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Abstract: Rubble mound breakwaters usually present a crest wall to increase the crest freeboards 
without a large increase of the consumption of material. Methods in the literature to design crest 
walls are based on estimates of the wave loads. These methods are focused on the maximum loading 
that attacks a single position of the crest wall. In practice, crest walls have a finite length. Since the 
maximum loading does not occur at the same instant over the entire length of the crest wall for 
oblique waves, these methods overestimate the loading in the situation of oblique waves. Wave 
loads under oblique wave attack have been measured in physical model tests. A method to account 
for the effect of the finite length of crest walls has been developed, and design guidelines have been 
derived. The results of this study in combination with the existing methods in the literature to 
estimate the wave forces enable a more advanced design of crest walls. 
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1. Introduction 

Crest walls are usually built on top of rubble mound breakwaters to achieve higher crest 
freeboards without a severe increase in the amount of granular material needed. They also protect 
the crest, improve the accessibility, and provide space for equipment and infrastructure. Crest walls, 
also called crown walls, are built with concrete and are located on top of the core. During storms, 
crest walls are impacted by waves, experiencing both (horizontal) forces at the front of the crest wall 
and (vertical uplift) forces underneath the crest wall. Such wave loads on crest walls determine their 
size, since crest walls are designed to allow minimal or no displacements under extreme wave 
conditions. Thus, an accurate prediction of wave loads on crest walls is essential for their design. 

Guidelines for crest walls design [1–3] exist, but they are only valid within their range of tested 
cross sections. In Jacobsen et al. [4], a numerical model is presented to estimate wave loads on the 
crest walls of rubble mound breakwaters. This model provides valuable estimates of the wave loads 
for cross-sections that have not been tested before (under perpendicular wave attack). Oblique wave 
attack has been proven to affect the wave loads on crest walls in [3,5]. Van Gent et al. conducted a 
systematic study on the reduction of the wave loads on crest walls due to the obliqueness of waves 
and derived a method to account for such an effect [5]. 

All the studies related to wave loads on crest walls on rubble mound breakwaters are focused 
on the (horizontal or vertical) forces that attack the breakwater cross-section (maximum loading). In 
practice, a crest wall on a rubble mound breakwater has a finite length (e.g., with expansion joints 
between two parts of the crest wall). If the maximum loading on a single position is used for the entire 
length of the crest wall, the loading will be overestimated for situations with oblique waves, because 
the maximum loading does not occur at the same time over the entire length of the crest wall. In other 
words, methods in the literature assume a rectangle-shaped force diagram all along the crest wall 
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length. This means that the actual reduction in the forces on the entire crest wall due to the oblique 
waves is more significant than simply applying the method proposed by [3,5], which is valid for one 
position (chainage) along the breakwater. Therefore, this study is focused on the influence of finite 
length on crest walls under oblique wave attack. 

The structure of this paper is as follows. In Section 2, a brief overview of the methods in the 
literature to estimate wave forces on crest walls is presented. A summary of the findings in [5] is 
given, since it is the only systematic study found in the literature on the reduction of the wave loads 
on crest walls due to the oblique wave attack. In Section 3, the physical model tests are described. 
Here, the tests conducted by [5] in a wave basin are used. In Section 4, the analysis of the tests results 
is presented. The temporal shape of the force events is described and transformed into the space 
domain. The actual force that attacks the crest wall is integrated, and a length coefficient is proposed 
in order to account the force reduction due to the length of the crest wall. Finally, in Section 5, 
conclusions are drawn. 

2. Oblique Wave Attack on Forces on Rubble Mound Breakwaters Crest Walls 

Sliding is the most common failure mode for crest walls on mound breakwaters. The crest wall 
is stable when the horizontal force that attacks the structure is lower than the friction resistance, 
which may be affected by the ascending uplift. The stability of the crest wall for the sliding failure 
mode is guaranteed by building the crest wall with enough weight. The required size of crest walls 
is usually determined in physical model tests in wave flumes or wave basins. Before such tests, a first 
approximation of the needed size of the crest wall must be done by estimating the wave loads. The 
better the approximation, the shortest the test campaign and the lower the costs. Estimates of wave 
loads can be obtained from both numerical models and empirical expressions. 

An extensive literature exists on methods to estimate forces on crest walls on mound 
breakwaters. The first approaches were empirical expressions [1,6–12] derived from experimental 
campaigns. Several proposals [1,3,5,7,10,12] were based on the estimates of virtual wave run-up 
levels (Ru2%), which are the wave run-up levels that would be reached in the case of extending the 
armor layer. More recent methods use numerical models [4] and neural networks estimations [2]. All 
the mentioned methods except [3] and [5] are based on physical model tests in wave flumes with 
perpendicular wave attack or the numerical modeling of structures under perpendicular wave attack. 

