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Abstract 23 

Genetic selection and nutrition management have played a central role in the 24 

development of commercial rabbitry industry over the last few decades, being 25 

able to affect productive and immunological traits of the animals. However, the 26 

implication of different energy sources in animals from diverse genetic lines 27 

achieving such evolutionary success remains still unknown. Therefore, in this 28 

work, 203 female rabbits housed and bred in the same conditions were used 29 

from their first artificial insemination until their fifth weaning. The animals 30 

belonged to three different genetic types diverging greatly on breeding goal s (H 31 

line, hyper-prolific (n = 66); LP line, robust (n = 67) and R line, selected for 32 

growth rate (n = 67), and were assigned to two experimental diets, promoting 33 

major differences in energy source (cereal starch or animal fat). The aims of this 34 

work were to: (1) characterise and describe blood leukocyte populations of 35 

three lines of rabbit does in different physiological stages during their 36 

reproductive period: first artificial insemination, first weaning, second parturition 37 

and fifth weaning; and (2) study the possible influence of two different 38 

experimental diets on the leukocyte populations in peripheral blood. Flow 39 

cytometry analyses were performed on blood samples taken from females at 40 

each different sampling stade. Lymphocyte populations at both weanings were 41 

characterised by significantly lower counts of total, CD5+ and CD8+ lymphocytes 42 

(–19.8, –21.7 and –44.6%; P<0.05), and higher counts of monocytes and 43 

granulocytes (+49.2 and +26.2%; P<0.05) than in the other stages. Females 44 

had higher blood counts of lymphocytes B, CD8+ and CD25+ and lower counts 45 

of CD4+ at first than at fifth weaning (+55.6, +85.8, +57.5, –14.5%; P<0.05). G/L 46 

ratio was higher at both weanings (P<0.05), and CD4+/CD8+ ratio increased 47 
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progressively from the 1AI to the 5W (P<0.001). Regarding the effect of genetic 48 

type in blood leukocyte counts, LP animals presented the highest counts for 49 

total, B, CD5+ and CD8+ lymphocytes (+16.7, +31.8, +24.5 and +38.7; P<0.05), 50 

but R rabbits showed the highest counts for monocytes and granulocytes (+25.3 51 

and +27.6; P<0.05). The type of diet given during the reproductive life did not 52 

affect the leukocyte population counts. These results indicate that there are 53 

detectable variations in the leukocyte profile depending on the reproductive 54 

stage of the animal (parturition, weaning or none of them). Moreover, 55 

foundation for reproductive longevity criteria allows animals to be more capable 56 

of adapting to the challenges of the reproductive cycle from an immunological 57 

viewpoint. 58 

Keywords: immunological challenge, genetic type, flow cytometry, animal fat, 59 

cereal starch. 60 

Implications 61 

The description of the normal immunological variations in rabbit does from three 62 

very common commercial genetic lines during their reproductive life entails an 63 

important and basic step in order to perform further comprehensive studies on 64 

how these animals may develop different strategies to successfully overcome 65 

productive and reproductive challenges. Moreover, the assignment of an 66 

appropriate nutrition is a critical issue in the rabbit industry and major efforts 67 

and resources are currently focused on this field. Therefore, finding out if 68 

different energy sources influence the ability of these animals to organise 69 

effective immunological responses is of great interest for farmers and 70 

researchers.  71 
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Introduction 72 

Relevant advances in genetic selection, reproductive management and feeding 73 

systems (Pascual, 2010) have allowed the rabbitry industry to evolve greatly in 74 

the last few decades. Genetic selection by productive longevity has resulted in 75 

an effective increase in the number of long-living animals, able to maintain high 76 

reproductive performance throughout their productive life. However, a long life 77 

for these animals is burdened with challenges and their ability to survive is 78 

grounded on the maintenance of a reliable and stable health and accurate 79 

management of body resources in constant, unpredictable variation. Indeed, the 80 

evolutionary success achieved by genetic types founded by productive 81 

longevity is mainly attributable to their ability to successfully overcome 82 

productive, environmental and immunological challenges (Pascual et al., 2013). 83 

