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Abstract

Cash management models are usually based on a set of bounds that
complicates the selection of the optimal policies due to non-linearity. We
here propose to linearize cash management models to guarantee optimality
through linear-quadratic multiobjective compromise programming mod-
els. We illustrate our approach through a reformulation of the suboptimal
state-of-the-art Gormley-Meade’s model to achieve optimality. Further-
more, we introduce a much simpler formulation that we call the Boundless
Model that also provides optimal solutions without using bounds. Results
from a sensitivity analysis using real data sets from 54 different companies
show that our Boundless Model is highly robust to cash flow prediction
errors.

Keywords Working capital; forecasting; linear-quadratic programming;
risk.

1 Introduction

Cash managers have to make daily decisions about the amount of transactions
between cash holdings and any other kind of available investment asset. On
the one hand, a certain amount of cash must be kept for operational and pre-
cautionary purposes. On the other hand, idle cash balances may be invested
in short-term assets such as interest-bearing accounts or treasury bills for a
profit. As a result, working capital management has deserved the attention of
the research community for decades (see e.g. Miller and Orr (1966); Keown and
Martin (1977); Xu and Birge (2008)).

The ultimate goal of the cash management problem (CMP) is to find the
best sequence of control actions over a given planning horizon which is called a
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policy. The typical framework in the CMP considers two assets, namely, a cash
account and an investment account where idle cash balances are allocated for
a profit. In addition, most cash management models have a common feature:
they are based on setting control limits or bounds. In other words, they can be
considered as Bound-Based Models (BBM). In a BBM, the sequence of control
actions is attained through a set of bounds determining the form of the policy.
Cash balance is allowed to wander around between some bounds, usually a high
bound and a low bound. When any of these bounds is reached, a control action
is made to restore the balance to some target level.

Since Miller and Orr (1966), different models have been proposed to address
the CMP by means of bounds as surveyed in Gregory (1976); Srinivasan and
Kim (1986); da Costa Moraes et al. (2015). However, the method to elicit a
particular set of bounds and its motivation varies with the model. For instance,
the BBM by Miller and Orr (1966) is based on three bounds and Girgis (1968);
Penttinen (1991) and Gormley and Meade (2007) considered four bounds to
account for both fixed and linear transaction costs. Stone (1972) proposed the
use of forecasts and five bounds, Neave (1970) and later Chen and Simchi-
Levi (2009) proposed optimal policies based on six bounds. Cash management
models are usually linked to the assumption of a particular cash flow process
ranging from deterministic cash flows in Baumol (1952), to purely stochastic
behavior in Miller and Orr (1966); Constantinides and Richard (1978); Bar-Ilan
et al. (2004); Baccarin (2009), which usually implies a normal, independent and
stationary cash flow distribution.

However, non-linearity introduced by bounds complicates the selection of
optimal policies. For instance, Gormley and Meade (2007) and da Costa Moraes
and Nagano (2014) suggested the use of evolutionary algorithms to solve the
CMP. However, this approach does not guarantee the optimality of the cash
management solutions. In order to overcome this limitation, we here propose a
reformulation of the CMP through mathematical programming.

In addition, risk management is an ongoing issue in finance (Artzner et al.,
1999; Rockafellar and Uryasev, 2002; Park and Herath, 2000). Indeed, cash
managers may be interested not only in the cost of alternative policies but also
in the risk (Salas-Molina et al., 2016). In order to include risk as an additional
goal, we encode the CMP as a linear-quadratic multiple-criteria decision-making
model (Yu, 1985; Ballestero and Romero, 1998). We illustrate our approach
through a multiobjective reformulation of the Gormley and Meade (2007) model
(MOGM).

In this paper, we introduce a novel formulation, the so-called Boundless
Model (BM), which returns the best sequence of control actions without using
bounds. This BM does not impose restrictions on the form of possible policies
and uses forecasts as a key input. We demonstrate that our BM is a much
simpler CMP formulation that guarantees the optimality of the solutions against
approximate solutions of a state-of-the-art BBM. Furthermore, we empirically
show that our BM outperforms the MOGM in terms of required run time to
solve the CMP.

A critical issue when dealing with cash management models using forecasts
as a key input is the influence of forecasting errors on the performance of the
model. In order to evaluate this impact, we present a sensitivity analysis of
our BM to forecasting errors using 54 real data sets from different companies.
The results show that our BM is highly robust to prediction errors. A further



advantage of this method is that it allows to estimate the reward that can be
obtained by improving predictive accuracy.

Summarizing, the results presented in this paper support decision-making
in cash management by considering cash flow forecasts and multiobjective pro-
gramming. In addition, we solve important open research questions in cash
management through the following four main contributions:

1. A linear formulation of the CMP to guarantee the optimality of solutions.

2. A linear-quadratic multiobjective reformulation of the Gormley-Meade’s
model that, unlike the original model, guarantees the optimality of solu-
tions.

3. A novel cash management model, namely, the BM, that provides optimal
solutions and generalizes several state-of-the-art models.

4. A sensitivity analysis of the BM to forecasting errors.

In what follows, we provide useful background on the multiobjective cash
management problem and the Gormley and Meade (2007) model in Section 2.
In Section 3, we linearize the cash management problem that in Section 4 we
apply to reformulate the Gormley and Meade (2007) model. Next, in Section 5,
we introduce the BM for multiobjective cash management. Section 6 analyzes
the impact of forecasting errors in the BM’s performance. Finally, Section 7
provides some concluding remarks.

