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Abstract 

Rice husk is an important agricultural by-product that has not been exploited yet to full 

capacity for advanced applications. The feasibility of obtaining high-value products 

such as bioactive hemicelluloses and cellulose nanocrystals (CNCs) from rice husk is 

here demonstrated in a cascade biorefinery process using subcritical water extraction 

(SWE) prior to bleaching and acid hydrolysis, and compared to traditional alkali 

pretreatments. The proposed SWE process enables the isolation of bioactive 

arabinoxylans with phenolic acid moieties, thus preserving their antioxidant and 

antibacterial properties that are lost during alkaline conditions. Additionally, SWE can 

be combined with subsequent bleaching and acid hydrolysis to obtain CNCs with large 

aspect ratio, high crystallinity and thermal stability. The hydrothermal process also 

enables the recovery of silica particles that are lost during the alkali step, but can be 

recovered after the isolation of the CNCs. Our biorefinery strategy results in the integral 

valorization of rice husk into their molecular components (bioactive arabinoxylans, 

cellulose nanocrystals and silica particles), which can be used as additives for food 

applications and as reinforcing agents in biocomposite materials, respectively. 

 

Keywords: rice husk; subcritical water extraction; xylans; cellulose nanocrystals; 

biorefinery 
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Introduction 1 

Rice constitutes a global food crop currently grown in over a hundred countries, producing 2 

over 715 million Tn of paddy rice annually. On average, paddy rice generates 25% husk, 10% 3 

bran and germ, and 65% white rice1. Therefore, the rice milling industry generates annually a 4 

vast volume of rice husk by-products, which can be considered as a valuable renewable 5 

resource in the current context of circular and biobased economy. Rice husk is mainly 6 

composed of cellulose (40%), hemicellulose (30%), lignin (10%) and silica (20%).2 Several 7 

strategies have been proposed for the valorization of rice husk as such, including the use as 8 

renewable fuel due to its high calorific power,3-4 as partial replacement for building 9 

materials,5 and as a filler in bioplastic materials6-8. However, such bulk applications do not 10 

exploit the full potential of the inherent phytochemical and lignocellulosic components 11 

present in rice husk for high value products.9 12 

The overarching goal of any biorefinery approach should aim for a near-complete utilization 13 

of the inherent biomass components, generating multiple products in a cascade manner. Given 14 

the high cellulose content of rice husk, these fibres can be used as a cheap raw material for 15 

developing cellulose-based products. In this context, cellulose nanocrystals (CNCs) consisting 16 

of highly crystalline rod-shaped cellulose regions, show great potential as reinforcing agents 17 

for different composites.10 Other fields of potential applications for the CNCs include barrier 18 

and antimicrobial films, flexible displays, biomedical implants, pharmaceuticals, drug 19 

delivery, fibres and textiles, templates for electronic components, separation membranes, 20 

batteries, supercapacitors, and many others.11 21 

The isolation of CNC from plant biomass occurs in two stages, an initial pre-treatment of the 22 

raw material to isolate the cellulosic fibres, resulting in the complete or partial removal of 23 

matrix materials such as hemicelluloses and lignin, followed by a controlled chemical 24 
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treatment, in order to remove the amorphous regions of the cellulose polymer.12 The 25 

exploitation of the high hemicellulose fraction of RH, which is mainly made up of substituted 26 

arabinoxylans, also offers interesting possibilities. Xylans have large potential as natural 27 

substitutes for synthetic texturizing agents and antioxidants for food, cosmetics and 28 

biomedical applications due to their rheological properties combined with their antioxidant 29 

and/or antimicrobial activity.13 The most common process applied to extract the hemicellulose 30 

fractions from plant by-products is based on severe alkaline treatments to disrupt the 31 

crosslinked and recalcitrant lignocellulosic biomass architecture.14-15 Nonetheless, these 32 

conditions promote the removal of the native chain-linked acetyl and phenolic compounds, 33 

which leads to a loss in the hemicelluloses’ functionality.13 Subcritical water extraction 34 

(SWE), also refereed in the literature as pressurized hot-water extraction (PHWE) and 35 

superheated water extraction, emerges as a promising green technique for the isolation of 36 

hemicellulose fractions with preserved molecular functionalities and high molecular weight.13 37 

Compared to conventional treatments (acid, alkali and enzymatic hydrolysis), the use of water 38 

under subcritical conditions (temperatures and pressures below the critical point to maintain 39 

liquid state) has numerous advantages, since it is scalable, uses non-toxic solvents, does not 40 

require pre-treatments, is faster, and presents a lower degree of sugar degradation.16-17  41 

In this study, a bioprocess towards the integral fractionation of rice husk is proposed, using 42 

subcritical water as an alternative to alkaline extraction to release matrix polysaccharides, 43 

prior to bleaching and acid hydrolysis to obtain cellulose nanocrystals (Figure 1). The yields, 44 

composition and properties of the obtained fractions were compared to those found using the 45 

common alkali process. The overall process enables the simultaneous extraction of polymeric 46 

hemicelluloses (xylans) with bioactive properties, and the isolation of cellulose nanocrystals 47 

and silica particles, useful as reinforcing agents. 48 

 49 
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Experimental Section (Materials and Methods) 50 

