Document downloaded from:

http://hdl.handle.net/10251/144093

This paper must be cited as:

Sáez-Muñoz, M.; Bagán, H.; Tarancón, A.; García, JF.; Ortiz Moragón, J.; Martorell Alsina, SS. (03-2). Rapid method for radiostrontium determination in milk in emergency situations using PS resin. Journal of Radioanalytical and Nuclear Chemistry. 315(3):543-555. https://doi.org/10.1007/s10967-017-5682-3

The final publication is available at https://doi.org/10.1007/s10967-017-5682-3

Copyright Springer-Verlag

Additional Information

2	Rapid method for Radiostrontium determination in
3	milk in emergency situations using PSresin
4	Marina Sáez-Muñoz ¹ , Héctor Bagán ² , Alex Tarancón ^{2,3} , José F. García ² , Josefina Ortiz
5	¹ , Sebastián Martorell ¹
6	¹ Laboratorio de Radiactividad Ambiental, MEDASEGI Research Group, Universitat
7	Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
8	² Department of Chemical Engineering and Analytical Chemistry, University of
9	Barcelona, Diagonal 645, 08028 Barcelona, Spain
10	³ Serra-Húnter Program, Generalitat de Catalunya, Barcelona, Spain.
11	Corresponding author's e-mail: masaemuo@etsii.upv.es

13

14	Rapid method for Radiostrontium determination in
15	milk in emergency situations using PSresin
16	<u>Marina Sáez-Muñoz</u> ¹ , Héctor Bagán ² , Alex Tarancón ^{2,3} , José F. García ² , Josefina Ortiz
17	¹ , Sebastián Martorell ¹
18	¹ Laboratorio de Radiactividad Ambiental, MEDASEGI Research Group,
19	Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia,
20	Spain
21	² Department of Chemical Engineering and Analytical Chemistry, University of
22	Barcelona, Diagonal 645, 08028 Barcelona, Spain
23	³ Serra-Húnter Program, Generalitat de Catalunya, Barcelona, Spain.

24 Abstract

This study describes a new and rapid procedure for radiostrontium determination in milk 25 26 samples based on the use of plastic scintillation resins (PS resins). The proposed method reduces the time of analysis by at least two hours by combining separation and 27 measurement preparation into a single step and optimizing the pre-treatment steps. The 28 method is robust and reproducible, with good total recoveries (65% on average) and a 29 relative bias for total radiostrontium activity (89 Sr + 90 Sr) below 7%. The minimum 30 detectable activity for 100mL of milk sample measured for 60 minutes is about 0.34 Bq 31 L⁻¹. The proposed method can quantify radiostrontium content in 5 hours, which makes 32 it suitable for use in emergency situations. 33

34 Keywords

Plastic scintillation resins; Emergency situations; Radiostrontium; Milk samples; Rapidmethod

37 Introduction

In emergency situations, such as nuclear and radiological accidents, terrorist attacks using radiological dispersal devices (RDDs) or "dirty bombs", and improvised nuclear devices (INDs), numerous short- and long-lived radionuclides will be present, requiring rapid identification and quantification. Most γ -emitters are easily determined by direct γ measurement. However, the isolation of alpha and beta emitters is time-consuming although essential for their quantification. For this reason, there is a need to develop rapid analytical procedures for alpha and beta emitters.

Among pure-beta emitters, radiostrontium (⁹⁰Sr and ⁸⁹Sr) are hazardous radionuclides due 45 to their long half-life (90 Sr, T_{1/2}=28.79 years) and the high energy of the beta particles 46 emitted (⁹⁰Y, 2.28 MeV, from ⁹⁰Sr, 0.55 MeV; and ⁸⁹Sr, 1.50 MeV). In radiological 47 accidents only ⁹⁰Sr could be present, but ⁸⁹Sr and ⁹⁰Sr are both released in nuclear 48 accidents. Although the ⁸⁹Sr activity released is higher than ⁹⁰Sr activity, it decreases 49 faster due to its relatively short half-life ($T_{1/2}$ =50.56 days). For example, the estimation 50 range of the atmospheric release in the Fukushima accident was 0.04 - 13 PBq for ⁸⁹Sr, 51 and 0.003-0.14 PBq for ⁹⁰Sr [1]. The release was much higher in Chernobyl, 52 approximately 115 PBq of ⁸⁹Sr and 10 PBq of ⁹⁰Sr were released into the environment 53 [2]. Moreover, the ⁸⁹Sr/⁹⁰Sr activity ratio in Fukushima surface soil after the deposition 54 ranged from 6.5 to 15.7, with an average of 13.3 [3]. 55

56 Strontium isotopes in the environment can migrate through the food-chain into milk and 57 dairy products. They are absorbed into the human body due to their similar chemistry to 58 calcium and are especially dangerous to infants. For this reason, the European regulations 59 limit the total strontium isotopes, notably ⁹⁰Sr activity, in dairy products (included milk) 60 after a nuclear accident or any other radiological emergency to 125 Bq/kg, and 75 Bq/kg 61 for infant food [4].

Radiostrontium separation has always been a matter of concern and many alternatives have been proposed for its separation [5]. Several rapid methods of determining radiostrontium in milk samples, which differ mainly in their pre-treatment steps, have been developed in recent years [6-9]. Brunet. al. [6] and IAEA [9] recommended the use of cation exchange resins to remove fat and proteins from milk. Maxwell et al. [7] proposed a calcium phosphate precipitation, while Kabai et al. [8] reported the use of

trichloroacetic acid as acidifying agent for protein precipitation. In some methods, an oxalate [6, 8] or carbonate precipitation [9] is also employed to separate alkaline-earth elements from those of other groups before the isolation of strontium by extraction chromatography resins. Gas flow proportional counting and liquid scintillation counting can be used for measurement. The time needed for strontium determination is approximately 15 hours by the Brun method [6] and 7 - 8 hours for the Maxwell, Kabai and IAEA methods [7-9].

75 The time of analysis is the most important factor to be considered in an emergency. Although there are well-established procedures in the bibliography, in emergency 76 situations it is important to make the results available in the minimum time. This study 77 78 therefore mainly focused on the separation and measurement steps by plastic scintillation 79 resins (PS resins), which are plastic scintillation microspheres coated with a selective extractant for strontium, 4,4'(5')-di-t-butylcyclohexano-18-crown-6 (DtBuCH18C6) in 80 1-octanol. Their main advantage is that this resin can be directly measured with the 81 radionuclide immobilised onto the plastic microsphere by scintillation counting, which 82 permits the separation and measurement preparation steps to be combined in a single step; 83 thus achieving a considerable reduction in time, effort and reagents. A further advantage 84 85 is that, unlike Liquid Scintillation (LS), no mixed waste is generated.

In previous studies, Bagán et al. [10] employed PS resins to determine radiostrontium in aqueous samples with good results; relative bias for the determination of ⁹⁰Sr activity in drinking, sea and river waters was less than 4%. Plastic scintillation resins coated with different extractants have also been used for ²¹⁰Pb and ⁹⁹Tc determination [11, 12]. One of the goals of the present work was to adapt PS resins for application to strontium determination in milk samples in emergency situations, taking different aspects into account, such as the conditioning and washing media of the columns and matrix effects.

