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Abstract: In this manuscript, we propose several iterative methods for solving nonlinear equations
whose common origin is the classical Chebyshev’s method, using fractional derivatives in their
iterative expressions. Due to the symmetric duality of left and right derivatives, we work with
right-hand side Caputo and Riemann–Liouville fractional derivatives. To increase as much as
possible the order of convergence of the iterative scheme, some improvements are made, resulting in
one of them being of 3α-th order. Some numerical examples are provided, along with an study of the
dependence on initial estimations on several test problems. This results in a robust performance for
values of α close to one and almost any initial estimation.

Keywords: nonlinear equations; Chebyshev’s iterative method; fractional derivative; basin of
attraction

1. Introduction

The concept of fractional calculus was introduced simultaneously with the development of
classical one. The first references date back to 1695, the year in which Leibniz and L’Hospital came up
with the concept of semi-derivative. Other researchers of the time were also interested in this idea,
such as Riemann, Liouville, or Euler.

Since their early development in the XIX-th century until nowadays, fractional calculus has
evolved from theoretical aspects to the appearance in many real world applications: mechanical
engineering, medicine, economy, and others. They are frequently modeled by differential equations
with derivatives of fractional order (see, for example [1–4] and the references therein).

Nowadays, fractional calculus has numerous applications in science and engineering.
The fundamental reason for this is the greater degree of freedom of fractional calculation tools
compared to classical calculation ones. This makes it the most suitable procedure for modeling
problems whose hereditary properties must be preserved. In this sense, one of the most significant
tools of fractional calculation is the fractional (integral) derivative.

Many times, these kinds of problems are related with systems of equations, that can be nonlinear
if it is the differential equation. So, it is not strange to adapt iterative techniques for solving nonlinear
equations by means of fractional derivatives of different orders, and see which is the resulting effect
on the convergence. This has been studied in some previous works by Brambila et al. [5] holding
the original expression of Newton’s iterative method and without proving the order of convergence.
In [6], a fractional Newton’s method was deduced to achieve 2α-th order of convergence and showing
good numerical properties. However, it is known (see for example the text of Traub [7]) that in
point-to-point methods to increase the order of the iterative methods implies to add functional
evaluations of higher-order derivatives of the nonlinear function. Our starting question is: how
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affects this higher-order derivative when it is replaced by a fractional one to the global order of
convergence of the iterative method?

The aim of this work is to use the Chebyshev’s method with fractional derivative to solve f (x) = 0,
f : D ⊆ R→ R. Let us consider x̄ ∈ R as the solution of the equation f (x) = 0, such that f ′(x̄) 6= 0.
First of all, we remind the standard Chebyshev’s method:

xk+1 = xk −
(

1 +
1
2

L f (xk)

)
f (xk)

f ′(xk)
, k = 0, 1, . . . (1)

being L f (xk) =
f (xk) f ′′(xk)

f ′(xk)2 , known as logarithmic convexity degree. Then, we will change the first

and second order integer derivatives by the notion of fractional derivative and see if is the order of
convergence of the original method is held.

Now, we set up some definitions, properties and results that will be helpful in this work (for more
information, see [8] and the references therein).

Definition 1. The gamma function is defined as

Γ(x) =
∫ +∞

0
ux−1e−udu,

whenever x > 0.

The gamma function is known as a generalization of the factorial function, due to Γ(1) = 1
and Γ(n + 1) = n!, when n ∈ N. Let us now see the notion of fractional Riemann-Liouville and
Caputo derivatives.

Definition 2. Let f : R→ R be an element of L1([a, x]) (−∞ < a < x < +∞), with α ≥ 0 and n = [α] + 1,
being [α] the integer part of α. Then, the Riemann–Liouville fractional derivative of order α of f (x) is defined
as follows:

(
Dα

a+
)

f (x) =


1

Γ(n− α)

dn

dxn

∫ x

a

f (t)
(x− t)α−n+1 dt, α /∈ N,

dn−1 f (x)
dxn−1 , α = n− 1 ∈ N∪ {0}.