So, animals from these genetic lines have been considered more robust than 84 

the rest (García-Quirós et al., 2014), understanding the concept of robustness 85 

in farm animals as defined by Knap (2005): ‘The ability to combine a high 86 

production potential with resilience to stressors, allowing for unproblematic 87 

expression of a high production potential in a wide variety of environmental 88 

conditions’. In fact, these animals are not only able to adapt to short-term 89 

challenges, but can also integrate their adaptations over time to adapt to long-90 

term patterns (e.g. temperature stress, intense reproductive rhythm or recurring 91 

pathogens). However, it is uncertain what the mechanisms are that evolution 92 

has reached in these animals to address their disparate needs. Previous 93 

studies point to the metabolism (Savietto et al., 2015) and immunity (Guerrero 94 

et al., 2011; Ferrian et al., 2012) as the main factors responsible for organising 95 
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effective responses that allow them to maintain high reproductive performance 96 

during successive lactations. 97 

Notwithstanding the evidenced impact of genetic selection on the robustness of 98 

the animal, it has also been suggested that the use of a fat-enriched lactation 99 

diet could contribute to improving the maturity of the immune system of young 100 

rabbits at weaning (García-Quirós et al., 2014) and, therefore, their general 101 

health status towards the growing period. In this conceptual framework, this is 102 

the second of three consecutive papers (see companion papers Arnau-103 

Bonachera et al., 2017a and 2017b) that were designed to provide a context in 104 

which animals from three different genetic types and fed with two distinct diets -105 

but housed and bred in the same conditions- could be systematically studied 106 

and compared throughout their reproductive life (from the first artificial 107 

insemination to the sixth parturition). In that context, this paper is mainly 108 

focused on the study of the immunological status of the animals. Therefore, the 109 

specific aims of this work were to (1) characterise and describe blood leukocyte 110 

populations and their evolution during the abovementioned reproductive period 111 

of three lines of rabbit does differing greatly in animal type; and (2) study the 112 

possible influence of two different experimental diets, promoting major 113 

differences in the energy source (fat or starch), on the leukocyte populations in 114 

peripheral blood.  115 
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Material and Methods  116 

Animals 117 

The Committee of Ethics and Animal Welfare of the UPV approved this 118 

study. All animals were handled according to the principles of animal care 119 

published by Spanish Royal Decree 1201/2005 (BOE, 2005; BOE = Official 120 

Spanish State Gazette). The experiment involved a total of 203 female rabbits 121 

(Oryctolagus cuniculus) which were used from their first artificial insemination 122 

(AI) until their fifth weaning (from December 2012 to April 2013). Rabbit does 123 

belonged to three genetic types developed at the Institute for Animal Science 124 

and Technology of the Universitat Politècnica de València (UPV), differing 125 

greatly in breeding goals. Line H (n = 66), founded and selected by hyper-126 

prolific criteria (Cifre et al., 1998); line LP (n=67), characterised by a high 127 

robustness (Sánchez et al., 2008; Pascual et al., 2013); and line R (n =70), 128 

selected for growth rate during the fattening period (Estany et al., 1992).  129 

Diets 130 

Two experimental diets were formulated and pelleted, according to the 131 

recommendations of De Blas and Mateos (2010) for reproductive rabbit does, 132 

promoting major differences in energy source. CS diet was prepared using 133 

cereal starch [237 g of starch and 21 g of ether extract (EE) per kg dry matter 134 

(DM)], whereas in the AF diet, part of the starch was replaced by animal fat 135 

(105 g of starch and 86 g of EE per kg DM). Nevertheless, both diets were 136 

isoenergetic and isoproteic [approx. 11.3 MJ of digestible energy (DE) and 126 137 

g of digestible protein per kg of DM]. Further details of the diets and the 138 
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methodology used to characterise them can be found in Arnau-Bonachera et 139 

al., (2017) 140 

Experimental procedure  141 

Animals were housed under conventional environmental conditions (average 142 

daily temperatures varying from 13.3 to 26.1 ºC), with an alternating cycle of 16 143 

h of light and 8 h of darkness. At 19 weeks of age, all the rabbit females were 144 

inseminated (with pooled semen from their respective line) and housed in 145 

individual cages (700 x 500 x 320 mm) provided with a nest for litters from 28th 146 

day of gestation. After the first parturition, all animals from the three genetic 147 

types were randomly assigned to one of the reproductive diets. Until this point, 148 

all the animals had received the same commercial diet for reproductive rabbit 149 

does. Both experimental diets were provided ad libitum and the animals were 150 

alternately allocated from within genetic type and reproduction diet throughout 151 

the experimental farm. Litters were standardised to 8-9 kits at first parturition 152 

and 9-11 onwards. Females were inseminated at 11 days postpartum (dpp) and 153 

weaned at 30 dpp. Non-pregnant females were re-inseminated 21 days 154 

afterwards, up to a maximum of three times. Blood samples were taken from 155 

females at different physiological stages: first AI (1AI, at the start of the 156 

reproductive life), first weaning (1W, potential immunological risk moment), 157 

second parturition (2P, a moment described as immunologically critical, Ferrian 158 

et al., 2012) and fifth weaning (5W, same stage as first weaning but an ulterior 159 

reproductive cycle). Diurnal variations in haematological parameters were 160 

minimised by collecting blood at approximately the same time (9:00 h-10:00 h). 161 

