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Abstract: Several authors have designed variants of Newton’s method for solving nonlinear equations by
using different means. This technique involves a symmetry in the corresponding fixed-point operator. In
this paper, some known results about mean-based variants of Newton’s method (MBN) are re-analyzed
from the point of view of convex combinations. A new test is developed to study the order of convergence
of general MBN. Furthermore, a generalization of the Lehmer mean is proposed and discussed. Numerical
tests are provided to support the theoretical results obtained and to compare the different methods
employed. Some dynamical planes of the analyzed methods on several equations are presented, revealing
the great difference between the MBN when it comes to determining the set of starting points that ensure
convergence and observing their symmetry in the complex plane.
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1. Introduction

We consider the problem of finding a simple zero α of a function f : I ⊂ R→ R, defined in an open
interval I. This zero can be determined as a fixed point of some function g by means of the one-point
iteration method:

xn+1 = g(xn), n = 0, 1, . . . , (1)

where x0 is the starting point. The most widely-used example of these kinds of methods is the classical
Newton’s method given by:

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, . . . . (2)

It is well known that it converges quadratically to simple zeros and linearly to multiple zeros. In the
literature, many modifications of Newton’s scheme have been published in order to improve its order
of convergence and stability. Interesting overviews about this area of research can be found in [1–3].
The works of Weerakoon and Fernando [4] and, later, Özban [5] have inspired a whole set of variants of
Newton’s method, whose main characteristic is the use of different means in the iterative expression.

It is known that if a sequence { xn}n≥0 tends to a limit α in such a way that there exist a constant
C > 0 and a positive integer n0 such that:

|xn+1 − α| ≤ C|xn − α|p, ∀n ≥ n0, (3)
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for p ≥ 1, then p is called the order of convergence of the sequence and C is known as the asymptotic error
constant. For p = 1, constant C satisfies 0 < C ≤ 1.

If we denote by en = xn − α the exact error of the nth iterate, then the relation:

en+1 = Cep
n +O(e

p+1
n ) (4)

is called the error equation for the method and p is the order of convergence.
Let us suppose that f : I ⊆ R→ R is a sufficiently-differentiable function and α is a simple zero of f .

It is plain that:

f (x) = f (xn) +
∫ x

xn
f ′(t) dt. (5)

Weerakoon and Fernando in [4] approximated the definite integral (5) by using the trapezoidal rule
and taking x = α, getting:

0 ≈ f (xn) + 1/2(α− xn)( f ′(xn) + f ′(α)), (6)

and therefore, a new approximation xn+1 to α is given by:

xn+1 = xn −
f (xn)

( f ′(xn) + f ′(zn))/2
, zn = xn −

f (xn)

f ′(xn)
, n = 0, 1, . . . . (7)

Thus, this variant of Newton’s scheme can be considered to be obtained by replacing the denominator
f ′(xn) of Newton’s method (2) by the arithmetic mean of f ′(xn) and f ′(zn). Therefore, it is known as the
arithmetic mean Newton method (AN).

In a similar way, the arithmetic mean can be replaced by other means. In particular, the harmonic
mean MHa(x, y) = 2xy/(x + y), where x and y are two nonnegative real numbers, from a different point
of view:

MHa(x, y) =
2xy

x + y
= x

y
x + y︸ ︷︷ ︸

θ

+y
x

x + y︸ ︷︷ ︸
1−θ

, (8)

where since 0 ≤ y ≤ x + y, then 0 ≤ θ ≤ 1, i.e., the harmonic mean can be seen as a convex combination
between x and y, where every element is given the relevance of the other one in the sum. Now, let us
switch the roles of x and y; we get:

x
x

x + y
+ y

y
x + y

=
x2 + y2

x + y
= MCh(x, y), (9)

that is the contraharmonic mean between x and y.
Özban in [5] used the harmonic mean instead of the arithmetic one, which led to a new method:

xn+1 = xn −
f (xn)( f ′(xn) + f ′(zn))

2 f ′(xn) f ′(zn)
, n = 0, 1, . . . , (10)

being zn a Newton step, which he called the harmonic mean Newton method (HN).
Ababneh in [6] designed an iterative method associated with this mean, called the contraharmonic

mean Newton method (CHN), whose iterative expression is:

xn+1 = xn −
( f ′(xn) + f ′(zn)) f (xn)

f ′(xn)2 + f ′(zn)2 , (11)
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with third-order of convergence for simple roots of f (x) = 0, as well as the methods proposed by
Weerakoon and Fernando [4] and Özban [5].