This paper proposes a novel procedure that reduces the time required to determine radiostrontium activity in milk samples by PS resins in emergency situations, in which the separation and measurement preparation stages are joined into a single step. The study focuses on adapting PS resins to milk samples, and on optimizing the pre-treatment steps of the procedure. Different types of milk samples were analysed by different proportions of ⁸⁹Sr and ⁹⁰Sr in order to verify the proposed method and calibration system. The method was also validated by a reference material.

100 Experimental

101 *Reagents and materials*

All the reagents used were of analytical or reagent grade. 4,4'(5')-di-t-butylcyclohexano18-crown-6 (DtBuCH18C6) (>95%), lithium nitrate (>99%), methanol (99%) and 1octanol (98%) were supplied by Sigma-Aldrich (St. Louis, USA); ammonia (25%),
tricloroacetic acid (>99.5%), oxalic acid and nitric acid (69%) were supplied by Panreac
(Barcelona, Spain) and strontium nitrate was supplied by Merck (Darmstadt, Germany).
Double deionised water was obtained from a Milli-Q Gradient A10 from Merck Millipore
(Darmstadt, Germany).

The plastic scintillation microspheres used had a median diameter of 60 µm and were composed of polystyrene, 2,5-diphenyloxazole and 1,4-Bis (5-phenyloxazol-2-yl).
PSresins were prepared by deposition of a solution of DtBuCH18C6 in 1-octanol on the surface of the plastic scintillation microspheres. Both plastic scintillation microspheres and PS resin were prepared following procedures previously described by the authors [10, 13].

115 A 90 Sr/ 90 Y active stock solution of 37.2(3) Bq.g⁻¹ containing Sr²⁺ (100 µg g⁻¹) and Y³⁺(100 µg g⁻¹) in 0.1 M HCl was prepared from a standard of 4.07(3) kBq.g⁻¹ supplied by 117 Amersham International (Buckinghamshire, England), and a 89 Sr active stock solution of 118 1.303(3) kBq.g⁻¹ containing Sr²⁺ (50 µg g⁻¹) in 0.1 M HCl was prepared from a standard 119 of 103(3) kBq.g⁻¹ supplied by Eckert Ziegler (Berlin, Germany).

For PS resin support, 2 mL solid-phase extraction cartridges (SPE cartridges) and frits
from Triskem International (Rennes, France) were used. The cartridges were measured
within 20 mL polyethylene vials from PerkinElmer (Waltham, Massachusetts, USA).

123 *Milk samples*

Most milk samples were purchased in the local supermarket, including cow's, goat's and sheep's milk. The influence of fat content was also studied with whole (3.6g/100mL), semi-skimmed (1.6g/100mL) and skimmed (0.3g/100mL) cow's milk. The type of milk

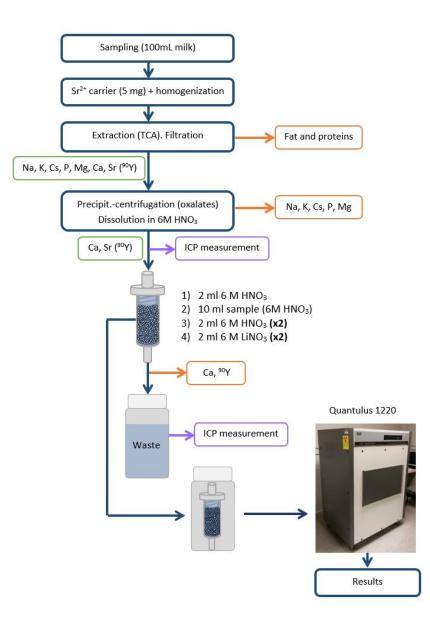
treatment was considered by the analysis of milk powder, ultra-high temperatureprocessed milk (UHT), pasteurized milk and raw milk.

A certified reference material (IAEA-473 milk powder) was analysed to validate themethod.

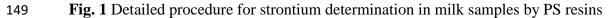
131 Equipment

A Quantulus 1220 liquid scintillation spectrometer (PerkinElmer) was used with logarithmic amplification, a multichannel analyser (MCA) (4096 channels distributed in four segments of 1024), and alpha/beta discrimination and background reduction by active guard.

Elementary analysis was performed on an Optima 8300 ICP-OES spectrometer(PerkinElmer) in the laboratories of the University of Barcelona.


138 PS resins were prepared with an R-210 Rotavapor from Buchi (Flawil, Switzerland).

A MS 3 digital vortex from IKA (Staufer, Germany) was used to homogeneize the PSresin in the cartridges.


A Beckman J2-HS (Indianapolis, Indiana, USA) was used to centrifuge 250 mL
centrifuge bottles.

143 *Procedure*

The procedure used to analyse milk samples is composed of four steps: elimination of fat
and protein; concentration of strontium and alkaline-earth elements; separation by PS
resin; and measurement in an LS counter. A complete scheme of the method is shown in
Fig. 1.

150 Sample preparation

A milk sample of 100 mL is analysed for radiostrontium determination after homogenization. An optimized amount of strontium carrier (as $Sr(NO_3)_2$ solution) is added in order to obtain the chemical yield in the separation. Some of the samples are also spiked with ⁹⁰Sr/⁹⁰Y and/or ⁸⁹Sr tracers for the validation of the procedure. The samples are then homogenized on a hot plate by stirring with a magnetic stirrer for 15 minutes.

The milk is acidified for protein denaturation by mixing with 20% 2,2,2-trichloroacetic acid (TCA) for 30 minutes, using the optimal ratio 1:1 (v/v) of TCA and milk sample. After mixing, the precipitated fat and proteins are filtered through a Whatman GF/C paper
filter (1.2 μm pore size) in a Büchner funnel.

Oxalate precipitation is used to separate strontium and other alkaline-earth metals from the alkali metals group. After heating, the optimized amount of 5 g of oxalic acid is added to the warm filtrate solution and mixed for 5 minutes. The pH is then adjusted to 5-6 with ammonia, and the precipitate formed is centrifuged at 5000 rpm for 15 min and dissolved in 10mL 6M HNO₃ with the aid of a hot water bath to facilitate dissolution. An aliquot of the sample is taken to determine the chemical yield in the pre-treatment step by measuring strontium content by ICP-OES.

