite operational, we found that

the proposed solution consumed excessive time, espe-

cially when considering the battery lifetime of current

multi-rotor UAVs. In this paper, we have improved our

previously proposed solution by adopting a space dis-

cretization technique. Discretization is one of the most

efficient mathematical approaches to optimize a system

by transforming a continuous domain into its discrete

counterpart. The improvement proposed in this paper,
called PdUC-Discretized (PdUC-D), consists of an opti-

mization whereby UAVs only move between the central

tile positions of a discretized space, avoiding monito-

ring locations separated by small distances, and whose

actual differences in terms of air quality are barely no-

ticeable. We also analyze the impact of varying the tile

size on the overall process, showing that smaller tile

sizes offer high accuracy at the cost of an increased

flight time. Taking into account the obtained results,
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we consider that a tile size of 100 × 100 meters offers

an adequate trade-off between flight time and monito-

ring accuracy. Experimental results show that PdUC-D

drastically reduces the convergence time compared to

the original PdUC proposal without loss of accuracy,

and it also increases the performance gap with stan-

dard mobility patterns such as Spiral and Billiard.

Keywords UAV Control System · Air Pollution

Monitoring · Discretized Systems

1 Introduction

Air pollution is a hazard that affects not only urban

areas (cities) [26], but also rural and industrial envi-

ronments [20] activities including crop yield, forest mo-

nitoring, and animal health, among others.

In the literature, we can observe that traditional

methods for air pollution monitoring (fixed monitoring

stations) are gradually being replaced by mobile crowd-

sensing sensors that are small enough to be carried

around by users, or installed in different vehicles like

taxis, buses, bicycles, or any type of vehicle [4,1,24,12,

7].

The crowdsensing approach is not feasible in rural

areas because it clearly requires a minimum number of

sensors to be moving inside the target area to be appli-

cable, a requirement that is typically not met in these

remote environments. For instance, in this type of sce-

narios, vehicular traffic is quite scarce, being limited to

the main transportation arteries, thereby failing to pro-

vide the required granularity in both time and spatial

domains.

To effectively carry out monitoring tasks in rural

scenarios, an attractive option is to use Unmanned Aerial
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Vehicles (UAVs) equipped with Commercial Off-The-

Shelf (COTS) sensors, allowing them to act as mobile

sensors, and being able to reach poorly accessible areas

[3]. In fact, this approach allows monitoring most lo-

cations in any target area due to UAV flexibility and

maneuverability, such as the capability to take samples

while hovering.

Focusing on UAV control systems for air pollution

monitoring tasks, we have noticed that there were no

systems optimized for these purposes. So, we proposed

Pollution-driven UAV Control (PdUC) [6], a solution

that puts the focus on the most polluted regions by

combining a chemotaxis meta-heuristic with an adap-

tive spiral mobility pattern to automatically track po-

llution sources and surrounding pollution diffusion in

a given target area. In a previous work [6], we showed

that PdUC achieves better performance than standard

mobility approaches, like the Spiral and the Billiard pa-

tterns, in terms of discovering the most polluted areas

in a shorter time span. In this paper we propose an

optimized algorithm called PdUC-D, which is based on

PdUC, but it applies space discretization to substan-

tially reduce the convergence time from 1800-4200 se-

conds in PdUC to 1200-3000 seconds in PdUC-D, while

achieving similar levels of accuracy (about 5% of final

relative error) in an area of 4x4 Kilometres, and a step

size / tile size equals to 100 meters.

This paper is organized as follows: section 2 presents

an analysis of the related work regarding UAV usage for

air pollution monitoring. In section 3 we describe the

proposed PdUC-D protocol. Section 4 presents details

regarding the implementation of the protocol, along

with a performance comparison including tile size ana-

lysis and a comparison against the original PdUC pro-

posal. Finally, in section 5, we present the conclusions

of our work and future lines of research.

2 Related Works

The use of UAVs is increasing rapidly in the last years

due to their low cost and flexibility. In fact, they are

being adopted in different areas including commercial,

Earth Sciences, national security, and land management

[11] [15]. In the literature we can find several studies an-

alyzing their use. For example, Pajares et al. [23] dis-

play the results of a detailed study on different UAVs

aspects, showing their applicability in agriculture and

forestry, disaster monitoring, localization and rescue,

surveillance, environmental monitoring, vegetation mo-

nitoring, photogrammetry, and so on.