(2)

Let us remark that definition (2) is consistent if the integral of the first identity in (2) is n-times
derivable or, in another case, f is (n− 1)-times derivable.

Definition 3. Let f : R −→ R be an element of C+∞([a, x]) (−∞ < a < x < +∞), α ≥ 0 and n = [α] + 1.
Thus, the Caputo fractional derivative of order α of f (x) is defined as follows:

(
CDα

a

)
f (x) =


1

Γ(n− α)

∫ x

a

dn f (t)
dtn

dt
(x− t)α−n+1 , α /∈ N,

dn−1 f (x)
dxn−1 , α = n− 1 ∈ N∪ {0}.

(3)

In [9], Caputo and Torres generated a duality theory for left and right fractional derivatives,
called symmetric duality, using it to relate left and right fractional integrals and left and right fractional
Riemann–Liouville and Caputo derivatives.

The following result will be useful to prove Theorem 4.
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Theorem 1 ([8], Proposition 26). Let α ≥ 0, n = [α] + 1, and β ∈ R. Thus, the following identity holds:

Dα
a+(x− a)β =

Γ(β + 1)
Γ(β + 1− α)

(x− a)β−α. (4)

The following result shows a relationship between Caputo and Riemann–Liouville
fractional derivatives.

Theorem 2 ([8], Proposition 31). Let α /∈ N such that α ≥ 0, n = [α] + 1 and f ∈ L1([a, b]) a function
whose Caputo and Riemann-Liouville fractional derivatives exist. Thus, the following identity holds:

CDα
a f (x) = Dα

a+ f (x)−
n−1

∑
k=0

f (k)(a)
Γ(k + 1− α)

(x− a)k−α, x > a. (5)

As a consequence of the two previous results, we obtain that

CDα
x0
(x− x0)

k = Dα
x0
(x− x0)

k, k = 1, 2, . . .

Remark 1. In what follows, due to previous results and consequences, we work with Caputo fractional derivative,
since all our conclusions are also valid for Riemann–Liouville fractional derivative at the same extent.

The next result shows a generalization of the classical Taylor’s theorem by using derivatives of
fractional order.

Theorem 3 ([10], Theorem 3). Let us assume that CDjα
a g(x) ∈ C([a, b]), for j = 1, 2, . . . , n + 1, where 0 <

α ≤ 1. Then, we have

g(x) =
n

∑
i=0

CDiα
a g(a)

(x− a)iα

Γ(iα + 1)
+ CD(n+1)αg(ξ)

(x− a)(n+1)α

Γ((n + 1)α + 1)
(6)

being a ≤ ξ ≤ x, for all x ∈ (a, b], where CDnα
a =C Dα

a · . . . ·C Dα
a (n-times).

When the assumptions of Theorem 3 are satisfied, the Taylor development of f (x) around x̄,
by using Caputo-fractional derivatives, is

f (x) =
CDα

x̄ f (x̄)
Γ(α + 1)

[
(x− x̄)α + C2(x− x̄)2α + C3(x− x̄)3α

]
+O((x− x̄)4α), (7)

being Cj =
Γ(α + 1)
Γ(jα + 1)

CDjα
x̄ f (x̄)

CDα
x̄ f (x̄)

, for j ≥ 2.

The rest of the manuscript is organized as follows: Section 2 deals with the design of high-order
one-point fractional iterative methods and their analysis of convergence. In Section 3, some numerical
tests are made in order to check the theoretical results and we show the corresponding convergence
planes in order to study the dependence on the initial estimations of the proposed schemes. Finally,
some conclusions are stated.

2. Proposed Methods and Their Convergence Analysis

In order to extend Chebyshev’s iterative method to fractional calculus, let us define

CLα
f (x) =

f (x)CD2α
a f (x)

(Dα
a f (x))2 ,

that we call fractional logarithmic convexity degree of Caputo-type.
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Then, an iterative Chebyshev-type method using Caputo derivatives can be constructed.
The following result show the convergence conditions of this new method.derivative with 2α.