Flow cytometry analysis 162 
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Flow cytometry analysis was performed 1 h after sampling using 1 mL of 163 

peripheral blood drawn from the median artery of the ear, using vacuum tubes 164 

with EDTA. Prior to any other procedure, the white blood cell (WBC) count was 165 

determined using a haematology analyser (MEK-6410, Nihon Kohden, Japan). 166 

Then, blood was transferred to a 50 mL tube, in which 40 mL of ammonium 167 

chloride lysing solution at 4°C was added to isolate WBC. After 6 min of 168 

incubation in the dark, samples were centrifuged at 400 g for 5 min at room 169 

temperature. The supernatant was eliminated and the pellet was carefully 170 

resuspended in 1 mL of phosphate-buffered saline 1x (PBS). The density of the 171 

suspension was adjusted to 106 cells per mL by counting with Neubauer 172 

chamber. Primary monoclonal antibodies were added (Table 1), and incubated 173 

for 20 min at room temperature in the dark. Then, the pellet was washed with 1 174 

mL of PBS, and centrifuged again in the same conditions mentioned above. 175 

Thereafter, secondary antibodies (Rat anti-mouse IgG 2a+b Phycoerythrin 176 

[VMRD, Inc. Exalpha] and Goat anti-mouse IgM: R-Phycoerythrin-human 177 

adsorbed [AbDSerotec]) were added, and incubated for 20 min at room 178 

temperature in the dark. One mL of PBS was added before running the flow 179 

cytometer. The outcome WBC suspensions were analysed in a Cytomics 180 

FC500 flow cytometer (Beckman Coulter, Brea, CA). The common leukocyte 181 

antigen CD14 and CD45 expression was used for the “lymphogate” setup as 182 

previously described (Jeklova et al., 2007; Guerrero et al., 2011). Calculation of 183 

total lymphocyte and respective subsets counts were performed as the product 184 

of WBC count and specific populations percentages, as described by Hulstaert 185 

et al. (1994) and Guerrero et al. (2011). 186 

Statistical analysis 187 
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The asymmetrical distribution of the original data led to the logarithmic 188 

transformation of data from all variables, except from the ratios G/L and 189 

CD4+/CD8+, which were directly obtained from the counts (without logarithmic 190 

transformation). Data from transformed variables were then analysed using a 191 

mixed model (SAS Institute, 2002) including genetic type (H, LP, R), diet (AF, 192 

CS), physiological stages (1AI, 1W, 2P, 5W) and their interactions as fixed 193 

effects, and the permanent effect of each rabbit female (p) and the error term 194 

(e) as random effects. Random effects were assumed to have an average of 195 

zero and a variance of σp2 for permanent, and σe2 for the error term. This way, it 196 

is possible to model variance among animals by using a compound symmetric 197 

structure for the variance-covariance matrix of the residuals (R), when a 198 

repeated measure experiment is performed. As diets were offered from the first 199 

parturition on, when the effect of the diet was studied, first insemination data 200 

(previous control to diet offering) was removed from the analysis. 201 

  202 
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Results 203 

Table 2 shows the blood leukocyte population counts of all rabbit does, at the 204 

different physiological stages controlled from the first insemination to the fifth 205 

weaning. Lymphocyte populations at both weanings were characterised by 206 

lower counts of total, CD5+ and CD8+ (−19.8, −21.7 and −44.6%; P<0.05) and 207 

higher counts of monocytes and granulocytes (−49.2 and −26.2%; P<0.05) than 208 

in the other controls. Females had higher blood counts of lymphocytes B, CD8+ 209 

and CD25+ and lower of CD4+ at first than at fifth weaning (+55.6, +85.8, +57.5, 210 

−14.5%; P<0.05). Although no great differences were found for leukocyte 211 

counts between first AI and second parturition, CD25+ was higher for the latter 212 

(+64.8%; P<0.05). With reference to ratio G/L, it was higher at both weanings 213 

(on average 1.71 vs. 1.15 for the other controls; P<0.05), and the ratio 214 

CD4+/CD8+ was progressively increasing from the 1IA to the 5W (P<0.001). 215 

Regarding effect of genetic type in blood leukocyte counts (Table 3), LP 216 

rabbit does presented the average highest counts for total, B, CD5+ and CD8+, 217 