Focusing on air pollution monitoring using Unmanned

Aerial Systems (UAS), different works have been done

related to providing UAVs with different useful pay-

loads. For example, Erman et al. [13] use an UAV equipped

with a sensor to create a Wireless Sensor Network,

thereby enabling each UAV to act as a sink or as a

node, but it does not try to optimize the monitoring

process. Teh et al. [28] propose a fixed-wing aircraft

carrying a sensor node that acts as a mobile gateway,

allowing the communication between the UAV and di-

fferent static base stations which monitor pollution. In

this case, the UAV only recovers the data collected by

the fixed stations. In [18], the authors propose the de-

sign of a lightweight laser-based sensor for measuring

trace gas chemical species using UAVs, analyzing how

the optical sensor captures the air pollution samples.

More recently, Illingworth et al. [16] used a large-sized

aircraft equipped with ozone sensors to cover a wide

area in an automated manner, showing how the UAS

improves the sampling granularity.

Analyzing works related to mobility models for UAS

mobility control that could be used for air pollution mo-

nitoring tasks, the majority of these solutions mainly

involve, swarm creation protocols and communication

interaction to synchronize their movements. An exam-

ple of such work is [31], where authors propose a mo-

bility model for a group of nodes following ”Virtual

Tracks” (highways, valleys, etc.) operating in a prede-

fined Switch Station mode, through which groups of

nodes can split or merge with others. Furthermore, re-

garding solely UAV control issues, no work focuses on

the coverage improvement for a certain area taking po-

llution levels into account.

For instance, in [9], the authors propose a mobility

model based on the Enhanced Gauss-Markov model to
eliminate or limit the sudden stops and sharp turns that

the random waypoint mobility model typically creates.

Also, in [30], the authors present a semi-random cir-

cular movement (SRCM) based model. They analyze

the coverage and network connectivity by comparing

results against the random waypoint mobility model.

The authors of [22] compare their models against

the random-waypoint-based, the Markov-based, and the

Brownian-motion-based algorithms to cover a specific

area, analyzing the influence of collision avoidance sys-

tems in the time required to achieve a full area coverage.

The work in [19] compares the results of using the Ran-

dom Mobility Model and the Distributed Pheromone

Repel Mobility Model as direction decision criteria (se-

lection of next waypoint) in UAV environments. Finally,

the authors in [29] propose an algorithm to cover a spe-

cific area; it selects a point in space along with the

line perpendicular to its heading direction, and then it

drives the UAV based on geometric considerations.
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Fig. 1: Example of a discretized area, calculating the tiles and their center to restrict movements.

Focusing solely on existing proposals addressing mo-

bility models, we can find works such as [10], where au-

thors propose the Paparazzi Mobility Model (PPRZM)

by defining five types of movements: Stay-On, Way-

Point, Eight, Scan, and Oval. They follow a state ma-

chine with different probabilities to change between states.

There are even studies following animal-based naviga-

tion patterns. An example of such work is [8], where

authors investigate the UAV placement and navigation

strategies, with the end goal of improving network con-

nectivity, using local flocking rules that aerial living be-

ings, like birds and insects, typically follow. However,

none of these works tries to optimize the monitoring

process or the path followed by the UAV.

Since in the literature we could not find solutions

where multi-rotor UAVs are used for air pollution moni-

toring in a specific area, we proposed PdUC (Pollution-

driven UAV Control) [5] [6] to automatically track po-

llution sources in a target area, and to dynamically pro-

vide a pollution map of the surrounding region; as an

improvement upon this previous work, in this paper

we propose the PdUC-D (Discretized PdUC) protocol,

which is described and validated in the next sections.

3 PdUC-D: Discretized Pollution-driven UAV

Control protocol

Pollution-driven UAV Control (PdUC) is composed of

two phases: (i) A Search phase, in which the UAV searches

for a global maximum pollution value, and (ii) an Ex-

plore phase, where the UAV explores the surrounding

area, following a spiral movement, until it covers the

whole area. Such phase can end prematurely if the allo-

wed flight time ends (e.g., battery is depleted), or if it

finds another maximum value, in which case it returns

to the Search phase.