The rice husk was kindly provided by Dacsa Group (Valencia, Spain), dried at room 51 

temperature for one week and milled with a Wiley Mill Acm 82302 (Acmas Technocracy Pvt. 52 

Ltd, Germany) to a 20 mesh. 53 

Bioprocess design 54 

Two parallel cascade processes have been considered for the integral valorization of the 55 

fractions present in rice husk: (i) an “alkaline process” consisting of an initial treatment under 56 

alkaline conditions, and subsequent bleaching and acid hydrolysis steps, and (ii) an alternative 57 

“hydrothermal process”, where subcritical water extraction (SWE) replaces the traditional 58 

alkaline treatment, followed by bleaching and acid hydrolysis (Figure 1). 59 

Extraction of arabinoxylans from rice husks 60 

Subcritical water extraction (SWE) of the milled rice husk samples was performed using a 61 

Accelerated Solvent Extraction equipment (Dionex™ ASE™ 350, USA) at 160 °C and pH 7 62 

on the basis of the optimized xylan yields reported for wheat bran.13 Extractions were 63 

performed sequentially using 2 g of milled sample with sequential extraction cycles of 5, 10, 64 

15 and 30 min, resulting in four extracts (E-H5, E-H15, E-H30 and E-H60) and an insoluble 65 

fraction (RH-H). The extracts and residue were freeze-dried for 72 h for further analyses.  66 

Alkaline extraction from rice husk was performed in triplicates following the procedure 67 

described by Moriana et al.18 In brief, milled rice husk (4 wt%) was successively treated three 68 

times with a NaOH solution (4.5 % w/v) at 80 °C for 2h under mechanical stirring, filtered 69 

and washed. The alkali extracts (E-A1, E-A2, E-A3) obtained after each alkali treatment and 70 

the insoluble fraction (RH-A) were dialyzed for 48 h using a 3.5 kDa membrane (Spectra/Por 71 

3 Dialysis Membrane, SpectrumLabs, The Netherlands) and freeze-dried for further analyses.  72 

Isolation of cellulose nanocrystals  73 
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The insoluble fractions coming from the SWE (RH-H) and the alkaline (RH-A) processes 74 

were subjected to five consecutive bleaching treatments in order to remove the lignin and 75 

residual hemicellulose following the methodology previously described.19 Dried residues (4 76 

wt%) were treated with bleaching solutions consisting of equal parts of acetate buffer (2 M, 77 

pH 4.8), aqueous chlorite (1.7% w/v) and water, at 80 °C for 4h under mechanical stirring. 78 

Two bleached samples were thus obtained, those coming from the RH-A sample (RH-A-B) 79 

and those coming from the RH-H (RH-H-B). 80 

The acid hydrolysis was conducted after the bleaching treatment on both fibres (RH-A-B and 81 

RH-H-B) using the conditions described by Moriana et al.18 The bleached residues (4 wt%) 82 

were treated with 65 wt% sulphuric acid (preheated) at 45 °C for 40 min under continuous 83 

stirring. The hydrolysed material was washed with water and centrifuged at 25000g for 20 84 

min (Rotofix 32A Hettich Zentrifugen, Germany). The residue was water suspended and 85 

dialysed against distilled water for several days, using a 6-8 KDa membrane (Spectra/Por 1, 86 

SpectrumLabs, Breda, The Netherlands). The resulting suspensions were sonicated for 10 min 87 

while cooling in an ice bath, centrifuged at 4500 rpm for 10 min to remove the higher 88 

particles and kept at 4 °C for further analyses.  89 

Characterization of the alkali and SWE soluble hemicellulosic extracts 90 

Carbohydrate composition. Methanolysis with HCl in methanol (2M) was performed on the 91 

extracts (1mg of freeze-dried material) in triplicates at 100 °C for 5 h, followed by hydrolysis 92 

with TFA 2M at 120 °C for 1 h. The monosaccharides were separated and quantified by 93 

HPAEC-PAD on an ICS3000 system (Dionex, Sunnyvale, CA) using a Dionex CarboPac 94 

PA1 column at 30 °C at a flow rate of 1 mL min−1. Two different gradients were applied for 95 

the analysis of neutral sugars (fucose, arabinose, rhamnose, galactose, glucose, xylose, 96 

mannose), and uronic acids (galacturonic and glucuronic acid), as previously reported.20 97 
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Hydroxycinnamic acid quantification. The hydroxycinnamic acid profile was determined as 98 

described by Comino et al.21 In brief, 5 mg of dry samples (in triplicates) were saponified 99 

with 500 µl of 2 M NaOH overnight at room temperature, acidified to pH 3.0 (12 M HCl), 100 

extracted with ethyl acetate, and dried. The dried samples were then silylated with 1-101 

(trimethylsilyl)-imidazole-pyridine (100°C, 5 min) and resuspended in acetone before 102 

injection to gas chromatography with electron impact mass spectrometry (GC-MS, HP-6890 103 