This idea has been used by different authors for designing iterative methods applying other means,
generating symmetric fixed point operators. For example, Xiaojian in [7] employed the generalized mean
of order m ∈ R between two values x and y defined as:

MG(x, y) =
( xm + ym

2

)1/m
, (12)

to construct a third-order iterative method for solving nonlinear equations. Furthermore Singh et al.
in [8] presented a third-order iterative scheme by using the Heronian mean between two values x and y,
defined as:

MHe(x, y) =
1
3
(x +

√
xy + y). (13)

Finally, Verma in [9], following the same procedure, designed a third-order iterative method by using the
centroidal mean between two values x and y, defined as:

MCe(x, y) =
2(x2 + xy + y2)

3(x + y)
. (14)

In this paper, we check that all these means are functional convex combinations means and develop
a simple test to prove easily the third-order of the corresponding iterative methods, mentioned before.
Moreover, we introduce a new method based on the Lehmer mean of order m ∈ R, defined as:

MLm(x, y) =
xm + ym

xm−1 + ym−1 (15)

and propose a generalization that also satisfies the previous test. Finally, all these schemes are numerically
tested, and their dependence on initial estimations is studied by means of their basins of attraction. These
basins are shown to be clearly symmetric.

The rest of the paper is organized as follows: Section 2 is devoted to designing a test that allows us to
characterize the third-order convergence of the iterative method defined by a mean. This characterization
is used in Section 3 for giving an alternative proof of the convergence of mean-based variants of Newton’s
(MBN) methods, including some new ones. In Section 4, we generalize the previous methods by using the
concept of σ-means. Section 5 is devoted to numerical results and the use of basins of attraction in order to
analyze the dependence of the iterative methods on the initial estimations used. With some conclusions,
the manuscript is finished.

2. Convex Combination

In a similar way as has been stated in the Introduction for the arithmetic, harmonic,
and contraharmonic means, the rest of the mentioned means can be also regarded as convex combinations.
This is not coincidental: one of the most interesting properties that a mean satisfies is the averaging
property:

min(x, y) ≤ M(x, y) ≤ max(x, y), (16)

where M(x, y) is any mean function of x and y nonnegative. This implies that every mean that satisfies
this property is a certain convex combination among its terms.
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Indeed, there exists a unique θ(x, y)) ∈ [0, 1] such that:

θ(x, y) =

{M(x,y)−y
x−y if x 6= y

0 if x = y
. (17)

This approach suggests that it is possible to generalize every mean-based variant of Newton’s
method (MBN), by studying their convex combination counterparts. As a matter of fact, every mean-based
variant of Newton’s method can be rewritten as:

xn+1 = xn −
f (xn)

θ f ′(xn) + (1− θ) f ′(zn)
, (18)

where θ = θ( f ′(xn), f ′(zn)). This is a particular case of a family of iterative schemes constructed in [10].
We are interested in studying its order of convergence as a function of θ. Thus, we need to compute

the approximated Taylor expansion of the convex combination at the denominator and then its inverse:

θ f ′(xn) + (1− θ) f ′(zn) = θ f ′(α)[1 + 2c2en + 3c3e2
n + 4c4e3

n +O(e4
n)]+

+ (1− θ) f ′(α)[1 + 2c2e2
n + 4c2(c3 − c2

2)e
3
n +O(e4

n)]

= f ′(α)[θ + 2θc2en + 3θc3e2
n + 4θc4e3

n +O(e4
n)]+

+ f ′(α)[1 + 2c2
2e2

n + 4c2(c3 − c2
2)e

3
n +O(e4

n)]+

− f ′(α)[θ + 2θc2
2e2

n + 4θc2(c3 − c2
2)e

3
n +O(e4

n)]

= f ′(α)[1 + 2θc2en + (2c2
2 + 3θc3 − 2θc2

2 + 3θc3)e2
n]+

+ f ′(α)[(4θc4 + (1− θ)4c2(c3 − c2
2))e

3
n +O(e4

n)];

(19)

where cj =
1
j!

f (j)(α)

f ′(α)
, j = 1, 2, . . .. Then, its inverse can be expressed as:

f ′(α)−1
(

1− [2θc2en + (2c2
2 + 3θc3 − 2θc2

2 + 3θc3)e2
n + (4θc4 + (1− θ)4c2(c3 − c2

2))e
3
n +O(e4

n)]+

+ [2θc2en + (2c2
2 + 3θc3 − 2θc2

2 + 3θc3)e2
n + (4θc4 + (1− θ)4c2(c3 − c2

2))e
3
n +O(e4

n)]
2 − · · ·

)
= f ′(α)−1[1− 2θc2en + (2θc2

2 − 2c2
2 + 4θ2c2

2 − 3θc3)e2
n − (4θc4 + (1− θ)4c2(c3 − c2

2))e
3
n +O(e4

n)].