Van Gent et al. [5] was the first systematic study on the effect of oblique waves on the wave loads 
on crest walls of rubble mound breakwaters. Van Gent et al. [5] conducted physical model tests in a 
wave basin using wave attack angles β = 0°, 15°, 30°, 60, 45°, and 75°, where β = 0° corresponds to 
perpendicular wave attack. Two crest walls geometries (with and without a key) and two wave 
steepness (sm-1,0 = 2π Hs/gTm-1,02 = 0.018 and 0.048, which tested Hs as the significant wave height and 
Tm-1,0 = m-1/m0 as the spectral wave period). Van Gent et al. [5] derived new estimators for the 
horizontal and vertical forces exceeded by 0.1% of the incoming waves (FH,0.1% and FV,0.1%) based on 
Ru2% (see Equations (1) and (2)). 𝐹ு,଴.ଵ% = 𝐾௘,ு 𝜌 𝑔 𝐻௪௔௟௟ (𝑅𝑢ଶ% − 𝐴஼) (1)   𝐹௏,଴.ଵ% = 𝐾௘,௏ 𝑐ி,௩ 𝜌 𝑔 𝐵௪௔௟௟ (𝑅𝑢ଶ% − 0.75 𝐴஼) ቆ1 − ൤𝐹௕𝐴஼൨଴.ହቇ   (2) 

where Ke,H = 1.6, Ke,v and cF,v are empirical coefficients, ρ is the density, g is the gravity acceleration, 
Hwall is the height of the crest wall including the key (if any), AC is the crest level of the armor in front 
of the crest wall, Bwall is the width of the crest wall including the key (if any), and Fb is the level of the 
bottom of the base plate of the crest wall above the still water level. Ke,v was calibrated as a function 
of the sm-1,0; Ke,v = 2.4 for sm-1,0 = 0.018; and Ke,v = 1.6 for sm-1,0 = 0.048 (Fv,0.1% = (2.88-32sop) Fv,2%, see [3]). cF,v 
includes the reduction of the vertical forces due to the presence of a key; cF,v = 0.4 includes those for 
the crest wall configuration without key, and cF,v = 0.3 includes those for the crest wall configuration 
with a key. 

Van Gent et al. [5] included the effect of oblique waves through Ru2%. Equation (3) given in 
[13,14] was proposed to estimate Ru2%. 
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⎩⎪⎨
⎪⎧ 𝑅𝑢ଶ%𝛾 𝐻௦ =  𝑐଴𝜉௠ିଵ,଴   𝑓𝑜𝑟 𝜉௠ିଵ,଴ ൑ 𝑝𝑅𝑢ଶ%𝛾 𝐻௦ = 𝑐ଵ − 𝑐ଶ𝜉௠ିଵ,଴  𝑓𝑜𝑟 𝜉௠ିଵ,଴ ൒ 𝑝 (3) 

where γ = γf γβ is the reduction factor to take into account the effect of both the roughness and the 
oblique wave attack, respectively, ξm-1,0 = tanα/(2πHs/gTp2)0.5 is the surf-similarity parameter or 
Iribarren number, c0 = 1.45, c1 = 5.0, c2 = 0.25 c12/c0, and p = 0.5c1/c0. Van Gent et al. [5] used γf = 0.45 for 
the double-layer rock armor and proposed a new expression for γβ. 𝛾ఉ = 0.5 𝑐𝑜𝑠ଶ𝛽 ൅ 0.5 

 

(4) 

where β is the wave direction at the toe of the structure, where β = 0° corresponds to perpendicular 
wave attack. 

The mentioned methods propose expressions to calculate the maximum wave loading of the 
crest wall in a single position (chainage) along its length. No methods that incorporate the effect of 
finite length in the estimation of the wave loading of the crest walls on mound breakwaters are 
known. 

3. Experimental Methodology 

3.1. Test Set-Up 

In this study, the tests by [5] are used. Those tests were conducted in the Delta Basin (50m × 50m) 
at Deltares, Delft. Waves were generated using a multi-directional wave board composed of 100 
paddles and equipped with both active absorption and second-order wave steering. This means that 
the motion of the paddles compensates for the wave reflected by the structure in order to prevent 
them from re-reflecting on the wave paddles and that the second-order effects of the first lower and 
higher harmonics of the wave field are considered, ensuring that the generated waves resemble 
waves that occur in nature. 

The experimental set-up in the wave basin is illustrated in Figure 1. A structure with a width of 
18.3 m was built with an angle of 37.5° between the model and the wave generator. Gravel beaches 
were built on both sides of the model to ensure wave damping in the basin. 

 
Figure 1. Tests set-up in the wave basin [5]. 
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The tested cross-section corresponds to a rubble mound breakwater with 1:2 slope and two crest 
walls configurations. The model cross-section is depicted in Figure 2. A double-layer rock armor with 
high density stones (Δ = 2.69) is used in order to limit the armor damage during the tests while 
keeping a realistic size of the stones. A 1:1.5 slope was used in the rear side of the structure. 

 
Figure 2. Tested cross-section [5]. 

Figure 3 presents the two crest wall configurations used in the tests, made of aluminum, as well 
as the location of the pressure transducers. The two crest walls configurations are identical except for 
the key placed at the intersection between the front wall and the bottom of the crest wall. The presence 
of a key is desirable from the geotechnical perspective, since the passive earth pressure is increased. 
Crest wall A does not present the key, while Crest wall B does. Pressures were measured at the front 
side of the crest wall and underneath it for both crest wall configurations using 18 pressure 
transducers. These transducers have a frequency response of 5 kHz, an accuracy of 0.06% of the full 
scale (Best Straight Line), and a range of 350 mBar. In Crest wall A, five pressure transducers were 
located in the front wall, and three pressure transducers were placed in the baseplate. In Crest wall 
B, two additional pressure transducers were located: one in the front wall and one in the baseplate. 
No movement of crest walls was ensured by fixing them to steel frames, as shown in Figure 4. 

 

Figure 3. Tested crest wall cross-sections and location of the pressure transducers [5]. 
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Figure 4. Experimental set-up during a test with oblique waves. 