2 Background

The CMP has been usually approached as a control problem. The cash balance
of any bank account needs to be monitored to keep the balance between two
bounds, for instance, a low bound and a high bound. To this end, some control
actions are taken to increase or decrease the balance according to some rules in
order to minimize expected holding and transaction costs. The set of control
actions deployed over a planning horizon, namely, the policy, is the solution to
the CMP. However, cash managers may be interested in the cost but also in the
risk of alternative policies. In order to analyze both cost and risk, in this section,
we first formulate the CMP as a multiobjective program as proposed in Salas-
Molina et al. (2016). Next, we provide useful background on the state-of-the-art
Gormley and Meade (2007) cash management model.

2.1 Formulation of the multiobjective cash management
problem

We here introduce the multiobjective cash management problem (MOCMP)
as proposed by Salas-Molina et al. (2016). The MOCMP is defined as an
optimization problem whose goal is to find the best sequence of transactions
X ={(x1,...,2,...,x7), with z; € R, t e N, and 1 < ¢t < T for a given plan-
ning horizon T" € N. The solution to the MOCMP is the policy that optimizes
some objective function considering both cost and risk, but maybe other inter-
esting goals. The cash balance at the end of the day is computed as the sum



of the initial cash balance b, , the actual cash flow f; and the control action xz,
according to the following state transition law:

by = b1+ fr + . (1)

Within the framework described in equation (1), a positive transaction
x; > 0, adding into a cash account by selling available investments, is called
an ordering transaction. Similarly, a negative transaction z; < 0, withdraw-
ing from a cash account by buying additional investments, is called a returning
transaction. The MOCMP is characterized by its particular cost structure.
More precisely, any ordering transaction may have a cost, which may include a
fixed part (77 ) and a variable part (7;7). On the other hand, a return trans-
action from a cash account may also have a cost with a fixed part (75 ) and a
variable part (y; ). Furthermore, at the end of the day, a holding cost (h) per
money unit is charged if a positive cash balance occurs, or a penalty cost (u)
per money unit is charged if a negative cash balance occurs. According to this
cost structure, a general daily cost function is defined as:

c(x) =T(ze) + H(by) (2)

where z; is the transaction made at day ¢, b; is the cash balance at the end of
day t, I'(x) is a transfer cost function, and H(b;) stands for a holding/shortage
cost function. The transfer cost function I'(z;) is defined as:

Yo — 1 T if @ <O,
(z;))=4 0 if xy=0, (3)
’yg—l—’yfn:t if x> 0.

Additionally, the holding/shortage cost function is expressed as:

_ —u-by if by < 0;u >0,
H(bt)_{h-bt if b >0;h>0 @

Under this cost structure, the ultimate goal of the MOCMP defined in Salas-
Molina et al. (2016) is to find the policy X that minimizes the expected cost and
risk over the time horizon T. To this end, the expected cost C'(X) is measured
by the average daily cost:

O(X) = = elwe) = o S0 + H(b)] 5)

t=1 t=1

and the expected risk R(X) is measured by the standard deviation of the daily
cost:

T 1/2
R(X) = (;, S c(xt»?) . (6)

Then, under the framework of compromise programming (Ballestero and
Romero, 1998), the goal is to find policy X that minimizes a loss function
L,(X) computing weighted distances to an ideal point where both cost and risk
are zero:

min Lo(X) = min K i .C(X))a+(Rw2 ~R(X)>a]1/a (7)

Cmam max




subject to:

Xes (8)
where w; and wy are weights defining the particular cost/risk preferences of cash
managers, « is a positive integer, and S is the set of all possible policies. In
what follows, we consider only Manhattan distances to the ideal point by setting
a =1 in objective function (7) to guarantee linearity. Furthermore, Ci,q, and
R4z can be regarded either as budget limitations or as normalization factors
for comparative purposes. Next, we provide background on a BBM that defines
S as a dynamic simple policy using forecasts as a key input to the model.

2.2 The Gormley-Meade (GM) cash management model

Cash managers can leverage cash flow forecasts to reduce the uncertainty within
a short-term planning horizon (Stone, 1972; Stone and Miller, 1987; Salas-
Molina et al., 2017). To this end, Gormley and Meade (2007) proposed a cash
management model based on forecasts and four bounds: a low bound D, a high
bound V and two target levels v and d. The cash balance is allowed to wander
around between these bounds as shown in Figure 1.

Cash balance

Day 1 Day 2 Day 3

Figure 1: The dynamic simple policy of Gormley-Meade.

When V is reached a withdrawal transfer is made to restore the balance
to a target level v. In the same way, when the cash balance reaches D, a
positive transfer is made to restore the balance to a target d. Forecasts for a
given planning horizon are used as a key input to the model that establishes a
dynamic simple policy of the form:

’Ut*l;t—1*ft7 if 5t—1+ft>vta
=< 0, otherwise, (9)
di —by_1 — fe, if b1+ fir <Dy



where Dy, d;, vy, Vt, for 1 < t < T are the decision variables satisfying D; <
di < vy <V, and bt and ft are the predicted cash balance and cash flow at time
t, respectively. This model is dynamic and the decision variables Dy, d;, v, V4
must be obtained at each time step t. However, due to the non-linearity of the
form of the policy described in (9), the authors proposed the use evolutionary
algorithms to solve the CMP without guaranteeing the optimality of solutions.
In Section 4, we present a reformulation of this model that overcomes this
limitation.