(20)

Now,
f (xn)

θ f ′(xn) + (1− θ) f ′(zn)
= en + c2(1− 2θ)e2

n + (4θ2c2
2 − 2c2

2 + c3 − 3θc3)e3
n +O(e4

n), (21)

and by replacing it in (18), it leads to the MBN error equation as a function of θ:

en+1 = −c2(1− 2θ)e2
n − (4θ2c2

2 − 2c2
2 + c3 − 3θc3)e3

n +O(e4
n) =: Φ(θ). (22)

Equation (22) can be used to re-discover the results of convergence: for example, for the
contraharmonic mean, we have:

θ( f ′(xn), f ′(zn)) =
f ′(xn)

f ′(xn) + f ′(zn)
, (23)

where:
f ′(xn) + f ′(zn) = 2 f ′(α)[1 + c2en(c2

2 − 3/2c3)e2
n + 2(c2c3 − c3

2 + c4)e3
n +O(e4

n)], (24)
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so that:

1
f ′(xn) + f ′(zn)

= (2 f ′(α))−1[1− c2en − 3/2c3e2
n + 4c3

2e3
n − 2c4e3

n + c2c3e3
n +O(e4

n)]

= (2 f ′(α))−1[1− c2en − 3/2c3e2
n + (4c3

2 − 2c4 + c2c3)e3
n +O(e4

n)].
(25)

Thus, we can obtain the θ associated with the contraharmonic mean:

θ( f ′(xn), f ′(zn)) = [1/2 + c2en + 3/2c3e2
n + 2c4e3

n +O(e4
n)]·

· [1− c2en − 3/2c3e2
n + (4c3

2 + c2c3 − 2c4)e3
n +O(e4

n)]

= 1/2 + 1/2c2en − c2
2e2

n + 3/4c3e2
n + 2c3

2e3
n + c4e3

n − 5/2c2c3e3
n +O(e4

n)

= 1/2 + 1/2c2en + (3/4c3 − c2
2)e

2
n + (2c3

2 + c4 − 5/2c2c3)e3
n +O(e4

n).

(26)

Finally, by replacing the previous expression in (22):

en+1 = (1/2c3 + 2c2
2)e

3
n +O(e4

n), (27)

and we obtain again that the convergence for the contraharmonic mean Newton method is cubic.
Regarding the harmonic mean, it is straightforward that it is a functional convex combination, with:

θ( f ′(xn), f ′(zn)) = 1− f ′(xn)

f ′(xn) + f ′(zn)

= 1/2 + 1/2c2en + (c2
2 − 3/4c3)e2

n + (5/2c2c3 − 2c3
2 − c4)e3

n +O(e4
n).

(28)

Replacing this expression in (22), we find the cubic convergence of the harmonic mean Newton method,

en+1 = 1/2c3e3
n +O(e4

n). (29)

In both cases, the independent term of θ( f ′(xn), f ′(zn)) was 1/2; it was not a coincidence, but an instance
of the following more general result.

Theorem 1. Let θ = θ( f ′(xn), f ′(zn)) be associated with the mean-based variant of Newton’s method (MBN):

xn+1 = xn −
f (xn)

M( f ′(xn), f ′(zn))
, zn = xn −

f (xn)

f ′(xn)
, (30)

where M is a mean function of the variables f ′(xn) and f ′(zn). Then, MBN converges, at least, cubically if and only
if the estimate:

θ = 1/2 +O(en). (31)

holds.

