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ABSTRACT3

The BATtle of the Attack Detection ALgorithms (BATADAL) is the most recent competition4

on planning and management of water networks undertaken within the Water Distribution5

Systems Analysis Symposium. The goal of the battle was to compare the performance of6

algorithms for the detection of cyber-physical attacks, whose frequency increased in the7

past few years along with the adoption of smart water technologies. The design challenge8

was set for C-Town network, a real-world, medium-sized water distribution system operated9

through Programmable Logic Controllers and a Supervisory Control And Data Acquisition10

(SCADA) system. Participants were provided with datasets containing (simulated) SCADA11

observations, and challenged with the design of an attack detection algorithm. The effec-12

tiveness of all submitted algorithms was evaluated in terms of classification performance13

and time-to-detection. Seven teams participated in the battle and proposed a variety of14

successful approaches leveraging data analysis, model-based detection mechanisms, and rule15

checking. Results were presented at the Water Distribution Systems Analysis Symposium16

(World Environmental & Water Resources Congress), in Sacramento, on May 21-25, 2017.17

This paper summarizes the BATADAL problem, proposed algorithms, results, and future18

research directions.19

Keywords: Water distribution systems, Cyber-physical attacks, Cyber security, EPANET,20

Smart water networks, Attack detection21

INTRODUCTION22

The past decades witnessed the transition of water distribution systems from traditional23

physical infrastructures to cyber-physical systems that combine physical processes with com-24

putation and networking: physical assets—such as pipes, pumps, and valves—work in unison25

with networked devices that monitor and coordinate the operations of the entire system.26

These devices include Programmable Logic Controllers (PLCs), Supervisory Control And27

36Faculty of Management, Dept. of Natural Resources and Environmental Management, Univ. of Haifa,

Haifa, Israel.
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Data Acquisition (SCADA) systems, Remote Terminal Units (RTUs), static and mobile28

sensor networks, and smart meters (Hill et al. 2014; Gong et al. 2016; Sønderlund et al.29

2016). The adoption of such smart water technologies plays a pivotal role in enhancing the30

reliability and autonomy of water distribution systems, but simultaneously exposes them31

to cyber-physical attacks (Rasekh et al. 2016)—namely the deliberate exploitation of com-32

puter systems aimed at accessing sensitive information or compromising the operations of33

the underlying physical system. Water (and wastewater) systems represent one of the sixteen34

critical infrastructure sectors identified by the U.S. Department of Homeland Security (U.S.35

Department of Homeland Security 2017), according to which the number of reported attacks36

on water infrastructures has been growing steadily (ICS-CERT 2014; ICS-CERT 2015; ICS-37

CERT 2016)—making them the third highest targeted sector after critical manufacturing38

and energy (ICS-CERT 2016).39

40

Protecting water distribution systems from cyber attacks requires (as with other cyber-41

physical systems) a combination of proactive and reactive mechanisms (Cardenas et al. 2008).42

Proactive mechanisms comprise all tools that reduce the ‘attack surface’ available to hack-43

ers, such as appropriate measures for traffic authentication and confidentiality protection,44

access control, and device hardening (Graham et al. 2016). Since it is not possible to rule45

out all attacks, cyber-physical systems should also be equipped with intrusion detection46

schemes that assist with the recovery phase (Anderson 2010). Disclosing cyber attacks—47

without issuing false alarms—is thus crucial. Unfortunately, this does not come without48

some system-specific challenges. First, the definition of anomalous behaviours should not49

only be related to ‘outliers’—i.e., data points lying beyond some specific thresholds—since50

cyber-physical attacks can tamper one or multiple network components while keeping the51

performance characteristics within the historical bounds (Abokifa et al. 2017). This im-52

plies that detection schemes should be capable of disclosing both outliers and contextual53

anomalies—i.e., data points that do not conform with normal operating conditions. Second,54
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the same hydraulic response of a water network (e.g., low water levels in a tank) can be ob-55

tained through different attacks (Taormina et al. 2017). Therefore, detection schemes should56

also identify the cyber components that have been attacked; a non-negligible challenge in57

large water networks. Third, all networked devices, including SCADA systems, represent58

potential targets. This means that the information provided by SCADA systems may not59

be fully reliable.60

61

As the field of intrusion detection continues to grow, so too does the need of an objective62