Theorem 4. Let f : D ⊂ R −→ R be a continuous function with k-order fractional derivatives, k ∈ N and any
α, 0 < α ≤ 1, in the interval D. If x0 is close enough to the zero x̄ of f (x) and CDα

x̄ f (x) is continuous and non
zero in x̄, then the local order of convergence of the Chebyshev’s fractional method using Caputo-type derivatives

xk+1 = xk − Γ(α + 1)
(

1 +
1
2

CLα
f (xk)

)
f (xk)

CDα
a f (xk)

, (8)

that we denote by CFC1, is at least 2α and the error equation is

eα
k+1 = C2

(
2Γ2(α + 1)− Γ(2α + 1)

2Γ2(α + 1)

)
e2α

k +O(e3α
k ), (9)

being ek = xk − x̄.

Proof. According to Theorems 1 and 3, we get that the Taylor expansion in fractional derivatives of
CDα f (xk) around x̄ is

CDα f (xk) =
CDα

x̄ f (x0)

Γ(α + 1)

[
Γ(α + 1) +

Γ(2α + 1)
Γ(α + 1)

C2eα
k +

Γ(3α + 1)
Γ(2α + 1)

C3e2α
k

]
+O(e3α

k ), (10)

where Cj =
Γ(α + 1)
Γ(αj + 1)

CDjα
x̄ f (x̄)

CDα
x̄ f (x̄)

, for j ≥ 2.

Then,
f (xk)

CDα
a f (xk)

=
1

Γ(α + 1)
eα

k +
(Γ2(α + 1))− Γ(2α + 1)

(Γ3(α + 1))
C2e2α

k +O(e3α
k ). (11)

On the other hand, it is clear, by identity (10), that

CD2α
x̄ f (xk) =

CDα
x̄ f (x̄)

Γ(α + 1)

[
Γ(2α + 1)C2 +

Γ(3α + 1)
Γ(α + 1)

C3eα
k

]
+ O(e2α

k ). (12)

Therefore,

f (xk)
CD2α

x̄ f (xk) =
( C Dα

x̄ f (x̄)
Γ(α+1)

)2
[

Γ(2α + 1)C2eα
k +

(
C2

2Γ(2α + 1) +
Γ(3α + 1)
Γ(α + 1)

C3

)
e2α

k

]
+O(e3α

k )

and

(
CDα

a f (xk)
)2

=

(
(CDα

x̄ f )(x̄)
Γ(α + 1)

)2 [
(Γ(α + 1))2 + 2Γ(2α + 1)C2eα

k

+

(
(Γ(2α + 1))2

(Γ(α + 1))2 C2
2 + 2

Γ(α + 1)Γ(3α + 1)
Γ(2α + 1)

C3

)
e2α

k

+2
Γ(2α + 1)Γ(3α + 1)
Γ(α + 1)Γ(2α + 1)

C2C3e3α
k

]
+O(e4α

k ).

Let us now calculate the Taylor expansion of CLα
f (xk) around x̄,

CLα
f (xk) =

Γ(2α + 1)
Γ(α + 1)2 C2eα

k

+
1

Γ(α + 1)2

[
C2

2Γ(2α + 1) +
Γ(3α + 1)
Γ(α + 1)

C3 − 2
1

Γ(α + 1)2 Γ(2α + 1)2C2
2

]
e2α

k +O(e3α
k ).
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As a consequence, we obtain that )

1 +
1
2

CLα
f (xk) = 1 +

Γ(2α + 1)
2Γ(α + 1)2 C2eα

k

+
1

2Γ(α + 1)2

[
C2

2Γ(2α + 1) +
Γ(3α + 1)
Γ(α + 1)

C3 − 2
1

Γ(α + 1)2 Γ(2α + 1)2C2
2

]
e2α

k +O(e3α
k ).

Accordingly, a Chebyshev-like quotient can be obtained, and written in terms of the error at the
k-th iterate ek = xk − x̄.

f (xk)

(CDα
a f )(xk)

(
1 +

1
2

CLα
f (xk)

)
=

1
Γ(α + 1)

eα
k + C2

(
2Γ(α + 1)2 − Γ(2α + 1)

2Γ(α + 1)3

)
e2α

k +O(e3α
k ). (13)

Then, it is clear that, to make null the term of eα
k , a Caputo-fractional Chebyshev’s method should

include as a factor Γ(α + 1) to conclude that the error expression is (9).