Proof. We replace θ = 1/2 +O(en) in the MBN error Equation (22), obtaining:

en+1 = (4θ2c2
2 − 2c2

2 + c3 − 3θc3)e3
n +O(e4

n). (32)

Now, some considerations follow.
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Remark 1. Generally speaking,

θ = a0 + a1en + a2e2
n + a3e3

n +O(e4
n), (33)

where ai are real numbers. If we put (33) in (22), we have:

en+1 = −c2(1− 2a0)e2
n − (4a2

0c2
2 − 3a0c3 − 2a1c2 − 2c2

2 + c3)e3
n +O(e4

n); (34)

it follows that, in order to attain cubic convergence, the coefficient of e2
n must bezero. Therefore, a0(u) = 1/2. On

the other hand, to achieve a higher order (i.e., at least four), we need to solve the following system:{
1− 2a0 = 0

4a2
0c2

2 − 3a0c3 − 2a1c2 − 2c2
2 + c3 = 0

. (35)

This gives us that a0(u) = 1/2, a1(u) = −1/4(2c2
2 + c3)/(c2) assure at least a fourth-order convergence of the

method. However, none of the MBN methods under analysis satisfy these conditions simultaneously.

Remark 2. The only convex combination involving a constant θ that converges cubically is θ = 1/2, i.e., the
arithmetic mean.

The most useful aspect of Theorem 1 is synthesized in the following corollary, which we call
the “θ-test”.

Corollary 1 (θ-test). With the same hypothesis of Theorem 1, an MBN converges at least cubically if and only if the
Taylor expansion of the mean holds:

M( f ′(xn), f ′(zn)) = f ′(α)
[

1 +
1
2

c2en

]
+O(e2

n). (36)

Let us notice that Corollary 1 provides a test to analyze the convergence of an MBN without having
to find out the inherent θ, therefore sensibly reducing the overall complexity of the analysis.

Re-Proving Known Results for MBN

In this section, we apply Corollary 1 to prove the cubic convergence of known MBN via a convex
combination approach.

(i) Arithmetic mean:

MA( f ′(xn), f ′(zn)) =
f ′(xn) + f ′(zn)

2

=
1
2
(

f ′(α)[1 + 2c2 en +O(e2
n)] + f ′(α)[1 +O(e2

n)]
)

= f ′(α)[1 + c2 en +O(e2
n)].

(37)

(ii) Heronian mean: In this case, the associated θ-test is:

MHe f ′(xn), f ′(zn) =
1
3
(

f ′(α)[1 + 2c2en +O(e2
n)] + f ′(α)[1 + c2en +O(e2

n)] + f ′(α)[1 +O(e2
n)]
)

=
f ′(α)

3
[3 + 2c2en + c2en +O(e2

n)].
(38)
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(iii) Generalized mean:

MG( f ′(xn), f ′(zn)) =
( f ′(xn)m + f ′(zn)m)

2

)1/m

=
( f ′(α)m[1 + 2c2 en +O(e2

n)]
m + f ′(α)m[1 +O(e2

n)]
m

2

)1/m

= f ′(α)
(
[1 + c2 en +O(e2

n)]
m)1/m

= f ′(α)[1 + c2 en +O(e2
n)].

(39)

(iv) Centroidal mean:

MCe( f ′(xn), f ′(zn)) =
2( f ′(xn)2 + f ′(xn) f ′(zn) + f ′(zn))

3( f ′(xn) + f ′(zn))

=
2( f ′(α)2[1 + 2c2en +O(e2

n)] + f ′(α)2[2 + 4c2en +O(e2
n)])

3( f ′(α)[2 + 2c2en +O(e2
n)])

=
2( f ′(α)2[3 + 6c2en +O(e2

n)])

3( f ′(α)[2 + 2c2en +O(e2
n)])

= f ′(α)[1 + 2c2en +O(e2
n)][1 + c2en +O(e2

n)]

= f ′(α)[1 + c2en +O(e2
n)].

(40)

3. New MBN by Using the Lehmer Mean and Its Generalization

The iterative expression of the scheme based on the Lehmer mean of order m ∈ R is:

xn+1 = xn −
f (xn)

MLm( f ′(xn), f ′(zn))
,

where zn = xn − f (xn)
f ′(xn)

and:

MLm( f ′(xn), f ′(zn)) =
f ′(xn)m + f ′(zn)m

f ′(xn)m−1 + f ′(zn)m−1 . (41)

Indeed, there are suitable values of parameter p such that the associated Lehmer mean equals the
arithmetic one and the geometric one, but also the harmonic and the contraharmonic ones. In what follows,
we will find it again, this time in a more general context.

By analyzing the associated θ-test, we conclude that the iterative scheme designed with this mean has
order of convergence three.