(+16.7, +31.8, +24.5 and +38.7, respectively; P<0.05). This scenario relates 218 

mainly to the higher count of these lymphocyte populations at the second 219 

parturition of LP females (Fig. 1a, 1b, 1c and 1e). However, R rabbit does 220 

showed the highest counts for granulocytes (+27.6%; P<0.05). Granulocyte 221 

counts were always the highest for R females (Fig. 1h), and although H females 222 

showed a higher monocyte count at 1AI, values for R females were greater from 223 

first to fifth weaning (Fig. 1g). Moreover, R animals showed the highest G/L 224 

ratio, due to their greater G/L value at the 5W (2.54 vs. 1.38 on average for the 225 

other genotypes; P<0.05) (Fig. 2a). In addition, H females presented the highest 226 

CD4+/CD8+ ratio at 5th weaning. Although no differences were observed at 1AI 227 
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(Fig. 2b), the CD4+/CD8+ ratio of H females increased progressively throughout 228 

the period of study, reaching the highest differences at 5W (9.17 vs. 6.16 for the 229 

other genotypes; P<0.05). Table 4 shows that the type of diet given during the 230 

reproductive life did not affect the leukocyte population counts. However, two 231 

interactions between the genetic type and the diet for total lymphocytes and 232 

granulocytes were observed. Genetic type did not affect total lymphocyte counts 233 

when fed with AF diet, but H rabbit does showed significantly lower counts 234 

when fed with CS diet (Fig. 3a). Regarding the granulocyte counts, the lowest 235 

values were obtained for LP females when animals were fed with AF and for H 236 

females when fed with CS (Fig. 3b).  237 
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Discussion 238 

The study of haematological parameters and lymphocyte subsets through flow 239 

cytometry analyses has been widely used to determine the physiological and 240 

pathological changes in the peripheral blood leukocyte subpopulations in 241 

different species. Specifically, in rabbits, there are several studies reporting 242 

these parameters as adequate indicators for the immunological state of animals 243 

of diverse ages and conditions: conventional or SPF animals, neonatal to 244 

pubescent rabbits, primiparous rabbit does and adult rabbits (Jeklova et al., 245 

2007; Jeklova et al., 2009; Guerrero et al., 2011).  246 

It is well established that leukocyte subpopulations vary with aging. At early 247 

stages, newborns start their life with a competent, but still naïve immune 248 

system, in which protection provided by the immune mechanisms and by 249 

transferred maternal antibodies plays an important role (Kampen et al., 2006). 250 

In rabbitry, the moment of first mating has frequently been identified as a crucial 251 

point in development of the young females. This is the last item of ‘pure’ data on 252 

the animal, a sign of the animal soma that is probably related to their productive 253 

potential. From this moment on, all their productive records will be conditioned 254 

by their reproductive history (Pascual et al., 2013), and specific immune 255 

responses will be developed over time against different infectious, 256 

environmental or productive challenges. Therefore, all results obtained in this 257 

study at 1W, 2P and 5W are compared to a reference sampling control set at 258 

the age of first mating (1AI). This scenario allows us to compare the evolution of 259 

animals throughout their reproductive life (from 1AI to 5W), housed, fed and 260 

bred in the same conditions, aiming to obtain specific, measurable information 261 

about the immunological and productive traits of the same group of animals in 262 
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certain crucial stages. Studies on the evolution of the immune system indicate 263 

that stress responses, immunity and inflammation are deeply interconnected 264 

and constitute an integrated defence network capable of coping with most 265 

stressors (Franceschi et al., 2000; Larbi et al., 2008). Even further, previous 266 

studies suggest that immune aging profiles described in laboratory and 267 

domestic mammals may generalise to more complex consequences and could 268 

develop fitness costs under natural conditions (Nussey, et al., 2012). 269 

As previously reported (Wells et al., 1999; Guerrero et al., 2011; Ferrian et al., 270 

2012), the present study evidences that leukocyte populations varied 271 

throughout the rabbit does’ productive cycle, reaching different levels at the four 272 

distinct control moments sampled. Therefore, it is worth discussing them one by 273 

one. Firstly, it is interesting to analyse the productive and reproductive 274 

conditions characterising each sampling moment. In that sense, animals at first 275 

weaning are influenced by great challenging needs for the production of milk 276 

and to be able to cope with their gestation, as they overlap both stages (milking 277 

and gestation). As a consequence, they increase their feed intake, and show a 278 

moderate level of mobilisation, similar to the observed in 1AI but lower than in 279 