Let us remark that, when α = 1, we get the classical Chebyshev method, whose order is 3.
However, the iterative expression defined in (8) does not achieve the required maximum order of
convergence 3α. The following theorem presents another Caputo-fractional variant of Chebyshev’s
method, defined by replacing the second order derivative with a fractional one, with order α + 1,
0 < α ≤ 1. Its proof is omitted, as it is similar to that of Theorem 4. We denote this Caputo-fractional
Chebyshev variant by CFC2.

Theorem 5. Let f : D ⊂ R −→ R be a continuous function with k-order fractional derivatives, k ∈ N
and any α, 0 < α ≤ 1, in the interval D. If x0 is close enough to the zero x̄ of f (x) and CDα

x̄ f (x) is
continuous and non zero in x̄, then the local order of convergence of the Chebyshev’s fractional method using
Caputo-type derivatives (CFC2)

xk+1 = xk − Γ(α + 1)
f (xk)

CDα
a f (xk)

(
1 +

1
2

CDα+1
a f (xk) f (xk)

CDα
a f (xk)CDα

a f (xk)

)
,

is at least 2α, being 0 < α < 1. On the one hand, if 0 < α ≤ 2
3 , the error equation is

eα
k+1 =

(
Γ(α + 1)2 − Γ(2α + 1)

Γ(α + 1)3 C2 +
1
2

1
Γ(α + 1)2

CDα+1
x̄ f (x̄)

CDα f (x̄)

)
e2α

k +O(e3α+1
k ).

On the other hand, if 2
3 ≤ α < 1, then

eα
k+1 =

(
Γ(α + 1)2 − Γ(2α + 1)

Γ(α + 1)3 C2 +
1
2

1
Γ(α + 1)2

CDα+1
x̄ f (x̄)

CDα f (x̄)

)
e2α

k +O(e3α
k ).

Can the order of fractional Chebyshev’s method be higher than 2α? In the following result it
is shown that it is possible if the coefficients in the iterative expression are changed. The resulting
fractional iterative scheme is denoted by CFC3. Again, the proof of the following result is omitted as it
is similar to that of Theorem 4.

Theorem 6. Let f : D ⊂ R −→ R be a continuous function with k-order fractional derivatives, k ∈ N
and any α, 0 < α ≤ 1, in the interval D. If x0 is close enough to the zero x̄ of f (x) and CDα

x̄ f (x) is
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continuous and non zero in x̄, then the local order of convergence of the Chebyshev’s fractional method using
Caputo-type derivatives (CFC3)

xk+1 = xk − Γ(α + 1)
f (xk)

CDα
a f (xk)

(
A + BCLα

f (xk)
)

, (14)

is at least 3α only if A = 1 and B =
Γ(2α + 1)− Γ(α + 1)2

Γ(2α + 1)
, being 0 < α < 1, and the error equation

eα
k+1 =

[
−Γ(2α + 1)

(
1− Γ(2α + 1)

Γ4(α + 1)

)
C2 +

BΓ(2α + 1)
Γ3(α + 1)

(
2− 3

Γ(2α + 1)
Γ2(α + 1)

)
C2

2 (15)

+
1

Γ(α + 1)

(
BΓ(3α + 1)
Γ3(α + 1)

− Γ(3α + 1)
Γ(2α + 1)Γ(α + 1)

+ 1
)

C3

]
e3α

k +O(e4α
k ),

being ek = xk − x̄.

According to the efficiency index defined by Ostrowski in [11], in Figure 1 we show that, with the
same number of functional evaluations per iteration than CFC2 and CFC1 but with higher order
of convergence, CFC3 has the best efficiency index, even compared with the fractional Newton’s
method CFN defined in [6]. In it, let us remark that incides of CFC1 and CFC2 coincide, as they have
the same order of convergence and number of functional evaluations iteration.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

E
ff
ic

ie
n
c
y
 I
n
d
e
x

CFC1

CFC2

CFC3

CFN

Figure 1. Efficiency indices of used methods.