3 Linearizing the cash management problem

In this section, we formulate the CMP as a linear program since we aim to guar-
antee the optimality of solutions. In order to linearize the common two-assets
setting of the CMP, consider a company with two bank accounts as depicted in
Figure 2. Account 1 receives payments from customers (inflows) and it is also
used to send payments to suppliers (outflows). Both inflows and outflows are
summarized through the net cash flow f;.

Figure 2: The common two-assets setting in the cash management problem.

Let x; be the difference between positive and negative control actions x; =
x} — x; at bank account 1 with z; and z; being non-negative real numbers.
Then, account 2 represents the amount of alternative investments available to
be converted into cash through transaction z;” when needed. In addition, idle
cash balances from account 1 can be allocated in account 2 for a profit through
transaction z; . In this setting, the transfer cost function in equation (3) can
be expressed as follows:

Dz =2 vg +9 -2f +2 v +1 -2 (10)

where 2, z;7 € {0,1} are binary auxiliary variables satisfying:

4z <1 (11)
m-z <af < M-zt (12)
m-z; <ax; < M-z (13)

where M (m) is a very large (small) number. Note that although we restrict z;
and z; to be non-negative numbers, the left-hand side of equations (12) and
(13) are necessary to ensure z; , z; =0 < 7, 2; = 0. A similar approach can
be followed to linearize the holding/penalty cost function (4) through:

H(by) =2t -h-by—(1—2z)-u-by (14)



where z; € {0,1} is another auxiliary binary variable satisfying:

However, since cash managers usually discard policies with negative balances
due to high penalty costs, in what follows, we assume u = oo and H (b) = h- by,
which results in the following daily cost function equivalent to equation (2):

c(ze) =g -zt +9 af +20 g+ car +hb (16)

Since control actions are taken in advance to real cash flow, we use predicted
cash flows f; and balances b; instead of actual values in the state transition law
in equation (1) as follows:

IA)t = ZA)t_l —+ ft + ’I?— - l‘t_ (17)

Next, we rely on the previous linear functions to derive optimal solutions
from a reformulation of the GM model.

4 Reformulating the Gormley-Meade model as
a linear-quadratic program

We mentioned in Section 2.2 that the form of the policy described in (9) within
the GM model, implies facing a non-linear problem whose solution is by no
means straightforward. The authors suggested the use of evolutionary algo-
rithms to obtain the set of bounds { Dy, d;, v, Vi } for each time step ¢, but this
method does not guarantee the optimality of the solutions. Evolutionary algo-
rithms are iterative procedures based on direct search (Branke et al., 2008). A
population of feasible solutions is randomly generated and better solutions are
found by comparing the fitness of the new population to the current popula-
tion. As a result, there is no way to test if a given solution is optimal. Unlike
evolutionary algorithms, classical gradient-based optimization procedures such
as linear programming allow to test the optimality of solutions (Nocedal and
Wright, 2006; Bazaraa et al., 2011). Thus, we next present a linear-quadratic
reformulation of the GM model allowing cash managers to obtain optimal solu-
tions through:

e A linear program by considering only cost as a linear expression.

e A linear-quadratic program by considering a linear cost expression and a
quadratic risk expression.

A third option may be considered by solving a linear program with both cost
and risk linear expressions, e.g., by defining a linear measure of risk. However,
since we are interested in a cost-risk optimization as described in Salas-Molina
et al. (2016), we next formalize the second option. Then, within the framework
of the GM model, positive transactions zf occur when low bound Dj is reached.
Thus, 2,7 = 1 when b1 + ft < D; and the amount transferred is given by

x?‘ =d; — l;t_l - ft. This can be expressed by the following linear constraints:

I;t71+ft_Dt§M(1_Zt+) (18)



_M(l_zj)§$j_dt+8t71+ft§M(1_zt+)' (19)

Furthermore, negative transactions x; occur when high bound V; is reached.
Thus, z;, = 1 when b1 + f; > V; and the amount transferred is given by
x; =bi—1 + fi —v¢. This can be expressed by the following linear constraints:

Vi—bi1—fi <MQ—2z) (20)

MO =z ) <ar +v—bio1— [ < M@A—z). (21)

A third group of conditions must hold when the cash balance is between
bounds D; and V;. Thus, when z;" = 0 and z; = 0 no transaction occurs. This
can be expressed by the following linear constraints:

Dt — I;t—l — ft < M(Z;r +Zt_) (22)
b1+ fr = Vi < M (2 +2) (23)
m-z <axf < M-zt (24)
m-z; <ax; < M-z (25)

As a result, we can reformulate the multiobjective cash management problem
encoded in equations (7) and (8) to accommodate policies of the GM type as the
following linear-quadratic multiobjective Gormley-Meade (MOGM) program:

w2
Riax

min

C(X) + R(X) (26)

w1
Omaz
subject to:
27

28

by =bi1 + fi +af —ay (27)

c(x) =79 -5+ af vz A cw Hheb (28)
Mzt +27) <bgqy+ fi —Dy < M1 —z) (29)
M=z <af —di+ b1+ fr <M1 —z). (30)
Mzl +27) <Vi—b1— i < M1 —2) (31)
MO -z ) <ar +v—b1— fr < M0 —z) (32)
Dy <d; <v <V, (33)
(34)

(35)

(36)

(37)

(38)

(39)

39

zr 4z <1
m-z <af <M-zb
m-z; <xy < M-z

b > brmin

wy +we =1
1<t<TteN,TeN

where the decision variables are the bounds { Dy, d:, v, V;} that ultimately de-
termine control action xz; € X for each time step ¢, and C(X) and R(X) are
linear-quadratic cost and risk functions such as the ones defined in equations



(5) and (6) that depend on policy X. Note that b, z7, 27, 2~ and z; are also
decision variables determining policy X as we show in the upcoming section.