Strontium isotopes (⁸⁹Sr and ⁹⁰Sr) are isolated from other interferents present in the milk 168 sample (mainly calcium and barium) and ⁹⁰Y (in case of ⁹⁰Sr presence) by plastic 169 scintillation resins (PS resins). After an optimization of the separation process, the 170 cartridge is conditioned with 2 mL 6M HNO₃ before loading the sample solution. The 171 resin is then rinsed with 2 mL 6M HNO₃ (2 times) to remove the main interferents. The 172 last rinse with 2 mL 6M LiNO₃ (2 times) is performed to avoid chemiluminiscence in the 173 174 measurement due to the presence of nitric acid in the cartridge. The flow rate is about 1 mL·min⁻¹ in all cases. The load sample and all the rinses are collected in a 50 mL 175 centrifuge tube and an aliquot is taken to measure the strontium concentration in the waste 176 by ICP-OES. The difference between the strontium content in the sample solution and the 177 178 waste gives the separation yield in the cartridge. Finally, the cartridge is placed in a 20 mL polyethylene vial and is directly measured in a Quantulus 1220 detector. 179

180 Measurement conditions

All the measurements were performed in the Quantulus detector with the low coincident bias and the multichannel analyser (MCA) in the 14C configuration. Counting times were 60 minutes (3 cycles of 20 minutes) for the blank and the active samples and 1 minute for the external standard gamma source. In all cases the cartridges were measured immediately after separation to avoid in growth of daughter radionuclides.

186 *Calibration*

Five water samples containing a known amount of 90 Sr (7.5 Bq) and five water samples containing a known amount of 89 Sr (0.5 Bq) were processed with PS resin and measured

in the scintillation counter for calibration of the detection efficiencies. In both cases the samples contained a variable amount of Sr^{2+} : 2.7, 3.6, 4.4, 5.3, 6.4 mg of Sr^{2+} in the case of the ⁹⁰Sr and 2.5, 3.3, 4.2, 5.0, 5.7 mg of Sr^{2+} for the ⁸⁹Sr samples.

192 With the results obtained three calibration parameters were determined:

• Efficiency of ⁹⁰Sr: mean of the detection efficiencies in the total window for the
samples that contain ⁹⁰Sr only.

• Efficiency of ⁸⁹Sr: mean of the detection efficiencies in the total window for the
samples that contain ⁸⁹Sr only.

Combined efficiency (⁹⁰Sr +⁸⁹Sr): mean of the detection efficiencies in the total
 window for all the calibration samples.

199 Activity determination

Total radiostrontium activity (90 Sr + 89 Sr) in the samples was calculated by the following expression:

202
$$A\left({}^{90}Sr + {}^{89}Sr\right) = \frac{net \ count \ rate \ in \ the \ total \ window}{Eff_{comb} \cdot R_1 \cdot R_2} \cdot 100$$
(1)

where Eff_{com} is the combined efficiency of ⁹⁰Sr and ⁸⁹Sr, R₁ being the pre-treatment recovery and R₂ the PS resin retention.

In the samples known not to contain ⁹⁰Sr or ⁸⁹Sr (i.e. the reference material) the activity of the radionuclide present in the sample can be calculated from its corresponding detection efficiency.

208 Data treatment

For the optimum visualization of the shape of the spectra obtained, the spectrum acquired for each measurement was smoothed using a Savitzky–Golay algorithm with an average window of 10 points for each side [14]. The normalized net spectrum was obtained by subtracting the spectrum of the equivalent blank solution and dividing the spectrum by the net count rate in the full window.

- Detection efficiency was calculated as the ratio between the net counts in the full windowand the activity passed through the PS resin.
- 216 The Standard External Quenching Parameter (SQP(E)) was calculated by the detector.
- 217 SQP(E) corresponds to the end-point channel that limits 99.5% of the total counts from
- the spectrum generated by the external gamma source (^{152}Eu) .

Pre-treatment recovery (R_1) was calculated from the percentage ratio between the total amount of Sr^{2+} contained in the sample after adding the Sr^{2+} carrier and the amount of Sr^{2+} contained in the solution before being passed to the PS resin. PS resin retention (R_2) was calculated from the percentage ratio between the amount of Sr^{2+} contained in the solution before being passed to the PS resin and the amount of Sr^{2+} contained in the wastes eluted from the SPE cartridge. Variability was obtained from the standard deviation of the triplicate samples values.

The detection limit was calculated with the blank samples following the equation proposed by Currie [15]:

228
$$LD = 2.71 + 4.65 \cdot \sqrt{B}$$
 (2)

229
$$MDA = \frac{LD}{Eff_{comb} \cdot R_1 \cdot R_2 \cdot V \cdot t}$$
 (3)

where LD is the detection limit (counts), B is the number of counts for the blank, V is the volume of sample (L), t is the counting time (s), Eff_{comb} is the combined detection efficiency of the standard solution, R_1 is the pre-treatment recovery, R_2 is the PS resin recovery and MDA is the minimum detectable activity (Bq L⁻¹).

234 **Results and Discussion**

The optimized procedure proposed here uses plastic scintillation resins to achieve rapid separation and measurement of radiostrontium in milk samples. However, this complex matrix needs a number of pre-treatment steps before the complete isolation of strontium by extraction chromatographic separation (with PS resins) and measurement by scintillation counting. The optimization of the pre-treatment steps and the separation steps with PS resins are described in the following sub-sections.

241 Optimization of separation with PS resin

In previous experiences in using PS resin to determine radiostrontium, some changes were proposed to adapt the established procedure for determining radiostrontium in water samples to the requirements of milk analysis in emergency situations, including:

- using smaller diameter PS resin to improve separation and detection efficiencies
 (from 190 μm to 60 μm);
- using 2 mL SPE-extraction cartridges in a vacuum box instead of adapting 6 mL
 polyethylene vials with a peristaltic pump to simplify chemical separation; plus
 using 1 g of PS resin instead of 3 g due to the limited amount of PS resin that can
 be placed in the column;
- replacing the LiNO₃ sample solution by HNO₃ because the oxalate precipitate is dissolved in nitric acid before passing through the PS resin (it is also cheaper and easier to obtain); reducing the conditioning and cleaning volumes from 5 and 20 mL to 2 and 8 mL, respectively, for faster separation time and less waste;
- optimizing the coating of the microsphere with extractant from 1:1/4 to 1:1/8;
- studying the capacity of the resin to determine the conditions in which it can deal with the new matrix composition and adapting the amount of Sr^{2+} carrier added to reduce errors due to the natural strontium in the sample.
- 259 Separation conditions and PS resin composition

260 The first modifications of the method evaluated were those related with the diameter of the PS resin and the separation devices (SPE-cartridge and vacuum box). The PS resins 261 used had a median diameter of 60 µm and were covered with the extractant at a ratio of 262 1:1/4 [10]. 1 g of PS resin was placed in a 2 mL commercial SPE-cartridge and separation 263 264 was performed in a commercial twelve-position vacuum box. In this first evaluation, 265 conditioning, sample loading and cleaning were identical to the previously used reference procedure (i.e. 5 mL of 6M LiNO₃ for conditioning, 10 mL of sample in 6M LiNO₃ and 266 267 four cleaning steps with 5 mL of 6M LiNO₃). The samples also contained 1 mg of stable 268 strontium, in the form of strontium nitrate, to check the chemical recovery.

The results obtained (see Table 1) show good detection efficiency and SQP(E) and slightly reduced recovery (from 100% to 92%), probably because in the previous

experience the amount of stable strontium added was less than 0.1 mg. The values
obtained confirm that the changes introduced (i.e. PS resin size, cartridge type and suction
device) do not significantly change the quality parameters of the separation and
measurement by PS resins.