Waves were measured using directional wave gauges (GRSM) at two locations in front of the 
model so the incident and reflected waves could be separated. The directional wave gauges were 
located to be in the same line as the measurement cross-sections for a wave angle of 37.5°, which is 
the average of all the tested angles and perpendicular to the wave paddle (see Figure 1). Small 
variations observed between both measurement points were accounted for in the following analysis; 
measurements of GRSM-A were used for Test section A, and measurements of GRSM-B were used 
for Test section B. In following analysis, incident waves at these locations at the toe were used. The 
spectral significant wave height (Hs = Hm0 = 4√m0) and the spectral mean wave period (Tm-1,0 = m-1/m0) 
were obtained from the measured wave energy spectra. Tm-1,0 was first found to better describe the 
influence of wave energy spectra on wave run-up and overtopping in [13,14]. Later, Tm-1,0 was applied 
as the best wave period to describe other interaction processes between waves and coastal structures, 
see for instance [15]. Thus, this spectral wave period was also used in this study. The mean 
overtopping discharge was also measured in [5], using two overtopping chutes and boxes (see Figure 
5). 

Runs of 1000 random waves were generated following a JONSWAP wave spectrum (peak 
enhancement factor of 3.3). Each configuration was tested with a constant value of sm-1,0 = 0.018 or 
0.048. Six wave directions were considered β = 0°, 15°, 30°, 60, 45°, and 75°, where β = 0° corresponds 
to the perpendicular wave attack. Three water depths, hs = 0.70, 0.75, and 0.80 m, and crest freeboards, 
RC = 0.15, 0.20 and 0.25 m, were used. For the lowest hs, only the perpendicular waves were tested, 
since most of the conditions with oblique waves would not have caused forces on the crest walls. In 
total, 30 tests were used in this study. Table 1 summarizes the main experimental ranges in these 
tests. 

Table 1. Summary of the parameter ranges of the test program. 

Parameter Symbol Value/Range 
Seaward side slope angle (-) cot α 2 

Dimensionless crest freeboard (-) Rc/Hs 0.84–1.60 
Ratio crest level of crest wall and armor (-) Rc/Ac 1.27–1.55 

Dimensionless level of base plate (-) Fb/Hs 0–0.56 
Wave height over water depth ratio (-) Hs/hs 0.13–0.27 

Surf similarity parameter (-) ξm-1,0 2.3 and 3.7 
Number of waves (-) N 1000 

Wave angles at the toe (°) β 0–75 
Incident wave height (m) Hs 0.10–0.19 

Water depth at the toe (m) hs 0.70–0.80 
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Crest wall freeboard (m) RC 0.15–0.25 
Crest level of the armor layer crest (m) AC 0.097–0.197 

Crest width of the armor layer (m) GC 0.114 
Level base plate relative to the wave level (m) Fb 0–0.10 

Height of the crest wall (m) Hwall 0.15 and 0.2 
Width of the crest wall (m) Bwall 0.20 

 

3.2. Test Results 

As previously mentioned, 18 pressure transducers were used to measure the pressure signals on 
the crest walls. Their sampling frequency was 1000 Hz. Before a test, the transducers were set to zero, 
so the measurements were relative to the pressures caused by the still water level and hydrostatic 
forces were not included in the measurements. This is especially relevant for Crest wall B, since the 
key is submerged during the tests with the higher water depth. 

Each pressure transducer provided a point of pressure (kN/m2). The pressure distribution along 
the front and base of the crest wall was obtained by assembling the points of pressure (see Figure 5). 
The pressure distribution was extrapolated toward the edges of the crest wall. Pressure transducers 
were located as close as possible to the edges of the crest wall to minimize extrapolation, and the 
extrapolated pressures were set to a lower limit of 0. In Figure 6, the extrapolation zone is indicated 
with blue dashed lines. The pressure distribution was integrated along the front and base of the 
crown wall to obtain the force on the crest wall. It resulted in a horizontal force on the front of the 
crest wall (FH) and a vertical force on its base (FV). 

 

Figure 5. Pressure integration principle [5]. 

In this study, the temporal shape of the (horizontal and vertical) force events was studied. Thus, 
the duration of the force events and the time of the peak (tpeak) was determined. The start, tpeak, and 
end of the force events were determined for both horizontal and vertical forces. They were extracted 
in three steps: (1) peaks were identified applying the Peaks-Over-Threshold method; in case of two 
peaks closer than 0.5 s, only the maximum was considered; (2) zero-up and zero-down crossing 
points were determined using a threshold of 2 to account the points slightly above zero and related 
to each peak as the start and end points of the force event; and (3) correction was applied in case the 
start and end points were located even more above zero. If two peaks presented the same start or end 
point, it was replaced by the minimum value between both peaks. The duration is calculated as the 
difference between the start and end of the force event. The exceedance values used in this study are 
not based on the total number of force peaks but rather on the number of waves within a test. Note 
that some vertical force registers were discarded, since the events were too low to be distinguished. 
Therefore, 59 duration values (29 for Crest wall A + 30 for Crest wall B) were obtained for the 
horizontal forces, while 47 (22 for Crest wall A + 25 for Crest wall B) were identified for vertical forces. 
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An example of the determination of beginning and ending points is displayed in Figure 6 for vertical 
forces of Test #10 on Crest wall A. 

 
Figure 6. Example of determination of beginning, peak, and ending point for vertical forces of Test 
#10 on Crest wall A. 