MLm ( f ′(xn), f ′(zn)) =
f ′(xn)m + f ′(zn)m

f ′(xn)m−1 + f ′(zn)m−1

=
f ′(α)m[1 + 2c2 en +O(e2

n)]
m + f ′(α)m[1 +O(e2

n)]
m

f ′(α)m−1[1 + 2c2 en +O(e2
n)]

m−1 + f ′(α)m−1[1 +O(e2
n)]

m−1

= f ′(α)[1 + mc2 en +O(e2
n)] · [1−

(
(m− 1)c2 en +O(e2

n)
)
+
(
(m− 1)c2 en +O(e2

n)
)2

+ . . .]

= f ′(α)[1 + mc2 en +O(e2
n)] · [1− (m− 1)c2 en +O(e2

n)]

= f ′(α)[1 + c2 en +O(e2
n)].

(42)
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σ-Means

Now, we propose a new family of means of n variables, starting again from convex combinations.
The core idea in this work is that, in the end, two distinct means only differ in their corresponding weights
θ and 1− θ. In particular, we can regard the harmonic mean as an “opposite-weighted”mean, while the
contraharmonic one is a “self-weighted”mean.

This behavior can be generalized to n variables:

MCH(x1, . . . , xn) =
∑n

i=1 x2
i

∑n
i=1 xi

(43)

is the contraharmonic mean among n numbers. Equation (43) is just a particular case of what we
call σ-mean.

Definition 1 (σ-mean). Given x = (x1, . . . , xn) ∈ Rn a vector of n real numbers and a bijective map
σ : {1, . . . , n} → {1, . . . , n} (i.e., σ(x) is a permutation of x1, . . . , xn), we call the σ-mean of order m ∈ R
the real number given by:

Mσ(x1, . . . , xn) :=

n

∑
i=1

xi · xm
σ(i)

n

∑
j=1

xm
j

. (44)

Indeed, it is easy to see that, in an σ-mean, the weight assigned to each node xi is:

xm
σ(i)

n

∑
j=1

xm
σ(j)

=
xm

σ(i)
n

∑
j=1

xm
j

∈ [0, 1], (45)

where the equality holds because σ is a permutation of the indices. We are, therefore, still dealing with a
convex combination, which implies that Definition 1 is well posed.

We remark that if we take σ = 1, i.e., the identical permutation, in (44), we find the Lehmer mean of
order m. Actually, the Lehmer mean is a very special case of the σ-mean, as the following result proves.

Proposition 1. Given m ∈ R, the Lehmer mean of order m is the maximum σ-mean of order m.

Proof. We recall the rearrangement inequality:

xny1 + · · ·+ x1yn ≤ xσ(1)y1 + · · ·+ xσ(n)yn ≤ x1y1 + · · ·+ xnyn, (46)

which holds for every choice of x1, . . . , xn and y1, . . . , yn regardless of the signs, assuming that both xi and
yj are sorted in increasing order. In particular, x1 < x2 < · · · < xn and y1 < y2 < · · · < yn imply that the
upper bound is attained only for the identical permutation.

Then, to prove the result, it is enough to replace every yi with the corresponding weight defined
in (45).

The Lehmer mean and σ-mean are deeply related: if n = 2, as is the case of MBN, there are only two
possible permutations, the identical one and the one that swaps one and two. We have already observed
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that the identical permutation leads to the Lehmer mean; however, if we express σ in standard cycle
notation as σ̄ = (1, 2), we have that:

Mσ̄(x1, x2) =
x1x2(xm

1 + xm
2 )

xm+1
1 + xm+1

2

=
x−m

1 + x−m
2

x−m−1
1 + x−m−1

2

= ML−m(x1, x2). (47)

We conclude this section proving another property of σ-means, which is that the arithmetic mean of
all possible σ-means of n numbers equals the arithmetic mean of the numbers themselves.

Proposition 2. Given n real numbers x1, . . . , xn and Σn denoting the set of all possible permutations of {1 . . . , n},
we have:

1
n! ∑

σ∈Σn

Mσ(x1, . . . , xn) =
1
n

n

∑
i=1

xi (48)

for all m ∈ R.

Proof. Let us rewrite Equation (48); by definition, we have:

1
n! ∑

σ∈Σn

Mσ(x1, . . . , xn) =
1
n! ∑

σ∈Σn

(∑n
i=1 xixm

σ(i)

∑n
j=1 xm

j

)
=

1
n

n

∑
i=1

xi (49)

and we claim that the last equality holds. Indeed, we notice that every term in the sum of the σ-means on
the left side of the last equality involves a constant denominator, so we can multiply both sides by it and
also by n! to get:

∑
σ∈Σn

( n

∑
i=1

xixm
σ(i)

)
= (n− 1)!