Normalization factors C,,qr and R,,.. are used to avoid numerical bias to
one of the goals but also for comparative purposes. In this paper, we propose to
set Crar and Rp,q. to the expected cost and risk of a trivial policy consisting
in taking no control action.

Following the recommendations in Ben-Tal et al. (2009) for robust optimiza-
tion, we set a minimum cash balance proportional to the uncertainty introduced
by forecasting errors. To this end, we assume that the cumulative forecasting
error distribution for the planning horizon 7' is known and presents standard
deviation .. Then, we set by, = & - 0, where £ is a positive parameter.
Assuming Gaussian forecasting errors, typical values for & are 2 or 3 leading,
respectively, to an unfeasible program in only 95% or 99% of the realizations of
the error distribution.

An important advantage of the previous linear-quadratic reformulation in
comparison to the original GM model is that it can be implemented and opti-
mally solved through the modeling framework provided by mathematical pro-
gramming solvers such as CPLEX or Gurobi. However, 8 x T decision variables
and 23 X T constraints are involved. Hence, one may wonder if a simpler for-
mulation is possible. Next, we present a novel formulation of the CMP, which
we call the Boundless Model (BM), which aims to solve this problem.

5 Boundless multiobjective models for cash man-
agement

In this section, we introduce a novel boundless multiobjective model for cash
management. First, we formally describe the model. We next highlight a crucial
property of this model and we finally perform a numerical comparison exercise
between the MOGM and the BM.

5.1 Model formulation

In the GM model described in Section 2.2, cash managers have to determine the
set of bounds { Dy, d;, v¢, V;} which minimizes expected transaction and holding
costs for the whole planning horizon 7. Indeed, the bounds are previously
obtained to the deployment of the policy according to equation (9). However,
we argue that the ultimate goal of the cash management problem is not to
find the best set of bounds, but the best sequence of control actions. As a
result, we here propose to change the focus from bounds to the actual policy to
simplify computations. To this end, we next present a BM for multiobjective
cash management:

w2

min |2 C(X) + R(X) (40)
Omax max
subject to: A . .
by =bi1+ fe +af —a; (41)
c(xe) =0 -2+ a4z g +heb (42)
4z <1 (43)



m-zt <zl < M-z (44)
m-z, <x; <M-z (45)
by > bmin (46)
wy +wp =1 (47)
1<t<T,teN,TeN (48)

Note that the set of constraints from equation (41) to (48) are only necessary
to linearize the CMP as described in Section 3 and to achieve a certain degree
of protection against forecasting errors by means of by > boin.

By setting C'(X) to the average daily cost and R(X) to the standard de-
viation, or tantamount, the variance of daily costs, we face a quadratic pro-
gramming optimization problem. Using basic algebra, the BM encoded from
equations (40) to (48) can be rewritten as a sum of linear and quadratic terms
of the decision variables. This sum can finally be expressed in matrix form to
accommodate the standard quadratic formulation (see e.g. Nocedal and Wright
(2006)):

1
min iw/~G~w+a)'~g (49)
subject to:
a,-x=d;, i€E (50)
a,-x>d;y, i€ (51)

where x € R" is a vector of decision variables, G is a symmetric n X n matrix,
€ and 7 are finite sets of indexes, and g and [a;] are also vectors in R™.

By specializing the Karush-Kuhn-Tucker optimality conditions to quadratic
problems (Nocedal and Wright, 2006), if * satisfies these conditions, then x*
is a global solution of the program (49)-(51), hence guaranteeing the optimality
of solutions provided by our BM.

5.2 The equivalence theorem

The BM model is clearly a much simpler formulation than that of MOGM since
only 4 x T" decision variables and 8 x T' constraints are involved. However, since
both models aim to obtain the optimal policy, both formulations must return
the same optimal results for the same inputs as we next demonstrate.

As a simple numerical example, consider a predicted cash balance bi_1 = 10
and a forecast ft = 1. Let us assume that the optimal policy is z;” = 4. Then,
the optimal bound d; is necessarily 15 since d; = ch —HA)t,l —I—ft =44+10+1=15
from equation (9). Indeed, the next simplified optimization problem:

min g(z,d) (52)

subject to:
r=d+a (53)

where = and d are the decision variables and a is a constant, is equivalent to:
min g(z,z —a) = min g(x) (54)
x x

subject to no constraint. This observation leads us to formulate the following
theorem.
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Theorem 1. Given a forecast ft for 1 <t < T, a minimum balance by,p,
a cost structure 8 = {'yar,'ya,vf,wf,h}, two normalization factors Cpa, and
Rz, and some weights wy and we, the BM encoded from equation (40) to (48)
and the MOGM model encoded from equation (26) to (39) are equivalent in the
sense that both models return the same optimal solution for the very same input.