Despite PdUC [6] being more effective than other

mobility patterns (Spiral and Billiard) in terms of po-

lluted areas monitoring times, finding the most highly

polluted locations earlier, it still spends too much time

focusing on small variations. Tracking these variations,

that can also be produced by sensor errors, is not too
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Fig. 2: Change of the PdUC to PdUC-D algorithm.

efficient in obtaining the global pollution map. On the

contrary, the Spiral and Billiard models present sim-

pler mobility patterns that, by themselves, avoid such

redundant sampling. So, in this work, the main idea

is to optimize PdUC by discretizing the whole target

area, creating a grid composed of small tiles. Notice

that discretization is one of the most efficient mathe-

matical approaches to optimize a system by transform-

ing a continuous domain into its discrete counterpart

[14], as shown in Figure 1. Notice that the UAV can

only move to the center of each tile, and each tile can

only be monitored once, thereby reducing redundant

sampling, which in turn reduces the full coverage time

significantly.

PdUC-D, just like PdUC, combines a chemotaxis

meta-heuristic with an adaptive spiral, the difference

being that both these mechanisms are adapted to ope-

rate with discretized space environments. Therefore,

PdUC-D starts by first searching the tile with the high-

est pollution level (Search phase). Next, it covers the

surrounding area by following an adaptive spiral until

all the area is covered, or until it can find another tile

with a higher pollution value (Explore phase), thereby

switching back to the Search phase.

We modify the PdUC phases by adapting its func-

tionality to a discretized space, as shown in Figure 2.

So, the first step involves splitting the target area into

small tiles, and calculating the center positions of these
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tiles (actual locations where monitoring takes place).

Next, the Search and the Explore phases are modified

to operate within the obtained discretized space.

The Search phase is based on a chemotaxis mobility

pattern, and an adaptation of the Particle Swarm Op-

timization (PSO) [17] algorithm. Figure 3 graphically

shows the modification introduced for the chemotaxis

and the PSO algorithm. Regarding chemotaxis move-

ment, a particle moving in a Euclidean plane between

two tiles, and following a specific direction, moves to-

wards the next tile in the same direction (Run move)

if the pollution variation is increasing along it. Other-

wise, if the pollution variation is decreasing, it moves

around the tile with higher previously monitored po-

llution values, assigning a higher priority to the nearer

tiles (Tumble move); namely, it chooses the nearest tile.

The procedure of moving around the maximum mo-

nitored value is an adaptation of the PSO algorithm,

which takes the maximum value into account. If all tiles

around the one with the highest detected value have al-

ready been monitored, the algorithm switches to the

Explore phase, just like PdUC does.

The Explore phase is based on an adaptive spiral

movement pattern modified to accommodate a discretized

space environment, as shown in figure 4. There are three

main movement patterns involved:

– First, starting at the tile with the highest monito-

red pollution value, it follows a square spiral (see

Figure 4 top). For each round in the spiral, it skips

an increasing number of tiles. Namely, in the first

round it has a radius of 3 tiles and skips 1 tile; in

the second round, it has a radius of 5 tiles and skips

2 tiles, and so on.

– Next, to avoid excessively long steps, if the spiral

radius reaches a scenario border or previously mo-

nitored areas, the direction of the spiral is changed

alternating the movement direction to rotate in the

opposite direction, as shown Figure 4 (middle).

– Finally, for controlling previously monitored areas

(see Figure 4 bottom), we consider as an already

monitored area the whole square created at the end

of each spiral round.

With regard to movement control, and to avoid re-

visiting previously monitored areas, we use two matri-

ces: Pm,n and Bm,n, to store the sampled values and the

monitored tiles, respectively. Notice that n ×m repre-

sents the size of the grid (rows and columns respec-

tively).

Pm,n =


p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n

...
...

. . .
...

pm,1 pm,2 · · · pm,n



Bm,n =


b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n

...
...

. . .
...

bm,1 bm,2 · · · bm,n


First, both matrices are initialized, P with NaN

(null), and B with 0’s. In the Search phase, when moni-

toring a tile ti,j (i and j are the row and the column po-

sition, respectively), the obtained pollution values are

stored in Pi,j , and Bi,j are set to 1. When monitoring

a tile either in the Explore phase or the Search phase,

both P and B values are stored. However, when com-

pleting a spiral round, all tiles inside the square are set

as visited in B, thereby avoiding to monitor the same

area again in the future.