In the following section, we analyze the dependence on the initial guess of the different
Chebyshev-type fractional methods.

3. Numerical Performance of Proposed Schemes

In this section, we use Matlab R2018b with double precision for solving different kind of nonlinear
equations. The stopping criterium used is |xk+1 − xk| < 10−6 with at most 250 iterations. The Gamma
function is calculated by means of the routine made by Paul Godfrey (15 digits of accuracy along real
axis and 13 elsewhere in C. On the other hand, we use the program ml f of Mathworks for computing
Mittag-Lefler function that has a precission of 9 significant digits.

The first test function is f (x) = x3 + x, whose roots are x̄1 = 0, x̄2 = i and x̄3 = −i. In Tables 1–6,
we show the different solutions, the number of iterations, and the residual errors of the difference
between the two last iterations and the value of function f at the last iteration. In Tables 1 and 2
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we observe the performance of Caputo-fractional Chebyshev’s method CFC2 and CFC3 estimating
different roots with the initial guess x0 = 1.1.

Table 1. CFC2 results for f (x) = x3 + x with x0 = 1.1.

α x̄ |xk+1− xk| | f (xk+1)| Iterations

0.90 −8.1274e-05+i4.6093e-04 9.2186e-04 4.6804e-04 250
0.91 −3.2556e-05+i2.0787e-04 4.1575e-04 2.1041e-04 250
0.92 −1.0632e-05+i7.7354e-05 1.5471e-04 7.8081e-05 250
0.93 −2.5978e-06+i2.1869e-05 4.3739e-05 2.2023e-05 250
0.94 −4.1185e-07+i4.0939e-06 8.1878e-06 4.1145e-06 250
0.95 −1.6155e-08-i9.1923e-07 1.9214e-06 9.1937e-07 23
0.96 1.4985e-07-i7.7007e-07 1.9468e-06 7.8451e-07 13
0.97 3.4521e-07-i7.6249e-07 2.6824e-06 8.3699e-07 9
0.98 2.7084e-07-i3.4599e-07 1.9608e-06 4.3939e-07 7
0.99 −6.3910e-07+i2.1637e-07 6.4318e-06 6.7474e-07 5
1.00 −2.9769e-08+i0.0000e+00 3.0994e-03 2.9769e-08 3

Table 2. CFC3 results for f (x) = x3 + x with x0 = 1.1.

α x̄ |xk+1− xk| | f (xk+1)| Iterations

0.90 −8.1270e-05+i4.6090e-04 9.2190e-04 4.6800e-04 250
0.91 −3.2560e-05+i2.0790e-04 4.1570e-04 2.1040e-04 250
0.92 −1.0630e-05+i7.7350e-05 1.5470e-04 7.8080e-05 250
0.93 −2.5980e-06+i2.1870e-05 4.3740e-05 2.2020e-05 250
0.94 −4.1180e-07+i4.0940e-06 8.1880e-06 4.1150e-06 250
0.95 −1.6680e-07+i9.2200e-07 1.9640e-06 9.3690e-07 22
0.96 −3.4850e-07+i7.2840e-07 2.0220e-06 8.0750e-07 12
0.97 5.5470e-07-i6.3310e-07 2.6850e-06 8.4180e-07 7
0.98 −3.1400e-07+i2.0370e-07 1.6820e-06 3.7430e-07 7
0.99 1.2990e-07-i8.4600e-08 1.2680e-06 1.5500e-07 6
1.00 −2.9770e-08+i0.0000e+00 3.0990e-03 2.9770e-08 3

As we know, when α is near to 1 the method needs less iterations and the evaluating of the last
iteration is smaller than in first values of the parameter α. Let us now compare our proposed schemes
with fractional Newton’s method designed in [6] (see Table 3).

Table 3. CFN results for f (x) with x0 = 1.1.