comparison of attack detection algorithms for water distribution systems. The BATtle of63

the Attack Detection ALgorithms (BATADAL) was oragnized for this purpose. Participants64

were provided with datasets containing (simulated) SCADA data for a water distribution65

system victim of cyber attacks, and were tasked with the design of an online attack detection66

mechanism. The design goals of a detection algorithm were to: (1) disclose the presence of67

an ongoing attack in the minimum time possible, (2) avoid issuing false alarms, and (3)68

identify which components of the system have been compromised (optional). Seven teams,69

from both academia and industry, contributed with novel solutions, which were evaluated70

using specific evaluation criteria—i.e., time-to-detection and accuracy. BATADAL results71

were presented at a special session of the Water Distribution Systems Analysis Symposium72

(World Environmental & Water resources Congress), in Sacramento, on May 21-25, 2017.73

74

This paper summarizes the main solutions and outcomes of the BATADAL, and proposes75

future research directions for event detection in the realm of cyber-physical security. The76

remainder of the paper describes: (1) the BATADAL problem, data, and evaluation criteria;77

(2) a synopsis of the proposed attack detection algorithms; (3) an analysis of the results;78

and (4) conclusions and future research directions.79

PROBLEM DESCRIPTION80

The operators of C-Town water distribution system have observed anomalous behaviors81
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in some hydraulic components, e.g., tank overflows, reduction in pump speed, anomalous82

activation/deactivation of pumps. They suspect that the anomalies are attributable to cyber-83

physical attacks that interfered with the system operations and tampered with the readings84

recorded by the SCADA system. The participants’ aim was to develop an attack detection85

mechanism that detects the presence of attacks—in the shortest amount of time—from the86

available SCADA data. In particular, attack detection algorithms must classify the system87

state as either ‘safe’ or ‘under attack’. A summary description of C-Town is provided below,88

along with the development data and evaluation criteria. BATADAL rules, problem details,89

and data are available in the supplemental material of the paper.90

C-Town Network91

C-Town water distribution system is based on a real-world, medium-sized network, first in-92

troduced for the Battle of the Water Calibration Network (Ostfeld et al. 2011). The network93

consists of 429 pipes, 388 junctions, 7 storage tanks, 11 pumps (distributed across 5 pump-94

ing stations), 5 valves, and a single reservoir (see Figure 1). Water consumption is fairly95

regular throughout the year. These physical assets were augmented with a network of nine96

Programmable Logic Controllers (PLCs), which are located in proximity of pumps, storage97

tanks, and valves. As shown in Table 1, most of the PLCs controlling the pumps receive98

the information needed by the control logic from other PLCs—for instance, PLC1 controls99

pump PU1 and PU2 on the basis of tank T1 water level, which is monitored by PLC2.100

PLCs controlling pumps and valves record information on the device status (ON/OFF or101

OPEN/CLOSED), the flow passing through it, and the suction and discharge pressures.102

The cyber network includes a SCADA system, whose role is to coordinate the operations103

and store the readings provided by the PLCs. All information regarding the distribution104

system were incorporated into the EPANET2 (Rossman 2000) input file C-Town.inp.105

Development data106

Participants were provided with three datasets containing SCADA readings for 43 system107

variables, i.e., tank water levels (7 variables), inlet and outlet pressure for one actuated valve108
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and all pumping stations (12 variables), as well as their flow and status (24 variables). All109

variables are continuous, with the exception of the valve and pumps’ status, represented110

by binary variables. The datasets were generated via simulation with epanetCPA, a Matlab111

toolbox that allows to design a variety of cyber attacks and simulate, with EPANET2 (version112

2.0.12), the hydraulic response of a water distribution network; see Taormina et al. (2017)113

for further details. The first two datasets, hereafter named Training dataset 1 and Training114

dataset 2, were provided at the beginning of the competition, while the third one (Test115

dataset) was subsequently used to evaluate and rank the attack detection algorithms.116