Proof. Optimizing a set of bounds for each time step is equivalent to directly
optimizing the policy since the former determines the latter and vice versa.
Let us assume that bt 1+ ft < Dt holds. Then, finding d; that minimizes some
obJectlve function subject to z;” = =d—by_1— ft from equation (9) is equivalent to
finding ;" due to the direct relationship between x;” and d;. A similar reasoning
leads to the same conclusion when Z;t,l + ft >V, or when D; < Bt,l + ft < V.
This fact implies that the set of constraints from (29) to (33) are redundant and
can be removed from the optimization process demonstrating that both models
are equivalent. O

Furthermore, our BM provides a general framework for cash management in
several aspects or dimensions of the problem. First, our BM accepts any type
cash flow process from a deterministic one (Baumol, 1952) to a pure stochastic
one (Miller and Orr, 1966) and also empirical data sets of cash flows (Gormley
and Meade, 2007; Salas-Molina et al., 2016). Our BM simplifies the Gormley
and Meade (2007) cash management model by removing half of the decision
variables and almost two thirds of the constraints. In addition, when no forecast
is used (Penttinen, 1991), forecasts can be set to zero. Our MOGM model is
also a generalization of the Miller and Orr (1966) model that can be obtained
by setting forecasts to zero, and by forcing that vy = d; and D, d;, v; and V;
to be constant for the whole planning horizon.

5.3 Comparing the MOGM, the BM and the GM

In this section, we first provide an illustrative example comparing the solu-
tions given by the GM model using genetic algorithms to those provided by the
MOGM reformulation and the new BM using quadratic programming. The use
of genetic algorithms in the GM model results in approximate solutions. Thus,
we later evaluate the performance of the BM with respect to the GM model in
terms of computational time and optimality of solutions. Finally, we compare
run times for the MOGM and the BM.

Consider a typical scenario with a cash management system like the one
depicted in Figure 2 with balances restricted to positive values (b, = 0 for
accounts 1 and 2). Temporary idle cash balances can be invested in short-term
marketable securities and bonds through an investment account 2 with an av-
erage return of 7.2% per annum (h = 0.02% per day). Inflows and outflows
to/from account 1 are charged with fixed costs fyar =7, = 20 € and vari-
able costs fyf‘ =7, = 0.01% defining a cost structure g = {fyar,’yo_,fyf',’yl_, h}
according to current bank practices in Spain. As normalizing factors for multi-
objective optimization purposes, we set Cq. and Ry,.. to the respective cost
and risk for a trivial policy that we next formally define.

Definition 1. A policy x; is called trivial when it takes no control action and
the cash balance evolves freely. Mathematically, it can be expressed as:

e =0 (55)
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by = by + fi

I'(x¢) =0

() = H(by)
1<t<T,teN,TeN.

96
o7
58

(
(
(
(59

)
)
)
)

The use of a trivial policy as a benchmark allows us to straightforwardly
compare the performance of policies because objective function values above one
indicate a poorer performance than a trivial strategy. Hence, we set Ci o0 =
4640.0 € and R,,,4, = 387.8 € and we assume that we know with certainty that
cash flow for the next five working days is f = [1, 1,4, —1, —3], figures in millions
of Euros. After setting an arbitrary initial cash balance by = 20, we are in a
position to derive alternative policies using the MOGM, the BM and the GM.
Considering a neutral cash manager (wq,ws = 0.5), the optimal solution to the
MOGM encoded from equation (26) to (39) is given by the following sequence
of control actions:

x; =[0,6.1,0,1.3,2.4], x5 =[21.0,0,1.9,0,0]. (60)

The objective function value for this solution is 0.2249, which is the combined
cost and risk of the policy with respect to the trivial policy characterized by
Crnaz and Ry,q.. We can also solve the BM encoded from equation (40) to (48),
obtaining exactly the same solution described in (60). Run times to solve both
the MOGM and the BM are below 0.01 seconds.

On the other hand, Gormley and Meade (2007) proposed the use of genetic
algorithms to find sufficiently good solutions since approximate algorithms do
not guarantee optimality. In their experiments, the authors maintained a pop-
ulation of 200 solutions for 30,000 generations in which parents are selected by
binary tournament and with probability of mutation 0.4. For reproducibility
purposes, we here replicate their implementation. More precisely, we imple-
mented in Python a continuous genetic algorithm with single point crossover
and generational replacement (Chelouah and Siarry, 2000). Following the rec-
ommendations in Gormley and Meade (2007), we generated individuals as fol-
lows:

e Sample D from (m, M) where m(M) is a very small (large) number.
e Sample V — D from (0, M).

e Sample oy from (0,1) and set d = D + ay(V — D).

e Sample as from (0,1) and set v =V — aa(V — d).

Although Gormley and Meade (2007) set m = —oo and M = oo, in this
example we set m = 0 and M = 40 to ensure a faster convergence of the genetic
algorithm. Following with our numerical example, we now aim to minimize
objective function (7) subject to GM policies using genetic algorithms. Since
a genetic algorithm is an iterative process, we control iterations through the
number of generations that evolve from the initial population. The larger the
number of generations the deeper the search for better solutions. However,
the larger the number of generations the longer the time required in a regular
personal computer to obtain a solution as detailed in Table 1.
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Table 1: Performance of the genetic algorithm in the example.
Generations Time (sec) Objective (£1) Optimality loss

100 9 0,5751 155,7%
1000 94 0,4514 100,7%
5000 485 0,3476 54,6%

10000 969 0,2251 0,1%

Note that the GM objective function value for 10,000 generations is very
close to the values obtained by the MOGM and the BM. This observation can
be made because in this case we already know the optimal value provided by our
MOGM/BM. Otherwise, genetic algorithms are not able to distinguish between
a local and a global minimum, hence complicating the selection of the number of
generations or any other point to stop the search. In addition, run times for the
GM using genetic algorithms drastically grow with the number of generations.
Thus, a trade-off between computational time and solution quality is required.
We solve this problem by using mathematical programming to solve the BM
encoded from equation (41) to (48).