( n

∑
j=1

xm
j

)( n

∑
i=1

xi

)
. (50)

Now, it is just a matter of distributing the product on the right in a careful way:

(n− 1)!
( n

∑
j=1

xm
j

)( n

∑
i=1

xi

)
=

n

∑
i=1

(
xi ·

n

∑
k=1

(
(n− 1)!

)
xm

k

)
, (51)

If we fix i ∈ { 1, . . . , n}, in Σn, there are exactly (n− 1)! permutations σ such that σ(i) = i. Therefore, the
equality in (50) follows straightforwardly.

4. Numerical Results and Dependence on Initial Estimations

Now, we present the results of some numerical computations, in which the following test functions
have been used.

(a) f1(x) = x3 + 4x2 − 10,
(b) f2(x) = sin(x)2 − x2 + 1,
(c) f3(x) = x2 − ex − 3x + 2,
(d) f4(x) = cos(x)− x,
(e) f5(x) = (x− 1)3 − 1.

The numerical tests were carried out by using MATLAB with double precision arithmetics in a
computer with processor i7-8750H @2.20 GHz, 16 Gb of RAM, and the stopping criterion used was
|xn+1 − xn|+ | f (xn+1)| < 10−14.

We used the harmonic mean Newton method (HN), the contraharmonic mean Newton method (CHN),
the Lehmer mean Newton method (LN(m)), a variant of Newton’s method where the mean is a convex
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combination with θ = 1/3, 1/3N, and the classic Newton method (CN). The main goals of these
calculations are to confirm the theoretical results stated in the preceding sections and to compare the
different methods, with CN as a control benchmark. In Table 1, we show the number of iterations that
each method needs for satisfying the stopping criterion and also the approximated computational order of
convergence, defined in [11], with the expression:

ACOC =
ln (|xn+1 − xn|/|xn − xn−1|)

ln (|xn − xn−1|/|xn−1 − xn−2|)
, n = 2, 3, . . . ,

which is considered as a numerical approximation of the theoretical order of convergence p.

Table 1. Numerical results. HN, the harmonic mean Newton method; CHN, the contraharmonic mean
Newton method; LN, the Lehmer–Newton method; CN, the classic Newton method.

Function x0 Number of Iterations ACOC

HN CHN LN(−7)(−7)(−7) 1/3 N CN HN CHN LN(−7)LN(−7)LN(−7) 1/3 N CN

(a)
−0.5 50 18 55 6 132 3.10 3.03 2.97 1.99 2.00

1 4 5 5 5 6 2.94 3.01 2.96 2.02 2.00
2 4 5 5 5 6 3.10 2.99 3.02 2.00 2.00

(b) 1 4 5 6 6 7 3.06 3.16 3.01 2.01 2.00
3 4 5 7 6 7 3.01 2.95 3.02 2.01 2.00

(c) 2 5 5 5 5 6 3.01 2.99 3.11 2.01 2.00
3 5 6 5 6 7 3.10 3.00 3.10 2.01 2.00

(d)
−0.3 5 5 5 6 6 2.99 3.14 3.02 2.01 1.99

1 4 4 4 5 5 2.99 2.87 2.88 2.01 2.00
1.7 4 4 5 5 5 3.00 2.72 3.02 2.01 1.99

(e)

0 6 >1000 7 7 10 3.06 3.00 3.02 2.01 2.00
1.5 5 7 7 7 8 3.04 3.01 2.99 2.01 2.00
2.5 4 5 5 5 7 3.07 2.96 3.01 1.99 2.00
3.0 5 6 6 6 7 3.04 2.99 2.98 2.00 2.00
3.5 5 6 6 6 8 3.07 2.95 2.99 2.00 2.00

Regarding the efficiency of the MBN, we used the efficiency index defined by Ostrowski in [12] as
EI = p

1
d , where p is the order of convergence of the method and d is the number of functional evaluations

per iteration. In this sense, all the MBN had the same EIMBN = 3
1
3 ; meanwhile, Newton’s scheme had the

index EICN = 2
1
2 . Therefore, all MBN were more efficient than the classical Newton method.