As [5] pointed out, it is common practice to assume that the maximum value registered in tests 
is the maximum (horizontal or vertical) force, which lasts 1000 waves (force exceeded by 0.1% of the 
incoming waves) [1,2,11]. However, the smaller the exceedance probability, the more hampered the 
value is by the coincidence within a test. Thus, Van Gent et al. [5] compared the maximum forces 
(peak of the force event) within a test (forces exceeded by 0.1% of the incoming waves) with the forces 
exceeded by 2% of the incoming waves. An almost constant ratio was observed for the horizontal 
forces and for many vertical forces. Here, a similar comparison is conducted for the duration and the 
position of the peak (tpeak) to determine whether the force event exceeded by 2% of the incoming waves 
is a valid approach to describe the shape of the maximum force events (see Figure 7). 

In order to assess the correlation between the variables, the correlation coefficient (−1 ≤ r ≤ 1) was 
used. Here, the higher the absolute value of r, the higher the correlation. 𝑟 =  ∑ (𝑡௜ − 𝑡̅)(𝑒௜ − 𝑒̅)ே೚௜ୀଵට∑ (𝑡௜ − 𝑡̅)ଶ ∑ (𝑒௜ − 𝑒̅)ଶே೚௜ୀଵே೚௜ୀଵ  (5) 

where No is the number of observations, ti are the first variable observations, ei are the corresponding 
observations of the second variable, and 𝑡̅  and ē are the average values of both variables. 

As shown in Figure 7, reasonable correlation (r = 0.790) was found for the duration of the 
horizontal force events exceeded by 0.1% and 2% of the incoming waves (durationH,0.1% and 
durationH,2%). Poor correlation (0.148 ≤ r ≤ 0.392) was observed for the duration of the vertical force 
events exceeded by 0.1% and 2% of the incoming waves (durationV,0.1% and durationV,2%), as well as for 
the position of the peak (tpeak) of both horizontal and vertical force events exceeded by 2% and 0.1% 
of the incoming waves. As a result, it was decided to conduct the following analysis using the force 
events exceeded by 0.1% of the incoming waves. 
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Figure 7. Comparison between: (a) duration of the horizontal force event exceeded by 0.1% and 2% 
of incoming waves (durationH,0.1% and durationH,2%), (b) position of the peak of the horizontal force 
event exceeded by 0.1% and 2% of incoming waves (tpeakH,0.1% and tpeakH,2%), (c) duration of the vertical 
force event exceeded by 0.1% and 2% of incoming waves (durationV,0.1% and durationV,2%), and (d) 
position of the peak of vertical force event exceeded by 0.1% and 2% of incoming waves (tpeakV,0.1% 
and tpeakV,2%). 

4. Results 

In this section, the temporal shape of the (horizontal and vertical) force events is discussed. A 
triangle-shaped model is proposed. Therefore, the base width and the height of that triangle are 
needed to characterize the temporal shape. The formulas given in [5] are used to estimate the 
maximum loading (height) for both the horizontal and the vertical forces. Formulas to calculate the 
duration of the force events and the velocity at which the force events travel along the structure are 
proposed. This way, the duration is transformed into the space domain (base width); a force diagram 
along the longitudinal dimension of the crest wall is obtained. This study assumes that the force 
received by a point of the crest wall in a certain instant is at some point of the spatial force diagram, 
and the rest of the points receive forces according to the shape of that diagram. The force diagram is 
integrated to estimate the actual force that attacks the crest wall, including the finite length effect. 
Such force is compared to the force obtained using the existing methods and a coefficient to account 
for the effect of finite length on crest walls under oblique wave attack is given. 

4.1. Temporal Shape of Force Events 

In this section, the temporal shape of the force events is discussed and parameterized. In Figure 
8, typical registers for horizontal and vertical forces are presented. 
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Figure 8. Typical register for horizontal and vertical forces (Test #10, Crest wall A). 

In Section 3.2, it was decided to analyze the maximum force event in each test (force events 
exceeded by 0.1% of the incoming waves). The maximum force event is extracted for each test, and a 
new register is created grouping them (Extracted register, from now). A five-second spacing was left 
between the events in order to allow for the afterwards analysis. Figure 9 shows a fragment of such 
an Extracted register. 

 

Figure 9. Extracted register made by grouping the maximum force events of each test (horizontal 
forces). 

A triangle-shaped model is proposed for the temporal shape of the force events. In order to 
assess the goodness of fit of such a model, the correlation between the Extracted register and a new 
triangle-shaped register is evaluated. The new triangle-shaped register is created using the measured 
duration and the measured peak values of the forces. The location of the peak value of the force 
(tpeak0.1%) is calculated as function of the duration of the horizontal or vertical force event (duration0.1%), 
as shown in Equation (6). 𝑡𝑝𝑒𝑎𝑘଴.ଵ% = 𝐾௣௘௔௞ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛଴.ଵ%  (6) 

where Kpeak is an experimental coefficient. Kpeak is calibrated for both horizontal and vertical forces in 
order to maximize the correlation with the Extracted register. Kpeak = 0.1 and Kpeak = 0.35 are obtained 
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for horizontal and vertical forces, respectively; 0.912 ≤ r ≤ 0.924. Figure 10 shows the superposition of 
the Extracted register (the actual maximum force events) and the triangle-shaped model. 

 
Figure 10. Comparison of Extracted register (the actual maximum force events) and the triangle-
shaped model using the measured FH,0.1%, FV,0.1%, and duration0.1% for: (a) horizontal forces, and (b) 
vertical forces. 