4 Validation

We have implemented PdUC-D in the R programming

language [25], and we have a wide set of simulations

with different configurations. Figure 5 shows a screen-

shot of the simulation script output, which includes

four images: the base pollution map created based on a

Kriging-based interpolation, the pollution map created

when introducing a random sampling error of 10 ppb

(parts-per-billion) for each point, the sampled data (P

matrix values), and the areas marked as already moni-

tored (B matrix values).

To prepare a suitable data environment, we have

created various pollution distribution maps represen-

ting ozone levels to be used as inputs. These pollution

maps were also generated using the R programming

language, following Kriging-based interpolation [27]. In

particular, a Gaussian distribution is used to adjust the

parameters coming from random data sources of ozone

concentration. The actual values range between 40 and

180 ppb, which are representative of different realistic

conditions according to the Air Quality Index (AQI)

[2], thereby providing a realistic ozone distribution.

Similarly to PdUC, we are proposing the PdUC-D

algorithm for rural environments, and so the simula-

tion area defined is 4× 4 Km. Since samples are taken

using off-the-shelf sensors, which are not precise, we in-

troduce a random sampling error of ±10ppb based on

real tests using the MQ131 (Ozone) sensor [21]. In our
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simulation, we set the maximum UAV speed to 20 m/s,

a value achievable by many commercial UAVs. The step

distance defined between consecutive samples is 100 m

since it offers a good trade-off between granularity and

flight time. Once a new sampling location is reached,

the monitoring time per sample is defined to be 4 se-

conds.

Obtained data using PdUC-D was compared against

previous results obtained using PdUC [6]. Figure 6 shows

an example of the path followed by an UAV using (a)

PdUC, and (b) PdUC-D as a guidance system. As ex-

pected, both algorithms have, in general, a similar be-

havior: the UAV starts a search process throughout the

scenario until it locates a position with the highest de-

gree of pollution (local maximum). Afterward, it fo-

llows a spiral pattern to gain awareness of the surroun-

ding gradients. If, while following the spiral-shaped scan

path, it finds a higher pollution value, the algorithm

again switches to the Search phase. Finally, when the

entire target area has been sampled, the algorithm fini-

shes. When adopting PdUC-D, though, we can clearly

see that it achieves better performance in terms of re-

ducing the time to cover the whole area and the moni-

toring error, while avoiding redundant sampling.

To analyze PdUC-D, we used the same simulation

parameters as the ones adopted for validating PdUC

[5]. Table 1 summarizes the parameters used in the si-

mulations.

First of all, we analyze the impact of varying the tile

size between 50[m] and 400[m]. Our goal is to determine

which is the best size considering our restrictions.

Figure 7 shows the Cumulative Distribution Func-

tion (CDF) relative to the flight time required to cover

the whole area for four tile sizes (50[m], 100[m], 200[m],
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Fig. 5: Screenshots of the different elements involved in the R implementation of PdUC-D: (i) initial pollution map

(top-left); (ii) pollution map after introducing sampling errors (top-right); (iii) sampled data/P Matrix (bottom-

left) and (iv) area considered as already monitored/B matrix (bottom-right). The values on both axes correspond

to the ratio with respect to the total area (0 to 1).

Table 1: Simulation parameters.

Parameter Value

Area 4x4 Km
Pollution range [40 - 180] ppb
Sampling error 10 ppb
Max. speed 20 m/s
Sampling time 4 seconds
Step distance 50[m], 100[m], 200[m], and 400[m]

and 400[m]). It can be seen that, as expected, the smaller

the tile size, the higher the coverage time, reaching va-

lues that range from 2400 to 4600 seconds for a tile

size of 50[m], while for tiles size of 200[m] and 400[m]

these coverage times are in the range from 800 to 1500

seconds. For a tile size of 100[m], the coverage time

is between 1500 and 2400 seconds, which represents 40

minutes of flight time. Such flight time is realistic, being

achieved by some of the currently available commercial

UAVs.