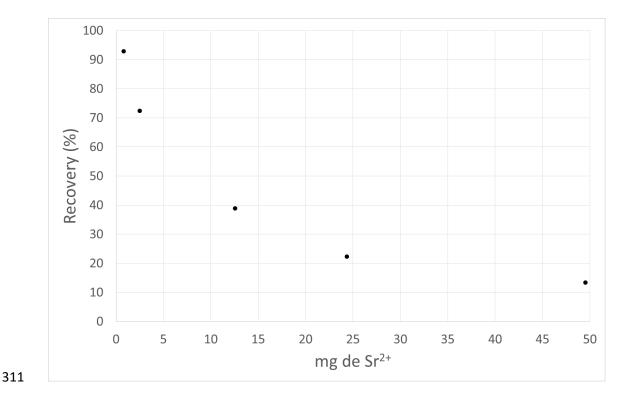
The second change evaluated was reducing the amount of cleaning solution from 20 mL to 8 mL to reduce the amount of waste generated and the time required for separation. The results were similar to those obtained with 20 mL of solution, showing that the volume can be reduced.

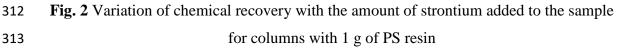
279 In the third change evaluated LiNO₃ was partially replaced by HNO₃ to reduce costs. Conditioning was done by 2 mL of 6M HNO₃, the sample medium was 6M HNO₃ and 280 the first two cleaning steps were done with HNO₃, while the last two were still done with 281 LiNO₃ to prevent proton chemiluminscence. In this case the samples contained ⁸⁹Sr 282 instead of ⁹⁰Sr. As in the previous cases, these modifications did not cause significant 283 variations in the recovery and measurement parameters. The detection efficiency of ⁸⁹Sr 284 seems to be slightly higher than that of ⁹⁰Sr due to its higher energy, although both 285 isotopes show similar high values. 286

The last variable evaluated was reducing the PSm impregnating extractant from 1:1/4 to 1:1/8 to evaluate the possibility of optimizing the microsphere coating. Again no significant differences regarding the previous conditions were observed.

Table 1 Values of recovery, detection efficiency and SQP(E) parameter for theoptimization of the separation and measurement of radiostrontium with PS resins

	Recovery (%)	Detection efficiency (%)	SQP(E)
Cleaning with 20 mL of LiNO ₃	92(2)	93(5)	796(3)
Cleaning with 8 mL of LiNO ₃	96(3)	93(3)	794(4)
Use of HNO ₃ instead of LiNO ₃	91(2)	96(2)*	791(7)
1:1/8 extractant proportion	93(2)	94(4)	785(3)
* ⁸⁹ Sr	I		


292


Due to the results obtained after testing all the modifications, the changes proposed wereconsolidated for the final separation procedure.

295 PS resin capacity

Stable strontium is added to the sample from the start of the analytical procedure to trace 296 297 the chemical recovery of the whole method. The quantity of stable strontium added to emergency milk samples can vary from 1 to 10 mg, according to the method used and 298 299 amount of milk measured. This quantity depends on two factors: the natural amount of strontium in milk and the effect of the amount of strontium in the chemical recovery. The 300 content of stable strontium in milk can vary according to the animal species and what it 301 has been fed, etc. As values of 0.5 to 3 mg \cdot L⁻¹ are common, the amount of strontium 302 carrier added should be high enough to avoid systematic errors due to the natural 303 strontium present in the sample. On the other hand, it has been reported that resin recovery 304 305 can decrease with the amount of strontium added, so that values between 1 and 50 mg 306 could be critical in this regard.

Fig. 2 shows the recovery values obtained when samples containing from 1 to 50 mg of stable strontium and ⁹⁰Sr were analysed with PS resin. It can be seen that recovery declines with increasing amounts of added stable strontium, showing that PS resin is not able to retain all the strontium loaded.

From the results obtained, 5 mg of stable strontium was adopted as a compromise value 314 of the stable carrier, since it is high enough to minimize errors due to potential high values 315 of natural strontium in milk and the chemical recovery is still high. In this situation, it can 316 be considered that analysing 100 mL of milk sample with a natural strontium 317 concentration of 1 mg L⁻¹ the systematic error will be lower than 1% and chemical 318 recovery will be higher than 50%. The quantity of PS resin added to the cartridge was 319 320 raised from 1 to 1.5 g to improve the column capacity and extend the exchange pathway though the cartridge. The final conditions and a comparison with the first study can be 321 322 seen in Table 2 [10].

Table 2 Modifications in the PS resin and separation conditions in comparison with theprevious work

Conditions	Previous work [10]	Present study
Diameter PSm	190 µm	60 µm
Support	6mL PE vial	2mL cartridge
Flux control	Peristaltic pump	Vacuum box
PS resin	3 g	1.5 g
PSm: extractant	1:1/4	1:1/8
Sr ²⁺ carrier	0.1 mg	5 mg
Separation conditions	1) 5mL 6M LiNO ₃	1) 2mL 6M HNO ₃
	2) 10mL sample (6M	2) 10mL sample (6M HNO ₃)
	LiNO ₃)	3) 2x 2mL 6M HNO ₃
	3) 4x 5mL 6M LiNO ₃	4) 2x 2mL 6M LiNO3

325 *Pre-treatment optimization*

After an exhaustive review of the literature, two pre-treatment steps were chosen: fat and proteins were removed by acidifying with trichloroacetic acid, and the subsequent concentration of strontium and other alkaline-earth metals (mainly calcium) were performed by oxalate precipitation. These steps are typically used for calcium determination in milk samples [16, 17] and were also used by Kabai et al. [8] for determining radiostrontium due to the similar behaviour of calcium and strontium. They were chosen for the present study because of their simplicity and effectiveness in emergencies. The pre-treatment steps were thus optimized, and different types of milkwere studied.

335 Fat and protein separation

The proposed method uses trichloroacetic acid (TCA) for fat and protein removal. The 336 337 influence of different volumes of TCA was evaluated for this step and also for oxalate precipitation. 5 mg of Sr^{2+} carrier were added to the sample, and Sr content was measured 338 in the aqueous solution after fat filtration and in the oxalate precipitate after dissolution 339 in 6M HNO₃. Table 3 shows strontium recoveries after both separation steps using 50 340 341 mL, 75 mL and 100 mL of TCA for 100 mL of whole cow's milk (three replicates were analysed in each case). Both steps achieved very high strontium recovery in all cases (96 342 -100%), showing that TCA volume does not greatly affect fat and protein separation or 343 oxalate precipitation. A ratio of 1:1 (v/v) (100 mL of TCA) was chosen for protein 344 denaturation, although lower volumes can also be used with good strontium recovery. 345

Table 3 Strontium recoveries after fat and protein separation and oxalate precipitation step using 50 mL, 75 mL and 100 mL trichloroacetic acid (TCA) (conditions: 5 mg of Sr^{2+} ; 1.5 g of PS resin; Cow's milk (whole); 5 g oxalic acid)