• Training dataset 1 was generated with a simulation horizon and hydraulic time step117

of 365 days and one hour, respectively. A key aspect of the dataset is the absence118

of cyber attacks, which made it suitable for studying the operations of the water119

distribution system under normal operating conditions.120

• Training dataset 2 contains seven attacks, spanning over 492 hourly time steps. One121

attack was entirely revealed to the participants (by appropriately labelling the cor-122

responding time steps), while the remaining attacks were either partially revealed or123

hidden; see Table 2 for additional details. This corresponds to a post-attack scenario,124

in which forensics experts carry out an investigation to determine whether, when, and125

where the water distribution system has been affected.126

• Test dataset contains seven additional attacks, spanning over 407 hourly time steps127

(see Table 3). Naturally, no information regarding the attacks was revealed. Partici-128

pants were required to run the detection algorithms on the Test dataset and to submit129

a detection report containing the following information: number of attacks detected,130

start and end time of each attack (in DD-MM-YYYY hh format), and the label of131

the attacked device(s) (optional).132

The operations of the water system were altered through malicious activation of hydraulic133

actuators, change of actuator settings, and deception attacks—amongst the most common134
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for cyber-physical systems (Cardenas et al. 2009). The latter were aimed at manipulating135

the information sent or received by sensors and PLCs, with the ultimate goal of affecting the136

operations of an actuator (Urbina et al. 2016). Note that deception attacks were also used to137

alter the information received by SCADA, therefore concealing the real, physical outcomes138

of the attacks. SCADA concealment was performed by either replacing actual traffic infor-139

mation between PLCs and SCADA with previously-recorded data (replay attacks) or adding140

an offset to the transmitted sensor readings (Urbina et al. 2016). Figure 2 illustrates attack141

#3 (Training dataset 2), where both pump operations and SCADA data are compromised.142

In this case, a deception attack manipulates Tank T1 water level readings sent by PLC2143

to PLC1, resulting in an excessive use of pumps PU1 and PU2. This causes Tank T1 to144

overflow. A second deception attack alters the signal sent by PLC2 to SCADA by adding a145

time-varying offset.146

Evaluation criteria147

The evaluation of the attack detection algorithms was based on two scores that account for148

(1) the time taken to detect an attack, and (2) the algorithm classification performance. The149

two scores were eventually combined into an overall ranking score, as explained next.150

Time-to-detection151

The time-to-detection (TTD) is the time needed by an algorithm to disclose a threat. It is152

defined as the difference between the time td at which the attack is detected and the time t0153

at which the attack started:154

TTD = td − t0. (1)155

The lower the value of TTD, the better the algorithm performs. If an attack is detected, we156

then have:157

0 ≤ TTD ≤ ∆t, (2)158

where ∆t is the total duration of the attack. If the attack is not detected while it is ongoing159

(or at all), we set TTD = ∆t. To facilitate the comparison of all algorithms under different160
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attack scenarios, the following performance score (STTD) was computed:161

STTD = 1 − 1

na

na∑
i

TTDi

∆ti
, (3)162

where na is the number of attacks contained in a dataset, TTDi the time-to-detection relative163

to the i -th attack, and ∆ti the corresponding duration. STTD varies between 0 and 1, with164

STTD = 1 being the ideal case in which all attacks are immediately detected, and STTD = 0165

the case in which none of the attacks is detected.166

Classification performance167

We determined the accuracy of an algorithm as its ability to disclose threats without raising168

false alarms. In the context of binary classification problems—like BATADAL—the ability169

to identify threats is generally assessed with the True Positive Rate (TPR, also known as170

recall or sensitivity), which is defined as:171

TPR =
TP

TP + FN
, (4)172

where TP and FN represent the number of True Positives and False Negatives, respectively.173

In other words, the True Positive Rate is the ratio between the number of time steps cor-174

rectly classified as under attack and the total number of time steps during which the system175

is under attack.176

177

The ability to avoid false alarms is measured with the True Negative Rate (TNR, or speci-178

ficity), defined as179

TNR =
TN

FP + TN
, (5)180

where FP and TN represent the number of False Positives and True Negatives, respectively.181

The True Negative Rate is thus the ratio between the number of time steps correctly classi-182

fied as safe conditions and the total number of time steps during which the system is in safe183
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conditions.184

185

To ease the comparison across all algorithms, the True Positive and True Negative Rate were186

combined into a single classification performance score (SCLF ), defined as the mean between187