4.2. Duration of Force Events 

As mentioned in Section 3.2, 59 values (29 for Crest wall A + 30 for Crest wall B) and 47 (22 for 
Crest wall A + 25 for Crest wall B) of the duration corresponding to the force exceeded by 0.1% of 
incoming waves (duration0.1%) were obtained for the horizontal (durationH,0.1%) and vertical 
(durationV,0.1%) forces, respectively. durationH,0.1% and durationV,0.1% corresponding to the same test were 
compared in order to determine if they present the same behavior. Note that 47 duration0.1% values 
could be compared (i.e., the minimum number of duration0.1% values, which corresponds to the 
vertical forces). Figure 11 compares durationH,0.1% and durationV,0.1% corresponding to the same test. 

 

Figure 11. Comparison between the measured dimensionless duration0.1% (duration0.1%/Tm-1,0) for 
horizontal and vertical forces. 
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Reasonable correlation was observed (r = 0.778) between durationH,0.1% and durationV,0.1%. Thus, it 
is reasonable to analyze them together. Equation (7) was proposed to estimate duration0.1%, based on 
the difference between Ru2% and AC. 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛଴.ଵ% = 5ඨ𝐻௪௔௟௟  𝛾ఉ (𝑅𝑢ଶ% − 𝐴஼)𝐻௦  (7) 

Note that if AC ≥ Ru2%, no waves reach the crest, which leads to duration0.1% = 0. Equation (7) also 
shows that the duration of the force event increases for the larger crest walls (Hwall); larger crest walls 
are a bigger obstacle to dissipating phenomena (infiltration and wave overtopping), such that the 
water remains longer at the breakwater crest. Equation (7) is valid within the ranges 0.260 ≤ γβ (Ru2% 

– AC)/Hs ≤ 0.863. In order to assess the goodness of fit, r and the relative mean squared error (rMSE) 
were used. 

𝑟𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑣𝑎𝑟 =  1𝑁௢ ∑ (𝑡௜ − 𝑒௜)ଶே೚௜ୀଵ1𝑁௢ ∑ (𝑡௜ − 𝑡̅)ଶே೚௜ୀଵ  (8) 

where MSE is the mean squared error, var is the variance of the target values, No is the number of 
observations, ti and ei are the target and estimated values, respectively, and 𝑡̅ is the average of the 
target values. The variation coefficient (CV) of the data was also calculated as CV = σ/μ, where σ is 
the standard deviation of the observations and μ is the observations’ mean. 

Figure 12 compares the measured and estimated dimensionless duration (duration0.1%/Tm-1,0) 
using Equation (7), as well as the 90% confidence interval. Here, r = 0.726 and rMSE = 0.472. 

 

Figure 12. Comparison between the measured and estimated dimensionless duration0.1% using 
Equation (7). 

The MSE remained stable with increasing values of duration0.1%/Tm-1,0. Thus, the 90% confidence 
interval was calculated based on the variance of the error (var(ε) = 0.0167). Assuming a Gaussian error 
distribution, the confidence interval is obtained as 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛଴.ଵ%𝑇௠ିଵ,଴ ቤହ%

ଽହ% = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛଴.ଵ%𝑇௠ିଵ,଴  ± 1.64 ඥ𝑣𝑎𝑟(𝜀) = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛଴.ଵ%𝑇௠ିଵ,଴  ± 0.212 (9) 
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Similar to Section 4.1, the correlation between the Extracted register and a new triangle-shaped 
register was assessed. Here, the triangle-shaped register was created using the estimated FH,0.1%, FV,0.1%, 
and duration0.1% using the method in [5] (Equations (1) to (4)) and Equation (7). tpeak0.1% in Equation 
(6) was again calibrated by maximizing the correlation; Kpeak = 0.15 and Kpeak = 0.35 were obtained for 
horizontal and vertical forces, respectively; 0.874 ≤ r ≤ 0.879. Figure 13 shows the superposition of the 
Extracted register (the actual maximum force events) and the triangle-shaped model generated with 
the estimated FH,0.1%, FV,0.1%, and duration0.1%. Note that if (Ru2% – AC) ≤ 0 or (Ru2% – 0.75AC) ≤ 0, FH,0.1% or 
FV,0.1% result in 0, respectively. 

 
Figure 13. Comparison of Extracted register (the actual maximum force events) and the triangle-
shaped model using the estimated FH,0.1%, FV,0.1%, and duration0.1% for (a) horizontal forces and (b) 
vertical forces. 

4.3. Travel Time and Velocity of Force Events 

As discussed in Section 4.1, a triangle-shaped model is adopted for the time evolution of both 
horizontal and vertical force events. Since the area of a triangle depends on the base (duration0.1%) and 
the height (maximum loading), the method proposed in [5] (Equations (1) to (4)) and Equation (7) can 
be used to estimate the area of the actual force in the time domain. In order to transform the temporal 
shape into the space domain, the velocity (vF) at which the force event travels is needed. To assess vF, 
the travel time of the force events between the two measurement points was obtained. vF was 
calculated dividing the distance between the measurement points (6.7 m) between the travel time. 

In order to extract the travel time from the experimental registers, the register measured at point 
B (see Figure 1) was moved forward in steps of 0.01 s from 0 s (no displacement) to 5 s. For each step, 
the correlation between Register A and the displaced Register B was calculated. The travel time 
corresponded to the displacement time, which maximizes the correlation. This procedure could not 
be applied to three out of the 30 analyzed vertical force registers, since they were too low. Thus, 57 
travel time values (30 values for horizontal forces and 27 for vertical forces) were obtained. Figure 14 
shows an example of the exposed procedure for the horizontal force registers in Test #5, whereas 
Figure 15 presents a comparison between Register A and the original and displaced Register B until 
the travel time, which maximizes the correlation for Test #5. 
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Figure 14. Example of the procedure to determine the travel time between the two measurement 
points (Test #5). 