GC coupled to an HP-5973, Agilent Technologies, Santa Clara, CA) using a CP Sil 5CB 104 

column (Agilent Technologies, Santa Clara, CA).13  105 

Glycosidic linkage analysis. Glycosidic linkage analysis of the hemicellulose extracts was 106 

performed in triplicate by methylation with methyl iodide in dimethyl sulfoxide (DMSO) with 107 

excess of NaOH using the conditions reported by Ciucanu & Kerek.22 The methylated 108 

polysaccharides were hydrolyzed (2 M trifluoroacetic acid, 121°C, 3 h) and further 109 

derivatized by reduction with NaBH4 and acetylation with acetic anhydride and pyridine. The 110 

permethylated alditol acetates (PMAAs) were analysed by GC-MS on a SP-2380 capillary 111 

column (Sigma–Aldrich), as previously reported.23 112 

Molar mass distributions. The molar mass distributions of the different hemicellulose extracts 113 

were analysed by size-exclusion chromatography (SECcurity 1260, Polymer Standard 114 

Services, Mainz, Germany) coupled to a refractive index detector (SECcurity 1260, Polymer 115 

Standard Services, Mainz, Germany) in DMSO with 0.5% w/w LiBr at 60°C. Calibration was 116 

performed by injection of pullulan standards of known molar masses (Polymer Standard 117 

Services, Mainz, Germany).23  118 

Radical scavenging activity of the extracts. The scavenging activity of the hemicellulosic 119 

extracts was measured in triplicate by using the 2,2-Diphenyl-1-pikryl-hydrazyl (DPPH) 120 

reduction method.24 These measurements were carried out for the SWE and alkali extracts 121 
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with the highest xylan contents, E-H60 and E-A3, respectively. Briefly, aliquots of the 122 

properly diluted samples were mixed with a methanol solution of DPPH· (0.0255 g L−1) at a 123 

final ratio ranging from 0.025:1 to 0.3:1. The absorbance of the resulting solutions was 124 

measured at 515 nm every 15 min, until the reaction reached the steady state, using a 125 

spectrophotometer (ThermoScientific spectrophotometer Evolution 201 UV–vis). The DPPḢ 126 

concentration (mM) was calculated from the calibration curve, whereas the percentage of 127 

remaining DPPH· (% DPPH·
rem) was calculated from the concentration of DPPH· at steady 128 

state and the concentration at the beginning of the reaction. The parameter EC50 was 129 

determined by plotting the % DPPH·
rem versus the mass ratio of extract to DPPH· (mg 130 

extract/mg DPPḢ), which indicates the amount of extract required to reduce the initial 131 

concentration of DPPH· to 50% once the stability of the reaction was reached.25 132 

Antibacterial activity of the extracts. A MTT colorimetric assay was carried out in duplicate 133 

using a 96-well microtiter plate design, in order to study the antimicrobial activity of the 134 

hemicellulosic SWE and alkali extracts with the highest xylan contents. Diluted solutions 135 

(150 to 10 mg extract/mL) were prepared from the freeze-dried extracts using Tryptone Soy 136 

Broth (TSB) medium. Aliquots of 100 µl of each dilution were placed in their corresponding 137 

wells and the plates were inoculated with 100 µl of bacterial suspensions (105 CFU/mL) of L. 138 

innocua (CECT 910) or E. coli (CETC 101) provided by the Spanish Type Culture Collection 139 

(CECT, Universitat de València, Spain). After 24 h incubation at 37 °C, 10 µl of MTT 140 

reconstituted in Phosfate Buffered Saline PBS (5 mg/mL) were added to each well and 141 

incubated for 4h at 37 °C. MTT is a yellow tetrazolium salt, which is reduced to a purple 142 

formazan by the dehydrogenases of a live cell. The minimum inhibitory concentrations 143 

(MICs) were determined as the lowest concentration of active compound at which no purple 144 

colour was observed. 145 
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Characterization of the insoluble fractions for the isolation of CNCs 146 

Chemical composition analyses. The dry content of the different samples was measured by 147 

using a Mettler Toledo HB43 moisture analyser (Columbus, OH). The Klason lignin of each 148 

residue was estimated following the Tappi test method T222 om-06,26 while the total amount 149 

of soluble extractives in water and ethanol on the raw residue was determined by Soxhlet 150 

extraction.27 The ash content of the samples was determined by thermogravimetric analysis 151 

(TGA) using a Mettler-Toledo 851 (TGA/SDTA) module (Mettler Toledo, Columbus, OH).28 152 

The thermogravimetric method consisted of a heating ramp at 50°C·min-1 from 25°C to a 3 153 

min isothermal stage at 120°C, followed by a heating ramp until 950°C at 100°C·min-1 under 154 

O2 atmosphere.  155 

The monosaccharide composition was analysed by conventional two-step sulphuric acid 156 

hydrolysis29. In brief, 4 mg of the freeze-dried sample was pre-hydrolysed at room 157 

temperature for 3 h, diluted until a final concentration of 1M H2SO4, and then subjected to the 158 

second hydrolysis step at 100°C for 3 h. The hydrolysed monosaccharides were separated and 159 

quantified by HPAEC-PAD on an ICS3000 system (Dionex, Sunnyvale, CA) using a Dionex 160 