	Recovery (%) (SD)					
	50 mL TCA 75 mL TCA 100 mL TC					
Fat and protein step	97 (4)	98 (1)	101 (4)			
Oxalate precipitation step	96 (1)	98 (2)	100 (1)			

349 **Oxalate precipitation**

350 The alkaline-earth elements were separated from other groups by the same procedure, using oxalic acid as precipitation agent (in form of insoluble salts of strontium oxalate) 351 and different amounts of oxalic acid were evaluated. Table 4 shows the strontium 352 recovered after fat and protein separation and oxalate precipitation for 100 mL of whole 353 cow's milk. 50 mL of TCA were used in the first step, and 1 g, 2 g and 5 g of oxalic acid 354 were tested in the second. Three replicates were analysed in each case. High recoveries 355 were also obtained in all cases (97 - 99%) due to the oxalic acid content being higher 356 than strontium in the solution. In this step, as calcium and strontium oxalate salts 357

- 358 precipitate, 5 g of oxalic acid were used in the final procedure to avoid strontium losses
- in milk samples with high calcium content.
- 360 Table 4 Strontium recoveries after fat and protein separation and oxalate precipitation
- with 1 g, 2 g and 5 g oxalic acid (conditions: 5 mg of Sr^{2+} ; 1.5 g of PS resin; Cow's milk (whole); 50 mL of TCA)

	Recovery (%) (SD)				
	1 g oxalic acid 2 g oxalic acid 5 g oxalic				
Fat and protein step	99 (3)	98 (4)	97 (4)		
Oxalate precipitation step	94 (2) 96 (2) 96 (2)				

363 Influence of type of milk

Milk composition can change according to the type of animal involved and the fat content, 364 365 and different concentrations of calcium, potassium, magnesium, fat, etc. can affect strontium recovery in the separation. In order to study the influence of the pre-treatment 366 on the different steps, the procedure was tested for whole, semi-skimmed and skimmed 367 368 cow's milk, and also for cow's, goat's and sheep's milk. Three replicates were analysed in each case. Table 5 shows the strontium recoveries of cow's milk with different fat 369 contents. As the results are quite high in both steps in all the types, the pre-treatment 370 method is robust and can be used regardless of fat content. However, the higher the fat 371 concentration, the longer the time needed for filtration (from 15 to 30 minutes). 372

Table 5 Strontium recoveries for whole, semi-skimmed and skimmed cow's milk (conditions: 5 mg of Sr^{2+} ; 1.5 g of PS resin; 100 mL of TCA; 5 g oxalic acid)

	Recovery (%) (SD)				
	Whole Semi-skimmed Skimmed				
Fat and protein step	101 (4)	95	100 (1)		
Oxalate precipitation step	100 (1) 91 100 (1)				

376 Moreover, human consumption of milk is not limited to cow milk but also mainly goat and sheep milk. As exposed in literature, cow's, goat's and sheep's milk have different 377 378 compositions. For example, sheep's milk is higher in calcium, sodium and phosphorus 379 than the other types (see Table 7). Strontium concentration ranges from 0.5 to 2.7 mg L^{-} ¹, so that there is a less than a 5% relative error when 5 mg of stable Sr^{2+} are used in the 380 381 determination. Cow's, goat's and sheep's milk was analysed following the pre-treatment 382 procedure to evaluate the influence of different types of milk on the effectiveness of the proposed procedure (see table 6). Both fat and protein elimination were slightly reduced 383 in some types, although high recoveries were obtained in the oxalate precipitation step in 384 all cases, regardless of different calcium contents. 385

Table 6 Strontium recoveries for cow's milk (whole), sheep's and goat's milk (semiskimmed) (conditions: 5 mg of Sr^{2+} ; 1.5 g of PS resin; 75 mL of TCA; 5 g oxalic acid)

	Recovery (%) (SD)		
	Cow	Sheep	
Fat and protein step	98 (1)	86 (1)	78(1)
Oxalate precipitation step	98 (2)	102 (3)	94(2)

388 This shows that the pre-treatment procedure obtains good and reproducible results on 389 different milk types and fat contents.

390 *Elementary composition analysis.*

391 To complete the analysis of the pre-treatment steps and PS resin separation, the elementary composition was analysed after each step to prove the effectiveness of the 392 393 proposed separation scheme for the different elements; with special attention to potential active monovalents and divalents contained in milk, which are the main strontium 394 395 interferents. Differences in the composition of milk samples are mainly due to the type of 396 animal. Table 7 shows the average elemental composition of the different types (cow's, 397 sheep's and goat's milk) after fat and protein elimination, oxalate precipitate dissolution, 398 and in the PS resin waste after separation. The % interferent removal was calculated for 399 the oxalate precipitation step by comparing the elemental composition in this step with the fat elimination step. The % PS resin retention was also calculated taking into account 400

PS resin waste composition and the previous step. As can be seen, the oxalate 401 402 precipitation can remove monovalent elements (Na, K, P) and some soluble divalent elements, such as magnesium and zinc, with average values between 85 - 100%. Other 403 404 divalent elements totally or partially precipitate and form oxalate insoluble salts, such as calcium and barium, with an average of 6-10% and 42-48% elimination, respectively. 405 406 Regarding PS resin separation, the results show that only 13-16% of the remaining 407 calcium is retained in the cartridge and only 20-24% of barium is retained. This is a 408 smaller percentage than the initial and achieves the complete isolation of strontium from the rest of the interferents. 409

410 **Table 7** Elemental composition in different steps of the procedure for cow's, sheep's and

Milk		Ca	Mg	Zn	Na	Κ	Р	Ba
Cow	fat removed (mg L ⁻¹)	1073	101	4.88	460	1526	715	1.74
	Oxalate dissolved (mg L ⁻¹)	1014	1.5	0.52	15	9.0	4.2	0.90
	Oxalate removal (%)	5.6	98	89	96	99	99	48
	PS resin waste (mg L ⁻¹)	881	1.4	0.45	18	8.0	6.4	0.72
	PS resin retention (%)	13.1	-	12	-	-	-	20
Sheep	fat removed (mg L ⁻¹)	1746	158	6.4	1121	1127	1532	2.24
	Oxalate dissolved (mg L ⁻¹)	1599	2.9	0.97	46	10	14.9	1.28
	Oxalate removal (%)	8.4	98	85	96	99	99	42
	PS resin waste (mg L ⁻¹)	1347	2.3	0.80	49	8	15.3	0.98
	PS resin retention (%)	15	-	18	-	-	-	24
Goat	fat removed (mg L ⁻¹)	1255	129	4.7	627	1783	884	1.87
	Oxalate dissolved (mg L ⁻¹)	1125	1.7	0.47	22	14	5.6	1.07
	Oxalate removal (%)	10	99	89	97	99	99	43
	PS resin waste (mg L ⁻¹)	973	1.4	0.43	27	12	6.5	0.85
	PS resin retention (%)	14	_	9.2	-	-	-	20

411 goat's milk

413 *Calibration of*⁹⁰Sr and ⁸⁹Sr detection efficiency

414 Influence of sample matrix and sample pre-treatment on detection efficiency

Several of the samples used in the pre-treatment optimization were also analysed with PS 415 resin after being spiked with ⁹⁰Sr or ⁸⁹Sr to identify the parameters that could affect their 416 detection efficiencies. Fig. 3 shows the spectrum of ⁸⁹Sr obtained from cow's, goat's and 417 sheep's milk; whole, semi-skimmed and skimmed cow's milk with different fat contents; 418 samples treated with different amounts of oxalic acid (1 g and 2 g) and samples treated 419 with different amounts of TCA (75 mL and 100 mL). The spectra obtained were always 420 in the same position, which shows the absence of any quenching effect that could 421 422 influence detection efficiency.