2P (see results shown in the first paper of this same series, by Arnau-280 

Bonachera et al., 2017). In rabbit does, the risk of culling peaks during the two 281 

first lactations, especially at the end of pregnancy (Rosell and de la Fuente, 282 

2009). This period includes two of our moments of sampling: first weaning and 283 

second parturition. Other species, such as dairy cows, are also more vulnerable 284 

to infectious diseases around calving due to immune suppression during this 285 

period (Meglia et al., 2005). 286 
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In this sense, second parturition has been specifically described as a 287 

physiological state that is especially challenging for rabbit does during their 288 

reproductive life (Ferrian et al., 2012), as it is not only a reproductive challenge 289 

but also a crucial period of risk of infections and cellular and tissue damage. 290 

However, at this point LP females show higher counts for most lymphocyte 291 

populations (total, B, CD5+, CD4+ and CD8+), the significant increase in CD25+ 292 

(+64.8 %) being especially notable. All these changes may be related with the 293 

immune system being more capable of adapting to the challenges of the 294 

productive cycle in LP animals than in the other genetic types. 295 

Particularly, CD4+CD25+ is a population of regulatory T cells (Tregs) which are 296 

considered as T-activated cells, although there is still no clear consensus on the 297 

definition of Tregs. It is known that these cells are essential for maintaining 298 

peripheral tolerance, preventing autoimmune diseases and limiting chronic 299 

inflammatory diseases (Chen et al., 2016). These traits favour successfully 300 

confronting different challenging physiological stages. However, regulatory 301 

activity has also been described in T cells with low expression of CD25, which 302 

means that high expression of CD25 itself is not enough to characterise all 303 

Tregs (Dejaco et al., 2006). Therefore, other specific markers are being used to 304 

identify Tregs. In the last few years, FOXP3 has been established to be the 305 

most specific marker of Tregs (Sakaguchi, 2005). Unfortunately, in this study 306 

Tregs counts were determined by marking positive for CD25 T cells population, 307 

but FOXP3 should have been used for a more specific determination of Tregs 308 

prevalence. This fact is due to the limiting availability of commercial antibodies 309 

against FOXP3 suitable to be used in rabbits’ flow cytometry. 310 
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Following with the comparison between genetic lines at second parturition, it is 311 

worth to mention that, due to the increase in the number of lymphocytes but not 312 

of granulocytes, the G/L ratio was lower for LP animals. As numbers of 313 

neutrophils and lymphocytes oscillate in opposite directions under stressful 314 

conditions, researchers have often considered the ratio of one to the other as a 315 

composite measure of the stress response (Davis et al., 2008). G/L ratio is a 316 

stress indicator that is known to increase in the presence of various stressors, 317 

diseases or infections (Davis et al., 2008). In other species, and even in birds, it 318 

has also been shown that parents that make intense reproductive effort have 319 

high G/L values (Horak et al. 1998). Moreover, high G/L ratios have been 320 

associated in birds with susceptibility to infection (Al-Murrani et al., 2002) or low 321 

survival to the next breeding season (Kilgas et al., 2006). These associations 322 

can make G/L ratios valuable for predicting future problems in both populations 323 

and individuals. Although leukocyte profiles do not indicate the number of 324 

granulocytes or lymphocytes that are available in reserve in other body 325 

compartments, or how many would be released or redistributed in response to a 326 

stress or infectious agent (Davis et al., 2008), the fact that seems clear is that 327 

rabbit does from LP line reach the 2P in an immunologically less stressful 328 

situation than the other lines. 329 

Arnau-Bonachera et al. (2017) reported in the first paper of this series a higher 330 

mobilisation throughout the first reproductive cycle, reaching the 2P in better 331 

conditions and suffering less stress during the following cycle. In the same 332 

sense, the immunological data described in this work back up the hypothesis 333 

that animals from LP lines are more robust than the other genetic types, as they 334 

are able to adapt to reproductive challenges by using their body reserves more 335 
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accurately. Moreover, they seem to be able to manage their body reserves as if 336 

they were predicting future needs. In that sense, the metabolic profile of LP line 337 

in 2P is characterised by a higher level of glucose and a lower level of NEFAs, 338 

showing great differences in the ratio glucose/NEFAs when compared to H and 339 

R females at 2P. In fact, T lymphocytes specifically require glucose uptake for 340 

cell survival, size, activation and cytokine production, and they consume it at 341 

high rates in a function-dependent manner (Maclaver et al., 2008). The close 342 

association between glucose metabolism and lymphocyte function has been 343 

suggested to introduce the possibility of several pathologies resulting from the 344 

inability of these cells to meet their nutrient demands under a given condition 345 