TPR and TNR, namely:188

SCLF =
TPR + TNR

2
. (6)189

This score, also known as area under the curve (Powers 2011), accounts for both correct de-190

tection and false alarms, so it is suited for binary classification problems in which the sample191

distribution is biased towards one of the two classes—i.e., safe conditions, in BATADAL.192

The value of SCLF varies between 0 and 1, with 1 representing a perfect classification.193

Ranking score194

The time-to-detection and accuracy scores were finally merged into an overall ranking score195

(S), defined as:196

S = γ · STTD + (1 − γ) · SCLF , (7)197

where γ (0 ≤ γ ≤ 1) determines the relative importance of the two evaluation scores. The198

coefficient γ was set to 0.5 for the analysis reported below; so, early detection and accurate199

classification were equally weighed. Note that a naïve detection mechanism that predicts the200

system to be always in safe conditions gets a score S equal to 0.25 (STTD = 0, SCLF = 0.5).201

On the other hand, flagging the system as always under attack yields a value of S equal to202

0.75 (STTD = 1, SCLF = 0.5). This reflects the fact that S is intrinsically biased towards203

attack identification, since the the consequences of failing to disclose an attack are deemed204

more costly than issuing false alarms.205

ATTACK DETECTION ALGORITHMS206

Seven teams participated in BATADAL. Here, we provide a brief description of each team’s207

attack detection algorithm.208
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• Aghashahi et al. (2017) adopted a two-step approach. First, a spectral domain209

method was used to extract the important characteristics of the observed data and210

make them independent of time; then, a supervised machine learning technique (i.e.,211

Random Forests, Breiman (2001)) was used to classify the system state as safe or212

under attack.213

• Brentan et al. (2017) reduced the dimensionality of the problem by exploiting the214

division of C-Town network in District Metered Areas (DMAs). For each DMA, the215

authors used data on normal operating conditions to create Recurrent Neural Net-216

works that forecast tank water levels as a function of pump flow, upstream pressure217

(of the corresponding pump station), and hour of the day (Díaz et al. 2016). A statis-218

tical control process was finally used to identify abrupt changes in the neural networks219

error time series when the latter were applied to data containing cyber attacks (Gu-220

ralnik and Srivastava 1999). The rationale behind this approach is that it is plausible221

to expect an increase in the error time series when the system is under attack, since222

all neural networks are trained with data pertaining to normal operations.223

• Chandy et al. (2017) developed two detection models running sequentially. The first224

one uses features of the SCADA data (e.g., combined flow of pump stations, volume225

pumped and stored) to check whether physical and/or operating rules have been226

violated (e.g., tank levels within the bounds, hydraulic relationships between nodes227

hold). The outcome of this model is a set of flagged events, which are confirmed by the228

second model. The latter is a Convolutional Variational Auto-Encoder—belonging to229

the family of deep learning methods (Kingma and Welling 2013; Doersch 2016)—that230

calculates the reconstruction probability of the data: the lower the probability, the231

higher the chance of the data being anomalous.232

• Giacomoni et al. (2017) proposed two detection methods. The first one verifies233

the integrity of the actuator rules and SCADA data—by (1) checking whether the234

SCADA readings are consistent with the actuator rules defined for the water distri-235
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bution system, and (2) comparing the data for all variables to identify values falling236

below or above thresholds created by analyzing data corresponding to normal oper-237

ating conditions. The second method builds on a convex optimization routine, which238

unveils low-dimensionality components in the available data as well as the sparse na-239

ture of anomalies, thereby facilitating the separation of anomalies from the overall240

data (Mardani et al. 2013). (The results reported below for Giacomoni et al. (2017)241

correspond to the first detection method.)242

• Abokifa et al. (2017) introduced a three-stages detection method, with each stage tar-243

geting a specific class of anomalies. The first step features outlier detection techniques244

to find statistical outliers in the data, thereby focusing on local anomalies that affect245

each sensor individually. The second stage employs an Artificial Neural Network—in246

the form of a Multi-Layer Perceptron—to detect contextual anomalies that do not247

conform to normal operating conditions. The third stage targets global anomalies248

that simultaneously affect multiple sensors. To disclose these anomalies, the layer249

uses Principal Component Analysis to decompose the high-dimensional datasets of250

sensor measurements into two sub-spaces representing normal and anomalous condi-251

tions (Lee et al. 2013).252

• Pasha et al. (2017) presented an algorithm consisting of three main interconnected253

modules working on control rules and consistency checks, pattern recognition, and254

hydraulic and system relationships. The first module checks the consistency of the255

data against the set of control rules characterizing the water system, while the second256

one uses statistical analysis to identify patterns for single hydraulic parameters and257

combination thereof. The idea is that patterns under cyber attacks may not follow the258

original ones. The anomalous behaviors detected by the first two modules are finally259

confirmed by the third one, which develops relationships for some physical quantities260