CarboPac PA1 column at 30°C at a flow rate of 1 mL min−1.20 161 

Scanning Electron Microscopy (SEM). The surface morphology of the rice husk fibres was 162 

analysed using a Tabletop TM-1000 scanning electron microscope (SEM) (Hitachi, Japan) at 163 

15kV. The effect of the different treatments was assessed by comparison of the untreated, 164 

SWE, alkali treated, and bleached fibres. No metal coating of the samples was required, due 165 

to observation under variable pressure vacuum. 166 

Atomic Force Microscopy (AFM). The morphology of the CNCs was imaged in the dry state 167 

with tapping-mode AFM (Multimode V, Bruker, Santa Barbara, CA).19 Images in height and 168 

phase modes were recorded with an E-scanner in a scan assist mode. RTESP silica cantilevers 169 
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(Bruker) having a tip with a radius of 8 nm and a spring constant of 20–80 N·m−1 oscillated at 170 

its fundamental resonance frequencies between 306 and 366 kHz. The distribution of particle 171 

lengths and diameters were obtained from printouts of several height mode AFM images, 172 

using the section analysis tool of the NanoScope Analysis software (Bruker, version 1.40). 173 

The particle diameters were determined considering the height of the CNCs as equivalent to 174 

the diameter to eliminate the effect of the tip radius on the width measurements. Over a 175 

hundred individual CNCs were randomly selected and measured to determine their average 176 

length and diameter. 177 

Fourier Transform Infrared Spectrometry (FTIR) with Attenuated Total Reflection (ATR). 178 

FTIR spectra of the samples were recorded up to seven times on a Spectrum 2000 179 

spectrometer (Perkin Elmer, Wellesley, MA, USA), equipped with a Golden single-reflection 180 

accessory for Attenuated Total Reflection (ATR) measurements. Background scanning and 181 

correction were performed before testing the samples. Each spectrum was collected after 16 182 

scans between 4000 and 600 cm-1 at intervals of 1 cm-1 with a resolution of 4 cm-1. The FTIR 183 

spectra were fitted by an automatic base line correction using OMNIC 4.0 software.  184 

X-Ray Diffraction Analysis (XRD). The rice husk, the alkaline and SWE residues together 185 

with the bleached ones and the CNCs were analysed in an X-ray diffractometer (X’Pert PRO 186 

MPD PANalytical, The Netherlands) at environment temperatures. A monochromatic CuKα 187 

radiation (k = 1.54 A°) in the range of 2 θ varying from 10° to 60° at a scan rate of 1°/min. X-188 

ray diffraction data were processed and analysed using HighScore Plus 3.0 software 189 

(PANalytical, Inc.). The crystalline index (CrI) of the different samples was determined by 190 

referring to diffraction intensity of crystalline and amorphous regions according with the 191 

Segal empirical method30 after subtraction of the background signal. 192 
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Thermogravimetric Analysis (TGA). The thermal behaviour was determined by dynamic 193 

thermogravimetric analysis (TGA) using a Mettler-Toledo TGA/SDTA 851 (Columbus, OH). 194 

Approximately 6 mg of each sample was heated between 25 °C and 600 °C at a heating rate 195 

of 10 °C·min-1 under a nitrogen atmosphere flow of 50 mL·min-1. The thermogravimetric 196 

(TG) and the derivative thermogravimetric (DTG) curves were obtained using STARe 197 

Evaluation Software (Mettler-Toledo, Columbus, OH). The maximum degradation 198 

temperature (Tmax) was determined by the DTG curves, while the mass loss percentage of 199 

each thermal degradation stage and the residue at the end of the test were calculated from the 200 

TG curves. The initial degradation temperature (Tonset) was determined by extrapolating the 201 

slope of the DTG curve in correspondence with the first local maximum in the second 202 

derivative thermogravimetric (D2TG) curve and down to the zero level of the DTG axis. All 203 

measurements were run in triplicate. 204 

Scanning Electron Microscopy coupled with elemental analysis (SEM-EDX). SEM 205 

micrographs of the sedimented silica samples were obtained using a HITACHI TM-1000 206 

scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDX)  207 

detector (Oxford Instruments). The samples were not coated previously. 208 

 209 

Results and discussion 210 

Cascade process for the isolation of bioactive arabinoxylans and cellulose nanocrystals 211 

from rice husk 212 

The integrated biorefinery process for the sequential fractionation of rice husk into bioactive 213 

hemicelluloses and cellulose nanocrystals (CNCs) is presented in Figure 1. The cascade 214 

process involves subcritical water extraction (SWE) of hemicelluloses as an alternative to 215 
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alkaline extraction, prior to the isolation of CNCs using bleaching treatments and acid 216 

hydrolysis. The process has been monitored from the macro- to the nano dimensions in terms 217 

of chemical composition of the soluble extracts and insoluble residues, their morphology and 218 

thermal properties, and compared to the traditional alkaline process. The product appearance 219 

after each treatment, as well as the respective yields obtained from mass balances, are also 220 

included. The more aggressive conditions of the alkali treatment enhanced the release of the 221 

amorphous phase, thus leading to purer cellulosic materials after the bleaching treatment 222 