(Wasinki et al., 2014). In this group of animals, the direct correlation between 346 

the level of glucose (Arnau-Bonachera et al., 2017a) and the number of 347 

lymphocytes is observed regardless of the genotype and the temperature 348 

(+0.23±0.11; P<0.05). Therefore, higher counts of total, CD5+ and CD8+ 349 

lymphocytes in LP females at 2P seems to be associated to the peak of glucose 350 

shown at that moment and not to any of the other factors included in Arnau-351 

Bonachera et al. (2017a). In other words, LP rabbit does managed to have 352 

higher levels of glucose available at the most challenging time of their 353 

reproductive life, which implies a guaranteed supply of nutrients for the 354 

activation and function of lymphocytes. This mechanism of adaptation may be 355 

suggested as one of the factors contributing to increase the robustness of these 356 

animals, which may consequently be likely to live longer, although longevity is 357 

not their criteria of selection. Our data reinforce the hypothesis that the animals 358 

from a line founded by screening for reproductive longevity (LP line), under 359 

normal favourable breeding conditions, develop a greater immunological ability 360 
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to confront reproductive challenges and to confer animals a more robust nature 361 

(Ferrian et al., 2012; García-Quirós et al., 2014). 362 

Regarding weaning, differences between lymphocyte populations from the first 363 

and the fifth weaning were detected. Taking into account that both sampling 364 

moments represent the same type of reproductive challenge (weaning), we 365 

hypothesised that the effect of the aging may be one of the main factors that 366 

caused these variations. Some changes regarding aging in the leukocyte 367 

populations have been described in other species. One of the most reported 368 

data items is the CD4+/CD8+ ratio, which in our study is decreased in animals at 369 

fifth weaning compared to first weaning, as it has been described as a normal 370 

effect of aging in other species (i.e.: mice, Callahan et al., 1993; cattle, Ayoub 371 

and Yang, 1996; humans, Castelo-Branco and Soveral, 2014). In this work, the 372 

H line showed the highest increase in the CD4+/CD8+ ratio at 2P, which can be 373 

considered as one of the signs related with an earlier aging of their immune 374 

system (see also the third paper of this same series, by Arnau-Bonachera et al., 375 

2017). 376 

In reference to the interaction between genetic type-diet and leukocyte 377 

populations, few remarkable data were found. The only statistically significant 378 

data observed were the decrease of total lymphocyte in H animals with CS diet, 379 

and the increase of granulocytes in LP females fed with CS diet. Both facts are 380 

probably related to the way of managing their body resources. H rabbit does are 381 

very dependent of their body condition, as they need to be able to feed very 382 

large litters. However, excessive fat deposits can also be counterproductive, as 383 

they diminish fertility and increase mortality (Arnau-Bonachera et al., 2017a and 384 

2017b). On the contrary, LP animals do not depend on their body condition as 385 
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much as H animals, mainly because they have developed several different 386 

mechanisms to modulate their responses and keep the energy homeostasis 387 

balance without reducing their fertility, while being able to maintain most of their 388 

litter alive until weaning. 389 

Despite the significant statistical nature of our data from the study, we are 390 

aware that sometimes the variation in the values of health and immunological 391 

traits combined with productive and reproductive parameters are difficult to 392 

interpret, as the meaningfulness of the changes in particular values is largely 393 

unknown. Moreover, it must be taken into account that aging is a complex and 394 

multi-factorial process, and defective immune responses in aged and 395 

multiparous animals are likely to be caused by the interaction of accumulated 396 

weaknesses throughout the immune system rather than to one individual aspect 397 

of a single immune cell type function (Plowden et al., 2004a and 2004b). 398 

However, the observed relationships, though suggestive, are not able to firmly 399 

indicate a causal link between some aspects of the immunological condition 400 

during the reproductive life of animals from three different genetic types. 401 

Therefore, further research would be important in order to establish a 402 

correlation between this type of data and future survival probability. In fact, 403 

similar hypotheses have been previously considered, suggesting that age-404 

dependent differences in immunity may become targets for natural selection in 405 

other species of mammals (Nussey et al., 2012).  406 

Conclusions 407 

The present study has evidenced that leukocyte populations vary throughout 408 

the rabbit doe’s productive cycle. According to our results, oscillations were 409 

different depending on the genetic line and the stage of the reproductive cycle. 410 
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However, the interaction between genetic type and diet did not cause important 411 

changes in leukocyte populations. Animals founded for high robustness (LP 412 

line) showed greater ability to adapt immunologically to the reproductive 413 

challenges than those selected by hyper-prolificacy (H line) or by growth rate (R 414 

line). Differences among lines were especially remarkable at a critical 415 

physiological moment such as the second parturition. Although genetic, 416 

management and nutritional strategies developed over the last few decades 417 

have brought valuable advances in the rabbit industry, it seems that they have 418 

also caused undesired consequences affecting, among other factors, the ability 419 

of the animals to maintain a stable and competent immunological status 420 

throughout their productive life.  421 
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Table 1 Monoclonal antibodies used for the flow cytometry analysis of this study 