(e.g., tank levels, flows) and compares their estimates against those reported by the261

first two modules.262
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• Housh and Ohar (2017b) proposed a model-based approach that employs EPANET to263

simulate the hydraulic processes of the water distribution systems, and then uses the264

error between EPANET simulated values and the available SCADA readings to detect265

anomalous behaviors. The approach consists of three main steps: first, available266

SCADA readings are used in a Mixed-Integer Linear Program to estimate the water267

demand in all nodes of C-Town; second, EPANET is used to generate two sets of268

simulated values (i.e., with and without attacks); and third, a multi-level classification269

approach is implemented to classify the obtained simulation errors into outliers and270

normal errors. A similar approach was successfully developed by Housh and Ohar271

(2017a) to detect contamination events in water distribution systems.272

RESULTS273

Algorithms performance274

Table 4 reports the values of the ranking, time-to-detection, and classification score (S,275

STTD, and SCLF ) obtained by the competing algorithms on the test dataset. The table also276

reports the number of attacks detected and the elements of the confusion matrix yielding277

the classification score (i.e., TP , FP , TN , and FN). A visual comparison of S, STTD, and278

SCLF is given in the scatter plot of Figure 3.279

280

Figure 3 highlights a cluster of four high-performing algorithms, all achieving a ranking score281

S higher than (or close to) 0.90. The group is led by the algorithm proposed by Housh and282

Ohar (2017b), which shows the best overall performance (S = 0.970). Note that this algo-283

rithm is the top scorer in terms of both time-to-detection STTD and classification score SCLF .284

Indeed, the detection trajectory depicted in Figure 4(a) shows that all attacks were imme-285

diately detected, with the exception of the last one, which was disclosed a few hours after286

its starting time. The algorithm of Abokifa et al. (2017) comes a close second, with S equal287

to 0.949. This method was almost as quick as Housh and Ohar (2017b) one in identifying288
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the attacks, but it was more prone to false alarms. As shown in Figure 4(b), Abokifa et al.289

(2017) algorithm disclosed Attack #10 and #11 as a single continuous episode, erroneously290

flagging the system as under attack for the period in between. The algorithm proposed291

by Giacomoni et al. (2017) has the same number of false positives and true negatives as292

that of Housh and Ohar (2017b)—meaning that both algorithms were the most successful in293

avoiding false alarms. However, Giacomoni et al. (2017) algorithm is less sensitive, resulting294

in a higher number of false negatives and minor timing errors (see Figure 4(c)) that lead to a295

score S equal to 0.927. With a value of S equal to 0.896, the algorithm proposed by Brentan296

et al. (2017) can also be regarded as a strong performer. As shown in Figure 4(d), this297

algorithm was able to consistently and accurately detect most of the attacks, but it failed to298

identify the last one.299

300

Although outdistanced by the leading group, the contributions of Chandy et al. (2017)301

and Pasha et al. (2017) are still sensibly better than the naïve detection mechanisms de-302

scribed in Section 2. Their score S is equal to 0.802 and 0.773, respectively. As illustrated in303

Figure 4(e,f), these two detection algorithms appear to suffer from opposite problems. The304

algorithm of Chandy et al. (2017) turned out to be over-sensitive—meaning that it was able305

to identify most of the attack instances, but at the cost of issuing numerous false alarms.306

On the other hand, the algorithm of Pasha et al. (2017) issued just a few false alarms, but307

it lacked sensitivity, thus failing to flag the system as under attack for the entire duration of308

the events. Finally, the contribution of Aghashahi et al. (2017) detected only three attacks,309

leading to a score S equal to 0.534.310

General Observations311

The main insights from the results presented above can be summarized as follows:312

• All algorithms but one achieved a ranking score S larger than 0.75, meaning that313

they performed better than naïve detection mechanisms. Yet, we observed a large314
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variability in the algorithm performance.315