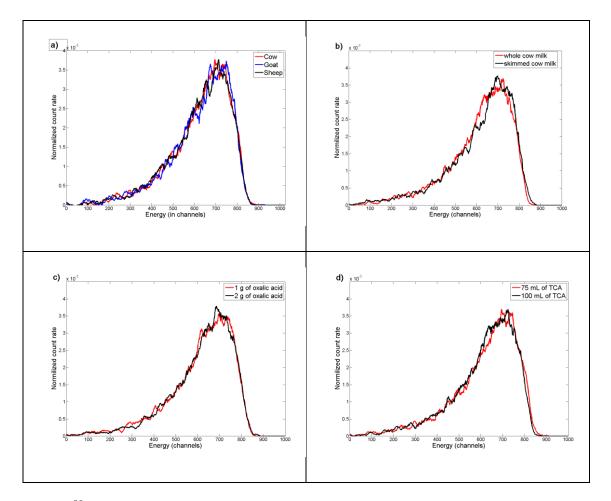
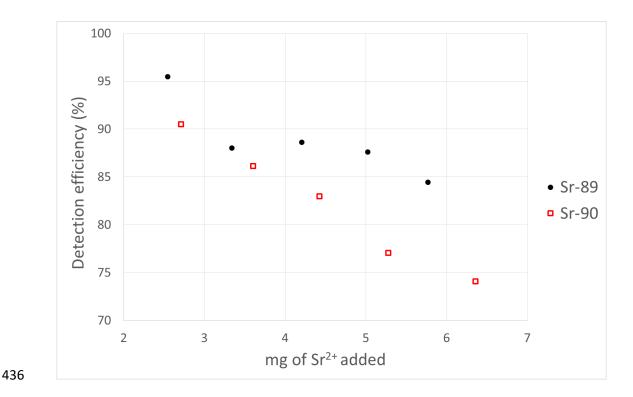



Fig. 3 ⁸⁹Sr of milk sample measured with PS resins. a) cow's, goat's and sheep's milk
samples; b) whole, semi-skimmed and skimmed cow's milk sample; c) cow's milk
sample pretreated with 1 and 2 g of oxalic acid; d) cow's milk sample pretreated with 75
and 100 mL of TCA

The mean values of the quenching parameter (SQP(E)), ⁹⁰Sr detection efficiency and ⁸⁹Sr
detection efficiency were 786(6) (n=30), 86(6)% (n=11) and 91(6)% (n=11), respectively.
An inspection of the values obtained for the different parameters evaluated (i.e. animal,
fat content, industrial pre-treatment, TCA amount used and quantity of oxalic acid) do
not show any correlation between these parameters and detection efficiency.

432 ⁹⁰Sr and ⁸⁹Sr detection efficiency calibration

To calibrate ⁹⁰Sr and ⁸⁹Sr detection efficiencies five water samples containing between 2
and 6 mg of stable strontium and ⁹⁰Sr or ⁸⁹Sr were analysed. Fig.4 shows the values of
detection efficiency obtained.

437 Fig. 4 Values of detection efficiency for ⁹⁰Sr and ⁸⁹Sr in samples containing a variable
438 amount of Sr²⁺

From the values obtained (Fig. 4), the detection efficiency is seen to drop for ⁹⁰Sr and a linear correlation can be applied. This is not so evident in the case of ⁸⁹Sr, in which the drop is not so clear, probably because of the uncertainty associated with the experimental process being in the same order of the variation of the efficiency in the stable strontium range studied. On the other hand, values of SQP(E) do not show any trend and the mean values are very similar to those obtained by varying sample matrix and sample pre-

treatment. If the value of mean detection efficiencies for 90 Sr and 89 Sr are calculated, they are found to be similar to those of the pre-treatment: 82(7) for 90 Sr and 89(4) for 89 Sr.

Several calibration procedures have been developed for quantifying mixtures of 447 radionuclides and, in the specific case of ⁹⁰Sr and ⁸⁹Sr mixtures, several windows systems 448 and deconvolution methods combining one or more than one measurement are described 449 in the literature [18-21]. Since our aim was to develop a fast and easy method of analysing 450 the risk associated with radiostrontium (90 Sr + 89 Sr) in milk samples in cases of 451 emergency, and since the differences between ⁹⁰Sr and ⁸⁹Sr efficiencies are not important, 452 the combined detection efficiency of 86(6) obtained from the mean of all the calibration 453 sample values was applied. This combined detection efficiency value gives the total 454 amount of radiostrontium (89 Sr + 90 Sr). However, the 89 Sr or 90 Sr detection efficiency 455 values can be used for samples with only one known isotope present. 456

457 **Table 8** Relative bias in the determination of radiostrontium $(^{89}Sr + ^{90}Sr)$ in a water 458 sample

Ratio ⁸⁹ Sr/ ⁹⁰ Sr	Relative bias 89 Sr + 90 Sr (%)
1:1	1.4
2:1	5.3
1:2	5.9

The calibration procedure was validated by the quantification of three water samples spiked with ⁸⁹Sr and ⁹⁰Sr at ratios of (1:1; 2:1 and 1:2). The deviations obtained in the quantification of total radiostrontium activity (⁸⁹Sr + ⁹⁰Sr) are shown in Table 8. The relative bias of total radiostrontium are in all three cases less than 10%, so that the approach can be used to determine ⁸⁹Sr + ⁹⁰Sr.

464 *Validation of the method*

The final procedure was tested with different types of milk samples: different fat content (whole, semi-skimmed and skimmed), treatment (UHT, powdered, pasteurized and raw milk) and animal species (cow, sheep and goat). A total of 21 samples were analysed, 5 of which were blanks and 16 were spiked in the laboratory with certified standards of ⁸⁹Sr

and 90 Sr. Two samples were spiked only with one standard, and in the others, different ratios of 89 Sr/ 90 Sr were considered to determine the robustness of the method. As it is known that the amount of 89 Sr release to the environment after a nuclear emergency is higher than 90 Sr, 89 Sr/ 90 Sr ratios of 1:1, 2:1 and 10:1 were tested. The highest activity considered was 125 Bq/L, since it is the limit for milk and dairy products in the European regulations [4].