(whiter residues). The colour changes were less noticeable in the hydrothermal (SWE) 223 

approach, which also resulted in a higher yield of the insoluble residue after SWE (69%) 224 

compared to the alkaline treatment (54%). These results suggest the less effective removal of 225 

the non-cellulosic components from rice husk in terms of quantity, due to the milder 226 

conditions of the SWE. However, taking into consideration the soluble extract, SWE was 227 

more suitable offering 27.0% of soluble solids, whereas the alkali treatments yield 23.6% 228 

after the alkali elimination by dialysis, where some small solutes could also be lost (Figure 229 

1). Comparable extraction yields (22.3%) were reported by Ruthes et al. using SWE at 160 °C 230 

and pH 7.0 for wheat bran.13 231 

 232 
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Figure 1. Schematic representation of the cascade bioprocess for rice husk valorization through two 233 

different approaches, common alkali-treatment process and an alternative hydrothermal process where 234 

subcritical water extraction (SWE) substitutes the traditional alkaline extraction. The gravimetric 235 

yields for each treatment were calculated based on the dry weight of the previous step. 236 

 237 

Extraction of bioactive arabinoxylan from rice husk: comparison of the hydrothermal 238 

and alkaline process 239 

The evolution of the extraction processes was evaluated in terms of monosaccharide 240 

composition and glycosidic linkage analysis, in order to correlate the potential functionality of 241 

the extracts in terms of antioxidant and antimicrobial capacity with their xylan content and 242 

molecular structure. Short extraction times during SWE resulted in extracts containing mainly 243 

glucose polymers (>80 wt% for the 5 min extract) (Figure 2a, Table 1), that can be attributed 244 

to the presence of residual starch coming from the rice husking process, as evidenced by the 245 

presence of t-Glc, 4-Glc and 4,6-Glc in the linkage analysis (Table 2). However, as the 246 

extraction time continued, the arabinoxylan purity in the extracts progressively increased, 247 

reaching a content of 69% and 84% in the 30 min and 60 min extracts, respectively (Figure 248 

2a, Table 1). Likewise, starch was also initially extracted during the first alkaline cycle, and 249 

the xylan content increased in the second and the third alkaline extraction cycles. However, 250 

SWE offered higher overall xylan purities in the extracts obtained at longer extraction times 251 

compared to those obtained by alkali extraction (Figure 2a, Table 1).  252 

The presence of phenolic acids (mainly ferulic acid, but also caffeic acid and p-coumaric acid) 253 

was only detected in the extracts from the subcritical water processes, with increasing overall 254 

content from 2.4 – 5.5 mg g−1 with prolonged extraction time. The level of phenolic acids was 255 

below detection limit for all the alkaline extracts, indicating that such functionalities of the 256 

rice husk were lost during the extraction process. Indeed, alkaline treatments are capable of 257 
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cleaving the ester and ether linkages between the hydroxycinnamic acids and the cell wall 258 

components, thus releasing them as free phenolic acids that were removed during the dialysis 259 

of the extracts.31 On the other hand, the SWE process preserves the phenolic functionalities 260 

covalently bound to the arabinoxylan populations, as we have previously reported for 261 

feruloylated arabinoxylan extracted from wheat bran.13 262 

 263 

Table 1. Monosaccharide composition (wt%), number-average molar mass (Mn) and weight-average 264 

molar mass (Mw) of the rice husk extracts resulting from sequential fractionation by subcritical water 265 

extraction (E-SWE) and the three consecutive alkaline extractions (E-A). 266 

 Hydrothermal process Alkaline process 

 E-H5 E-H15 E-H30 E-H60 E-A1 E-A2 E-A3 

Total solid yields (%) 11.0±0.7 3.9±0.1 4.7±0.8 7.4±0.5 16.1±1.3 5.2±0.7 2.3±0.1 

Carbohydrate content 

(mg g-1)a 

855.2±116.1 770.4±63.0 797.4±89.0 907.1±17.5 855.2±116.1 770.4±63.0 797.4±89.0 

Ara (%)b 2.0±0.2 16.6±0.3 15.3±2.3 8.4±0.4 6.5±3.1 10.9±0.6 10.6±1.5 

Gal (%)b 1.6±0.2 4.2±0.3 6.0±0.2 4.7±0.1 3.3±2.1 2.1±0.1 2.1±0.3 

Glc (%)b 94.0±0.6 55.4±2.1 7.7±0.8 3.1±0.3 47.1±3.4 3.7±0.4 7.1±5.7 

Xyl (%)b 2.4±0.3 23.8±1.5 67.1±1.7 80.7±1.0 41.1±4.2 78.0±0.7 74.9±3.1 

MeGlcA (%)b n.d n.d 2.9±0.2 2.5±0.3 0.8±0.7 3.7±0.4 4.2±1.0 

GalA (%)b n.d n.d n.d n.d 0.4±0.1 0.8±0.2 0.4±0.3 

GlcA (%)b n.d n.d 1.0±0.0 0.7±0.1 0.5±0.1 0.8±0.1 0.7±0.0 

Xylan content  

(mg g-1)c 

37.6±2.8 310.5±15.2 688.8±72.8 836.9±13.9 397.0±51.1 723.3±37.4 568.1±12.6 

Ara:Xyl ratiod 0.82±0.08 0.70±0.03 0.23±0.04 0.10±0.01 0.15±0.07 0.14±0.01 0.14±0.01 

Hydroxycinnamic 

acid content (mg g-1)e  

2.4±0.8 5.0±1.2 5.1±1.7 5.5±0.7 n.d. n.d. n.d. 