 

Figure 15. Example of applying the maximum correlation travel time to displace the register at 
measurement point B (Test #5). 

Once the travel time was determined for both the horizontal and vertical forces, the travel time 
values corresponding to the same test were compared to determine whether the behavior was equal 
for both types of forces (see Figure 16). In total, 27 pairs of values could be compared (minimum 
number of travel time values, which corresponds to those available from measured vertical forces). 
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Figure 16. Comparison between the travel time of horizontal and vertical force events corresponding 
to the same test. 

As shown in Figure 16, a very good agreement between the travel time of both horizontal and 
vertical force events corresponding to the same test was found (r = 0.974; rMSE = 0.050). Therefore, it 
is reasonable to analyze the travel time for horizontal and vertical forces together. 

vF was determined by dividing the distance between the two measurement points (6.7 m) 
between the obtained travel time. The higher the angle, the lower the observed velocity. Note that 
the travel time for tests with perpendicular waves was zero, since the crest wall is impacted by the 
whole wave front at the same time. Thus, the tests with perpendicular wave attack could not be used 
to analyze vF; 45 vF values were obtained. 

A very high correlation was observed between the dimensionless velocity of the maximum force 
along the structure (vF/(g hs)0.5, where hs is the water depth at the toe of the structure) and sinβ (r = 
0.826). Therefore, Equation (10) was proposed for vF/(g hs)0.5 𝑣ி(𝑔 ℎ௦)଴.ହ = 0.2𝑠𝑖𝑛ଵ.ଶ𝛽 𝑠௠ିଵ,଴଴.ଷ (10) 

Equation (10) is valid for 15° ≤ β ≤ 75° and 0.018 ≤ sm-1,0 ≤ 0.048. Figure 17 presents the comparison 
between the measured and estimated dimensionless velocity vF/(g hs)0.5 with Equation (10), as well as 
the 90% confidence interval. Here, 93.4% of the variance was explained by the model. 
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Figure 17. Comparison between the measured and estimated vF/(g hs)0.5 using Equation (10). 

The 90% confidence interval is calculated following the methodology given in [16]. As the MSE 
increases with increasing vF/(g hs)0.5, the variance of the error (var(ε)) is calculated as 𝑣𝑎𝑟(𝜀) = 0.035 ൤ 𝑣ி(𝑔 ℎ௦)଴.ହ൨ (11) 

Assuming a Gaussian error distribution, the 90% confidence interval for vF/(g hs)0.5 estimated 
using Equation (10) is given in Equation (12). 𝑣ி(𝑔 ℎ௦)଴.ହฬହ%

ଽହ% = 𝑣ி(𝑔 ℎ௦)଴.ହ  ± 0.31ඨ 𝑣ி(𝑔 ℎ௦)଴.ହ (12) 

4.4. Integration of the Actual Force 

The triangle-shaped force diagram along the longitudinal dimension of the crest wall was 
obtained for both the horizontal and vertical force events using the method proposed in [5] to 
calculate the maximum loading (Equations (1) to (4)) and Equations (7) and (10) to estimate 
duration0.1% and vF. The actual force (AF0.1%) that attacks the structure can be calculated using the 
formula for the triangle area, 𝐴𝐹଴.ଵ% = 0.5 (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛଴.ଵ% 𝑣ி) 𝐹଴.ଵ% (13) 

where F0.1% is the maximum estimated loading for the horizontal or vertical force with [5]. Equation 
(13) is valid while the length of the crest wall (Lcrest) is higher than the width of the force event 
(duration0.1% vf). If duration0.1% vf > Lcrest, the considered portion of the area within the triangle needs to 
be the maximum possible value to obtain the dominant force (see the right panel of Figure 18). For 
every case, 20 values of Lcrest were considered. Lcrest = KA duration0.1% vf, where KA was varied from 0.05 
to 1 in steps of 0.05. The maximum area within the triangle was numerically integrated for every case 
and Lcrest. Similar to the estimated AF0.1%, the measured AF0.1% was obtained as the maximum 
numerically integrated area from the force register in the space domain. For the numerical 
integration, the following steps were performed: (1) a vector with the same length as the time register 
is created, and all its values are set equal to the time step (0.001 s in this study), (2) the vector is 
multiplied by the measured velocity, (3) the cumulative sum is determined, and (4) the force register 
is numerically integrated over this new space vector. Figure 19 shows the comparison between the 
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measured and estimated AF0.1% using the method in [5] (Equations (1) to (4)) and Equations (7) and 
(10). Here, r = 0.938 and rMSE = 0.945. 

 

 
Figure 18. Possible situations when calculating AF0.1%. 

 

Figure 19. Comparison between the measured and estimated AF0.1% using Equations (1) to (4), (7), and 
(10). 