The presented numerical tests showed the performance of the different iterative methods to solve
specific problems with fixed initial estimations and a stringent stopping criterion. However, it is useful to
know their dependence on the initial estimation used. Although the convergence of the methods has been
proven for real functions, it is usual to analyze the sets of convergent initial guesses in the complex plane
(the proof would be analogous by changing the condition on the function to be differentiable by being
holomorphic). To get this aim, we plotted the dynamical planes of each one of the iterative methods on the
nonlinear functions fi(x), i = 1, 2, . . . , 5, used in the numerical tests. In them, a mesh of 400× 400 initial
estimations was employed in the region of the complex plane [−3, 3]× [−3, 3].

We used the routines appearing in [13] to plot the dynamical planes corresponding to each method.
In them, each point of the mesh was an initial estimation for the analyzed method on the specific problem.
If the method reached the root in less than 40 iterations (closer than 10−3), then this point is painted in
orange (green for the second, etc.) color; if the process converges to another attractor different from the
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roots, then the point is painted in black. The zeros of the nonlinear functions are presented in the different
pictures by white stars.

In Figure 1, we observe that Harmonic and Lehmer (for m = −7) means showed the most stable
performance, whose unique basins of attraction were those of the roots (plotted in orange, red, and green).
In the rest of the cases, there existed black areas of no convergence to the zeros of the nonlinear function
f1(x). Specially unstable were the cases of Heronian, convex combination (θ = ±2), and generalized
means, with wide black areas and very small basins of the complex roots.
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Figure 1. Dynamical planes of the mean-based methods on f1(x) = x3 + 4x2 − 10.

Regarding Figure 2, again Heronian, convex combination (θ = −2), and generalized means showed
convergence only to one of the roots or very narrow basins of attraction. There existed black areas of no
convergence to the roots in all cases, but the widest green and orange basins (corresponding to the zeros of
f2(x)) corresponded to harmonic, contra harmonic, centroidal, and Lehmer means.

Function f3(x) had only one zero at x ≈ 0.25753, whose basin of attraction is painted in orange color
in Figure 3. In general, most of the methods presented good performance; however, three methods did
not converge to the root in the maximum of iterations required: Heronian and generalized means with
m = ±2. Moreover, the basin of attraction was reduced when the parameter θ of the convex combination
mean was used.
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Figure 2. Dynamical planes of mean-based methods on f2(x) = sin(x)2 − x2 + 1.
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Figure 3. Dynamical planes of mean-based methods on f3(x) = x2 − ex − 3x + 2.

A similar performance is observed in Figure 4, where Heronian and generalized means with m = ±2
showed no convergence to only the root of f4(x); meanwhile, the rest of the methods presented good
behavior. Let us remark that in some cases, blue areas appear; this corresponded to initial estimations
that, after 40 consecutive iterations, had an absolute value higher than 1000. In these cases, they and the
surrounding black areas were identified as regions of divergence of the method. The best methods in this
case were associated with the arithmetic and harmonic means.
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Figure 4. Dynamical planes of mean-based methods on f4(x) = cos(x)− x.

In Figure 5, the best results in terms of the wideness of the basins of the attraction of the roots were for
harmonic and Lehmer means, for m = −7. The biggest black areas corresponded to convex combination
with θ = −2, where the three basins of attraction of the roots were very narrow, and for Heronian and
generalized means, there was only convergence to the real root.
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Figure 5. Dynamical planes of mean-based methods on f5(x) = (x− 1)3 − 1.

5. Conclusions

The proposed θ-test (Corollary 1) has proven to be very useful to reduce the calculations of the
analysis of convergence of any MBN. Moreover, though the employment of σ-means in the context of
mean-based variants of Newton’s method is probably not the best one to appreciate their flexibility, their
use could still lead to interesting results due to their much greater capability of interpolating between
numbers than already powerful means, such as the Lehmer one.

With regard to the numerical performance, Table 1 confirms that a convex combination with a constant
coefficient could converge cubically if and only if it was the arithmetic mean; otherwise, as with this case,
it converged quadratically, even if it may have done so with less iterations, generally speaking, than CN.
Regarding the number of iterations, there were non-linear functions for which LN(m) converged with
fewer iterations than HN. In our calculations, we set m = −7, but similar results were achieved also for
different parameters. Regarding the dependence on initial estimations, the harmonic and Lehmer methods
were proven to be very stable, with the widest areas of convergence in most of the nonlinear problems
used in the tests.
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