As an experimental validation, we report in Table 2 performance results
comparing our BM using quadratic programming and the GM using genetic
algorithms. With respect to empirical settings, we consider:

e a cost context 8 = {20€,20€,0.01%,0.01%,0.02%} as described above;

e a Gaussian cash flow process with mean 0.1 and standard deviation 1,
figures in millions of Euros;

e a Gaussian forecasting error with mean 0 and standard deviation 0.5;

e a minimum cash balance b,,;, = 1.5, equivalent to three standard devia-
tions of the error distribution;

e a planning horizon of five days.

After setting an arbitrary initial cash balance 20% above b,,;,, we solve
three batches (100 replicates each) of the problem using the BM and the GM
model. In the case of GM model, we consider a genetic algorithm with increasing
number of generations until a variation below 0.01 in the objective function
between consecutive generations is obtained. In addition, we set the following
parameters:

e a population of 200 individuals;

e a probability of mutation of 0.4;

e a lower bound m = 1.5, equivalent to the minimum balance b,,;,;
e a higher bound M =3 -m = 4.5.

The average results shown in Table 2, where column Id identifies each of
the experiments, show that run times for the BM are negligible with respect to
the GM model and several orders of magnitude faster. In addition, we find a
remarkable optimality loss for the GM with respect to the BM.
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Table 2: Performance of the BM and the GM for three experiments.

Id  Boundless Model (BM) Gormley-Meade model (GM) Optimality
Time(sec) Objective(£1) Gen. Time(sec) Objective(Ly) loss

1 0,005 0,37478 100 9 0,49727 32.7%
2 0,005 0,40643 500 43 0,44046 8,4%
3 0,005 0,40646 1,000 89 0,44731 10,1%

It is clear that computational time is an advantage of the BM with respect
to the GM. However, one may wonder what is the required time to solve the
BM and the MOGM, since both models rely on mathematical programming to
solve the cash management problem. In what follows, we perform a comparison
exercise to empirically confirm that the necessary run time to solve the BM is
lower than that required to solve the MOGM.

As in the previous empirical exercise, we sample T' elements from the cash
flow process N (0.1,1) that are used as a forecast input to both the MOGM and
BM model. Next, we set an arbitrary initial cash balance 20% above b,,,;, and
we generate 100 different forecast samples of variable length T'. These samples,
the initial cash balance, the minimum cash balance and the cost structure 3 are
enough to obtain the optimal policy by solving the MOGM model encoded from
equation (26) to (39) and the BM model encoded from equation (40) to (48).
Then, we implement both models using the Gurobi modeling framework (Gurobi
Optimization, Inc, 2017) for Python and the run time results of 100 replicates
for planning horizons ranging in [5, 20] in steps of five days are shown in Figure
3. Average run times for our BM are 38% lower with standard deviations
41% smaller than the MOGM confirming that a simpler formulation leads to
remarkably lower run times to solve the CMP.
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Figure 3: Run time for different planning horizons.
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6 Sensitivity analysis to forecasting errors

The critical step in the deployment of a BM is the procurement of forecasts.
However, forecasts are characterized by some prediction error that necessarily
impacts the performance of any model using forecasts as a key input. The
main goal of this section is to perform a sensitivity analysis of the goodness of
the solutions provided by our BM to changes in forecasting accuracy. We first
describe our assumptions and our experimental methodology, and we finally
discuss the results obtained.

6.1 Assumptions

We experiment on 54 real cash flow data sets of variable length, containing from
170 to 1508 observations. As a statistical summary, minimum and maximum
values, means and standard deviations, and number of cash flow observations
available for each company are shown in Table 3. The data set contains daily
cash flows from 54 different small and medium companies in Spain with annual
revenues of up to 10 million euro each, covering a date range of about 8 years.
For illustrative purposes, we consider the following representative cost structure
adjusted to current bank practices in Spain and very similar to those used in
da Costa Moraes and Nagano (2014):

B ={1 =20€ ~; =20€,~; =0.01%,~; =0.01%,h =0.02%}  (61)

We set a minimum balance b,,;, equivalent to three standard deviations of
the empirical error distribution for a planning horizon of five days to ensure
a 99% of feasibility. Finally, we follow a multiobjective approach in which
expected cost is defined as the average daily cost as in equation (5) and expected
risk is defined as the standard deviation of daily cost as in equation (6). Then,
under a compromise programming framework, the ultimate goal is to find the
policy that minimizes equation (7).