Table 9 shows strontium recoveries after the pre-treatment step and strontium retentions
in PS resin. The total recovery is obtained by multiplying both values. As can be seen,
pre-treatment recoveries are high, ranging from 87 to 96%, and the average value is 93%
with a relative standard deviation of 4%. Strontium retention in PS resin ranges between
64 to 72% because of the capacity of the resin, with an average value of 70% (6% RSD).
This shows that good strontium recoveries can be obtained for emergency situations, with
an average total recovery of 65% (7% RSD).

482	Table 9 Strontium recoveries for different types of milk analysed with the procedure
483	proposed.

True of mills	Deference	Pre-treatment	PS resin	Total
Type of milk	Reference	Recovery (%)	Retention (%)	Recovery (%)
Cow/whole/UHT	M1 - M7	93.0 (2.9)	69.1 (2.0)	64.3 (3.4)
Cow/semi-skimmed/UHT	M8	86.5	71.7	62.0
Cow/skimmed/UHT	M9	90.2	71.1	64.1
Cow/whole/powder	M10 - M11	95.3 (1.3)	68.3 (0.5)	65.1 (1.4)
Cow/whole/pasteurized	M12	94.8	68.2	64.7
Goat/whole/raw	M13	94.0	70.8	66.6
Sheep/semi-skimmed/UHT	M14 - M17	93.6 (6.1)	64.3 (2.7)	60.3 (6.0)
Goat/semi-skimmed/UHT	M18 - M21	96.2 (2.7)	69.6 (1.8)	66.9 (3.1)
Average total samples		93.3 (3.7)	69.7 (4.3)	65.0 (4.5)

Radiostrontium activities were calculated applying the value of combined detection efficiency. Table 10 shows the relative bias for total radiostrontium activity (89 Sr + 90 Sr) calculated for different spiked milk samples. Blank count rates were subtracted from the

487 sample count rate in the activity calculation. The values of the blank samples for blank

cow's (M1, M2, M10), sheep's (M14) and goat's milk (M18) range from 1.8 to 3 cpm in

- the total window (1 1024). The samples spiked with one standard (M3, M4) obtained a
- 490 relative bias below 7 % for 90 Sr and 89 Sr, respectively, and below 5% if the corresponding
- detection efficiency value is used. In the samples spiked with both isotopes, total relative
- 492 bias was below 7% in all cases except one and in all the 89 Sr/ 90 Sr ratios studied.

493	Table 10 Relative bias obtained for different spiked milk samples analysed with the
494	procedure and calibration system proposed

	Type of milk	Activity ⁸⁹ Sr (Bq/L)	Activity ⁹⁰ Sr (Bq/L)	Ratio ⁸⁹ Sr/ ⁹⁰ Sr	Relative bias ⁸⁹ Sr + ⁹⁰ Sr (%)
M3	Cow/whole/UHT	-	27	0:1	-2.2 (1.9*)
M4	Cow/whole/UHT	15	-	1:0	6.6 (3.0*)
M5	Cow/whole/UHT	27	27	1:1	-1.9
M8	Cow/semi-skimmed/UHT	27	27	1:1	4.5
M9	Cow/skimmed/UHT	27	27	1:1	6.1
M11	Cow/whole/powder	27	27	1:1	1.7
M12	Cow/whole/pasteurized	27	27	1:1	2.6
M13	Goat/whole/raw	27	27	1:1	-1.9
M15	Sheep/semi-skimmed/UHT	27	27	1:1	7.0
M19	Goat/semi-skimmed/UHT	27	27	1:1	5.2
M6	Cow/whole/UHT	27	13.5	2:1	1.6
M15	Sheep/semi-skimmed/UHT	27	13.5	2:1	20.2
M19	Goat/semi-skimmed/UHT	27	13.5	2:1	6.5
M7	Cow/whole/UHT	125	13.5	10:1	-4.1
M17	Sheep/semi-skimmed/UHT	125	13.5	10:1	-3.9
M21	Goat/semi-skimmed/UHT	125	13.5	10:1	-4.1

495 *calculated using the corresponding detection efficiency (⁹⁰Sr or ⁸⁹Sr)

496 A certified reference material (IAEA-473 milk powder) was also analysed to validate the

497 method. The sample contained 90 Sr, 134 Cs and 137 Cs, with 197.2, 158 and 212 Bq kg⁻¹ of

498 dry mass, respectively, at the time of separation. As can be seen in Table 11, pre-treatment

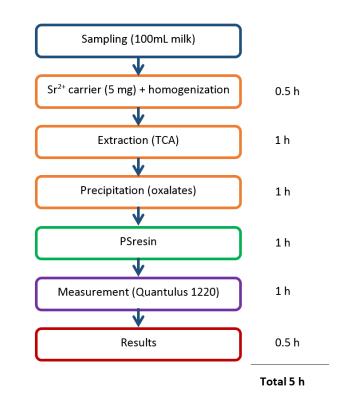
499 recoveries and PS resin retentions are high, obtaining a good total strontium recovery. In

- addition, relative bias for 90 Sr is below 7% in the three replicates performed and below
- 501 3% if the ⁹⁰Sr detection efficiency is used, which confirms the validity of the method.
- Table 11 Strontium recoveries (%), ⁹⁰Sr experimental activity (Bq kg⁻¹ dry mass) at the
 time of separation, and relative bias (%) obtained

Type of	Pre-treatment	PS resin	Total recovery	Activity ⁹⁰ Sr+ ⁸⁹ Sr	Relative bias
milk	recovery (%)	retention (%)	(%)	(Bq/kg dry mass)	⁹⁰ Sr+ ⁸⁹ Sr (%)
MR1	88.6	79.6	70.5	207.0 (198.0*)	-3.5 (0.4*)
MR2	93.1	78.7	73.3	204.6 (195.7*)	-4.7 (-0.8*)
MR3	92.1	76.7	70.6	203.3 (194.4*)	-5.2 (-1.4*)

⁵⁰⁴ *calculated using the corresponding detection efficiency

505 *Comparative evaluation of the procedure*


506 In order to compare the proposed procedure with other rapid methods of determining 507 radiostrontium in milk samples in the literature, their main characteristics are shown in 508 Table 12. The recoveries range between 62 and 94% for the different separation techniques. Good results were also obtained in the present study, with an average value 509 510 of 65% and the lowest variability of all the methods considered. As in the present study, 90 Sr + 89 Sr activity relative bias was below 15% in all cases. Minimum detectable activity 511 ranges between 0.1 and 5 Bq L⁻¹ according to measurement technique, sample volume 512 and counting time, while the proposed method achieves an MDA of 0.34 Bq L^{-1} , which 513 is suitable for emergencies. 514

515 The response time is the decisive factor to consider in a rapid method. The fastest methods in the literature need 7 - 8 hours to obtain a reliable result on radiostrontium activity, 516 while the method proposed here reduces the analysis time to only 5 hours. Fig.5 shows 517 the necessary length of each step in the procedure. The improved time is mainly due to 518 519 the separation step with PS resin, which usually requires 2 or 3 hours to separate and prepare the sample for measurement. However, PS resin only needs 1 hour because the 520 cartridges can be directly measured in a 20 mL polyethylene vial. This step is also easier 521 to perform than in other methods. 522