Ferulic acid 

(mg/g)e 

1.7±0.3 3.2±0.8 3.6±0.9 4.3±0.5 n.d n.d n.d 

Caffeic acid 

(mg/g)e 

0.3±0.2 0.4±0.1 0.4±0.4 0.4±0.1 n.d n.d n.d 

p-Coumaric acid 

(mg/g)e 

0.4±0.3 0.8±0.3 1.1±0.4 0.8±0.1 n.d n.d n.d 

Mn (g/mol)f 36810 4291 3254 2705 12150 8784 8128 

Mw (g/mol)f 691700 250600 59990 6499 271700 35970 35230 

EC50 (mg/mg 

DPPH)g 

N/A N/A N/A 9.6±0.6 N/A N/A 170±21 

MIC L. innocua 

(mg/mL)h 

N/A N/A N/A 55.0±2.5 N/A N/A n.d 

MIC E. coli 

(mg/mL)h 

N/A N/A N/A 95.0±2.5 N/A N/A n.d 

 267 
a Total carbohydrate content reported after quantification by methanolysis and HPAEC-PAD.  268 
b Monosaccharide composition (in %wt) of the total carbohydrate content. The values for fucose, rhamnose and 269 
mannose were not detected (<0.1).20 270 
c  Xylan content calculated as the sum of the Xyl+Ara+GlcA+MeGlcA populations. 271 
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d  The Ara:Xyl ratio is calculated from the monosaccharide composition. 272 
e Hydroxycinnamic acid content calculated after saponification, silylation and GC-MS analysis.21  273 
f Average molar mass (Mn and Mw) of the polysaccharide populations is calculated from SEC-DRI 274 
g Antioxidant activity (EC50) evaluated using the DPPH methodology.24  275 
h Antibacterial activity (MIC) evaluated by colorimetric methods. 276 
n.d: not detected (<0.1). N/A: non applicable 277 
 278 

The fine molecular structure of the extracted polysaccharides was characterized by glycosidic 279 

linkage analysis of the permethylated alditol acetates by GC-MS (Table 2). In both processes, 280 

glucan populations that can be assigned to starch (as identified by the t-Glcp, 4-Glcp and 4,6-281 

Glcp units), mixed-linkage -glucan (corresponding with the t-Glcp, 3-Glcp and 4-Glcp), and 282 

short-chain type xyloglucan32 (t-Xylp, t-Glcp, 4-Glcp and 4,6-Glcp) are extracted during the 283 

initial extraction steps, with a progressive enrichment of the xylan fractions with extraction 284 

time, in agreement with the monosaccharide composition (Table 1 and Figure 2a). 285 

Interestingly, the extracted arabinoxylan populations using SWE and alkaline process exhibit 286 

significant differences in terms of the substitution pattern. Alkaline extraction generates xylan 287 

populations with higher proportion of monosubstituted Xylp units compared to SWE, as 288 

evidenced by the relative amounts of the substituted 2,4-Xylp and 3,4-Xylp units, and the 289 

terminal t-Araf units. On the other hand, SWE generates xylan populations with interesting 290 

and distinct substitution patterns compared to the alkaline extracts. The presence of 291 

arabinopyranosyl units (t-Arap and 2-Arap) can be observed only in the SWE, which may 292 

indicate that SWE targets different xylan populations in rice husk compared to alkaline 293 

extraction or the degradation of the arabinopyranosyl units during alkaline conditions. In 294 

addition to this, a progressive decrease in the ratio of substituted Xylp units (2,4-Xylp and 295 

3,4-Xylp) compared to the unsubstituted ones (4-Xylp), correlating with a decrease of the 296 

terminal arabinosyl units (t-Araf and t-Arap) can be observed with extraction times, which 297 

suggests the degradation of the Ara units due to the prolonged exposure to the subcritical 298 

water conditions. The distinct glycosidic linkage structures here presented for the SWE and 299 
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alkaline xylan extracts from rice bran indicate the presence of noteworthy branching motifs in 300 

rice xylans, which will be the subject of further investigations using advanced enzymatic and 301 

glycomic profiling.  302 

 303 

Table 2. Glycosidic linkage analysis (% mol.) of the rice husk extracts resulting from subcritical water 304 