• Both time-to-detection and classification score are important aspects of performance.316

Logically, the algorithms that performed consistently well for both metrics achieved317

a higher ranking score. With the exception of Brentan et al. (2017) and Pasha et al.318

(2017), there appears to be a strong correlation between these two metrics (see Fig-319

ure 3).320

• Only a few algorithms provided information on the attacked devices. Among these,321

the algorithms proposed by Brentan et al. (2017) and Giacomoni et al. (2017) were322

the most accurate.323

• Interestingly, the BATADAL was won by the only model-based approach. The idea324

of estimating the water demands to simulate system dynamics with EPANET, and325

then measure the errors with respect to SCADA readings, proved successful. In this326

regard, it is important to note that BATADAL demand patterns were fairly regular327

and consistent across the three datasets. Similarly, the participants were given the328

same computational model of the C-Town network that was used to generate the329

SCADA data. Therefore, successful application of this approach in real-world settings330

might be hindered by the intrinsic variability of demand patterns or the unavailability331

of a reliable system model.332

• We can probably conclude that both model-based and data-driven approaches are333

suitable for attack detection problems, although their performance would probably334

vary with the modelling context at hand.335

• Detection algorithms adopting a ‘multivariate’ approach may be best suited than336

algorithms analyzing a single time series per time. The inherent interdependence337

of the elements in the water network should theoretically allow for the detection of338

anomalies, even when the adversary tries to conceal his (her) actions by altering the339

SCADA readings of one or a few deployed sensors.340

• Most teams presented multi-stage detection methods. Comparing and confirming the341
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detection issued by different modules can help decrease classification errors.342

• The adoption of supervised classification algorithms that learn how to classify the343

system state (as either safe or under attack) may not be ideal, since the number of344

attacks in the available data is generally limited. Supervised classification algorithms345

should always be combined with cross-validation schemes.346

• It appears that consistency checks and the analysis of control rules should lead to the347

identification of the simplest attacks.348

FUTURE RESEARCH DIRECTIONS349

The BATADAL highlighted the following gaps that may need additional research efforts:350

• Robustness analysis. The evaluation of BATADAL algorithms can be seen as a deter-351

ministic analysis carried out on three specific datasets, which represent only a small352

portion of the entire set of cyber-attacks that could threaten a water distribution353

system. Hence, the generation of different attacks is likely to produce different re-354

sults; a limitation observed in other battles (e.g., Ostfeld et al. (2008)). To evaluate355

the robustness of an algorithm, it is thus advisable to generate stochastic simulation356

scenarios comprising varying hydraulic conditions (i.e., water demand, initial tank357

levels) and multiple attack sequences.358

• Use of real SCADA data. A major limitation of the current research on cyber-security359

is the absence of detailed information on cyber attacks to water utilities (e.g., timing,360

compromised devices, hydraulic response of the system). Access to such information361

and to the corresponding SCADA data—perhaps, in some anonymized forms—would362

drastically enhance our understanding on skills and limitations of detection algo-363

rithms. Another challenge with SCADA data is that they often contain noise and364

measurement errors, so attack detection algorithms should be coupled with data pre-365

processing techniques.366

• Pressure deficient conditions and water quality problems. A limitation of this battle367
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is its reliance of data generated with a demand-driven engine (Taormina et al. 2017).368

The range of attacks should be thus extended to include pressure-deficient conditions,369

water quality problems, and adversial attempts aimed at threatening emergency re-370

sponses, such as firefighting operations. In the absence of real SCADA data, sim-371

ulated data could be generated by combining epanetCPA with more sophisticated372

hydraulic engines (e.g., Sayyed et al. (2015)) or water quality models (e.g., EPANET-373