To gain further insight into the goodness of the pro-

posed algorithm, we also analyze the relative error for

all cases at different time instants (600, 1200, 1800,

2400, 3000, and 6000 seconds); this error is defined by

equation 1:
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(a) PdUC (b) PdUC-D

Fig. 6: Example of a path followed by an UAV guided by the PdUC and PdUC-D protocols.
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et =

∑m
i=1

∑n
j=1|

sx,y,t−bx,y

4b |
m · n

(1)

In the equation, et is the relative error at time t,

sx,y,t is the recreated pollution value at position (x, y)

using the samples taken during simulation until time t,

bx,y is the reference pollution value at position (x, y),

and n and m are the dimensions of the target area,

respectively.

Figure 8 shows the temporal evolution of the rela-

tive error for different tile sizes (50[m], 100[m], 200[m],

and 400[m]), as well as the reference values. We can
observe that, even though at the end a smaller relative

error (4.8 %) is achieved for a tile size of 50[m], the

time to reach this value is too long (more than 4000 se-

conds). On the other hand, in the 200 and 400[m] cases,

they reach their minimum relative error faster, but the

error values can be considered too high (almost 10 %)

when compared with the other cases. In the 100[m] case,

although the final relative error is only a bit higher (al-

most 6 %) than the 50[m] case (4.8 %), the time to

reach this error is still manageable. For these reasons,

we consider that the tile size offering the best trade-off

between flight time and accuracy is 100 meters.

To further emphasize on the benefits of using PdUC-

D, we now proceed to compare it against the PdUC,

Spiral, and Billiard [5] strategies. We use the same si-

mulation parameters as defined above, and we adopt

the optimum calculated tile size (100 meters).

Figure 9 shows the Cumulative Distribution Func-

tion relative to the time required to cover the whole area
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for PdUC, Billiard, Spiral, and PdUC-D mobility mod-

els. It can be seen that the PdUC-D model spends much

less time (1500-3000 seconds) than the PdUC model

(1800-4300 seconds) to achieve the same goal. More-

over, it spends less time that the Spiral approach in

nearly all cases, and it clearly outperforms the Billiard

mobility pattern.
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PdUC-D, Billiard and Spiral mobility models at diffe-

rent times.

Figure 10 shows the temporal evolution of the rela-

tive error between the model-based predictions (using

PdUC, Spiral, Billiard, and PdUC-D) and the reference

values. We can observe that all mobility models roughly

exhibit the same behavior: they start with a high rela-

tive error, which is foreseeable since we are using Krig-

ing interpolation to recreate the pollution distribution,

and it gradually decreases towards the mean error value

as the number of samples increases. Then, as more and

more samples become available, the spatial interpola-

tion process quickly becomes more precise. Moreover,

we can observe that, even in this analysis, PdUC-D still

obtains better results than the other three approaches

by significantly reducing the relative error at different

times.

5 Conclusions and future work

Air pollution monitoring in rural areas is a relevant

issue that typically finds many obstacles due to the lack

of monitoring infrastructures, and due to the comple-

xity of having mobile ground sensors in many cases. In
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this context, UAVs equipped with air quality sensors

emerge as a novel and powerful alternative.

In this paper we follow this research line by descri-

bing Discretized Pollution-driven UAV Control (PdUC-

D), an algorithm for air pollution monitoring tasks that

improves upon our previous proposal (PdUC). In par-

ticular, it operates as an UAV guidance system to move

towards the most polluted areas, mapping pollution

maps in the surrounding area afterward. PdUC-D is

based on the Chemotaxis and Adaptive Spiral princi-

ples, but its functionality was modified to work in a

space-discretized area, thereby making it much more

optimal in terms of coverage time and reducing predic-

tion errors.

We have analyzed the optimum tile size taking into

account our flight time restrictions, and compared four

tile sizes (50[m], 100[m], 200[m], and 400[m]), finding

that a tile sized 100×100 m is the best option.

We have compared PdUC-D against PdUC, as well

as against standard mobility models (Billiard and Spi-

ral), by creating several simulations in an R environ-

ment, and comparing these results with the previously

obtained ones. Experimental results show that PdUC-

D outperforms PdUC in all aspects, reducing the time

to cover the same area, and reducing the monitoring

error as well.