α x̄ |xk+1− xk| | f (xk+1)| Iterations

0.90 −8.1275e-05-i4.6093e-04 9.2187e-04 4.6804e-04 250
0.91 −3.2556e-05-i2.0787e-04 4.1575e-04 2.1041e-04 250
0.92 −1.0632e-05-i7.7354e-05 1.5471e-04 7.8081e-05 250
0.93 −2.5978e-06-i2.1869e-05 4.3739e-05 2.2023e-05 250
0.94 −4.1185e-07+i4.0939e-06 8.1878e-06 4.1145e-06 250
0.95 2.8656e-08-i9.4754e-07 1.9837e-06 9.4797e-07 23
0.96 −3.2851e-07+i6.6774e-07 1.8538e-06 7.4418e-07 14
0.97 2.3413e-07-i4.2738e-07 1.5022e-06 4.8731e-07 11
0.98 2.0677e-07-i2.4623e-07 1.4017e-06 3.2154e-07 9
0.99 3.0668e-07-i2.2801e-07 3.3615e-06 3.8216e-07 7
1.00 1.2192e-16+i0.0000e+00 3.9356e-06 1.2192e-16 5

As we can see in Tables 1–3, there are no big differences in terms of convergence to the real
root but in the case of Caputo-fractional Newton’s method CFN, the number of iterations needed to
converge is higher than for CFC2 and CFC3.

To end, we show the convergence plane (see [12]) in Figures 2 and 3 where the abscissa axis
corresponds to the initial approximations and α appears in the ordinate axis. We use a mesh of
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400× 400 points. Points painted in orange correspond to initial estimations that converge to x̄1 with
a tolerance of 10−3, a point is painted in blue if it converges to x̄2 and in green if it converges to x̄3.
In any other case, points are painted in black, showing that no root is found in a maximum of 250
iterations. The estimations point are located in [−5, 5], although convergence to the real root is found
in [−50, 50] paragraph has been moved, so that it can been seen before the figure 2 shows. please check
and confirm.
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(a) CFC1
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(b) CFC2
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(d) CFN

Figure 2. Convergence plane of proposed methods and CFN on f (x).

We show the convergence plane of Chebyshev’ and Newton’s fractional methods. In Figure 2,
it can be observed that for any real initial estimation in the interval used, if α ≥ 0.89, both methods
converge to one of the zeros of f (x) and if α < 0.89, Newton’s and Chebyshev’s fractional methods do
not converge to any solution. However, the higher order of convergence of Chebyshev’s scheme can
make the difference.

However, we have got only convergence to the real root, by using real initial guesses. In what
follows, we use complex initial estimations, of equal real and imaginary parts, x0 = λ + iλ λ ∈ R,
in order to calculate the corresponding convergence plane.
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Figure 3. Convergence plane of proposed methods and CFN on f (x) with complex initial estimation.

In Figure 3, we can observe that starting with complex initial values is more efficient to find all
the roots of the nonlinear equation. In it, orange color means convergence to the real root x̄1, blue color
is convergence to x̄2 and (x0, α) in green color converge to x̄3. It is observed that it is possible to
converge to x̄3 with lower values of α with CFC3 than using CFC1 or CFC2. Moreover, the methods
converge mostly to x̄3 when the real and complex part of the initial estimation is positive, meanwhile it
is possible to converge to any of the roots when the real and complex part of x0 is negative.

Iterations

Also in Tables 4–6 we see that, with the same initial estimation, it is possible to approximate all
the roots of the function by changing the value of α.
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Table 4. CFC2 results for f (x) with x0 = −1.3− i1.3.