6.2 Methodology

In order to evaluate the impact of the forecasting error in actual cost-risk per-
formance, we propose Algorithm 1. From a cash flow data set stored in vector f
we compute its standard deviation ;. Following the method described in Salas-
Molina et al. (2017), we obtain forecasts of controllable accuracy by assuming
error e, ~ N(0,0.) with 0. = p- oy and with error proportion p € [0.001, 1].
Sample draws for different values of p result in forecasts ranging from perfect
prediction (o, =~ 0) to an always-zero prediction o, = o¢. Then, by computing
the actual loss of policy X, namely £1(X), when the actual cash balances are
not Z)t but b; = l;t + ¢4, we can evaluate the impact of the forecasting error in
the actual cost-risk performance of the model.

As in the comparison example described in Section 5.3, we set an initial cash
balance by to a value 20% above b,,;,, as a feasible but non-conservative initial
condition. Since we compare our BM to a trivial policy with the same initial
condition, this setting does not interfere in the conclusions derived from the
experiment. Then, given cost structure described in equation (61), we generated
100 replicates with different forecast samples of length five, equivalent to more
than two years of total planning horizon for each of the 54 companies. Since we
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Table 3: Data sets description. Figures in thousands of €.

Company Min Max Mean Std Dev Length
1 -90,66 902,69 0,22 39,71 622
2 -565,06 626,55 3,09 65,35 544
3 -6.631,47 6.710,41 -7,44 414,08 935
4 -2.233,81 727,63 -0,88 170,28 893
5 -182,62 164,20 0,01 18,41 709
6 -689,70 562,69 -0,41 72,83 688
7 -300,09 829,05 0,26 65,52 555
8 -242,06 113,14 -0,14 31,89 789
9 -4.703,91 4.733,65 -3,10 658,57 754
10 -1.115,80 787,24 -1,89 83,55 788
11 -1.915,34 307,44 1,33 107,38 428
12 -615,77 7.713,80 -0,11 338,26 555
13 -1.183,62 2.274,46 -0,39 287,26 549
14 -769,28 927,11 -1,00 142,23 606
15 -551,11 556,13 0,39 114,95 696
16 -220,49 226,11 -0,50 18,25 577
17 -2.253,22 2.501,26 0,63 175,38 991
18 -287,58 263,61 -0,09 26,41 610
19 -161,73 154,82 -3,08 25,47 640
20 -150,00 160,38 -0,37 15,40 632
21 -700,00 531,66 -0,54 65,06 730
22 -2.442,94 1.388,74 -2,15 280,20 509
23 -2.898,68 2.898,68 -2,54 336,42 586
24 -3.025,05 3.178,51 -4,05 247,62 1285
25 -1.969,42 2.011,31 -0,39 174,53 600
26 -107,28 155,63 -0,05 18,64 708
27 -70,99 118,38 2,75 16,87 340
28 -324,81 390,08 -0,79 48,56 901
29 -900,41 558,88 -0,34 65,59 574
30 -188,79 198,15 -0,46 17,59 536
31 -1.344,75 349,45 -2,75 119,68 336
32 -359,16 245,04 2,71 48,77 860
33 -943,25 955,89 -1,18 78,27 670
34 -1.149,40 496,55 -1,39 108,36 1490
35 -410,71 291,91 -0,55 57,86 600
36 -78,72 118,40 4,45 18,64 357
37 -2.288,85 2.184,18 -10,16 180,89 497
38 -619,33 196,64 -11,18 67,60 193
39 -64,71 65,67 -0,11 11,66 829
40 -256,27 369,14 0,24 103,05 291
41 -626,65 643,39 -5,55 96,41 300
42 -370,21 368,46 0,47 23,11 749
43 -658,44 733,95 -0,37 131,40 832
44 -1.187,40 1.203,41 -1,83 115,28 378
45 -1.071,96 1.128,00 0,58 127,81 881
46 -511,63 738,32 10,06 75,56 411
47 -10.374,88 4.782,62 -22,94 723,62 532
48 -2.070,38 2.030,93 -5,58 255,32 581
49 -107,84 127,25 -2,07 19,96 573
50 -2.625,18 2.219,57 -2,45 351,19 374
51 -4.198,83 4.816,62 151,28 970,81 1222
52 -3.254,65 7.006,59 89,72 494,93 1220
53 -1.968,77 384,84 7,76 117,51 738
54 -10.213,56 15.321,00 9,61 1.124,10 589

Algorithm 1: Empirical evaluation algorithm

1 Input: Cash flow data set f with standard deviation oy; cost structure
£; minimum balance b,,;,; planning horizon T'; error proportion p;
number of replicates r;

Output: Actual £1(X) loss of optimal policy X;

for each replicate r do

Set an initial balance by;

Draw a sample of length T from f as a forecast vector f' ;

Obtain policy X that solves the BM model (40)-(48) for f;

Set 0. = p- oy and draw an error sample e of length T from N (0, o.);
Set actual balances to b; = Z)t + ey;

Compute actual loss £1(X) of policy X, actual balances b; and 3;

10 end

© w0 N O ok~ wN
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consider eleven error proportions, from an almost perfect cash flow prediction
to an unpredictable cash flow, we cover a whole range of possible situations.
As a result, we perform 59,400 experiments. Note also that, for comparative
purposes, we consider that every policy is fixed, i.e., it cannot be modified
during the planning horizon. In practice, the optimization process would be
repeated either when new information about actual cash flows or when some
error tolerances are exceeded.