Every alignment of points in Figure 19 represents the AF0.1% variation for one test due to the 
different values of KA. As shown in Figure 19, the proposed method is on the conservative side. In 
order to obtain the best fitting approach, AF0.1%* = Kopt AF0.1% is considered where AF0.1%* is the best fit 
estimated AF0.1% and Kopt is a coefficient to be calibrated. Kopt was calibrated by minimizing the rMSE. 
The best fit was obtained for Kopt = 0.6 with rMSE = 0.133. Figure 20 presents the comparison between 
the measured AF0.1% and estimated AF0.1%* using the method in [5] (Equations (1) to (4)) and Equations 
(7) and (10) with Kopt = 0.6, as well as the 90% confidence interval. 
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Figure 20. Comparison between the measured AF0.1% and estimated AF0.1%* using Equations (1) to (4), 
(7), and (10) with Kopt = 0.6, as well as the 90% confidence interval. 

Similar to Section 4.3, since the MSE increases with increasing AF0.1%*, var(ε) is calculated as 𝑣𝑎𝑟(𝜀) = 36.5 𝐴𝐹଴.ଵ%∗ (14) 

Assuming a Gaussian error distribution, the 90% confidence interval for AF0.1%* is given in 
Equation (15). 

 𝐴𝐹଴.ଵ%∗|ହ%ଽହ% =  𝐴𝐹଴.ଵ%∗  ± 9.91ට 𝐴𝐹଴.ଵ%∗ (15) 

4.5. Length Coefficient 

The goal of this study was to propose a reduction coefficient to directly multiply to the force 
obtained with the methods in the literature to account for the effect of the finite length of crest walls 
under oblique wave attack. Methods in the literature provide the maximum force that attacks a 
chainage of the crest wall (F0.1%). They assume that the whole crest wall is attacked by this maximum 
force; a rectangle-shaped diagram along the whole crest wall length is assumed, as illustrated in the 
left panel of Figure 21. Thus, the total force AF0.1% on a crest wall section is generally estimated by 
multiplying F0.1% by the length of the crest wall (Lcrest). Figure 21 illustrates the horizontal force 
diagrams along the crest wall as generally applied compared to the method proposed in the present 
study. As previously mentioned, vertical force diagrams were defined in the same way. The length 
coefficient (γL) was calculated by dividing AF0.1% estimated using the results of the present study 
(“triangular shape”) with the best fitting approach by the AF0.1% without the finite length effect 
(“rectangular shape”). Equation (16) is derived 

𝛾௅ = 0.6 ∙ 0.5 (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛଴.ଵ% 𝑣ி) 𝐹଴.ଵ%𝐿௖௥௘௦௧ 𝐹଴.ଵ% = 0.24 ට𝐻௪௔௟௟ 𝛾ఉ (𝑅𝑢ଶ% − 𝐴௖)𝐿௖௥௘௦௧ 𝐻௦଴.ହ 𝑠𝑖𝑛ଵ.ଶ𝛽 𝑠௠ିଵ,଴଴.ଷ   (16) 

where Equation (3) is used for Ru2% and Equation (4) is used for γβ. Thus, Equation (16) is only valid if 
Lcrest ≥ (duration0.1% vF). 
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Figure 21. Example of the horizontal force diagram along the longitudinal dimension of the crest wall 
assumed by the standard method (left panel) and the present study (right panel). 

As mentioned in Section 4.4, when duration0.1% vf > Lcrest, the considered portion of the area within 
the triangle needs to be the maximum (see Figure 18). Since the area calculation is not direct, a new 
equation is derived. Cases within the tested experimental ranges were generated. sm-1,0 = 0.02 and 0.04, 
β = 15°, 30°, 45°, 60°, and 75°, hs = 0.77 m, AC = 0.12 m and Hwall = 0.15 and 0.20 m were considered. 
Values for Hs were selected such that the generated cases remain within the experimental range of 
tested values for Ru2%/AC. Test conditions were used for cross-validation. Both the generated cases 
and the test conditions cases were applied to five lengths of the crest wall (Lcrest = 2.25 m, 5 m, 10 m, 
15 m, and 20 m on the scale of the model). Thus, 187 generated cases and 235 test conditions were 
used to illustrate the obtained method. The considered values of Lcrest went from approximately the 
smallest Lm-1,0 until 2Lm-1,0 of the highest Lm-1,0. 

FH,0.1% and FV,0.1% were calculated using the methodology given in [5] (Equations (1) to (4)). Note 
that Ke,v needed to be interpolated for the generated cases (Ke,v = 2.35 and 1.81 for sm-1,0 = 0.02 and 0.04, 
respectively). AF0.1% using the results of this study were obtained with the best fitting option (Kopt = 
0.6) with Equations (7) and (10). The reduction factor γL is calculated by dividing AF0.1% obtained with 
the results from this study (“triangular shape”) by the AF0.1% calculated with the generally applied 
method (“rectangular shape” with the maximum force acting on the entire crest wall at the same 
instant). 

The same trend was observed in γL for both horizontal and vertical force events. Equation (17) 
was proposed based on the generated cases. Thus, for relatively short crest walls with Lcrest < 
(duration0.1% vF), the following expression is proposed: 𝛾௅ = 6.5 ൤𝐴஼𝐻௦൨ଶ  ቈ൫𝛾ఉ 𝑅𝑢ଶ% − 𝐴஼൯𝐿௖௥௘௦௧ ቉଴.଺ହ

 (17) 

where Equation (3) is used for Ru2% and Equation (4) is used for γβ, which accounts for the effect of 
oblique wave attack. The reduction factor expressed by Equations (16) and (17) are valid within the 
ranges 0.541 ≤ AC/Hs ≤ 1.102; 0 ≤ (γβ Ru2% – AC)/Lcrest ≤ 0.045. Since Equations (16) and (17) do not depend 
on F0.1%, they are applicable independently on the method used to estimate F0.1%. Note that the higher 
the wave attack angle, the lower γL and the higher the reduction on the crest wall forces. Figure 22 
compares the goal γL and the estimated γL using Equation (17) for (a) horizontal forces and (b) vertical 
forces, as well as the 90% confidence interval. Open symbols correspond to the generated cases, while 
closed symbols correspond to the test conditions cases used as cross-validation. 
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Figure 22. Comparison between the goal γL and the estimated γL with Equation (16), as well as the 
90% confidence interval for (a) horizontal forces and (b) vertical forces. Generated cases correspond 
to open symbols, while test conditions correspond to closed symbols. 