Monoclonal 
antibody Iso. Spec. Cell labelling Clone Ref. Comp. 

Mouse anti-rabbit 
T lymphocytes: 
FITC1 

IgG1 CD5 T cell KEN-5 Kotani et al. 
(1993a) 

Abd 
Serotec 

Mouse anti-rabbit 
D-pan B IgM IgM B cell MRB143A 

Davis and 
Hamilton 
(2008) 

VMRD 
Inc. 

Mouse anti-rabbit 
CD4 IgG2a CD4 T cell subset KEN-4 Kotani et al. 

(1993a) 
Abd 

Serotec 

Mouse anti-rabbit 
D-CD8 IgG2a CD8 T cell subset ISC27A 

Davis and 
Hamilton 
(2008) 

VMRD 
Inc. 

Mouse anti-rabbit 
CD25 IgG2b CD25 Activated T 

cells 
KEI-

ALPHA1 
Kotani et al. 

(1993b) 
Abd 

Serotec 
Mouse anti-
human CD14: 
FITC 

IgG2a CD14 Monocytes & 
granulocytes TÜK4 Jacobsen et 

al. (1993) 
Abd 

Serotec 

Mouse anti-rabbit 
D-CD45 IgM CD45 All 

leukocytes ISC76A 
Davis and 
Hamilton 
(2008) 

VMRD 
Inc. 

Iso. = Isotype; Spec. = Specificity; Ref. = References; Comp. = Company 
1 Clon KEN-5 recognises rabbit T lymphocytes and immunoprecipitates. This antibody recognises 
rabbit CD5, but does not bind to rabbit CD5 transfectants. Known rabbit CD5 antibodies also 
show binding to most B lymphocytes, which are not labelled by this clone (information obtained 
from datasheet). 
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Table 2 Evolution of the leukocyte counts in the blood of rabbit females (least 
square mean; log10 106/L) 
 Stade (S)1   

 1AI 1W 2P 5W SEM2 P-value 

n 203 130 96 65   

Total lymphocytes (L) 3.47b 3.38a 3.47b 3.38a 0.018 <0.001 
Lymphocytes B 1.41bc 1.43c 1.31ab 1.24a 0.045   0.002 
Lymphocytes T CD5+ 3.30b 3.17a 3.27b 3.18a 0.019 <0.001 
CD4+ 3.04b 2.97a 3.07b 3.04b 0.019 <0.001 
CD8+ 2.69c 2.49b 2.56c 2.22a 0.025 <0.001 
CD25+ 1.10a 1.26b 1.31b 1.07a 0.040 <0.001 
Monocytes 2.37a 2.58b 2.44a 2.58b 0.026 <0.001 
Granulocytes (G) 3.41a 3.55b 3.46a 3.53b 0.021 <0.001 
G/L3 1.02a 1.65b 1.27a 1.76b 0.113 <0.001 
CD4+/CD8+3 2.46a 3.22b 3.43b 7.21c 0.174 <0.001 

n: Number of records per trait. 
1 Stade (S): 1AI: at the first artificial insemination; 1W: at the weaning of the first lactation; 2P: 
at the second parturition; 5W: at the weaning of the fifth lactation. 
a,b,c Means in a row not sharing superscripts significantly differ at P<0.05. 
2 Pooled standard error of means. 
3 G/L and CD4+/CD8+ ratios were directly obtained from the counts (no logarithmic 
transformation). 
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Table 3 Effect of genetic type on the leukocyte counts in the blood of rabbit 
females (least square mean; log10 106/L) 
 Genetic type (G)1 