As the next step of our research, we plan to translate

our algorithm to a real UAV, and test it in a real-world

testbed.
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7. André, M.: The artemis european driving cycles for mea-
suring car pollutant emissions. Science of the total Envi-
ronment 334, 73–84 (2004)

8. Basu, P., Redi, J., Shurbanov, V.: Coordinated flock-
ing of uavs for improved connectivity of mobile ground
nodes. In: Military Communications Conference, 2004.
MILCOM 2004. 2004 IEEE, vol. 3, pp. 1628–1634. IEEE
(2004)

9. Biomo, J.D.M.M., Kunz, T., St-Hilaire, M.: An en-
hanced gauss-markov mobility model for simulations of
unmanned aerial ad hoc networks. In: Wireless and Mo-
bile Networking Conference (WMNC), 2014 7th IFIP, pp.
1–8. IEEE (2014)

10. Bouachir, O., Abrassart, A., Garcia, F., Larrieu, N.: A
mobility model for uav ad hoc network. In: Unmanned
Aircraft Systems (ICUAS), 2014 International Confer-
ence on, pp. 383–388. IEEE (2014)

11. Cox, T.H., Nagy, C.J., Skoog, M.A., Somers, I.A.,
Warner, R.: Civil uav capability assessment

12. Eisenman, S.B., Miluzzo, E., Lane, N.D., Peterson, R.A.,
Ahn, G.S., Campbell, A.T.: Bikenet: A mobile sensing
system for cyclist experience mapping. ACM Transac-
tions on Sensor Networks (TOSN) 6(1), 6 (2009)

13. Erman, A.T., van Hoesel, L., Havinga, P., Wu, J.: En-
abling mobility in heterogeneous wireless sensor networks
cooperating with uavs for mission-critical management.
IEEE Wireless Communications 15(6), 38–46 (2008)

14. Fayyad, U., Irani, K.: Multi-interval discretization of
continuous-valued attributes for classification learning
(1993)

15. Hugenholtz, C.H., Moorman, B.J., Riddell, K., White-
head, K.: Small unmanned aircraft systems for remote
sensing and earth science research. Eos, Transactions
American Geophysical Union 93(25), 236–236 (2012)

16. Illingworth, S., Allen, G., Percival, C., Hollingsworth, P.,
Gallagher, M., Ricketts, H., Hayes, H., adosz, P., Craw-
ley, D., Roberts, G.: Measurement of boundary layer
ozone concentrations on-board a Skywalker unmanned
aerial vehicle. Atmospheric Science Letters 15(4), 252–
258 (2014)

17. Kennedy, J.: Particle swarm optimization. In: Encyclo-
pedia of machine learning, pp. 760–766. Springer (2011)

18. Khan, A., Schaefer, D., Tao, L., Miller, D.J., Sun, K.,
Zondlo, M.A., Harrison, W.A., Roscoe, B., Lary, D.J.:
Low power greenhouse gas sensors for unmanned aerial
vehicles. Remote Sensing 4(5), 1355–1368 (2012)

19. Kuiper, E., Nadjm-Tehrani, S.: Mobility models for uav
group reconnaissance applications. In: 2006 Interna-
tional Conference on Wireless and Mobile Communica-
tions (ICWMC’06), pp. 33–33. IEEE (2006)

20. McFrederick, Q., Kathilankal, J., Fuentes, J.: Air pollu-
tion modifies floral scent trails. Atmospheric Environ-
ment 42(10), 2336 – 2348 (2008)



12 Oscar Alvear1,2 et al.

21. MQ131 Ozone Sensor: Datasheet:
http://www.sensorsportal.com/ downloads/ mq131.pdf
(2017)

22. Orfanus, D., de Freitas, E.P.: Comparison of uav-based
reconnaissance systems performance using realistic mo-
bility models. In: 2014 6th International Congress on
Ultra Modern Telecommunications and Control Systems
and Workshops (ICUMT), pp. 248–253. IEEE (2014)

23. Pajares, G.: Overview and current status of remote
sensing applications based on unmanned aerial vehicles
(uavs). Photogrammetric Engineering & Remote Sensing
81(4), 281–329 (2015)

24. Pujadas, M., Plaza, J., Teres, J., Artıñano, B., Millan,
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