6.3 Results and discussion

The results from the evaluation for all 54 companies grouped by error proportion
(p) are shown in Figure 4 by means of a box-plot. Horizontal bands inside the
box show median values, the bottom and the top of the box represent the first
and third quartile, and whiskers the 5th and 95th percentiles. The results
show that actual cost-risk losses derived from the BM policy in comparison
to a trivial policy are minimum when near-to-perfect predictions are possible
(error proportion is 0.001). However, remarkable savings can be achieved for
higher but reasonable error proportions. In practice, one can consider that error
proportions below 0.5 are achievable since a high percentage of cash flows are
usually known with certainty in the short-term due to payment agreements with
customers, suppliers, banks and employees. This point is particularly common
for small and medium size companies such as those included in our data set
from Table 3. Indeed, the assumption of perfect predictions is common in
previous cash management works such as Baumol (1952), Golden et al. (1979)
and de Avila Pacheco and Morabito (2011).

2.5

1.5} B

Loss

1.0

0.001 0.1 0.2 03 04 05 06 07 0.8 09 1.0
Error proportion

Figure 4: Median cost-risk loss of the BM for different forecasting errors.

The results from Figure 4 show a high variability in cost-risk losses even for
low error proportions. In the long term, our BM proves to achieve remarkable
savings with respect to the benchmark, but at the same time, potential losses
can occur. This effect is mainly caused by our experimental setting with a five
days planning horizon and fixed policy that we use to evaluate the impact of
forecasting horizons. In practice, cash managers can obtain a new policy at each
time step to replace the previous one when new current balances are available
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as described in Bemporad and Morari (1999) and Camacho and Alba (2013),
hence providing the desired feedback control.

Another possible reason for this high variability is the underlying cash flow
process faced by each company in our data set. Since a value above one implies a
poorer performance than the benchmark, we report in Table 4 detailed results for
the number of companies below this threshold value for different prediction error
proportions at different quantiles. We aim to study the expectation for a given
company to achieve better results than the benchmark. For instance, we expect
that 61% of companies with error proportion 0.2 obtain better results than the
benchmark 75% of the times. Note that line Q59 in Table 4 would correspond
to the horizontal line within the box as in Figure 4 for a particular company,
line Q75 to the upper box limit, and line Qg5 is the upper whisker. From these
results, we conclude that companies can differently benefit from deploying a
BM, even in the case of a fixed policy for the whole planning horizon in our
experimental setting. By implementing the method proposed in Algorithm 1,
cash managers are able to determine the expected cost-risk loss of deploying a
BM under a particular cash flow process.

Table 4: Percentage of companies below loss threshold one for different predic-
tion errors and quantiles.
Proportion 0,001 0,1 02 03 04 05 06 07 08 09 1.0

Qs0 100 98 98 93 96 93 94 81 83 83 67
Qs 100 87 61 43 24 13 9 7 2 0 0
Qos 98 15 4 0 0 0 0 0 0 0 0

It is also worth noting that efforts in improving forecasting accuracy are
highly rewarded using the BM. For example, consider a cash manager that is
able to achieve forecasting errors of, at most, 40% of the standard deviation of
past cash flows (p = 0.4), which can be considered a reasonable target. By using
predictions and our BM, we observe in Figure 4 that more than 20% of the total
loss can be saved. Going one step further, if the cost of obtaining predictions
is less than that 20%, our hypothetical cash manager should deploy a BM.
Summarizing, our BM proves to be significantly robust to forecasting errors since
remarkable cost-risk savings with respect to a trivial policy can be obtained even
for almost purely random cash flows. This fact must encourage cash managers
to produce better cash flow forecasts since improvements in accuracy are highly
rewarded.

7 Conclusions

Deriving cash management policies is by no means straightforward. In this
paper, we provide cash managers with a modelling framework to deal with
cash flow uncertainty. We also solve one serious limitation of cash management
models based on bounds: its difficulty to obtain optimal solutions. We here
propose to linearize the cash management problem in an attempt to provide
a sound mathematical programming framework that returns optimal policies.
Once the cash management problem is formulated as a linear program with
both continuous and auxiliary binary variables, the bounds that determines the
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policy of a BBM can be expressed as a set of additional constraints. We illustrate
this approach by providing a multiobjective reformulation of the Gormley and
Meade (2007) model within a compromise programming framework where cost
and risk (but possibly other) are goals to optimize.

Furthermore, we propose a new BM for multiobjective cash management
which departs from the state-of-the-art bound-based approach in the fact that
is not constrained by any particular form of policy. Since the ultimate goal
of the cash management problem is to find the best policy instead of a set of
bounds that determines the policy, we show that the constraints imposed by
BBMs are redundant and can be removed from the optimization problem.

Since forecasts are characterized by some prediction error, we also analyze
the impact of predictive accuracy in cost-risk performance of policies derived
from our BM showing that it is highly robust to forecasting errors. Note also
that the methodology used to analyze the impact of forecasting errors also sup-
ports decision-making by estimating the reward that can be obtained through
the use of better forecasts. Deployment costs can then be compared to estimated
savings to decide if further effort in improving predictive accuracy is worthwhile.

Further research may consider multiple bank accounts and different cost
functions in an attempt to close the gap between theory and practice. In prac-
tice, cash transactions between multiple bank accounts with different cash flow
characteristics are common in most companies. In order to make the BM more
immune to unexpected losses due to unreliable forecasts, robust optimization
(Ben-Tal et al., 2009) represents a suitable future line of work. Finally, more
complex cost functions, such as time dependent costs or piece-wise cost func-
tions, can also be included in the analysis in order to achieve a better represen-
tation of the cash management problem.
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