SEM2 

P-value 

 H LP R G G×S3 

n 155 181 156    

Total lymphocytes (L) 3.39a 3.46b 3.43ab 0.016   0.010 0.005 
Lymphocytes B 1.30a 1.42b 1.31a 0.036   0.027 0.118 
Lymphocytes T CD5+ 3.22a 3.28b 3.19a 0.017 <0.001 0.006 
CD4+ 3.04b 3.07b 2.98a 0.017   0.002 0.016 
CD8+ 2.44a 2.58b 2.46a 0.024 <0.001 0.001 
CD25+ 1.20ab 1.12a 1.23b 0.033   0.052 0.111 
Monocytes 2.48ab 2.45a 2.55b 0.025   0.016 0.002 
Granulocytes (G) 3.45a 3.46a 3.57b 0.019 <0.001 0.530 
G/L4 1.35a 1.25a 1.69b 0.102   0.006 <0.001 
CD4+/CD8+4 4.98b 3.47a 3.86a 0.178 <0.001 <0.001 

n: Number of records per trait. 
1 Genetic type (G): line H, founded by litter size at birth and selected by litter size at weaning 
during 17 generations; line LP, founded by reproductive longevity criteria by selecting females 
from commercial farms that had a minimum of 25 parturitions with more than 7.5 kits born alive 
per parity and then selected by litter size at weaning for 7 generations; line R, founded and 
selected during 25 generations by average daily gain from the 4th to the 9th week of life. 
a,b,c Means in a row not sharing superscripts significantly differ at P<0.05. 
2  Pooled standard error of means. 
3  S: Stade (see Table 2). 
4 G/L and CD4+/CD8+ ratios were directly obtained from the counts (no logarithmic 
transformation). 
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Table 4 Effect of diet on the leukocyte counts in the blood of rabbit females 
(least square mean; log10 106/L) 

 Diet (D)1  P-value 

 AF CS SEM2 D  D×S3 G×D4 

n 222 211     

Total lymphocytes (L) 3.41 3.43 0.025 0.615 0.332 0.005 
Lymphocytes B 1.28 1.33 0.028 0.287 0.316 0.595 
Lymphocytes T CD5+ 3.22 3.22 0.015 0.976 0.276 0.066 
CD4+ 3.04 3.04 0.015 0.964 0.681 0.090 
CD8+ 2.42 2.44 0.020 0.576 0.403 0.259 
CD25+ 1.22 1.24 0.038 0.811 0.288 0.564 
Monocytes 2.58 2.53 0.022 0.193 0.639 0.110 
Granulocytes (G) 3.53 3.53 0.016 0.775 0.553 0.004 
G/L5 1.60 1.62 0.105 0.929 0.386 0.737 
CD4+/CD8+5 4.85 4.85 0.166 0.254 0.253 0.577 

n: Number of records per trait. 
1 Diet (D): CS, mainly based on cereal starch (247 g of starch and 21 g of ether extract (EE) 
per kg dry matter (DM)); AF, mainly based on animal fat (104 g of starch and 85 g of EE per 
kg DM). 
2 Pooled standard error of means. 
3 S: Stade (see Table 2).  
4 G: Genetic type (see Table 3). 
5 G/L and CD4+/CD8+ ratios were directly obtained from the counts (no logarithmic 
transformation). 
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Figure 1 Interaction Genetic type × Control for the (a) total lymphocytes (b) 536 
lymphocytes B (c) lymphocytes T CD5+, (d) CD4+, (e) CD8+, (f) CD25+, (g) 537 
monocytes, and (h) granulocytes counts in blood of reproductive rabbit females. 538 
Genetic type: (  line H, characterised by hyper-prolificacy;  line LP, 539 
characterised by functional hyper-longevity, and  line R, characterised by daily 540 
gain). a,b,c,d,e Means for a genetic type within a stade not sharing superscripts 541 
significantly differ at P<0.05. 542 

Figure 2 Interaction Genetic type × Control for the (a) ratio 543 
Granulocytes/Lymphocytes and (b) ratio CD4+/CD8+ in the blood of 544 
reproductive rabbit females. Genetic type: (  line H, characterised by hyper-545 
prolificacy;  line LP, characterised by functional hyper-longevity, and  line R, 546 
characterised by daily gain). a,b,c,d Means for a genetic type within a stade not 547 
sharing superscripts significantly differ at P<0.05. 548 

Figure 3 Interaction Genetic type × Diet for the (a) total lymphocytes and (b) 549 
granulocytes counts in blood of reproductive rabbit females. Genetic type: (  550 
line H, characterised by hyper-prolificacy;  line LP, characterised by functional 551 
hyper-longevity, and  line R, characterised by daily gain). Diet: CS, mainly 552 
based on cereal starch; AF, mainly based on animal fat. a,b,c Means for a 553 
genetic type within a diet type not sharing superscripts significantly differ at 554 
P<0.05. 555 
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