extraction (E-SWE) and alkaline extractions (E-A). 305 

Linkage  Hydrothermal process Alkaline process 

 E-H5 E-H15 E-H30 E-H60 E-A1 E-A2 E-A3 

t-Araf Araf-(1→ 1.2±0.1 9.8±0.2 6.7±1.1 3.1±0.1 4.7±1.2 8.6±0.2 8.4±0.8 

t-Arap Arap-(1→ 0.2±0.0 3.0±0.0 2.4±0.1 0.6±0.6 n.d n.d n.d 

2-Araf →2)-Araf-(1→ 0.2±0.0 1.5±0.0 1.3±0.6 1.2±0.2 0.8±0.4 1.5±0.3 1.2±0.1 

3-Araf →3)-Araf-(1→ 0.5±0.0 2.3±0.0 1.6±0.1 0.4±0.1 1.2±1.2 0.7±0.1 0.5±0.0 

5-Araf →5)-Araf-(1→ 0.3±0.0 1.8±0.0 1.7±0.1 1.0±0.2 0.5±0.2 0.4±0.1 0.4±0.0 

2-Arap →2)-Arap-(1→ n.d n.d 2.2±0.5 0.6±0.1 n.d n.d n.d 

Total Ara 2.4±0.2 18.4±0.3 15.8±2.4 8.6±0.5 7.2±3.3 11.2±0.6 10.6±1.5 

t-Xylp Xylp-(1→ 0.3±0.1 2.4±0.0 6.5±0.7 8.7±0.4 1.3±0.1 2.5±0.4 2.2±0.2 

4-Xylp →4)-Xylp-(1→ 1.8±0.1 19.0±0.4 57.0±0.7 69.1±0.3 35.1±3.4 66.0±0.0 64.0±2.0 

2,4-Xylp →2,4)-Xylp-(1→ 0.4±0.1 2.8±1.0 1.0±0.1 n.d 1.4±0.2 4.6±0.1 4.7±0.6 

3,4-Xylp →3,4)-Xylp-(1→ 0.3±0.0 2.0±0.2 4.6±0.3 4.5±0.3 6.3±0.4 4.8±0.1 3.9±0.3 

2,3,4-Xylp →2,3,4)-Xylp-

(1→ 

0.1±0.0 0.2±0.0 0.3±0.0 0.1±0.0 0.9±0.3 2.1±0.6 0.1±0.1 

Total Xyl 2.9±0.4 26.4±1.6 69.4±1.8 82.4±0.9 45.1±4.1 79.9±0.7 74.9±3.1 

t-Glcp Glcp-(1→ 6.3±0.1 3.3±0.2 0.9±0.1 0.5±0.0 1.9±0.6 0.07±0.01 0.4±0.1 

3-Glcp →3)-Glcp-(1→ 0.4±0.1 0.6±0.1 0.7±0.1 0.7±0.1 0.3±0.2 0.15±0.03 0.5±0.1 

4-Glcp →4)-Glcp-(1→ 81.9±0.5 44.7±1.8 4.8±0.5 1.4±0.1 38.7±2.8 1.85±0.07 5.7±3.6 

4,6-Glcp →4,6)-Glcp-(1→ 4.5±0.1 2.7±0.1 0.2±0.1 0.1±0.0 2.1±0.1 1.12±0.09 0.6±0.2 

Total Glc 93.2±0.7 51.3±2.1 6.6±0.7 2.6±0.2 43.1±3.6 3.2±0.4 7.1±4.0 

t-Galp Galp-(1→ 0.4±0.1 1.2±0.0 3.8±0.0 2.8±0.0 2.8±0.3 1.3±0.1 1.3±0.0 

3-Galp →3)-Galp-(1→ 0.7±0.0 1.3±0.1 0.9±0.1 0.8±0.0 0.1±0.0 0.3±0.0 0.3±0.9 

3,6-Galp →3,6)-Galp-(1→ 0.5±0.1 1.4±0.2 0.6±0.0 0.3±0.01 0.1±0.1 0.2±0.0 0.5±0.2 

Total Gal 1.6±0.2 3.9±0.3 5.2±0.2 4.0±0.1 3.0±0.4 1.77±0.08 2.1±0.2 

n.d: not detected (<0.1). 306 

 307 

The molar mass distributions and average molar masses of the polymeric fractions were 308 

determined by SEC analyses (Figure 2b and Table 1). The initial alkali and SWE extracts 309 

showed bimodal molar mass distributions with two main populations, a high molar mass 310 

fraction (105–106 g·mol−1) attributed to starch, and a low molar mass fraction (103–105 311 

g·mol−1) that can be assigned to xylan. The intensity of the starch peak decreased with the 312 

extraction times/cycles, in agreement with the compositional analyses (Table 1). On the other 313 
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hand, the second and the third alkali extracts and the SWE for 60 min exhibited a monomodal 314 

distribution corresponding to the extracted xylan populations (103–105 g·mol−1) (Figure 2b). 315 

Alkaline extraction offered overall xylan populations with higher molar mass (Mw = 3.5·104 316 

g·mol−1) compared to the hydrothermal process (Mw = 6.5·103 g mol−1) (Table 1). The high 317 

pH conditions during the alkali treatment lead to the break of the ferulic crosslinks in the rice 318 

husk, thus liberating arabinoxylans with higher molar mass, but without the covalently 319 

attached phenolic functionalities. In contrast, SWE offers xylan populations with overall 320 

lower molar mass, but with preserved phenolic acids (feruloylation). Subcritical water may 321 

induce hydrolytic processes resulting in chain scission of the hemicellulosic backbone, as we 322 

have reported in previous studies on wheat bran13 and hardwoods33. In order to avoid the 323 

propagation of the autohydrolysis processes induced by the acidification of the extraction 324 

media by the release of the native acetylations present in the hemicelluloses, the control of the 325 

pH is a critical factor.33-35 Indeed, the end pH values after the extraction were lower than the 326 

initial pH value fixed at 7.0 reaching values close to pH 5, which demonstrates the presence 327 

of moderately acetylated hemicelluloses in rice husk. The use of buffered conditions could be 328 

explored in further studies to maintain the pH levels during water extraction and assess its 329 

influence on the yields and molecular structure of the isolated arabinoxylan fractions. 330 