MSX, Shang et al. (2007)).374

• Sensitivity analysis. The definition of the cut-off criteria defining outliers regulates the375

trade-off between True Positive and True Negative Rate for most of the algorithms, so376

there is a need to adopt or develop sensitivity analysis tools that draw the appropriate377

line between normal and anomalous data (Abokifa et al. 2017). This step should378

always precede the application of an algorithm to new datasets—or its deployment in379

a SCADA system.380

• Computational requirements and scalability to large networks. The algorithms pre-381

sented in this paper were applied to a medium-sized water distribution system com-382

prising one SCADA system and nine PLCs. Since attack detection algorithm are383

meant to run in real-time, it is necessary to evaluate their computational require-384

ments as well as their scalability to larger networks.385

• Attack localization. To facilitate and hasten incident resolution, an ideal detection386

mechanism should be able to identify which components of the network are being387

attacked. This is a rather challenging task due to the intrinsic correlation among the388

hydraulic variables.389

• Integration with other fault detection mechanisms. Since attack detection mecha-390

nisms aim to disclose outliers and contextual anomalies in the system behavior, they391

may accidentally disclose anomalous behaviors that are not necessarily caused by392

cyber attacks. Hence, there is a need to disclose the nature of each problem be-393

ing identified—for example, by combining the attack detection algorithms with fault394
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detection mechanisms that monitor PLCs operations.395

• Cost effectiveness of attack detection. In BATADAL, the different algorithms were396

evaluated based on their responsiveness and classification performance. Although397

these metrics provide some insights on the potential benefits of deploying an attack398

detection mechanism, a more comprehensive evaluation is needed. For example, one399

could try to estimate the cost associated to each cyber-physical attack and the corre-400

sponding cost savings guaranteed by a detection algorithm.401

CLOSURE402

The BATADAL is the first battle competition dealing with the emerging topic of cyber-403

physical security of water distribution systems. This battle gave an opportunity to develop,404

test, and compare attack detection algorithms for SCADA data. The solutions provided by405

seven teams suggest that timely and accurate detection can be obtained by both model-406

based and data-driven approaches, usually made of multiple sequential stages. While the407

data and algorithms presented here provide a first step towards an objective comparison of408

attack detection algorithms for water distribution systems, they do not represent the entire409

spectrum of modelling contexts that practitioners and researchers would encounter. Hence,410

we hope that the availability of a dedicated website (www.batadal.net) will help share more411

datasets and case studies.412

SUPPLEMENTAL DATA413

The supplemental data include the following files, which are available online in the ASCE414

Library (www.ascelibrary.org):415

• BATADAL rules.pdf—competition rules, available to participants;416

• C-Town.inp—EPANET input file, version 2.00.12, available to participants;417

• Training dataset 1.dat—data without attacks, available to participants;418

• Training dataset 2.dat—data with attacks and corresponding labels, available to the419

participants with partial labels;420
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• Test dataset.dat—data with attacks and corresponding labels, available to the partic-421

ipants without labels;422

• Detection reports.dat—detection reports submitted by the participants.423

Additional details about BATADAL are available at http://batadal.net.424
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TABLE 1. Sensors and actuators (pumps, valves) monitored/controlled by the PLCs.
For each PLC, we also report the corresponding controlling sensor, which provides the
information needed to operate the actuators. Note that a PLC-to-PLC connection is
established whenever an actuator and the corresponding control sensor are connected
to two different PLCs.

PLC Sensor Actuators (Controlling sensor)

PLC1 - PU1(T1), PU2(T1)
PLC2 T1 -
PLC3 T2 V2(T2), PU4(T3), PU5(T3), PU6(T4), PU7(T4)
PLC4 T3 -
PLC5 - PU8(T5), PU9(-), PU10(T7), PU11(T7)
PLC6 T4 -
PLC7 T5 -
PLC8 T6 -
PLC9 T7 -
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TABLE 2. Attacks featured in Training dataset 2.

ID Starting time
[dd/mm/YY HH]

Ending time
[dd/mm/YY HH]

Duration
[hours] Attack description SCADA concealment Labeled

[hours]

1 13/09/2016 23 16/09/2016 00 50 Attacker changes L_T7 thresholds (which
controls PU10/PU11) by altering SCADA
transmission to PLC9. Low levels in T7.

Replay attack on
L_T7 .

42

2 26/09/2016 11 27/09/2016 10 24 Like Attack #1. Like Attack #1 but re-
play attack extended
to PU10/PU11 flow
and status.

0

3 09/10/2016 09 11/10/2016 20 60 Attack alters L_T1 readings sent by PLC2
to PLC1, which reads a constant low level
and keeps pumps PU1/PU2 ON. Overflow in
T1.

Polyline to offset
L_T1 increase.