Table 12 Characteristics of different rapid methods for radiostrontium determination in	
--	--

524 milk samples

Procedure	Sample	Sr ²⁺ carrier	Recovery	Measurement	Relative Bias	MDA	Time
Procedure	(L)	(mg)	% (SD)	Weasurement	⁹⁰ Sr % (SD)	(Bq L ⁻¹)	(h)
Brun et al., 2002 [6]	0.5	10	62.2 (6.8)	Gas Flow Proportional Counting	-1.44 (5.26)	0.09	14 - 15
Maxwell et al., 2009 [7]	0.1	4.19	75.1 (17.0)	Gas Flow Proportional Counting	0.52 (5.70)	0.5	7 – 8
Kabai et al., 2011 [8]	0.1	10	93.5 (6.6)	LSC	-	0.8	7 – 8
IAEA, 2013 [9]	0.25	10	70 - 75	LSC	<15%	2 - 5	7-8
This study	0.1	5	65.0 (4.5)	Plastic Scintillation Counting	3.97 (0.96)	0.34	5

526

Fig. 5 Analysis time of the proposed procedure for radiostrontium determination in milk
 samples in emergency situations

529 **Conclusions**

A new and rapid method is proposed for radiostrontium determination in milk samples by plastic scintillation resins (PS resins). This procedure combines the separation and measurement preparation steps to reduce manpower and reagents and avoid the production of mixed waste. The method has been shown to be faster than others in the literature, the time necessary for complete radiostrontium separation and quantification being only 5 hours.

After optimization of the pre-treatment and separation steps with PS resins, the procedure described here obtains good reproducible total recoveries (65.0 (4.5) % on average) for different types of milk (fat content, animal species, treatment, etc.). Relative bias for total radiostrontium activity (89 Sr + 90 Sr) was below 7% in all the analyses except one and all the 89 Sr/ 90 Sr ratios studied (1:1, 2:1 and 10:1). The minimum detectable activity of 100mL of milk sample measured in 60 minutes is about 0.34 Bq L⁻¹. 542 The proposed procedure has thus been shown to be suitable for determining543 radiostrontium in emergency situations.

544 Acknowledgements

545 The authors are grateful to the Spanish Ministerio de Economia y Competitividad

546 (MINECO) for financial support, under CTM2014-02020 and the Catalan Agència de

547 Gestió d'Ajuts Universitaris i de Recerca (AGAUR) for financial support, under 2014-

548 SGR-1277. We should also like to thank the Universitat Politècnica de València for

549 finantial support under the "Programa propio para la Formación de Personal

550 Investigador (FPI) de la UniversitatPolitècnica de València - Subprograma 1".

551 **References**

International Atomic Energy Agency (2015) The Fukushima Daiichi Accident,
 Technical Volume 4, Radiological Consequences, IAEA, Vienna

International Atomic Energy Agency (2006) Environmental Consequences of the
 Chernobyl Accident and their Remediation: Twenty Years of Experience, Report of the
 UN Chernobyl Forum Expert Group "Environment", Radiological Assessment Reports
 Series No. 8, IAEA, Vienna

3. Povinec PP, Hirose K, Aoyama M (2013) Fukushima Accident: Radioactivity Impact
on the Environment, Elsevier, China

4. Council Regulation (Euratom) 2016/52 of 15 January 2016 laying down maximum
permitted levels of radioactive contamination of food and feed following a nuclear
accident or any other case of radiological emergency, and repealing Regulation (Euratom)
No 3954/87 and Commission Regulations (Euratom) No 944/89 and (Euratom) No
770/90

565 5. Vajda N, Kim CK (2010) Determination of radiostrontium isotopes: A review of
analytical methodology, Appl Radiat Isot 68:2306–2326

- 6. Brun S, Bessac S, Uridat D, Boursier B (2002) Rapid method for the determination of
- radiostrontium in milk, J Radioanal Nucl Chem Vol. 253, No. 2:191–197
- 7. Maxwell SL, Culligan BK (2009) Rapid method for determination of radiostrontium
 in emergency milk samples, J Radioanal Nucl Chem Vol. 279, No.3:757–760

8. Kabai E, Hornung L, Savkin BT, Poppitz-Spuhler A, Hiersche L (2011) Fast method
and ultra fast screening for determination of ⁹⁰Sr in milk and dairy products, Sci Total
Environ 410-411:235–240

574 9. International Atomic Energy Agency (2013) Rapid Simultaneous Determination of ⁸⁹Sr

575 and ⁹⁰Sr in Milk: a Procedure Using Cerenkov and Scintillation Counting, Analytical

576 Quality in Nuclear Applications No. IAEA/AQ/27, IAEA, Vienna

- 10. Bagán H, Tarancón A, Rauret G, García J.F (2011) Radiostrontium separation and
 measurement in a single step using plastic scintillators plus selective extractants.
 Application to aqueous sample analysis, Anal Chim Acta 686:50–56
- 11. Barrera J, Tarancón A, Bagán H, García JF (2016) A new plastic scintillation resin
 for single-step separation, concentration and measurement of technetium-99, Anal Chim
 Acta 936:259-266
- 12. Lluch E, Barrera J, Tarancón A, Bagán H, García JF (2016) Analysis of ²¹⁰Pb in water
 samples with plastic scintillation resins, Anal Chim Acta 940:38-45.
- 13. Santiago L, Tarancón A, García JF (2016) Influence of preparation parameters on the
- synthesis of plastic scintillation microspheres and evaluation of sample preparation, Adv
 Powder Technol, 27, 4:1309-1317
- 14. Savitzky A, Golay MJE (1964) Smoothing and Differentiation of Data by Simplified
 Least-Squares Procedures. Anal Chem 36:1627–1639
- 590 15. Currie LA (1968) Limits for qualitative detection and quantitative determination.
- 591 Application to radiochemistry, Anal Chem 40 (3):586–593
- 592 16. UNE 34829:1983, Determination of the calcium content of milk

- 17. ISO 12081:2010, IDF 36:2010, Milk Determination of calcium content Titrimetricmethod
- 18. Heckel A, Vogl K (2009) Rapid method for determination of the activity
 concentrations of ⁸⁹Sr and ⁹⁰Sr, Appl Radiat Isot 67:794–796
- 597 19. Kabai E, Savkin B, Mehlsam I, Poppitz-Spuhler A (2017) Combined method for the
 598 fast determination of pure beta emitting radioisotopes in food samples, J Radioanal Nucl
 599 Chem. 311:1401–1408
- 20. Eikenberg J, Beer H, Rüthi M, Zumsteg I, Vetter A (2005) Precise determination of
- ⁸⁹Sr and ⁹⁰Sr/⁹⁰Y in various matrices: the LSC 3-window approach, LSC2005, Advances
- 602 in Liquid Scintillation Spectrometry, Radiocarbon, AZ, USA, pp. 237–249
- 603 21. Kim CK, Al-Hamwi A, Toervenyi A, Kis-Benedek G, Sansone U (2009) Validation
- of rapid method for the determination of radiostrontium in milk, Appl Radiat Isot 67:786–
- 605 793