Similar to Section 4.3 and 4.4, var(ε) is calculated as: 𝑣𝑎𝑟(𝜀) = 0.019 𝛾௅ (18) 

Assuming a Gaussian error distribution, the 90% confidence interval for γL is given by: 𝛾௅|ହ%ଽହ% = 𝛾௅  ± 0.23 ඥ𝛾௅ (19) 

Note that the confidence interval was calculated for the generated cases. The agreement is rather 
good for both the generated cases and the test conditions (0.198 ≤ rMSE ≤ 0.227). 

5. Conclusions 

To estimate the forces on a crest wall of a rubble mound structure, the predicted maximum force 
at a single position (chainage) is normally assumed to act on the entire length of the crest wall. For 
perpendicular wave attack, this is a reasonable approach. However, for oblique wave attack, the 
maximum loading is not acting on the entire length of the crest wall at the same instant. Since crest 
walls have a finite length, assuming that the maximum wave loading acts at the same instant over 
the entire length of the crest wall leads to an overestimation of the actual forces on crest walls under 
oblique wave attack. This study describes a method to account for the effect of the finite length of 
crest walls on the forces caused by oblique wave attack. 

The physical model tests conducted by [5] in a wave basin were used. A triangular shape is 
applied to model the temporal shape of the (horizontal and vertical) force events (exceeded by 0.1% 
of the incoming waves) with 0.912 ≤ r ≤ 0.924. It was found that the duration of the force events 
(duration0.1%) (base of the triangle) is the same for both horizontal and vertical forces. Equation (7) is 
proposed to estimate the duration of the force events (rMSE = 0.472). Equation (6) is derived to 
estimate the position of the peak within the force event; the rising time of the horizontal forces is 
faster than for the vertical forces. The method proposed in [5] was suggested to calculate the 
maximum loading (F0.1%). The agreement between the calculated and measured force register was 
good (0.874 ≤ r ≤ 0.879). 

The temporal shape of the force events was transformed into the space domain by means of the 
velocity at which the force event travels along the structure (vf). To this end, the travel time between 
two measurement points was determined, and vf was obtained by dividing the distance between both 
points between the travel time. The same travel time and vf were obtained for horizontal and vertical 
forces. The travel time obviously is 0 for perpendicular wave attack, since the whole crest wall is 
impacted by the wave in the same instant. Equation (10) was proposed to calculate vf for oblique wave 
attack with a rather high accuracy (rMSE = 0.066). 
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The actual force on the entire crest wall with a finite length (AF0.1%) was obtained using a 
triangular shape in the space domain. The adopted approach resulted in conservative estimates of 
the reduction due to the finite length of crest walls under oblique wave attack. The best fit for actual 
force on the entire crest wall with a finite length (AF0.1%) resulted in 60% of the triangular shape (Kopt 
= 0.6) with rMSE = 0.133. 

A new reduction factor (γL) was defined as the ratio between AF0.1% estimated using the findings 
of the present study and the maximum force acting against the crest wall (F0.1% Lcrest). Equations (16) 
and (16) were proposed to directly estimate γL for both horizontal and vertical forces. Equation (16) is 
valid if Lcrest ≥ (duration0.1% vF). Equation (17) was developed to account for relatively short crest walls 
Lcrest < (duration0.1% vF). To obtain Equation (17), the methodology developed in this study using the 
best fit approach (Kopt = 0.6) was applied on two data sets: (1) generated cases within the experimental 
ranges with five values of the length of the crest wall (Lcrest) and (2) tests conditions with five values 
of Lcrest. The forces on the entire crest wall with finite length (AF0.1%) were also calculated using the 
generally applied method (AF0.1% = F0.1% Lcrest). Equation (17) was derived using dataset (1), while 
dataset (2) was used for cross-validation (0.198 ≤ rMSE ≤ 0.227). Since the derived reduction factor, 
expressed by Equations (16) and (17), does not depend on F0.1%, Equations (16) and (17) are applicable 
independently on the estimator used for F0.1%. 

The expressions proposed in this study are valid within the ranges of the present tests (0.84 ≤ 
Rc/Hs ≤ 1.6; 1.27 ≤ Rc/Ac ≤ 1.55; 0 ≤ Fb/Hs ≤ 0.56; 0.13 ≤ Hs/hs ≤ 0.27). It is encouraged to check their validity 
out of the experimental ranges of this study, paying special attention to the effect of wave 
characteristics on the shape of the force events, different crest wall geometries, and armor layers (1:2 
rock armored slopes). 

This study has illustrated how large the reduction in the required size of the crest wall can be if 
the finite length of the crest wall is taken into account in oblique wave attack conditions. Therefore, 
it is recommended to take into account not only the reduction in the maximum forces due to oblique 
waves, but also the reduction due to the fact that the maximum forces do not occur at the same instant 
over the entire length of crest walls on rubble mound breakwaters. 
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