60

4 29/10/2016 19 02/11/2016 16 94 Like Attack #3. Replay attack on
L_T1, PU1/PU2 flow
and status, as well
as pressure at pumps
outlet.

37

5 26/11/2016 17 29/11/2016 04 60 Working speed of PU7 reduced to 0.9 of nom-
inal speed causes lower water levels in T4.

7

6 06/12/2016 07 10/12/2016 04 94 Like Attack #5, but speed reduced to 0.7. L_T4 drop concealed
with replay attack.

73

7 14/12/2016 15 19/12/2016 04 110 Like Attack #6. Replay attack on
L_T1, as well as
PU1/PU2 flow and
status.

0
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TABLE 3. Attacks featured in the Test dataset.

ID Starting time
[dd/mm/YY HH]

Ending time
[dd/mm/YY HH]

Duration
[hours] Attack description SCADA concealment

8 16/01/2017 09 19/01/2017 06 70 Attacker changes L_T3 thresholds (which
control PU4/PU5) by gaining control of
PLC3. Low levels in T3.

Replay attack on
L_T3, as well as
PU4/PU5 flow and
status.

9 30/01/2017 08 02/02/2017 00 65 Attack alters L_T2 readings arriving to
PLC3, which reads a low level and keeps
valve V2 OPEN, leading T2 to overflow.

Polyline to offset
L_T2 increase.

10 09/02/2017 03 10/02/2017 09 31 Malicious activation of pump PU3

11 12/02/2017 01 13/02/2017 07 31 Similar to Attack #10

12 24/02/2017 05 28/02/2017 08 100 Similar to Attack #9 Replay attack on
L_T2, V2 flow and
status, as well as V2
inlet + outlet pressure
readings (P_J14,
P_J422)

13 10/03/2017 14 13/03/2017 21 80 Attacker changes L_T7 thresholds (which
control PU10/PU11) by gaining control
of PLC5, causing the pumps to switch
ON/OFF continuously.

Replay attack on
L_T7, PU10/PU11
flow and status, as
well as inlet + outlet
pressure readings
(P_J14, P_J422).
Inlet pressure con-
cealment terminates
before that of other
variables.

14 25/03/2017 20 27/03/2017 01 30 Alteration of T4 signal arriving to PLC6.
Overflow in T6.
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TABLE 4. Performance of all attack detection algorithms, assessed in terms of num-
ber of attacks detected, overall ranking score (S), time-to-detection (STTD), accuracy
(SCLF ), and number of True Positives (TP ), False Positives (FP ), True Negatives
(TN) and False Negatives (FN). The algorithms are ranked according to the their
overall ranking score.

Rank Team # Attacks detected S STTD SCLF TP FP TN FN

1 Housh and Ohar 7 0.970 0.965 0.975 388 5 1677 19
2 Abokifa et al. 7 0.949 0.958 0.940 375 69 1613 32
3 Giacomoni et al. 7 0.927 0.936 0.917 341 5 1677 66
4 Brentan et al. 6 0.894 0.857 0.931 362 45 1637 45
5 Chandy et al. 7 0.802 0.835 0.768 349 541 1141 58
6 Pasha et al. 7 0.773 0.885 0.660 134 14 1668 273
7 Aghashahi et al. 3 0.534 0.429 0.640 161 195 1487 246
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FIG. 1. Graphical representation of C-Town water distribution system (adapted from
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FIG. 2. Illustration of attack #3 (from Training dataset 2). The attacker alters Tank
T1 water level readings (continuous black line) sent by PLC2 to PLC1, which reads
a constant low level (dotted black line) and keeps Pumps PU1/PU2 ON. This causes
an overflow in Tank T1 (thick gray line). To conceal the action, the attacker alters
the signal sent by PLC2 to SCADA (dashed black line) by adding a time-varying
offset (continuous gray line). The duration of the entire attack is highlighted by the
light gray line on the horizontal axis.
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FIG. 3. Graphical representation of the algorithm performance, measured in terms of
time-to-detection (STTD, horizontal axis), classification performance (SCLF , vertical
axis), and overall ranking score (S, color-bar).
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FIG. 4. Comparison between actual and detected attacks (gray area and black line,
respectively) for the Test dataset. Each panel corresponds to a different attack
detection algorithm.
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