α x̄ |xk+1− xk| | f (xk+1)| Iterations

0.90 −8.1274e-05-i4.6093e-04 9.2186e-04 4.6804e-04 250
0.91 −3.2556e-05-i2.0787e-04 4.1575e-04 2.1041e-04 250
0.92 −1.0632e-05-i7.7354e-05 1.5471e-04 7.8081e-05 250
0.93 −2.5978e-06-i2.1869e-05 4.3739e-05 2.2023e-05 250
0.94 −4.1185e-07+i4.0939e-06 8.1878e-06 4.1145e-06 250
0.95 −1.1203e-07+i9.8331e-07 2.0799e-06 9.8967e-07 26
0.96 −3.2473e-09-i7.0333e-07 1.7375e-06 7.0333e-07 19
0.97 5.9619e-08-i7.4110e-07 2.3750e-06 7.4349e-07 18
0.98 4.7121e-07+i7.4115e-07 4.1416e-06 8.7826e-07 19
0.99 3.9274e-08-i3.9674e-07 3.5758e-06 3.9868e-07 14
1.00 3.9559e-08+i4.8445e-07 7.8597e-03 4.8606e-07 8

Table 5. CFC3 results for f (x) with x0 = −1.3− i1.3.

α x̄ |xk+1− xk| | f (xk+1)| Iterations

0.90 −8.1308e-05-i4.6100e-04 9.2200e-04 4.6811e-04 250
0.91 −3.2562e-05-i2.0789e-04 4.1577e-04 2.1042e-04 250
0.92 −1.0633e-05-i7.7355e-05 1.5471e-04 7.8082e-05 250
0.93 −2.5978e-06-i2.1870e-05 4.3739e-05 2.2023e-05 250
0.94 −4.1185e-07+i4.0939e-06 8.1878e-06 4.1145e-06 250
0.95 −9.6563e-08+i9.3217e-07 1.9628e-06 9.3716e-07 28
0.96 1.3446e-08-i7.0728e-07 1.7477e-06 7.0741e-07 22
0.97 −9.7497e-08+i1.0000e+00 1.7666e-06 2.1081e-07 15
0.98 −1.8598e-07-i1.0000e+00 5.5924e-06 4.4631e-07 15
0.99 −1.5051e-07+i5.1262e-07 4.9442e-06 5.3426e-07 13
1.00 3.9559e-08+i4.8445e-07 7.8597e-03 4.8606e-07 8

Table 6. Fractional Newton results for f (x) with x0 = −1.3− i1.3.

α x̄ |xk+1− xk| | f (xk+1)| Iterations

0.90 −8.1275e-05+i4.6093e-04 9.2187e-04 4.6804e-04 250
0.91 −3.2556e-05+i2.0787e-04 4.1575e-04 2.1041e-04 250
0.92 −1.0632e-05+i7.7354e-05 1.5471e-04 7.8081e-05 250
0.93 −2.5978e-06+i2.1869e-05 4.3739e-05 2.2023e-05 250
0.94 −4.1185e-07+i4.0939e-06 8.1878e-06 4.1145e-06 250
0.95 −9.1749e-08-i9.2392e-07 1.9434e-06 9.2846e-07 28
0.96 1.5946e-08+i1.0000e+00 6.4777e-07 1.0272e-07 12
0.97 1.2679e-07+i1.0000e+00 4.3336e-06 5.1715e-07 16
0.98 −5.1142e-07+i7.8442e-07 4.5155e-06 9.3641e-07 16
0.99 9.3887e-08-i1.0000e+00 4.7305e-06 1.8942e-07 11
1.00 −2.9297e-10-i1.0000e+00 1.4107e-05 5.9703e-10 9

4. Conclusions

In this manuscript, we have designed several Chebyshev-type fractional iterative methods,
by using Caputo’s fractional derivative. We have shown that the order of convergence can reach 3α,
0 < α ≤ 1, by means of an appropriate design in the iterative expression, including a Gamma function
as a dumping parameter, but also an specific treatment of the high-order derivative derivative. It has
been proven that the replacement of high-order integer derivatives by fractional ones must be carefully
done, as it is not obvious that the order of convergence will be preserved. The theoretical results have
been checked in the numerical section, with special emphasis on the dependence on the initial guess
(that is shown in the convergence planes), comparing Newton’ and Chebyshev’s fractional methods
performances. CFC3 method is not only the most efficient scheme (see Figure 1), but also converges to
any of the searched roots for values of α lower than those needed by CFC1 and CFC2.
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