 331 

The radical scavenging activity of the extracts with the highest xylan content from the 332 

alkaline (E-A3, third cycle) and SWE processes (E-H60, 60 min) was assessed against the 333 

DPPH· radical (Figure 2c). E-H60 reacted moderately with the DPPH·, reaching the steady 334 

state after 1h, whereas the alkaline extract reacted much more slowly and reached the steady 335 

state within 5h. Moreover, SWE extract showed significant scavenging activity (EC50 value of 336 

9.6±0.6 mg/mg DPPH·), whereas the alkaline extract showed a 18-fold lower antioxidant 337 
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capacity (EC50 value of 170±21 mg/mg DPPH) (Table 1, Figure 2c). The most abundant 338 

phenolic compounds in rice husk are p-coumaric and ferulic acid, with EC50 values of 0.2 339 

mg/mg DPPH· and 20.8 mg/mg DPPH·, respectively. Therefore, it is reasonable to assign the 340 

antioxidant activity in the SWE extracts to the presence of phenolic acids covalently bound to 341 

xylan, which have been preserved during the extraction process, (Table 1), in line with was 342 

previously observed for feruloylated arabinoxylans from wheat bran.13 343 

 344 

Figure 2. Characterization of the rice husk extracts resulting from sequential fractionation by 345 

subcritical water extraction (E-H) and the three consecutive alkaline extractions (E-A). (A) Molar 346 

mass distributions. (B) Percentage of DPPH· remaining at the steady state versus the mass ratio of 347 

extract to DPPH· for the rice husk extracts with the highest xylan content, showing the parameter EC50. 348 
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 349 

The hemicellulosic extract obtained from the last step of the SWE (E-H60) inhibited the 350 

microbial growth of L. innocua and E. coli, the gram negative bacteria being significantly 351 

more resistant (MIC=95±2.5 mg/mL) than the gram positive bacteria (MIC=55±2.5 mg/mL). 352 

Unlike for SWE extract, no antimicrobial effects were observed for the extract obtained from 353 

the last alkali treatment (E-A3). The obtained results confirm the best efficiency of SWE at 354 

preserving the functionalities and bioactivity of the xylan fractions of rice husk, although it 355 

seems less effective at purifying the cellulosic residue. Nevertheless, the subsequent 356 

bleaching and acid hydrolysis should mitigate this shortcoming, arising to final cellulose 357 

fractions with adequate properties. 358 

 359 

Production of cellulose nanocrystals (CNCs) from the insoluble fractions: 360 

characterization from the macro to the nano dimensions  361 

The yields and the chemical composition (carbohydrate, Klason lignin, ash, and extractive 362 

content) of rice husk and the insoluble samples were monitored after each processing step 363 

(Table 3). In the initial rice husk (RH), the glucose (Glc) content mainly arises from the 364 

presence of cellulose but also from the residual starch and minor mixed-linkage -glucan and 365 

xyloglucan populations. In the insoluble fractions after the subsequent treatment steps, 366 

however, the relative cellulose content can be directly assigned to the percentage of glucose, 367 

without considering the presence of residual starch and -glucans that are removed in the 368 

soluble phases. The hemicellulose/pectin content is measured as the percentage of the 369 

remaining sugars and includes arabinoxylan and the minor arabinogalactan (pectic) 370 

populations. In general, the raw rice husk contained 35.1 wt% glucans (mainly cellulose), 371 
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19.3 wt% hemicelluloses/pectin, 16.8 wt% lignin, and 17.0 wt% ash, in the range of those 372 

previously reported for rice husk.36 373 

As expected, the cellulose content progressively increased in the insoluble fraction throughout 374 

the hemicellulose extraction treatments (hydrothermal and alkaline) and the subsequent 375 

bleaching and hydrolysis, due to the removal of the amorphous materials. Nonetheless, 376 

significant differences were observed between the traditional (alkaline) and the hydrothermal 377 

(SWE) processes. The alkali treatment removed the main part of the inorganic silica (ashes), 378 

as well as a part of the lignin and hemicellulose/pectin content.36 SWE was particularly 379 

selective to isolate the hemicelluloses, but it did not alter much the Klason lignin and ash 380 

content of the husk. The most significant reduction in Klason lignin was achieved during the 381 

bleaching treatments, their contents being 5.5% and 8.4%, respectively in the RH-A-B and 382 

RH-H-B samples. The high ash content in the RH-H-B samples (16.6%) is also remarkable, in 383 

contrast with RH-A-B samples (3.5%). These differences could be attributed to the specificity 384 

of SWE at the extraction of hemicelluloses, and the harsh nature of the alkaline treatment, 385 

which disrupts the crosslinked structure of rice husk releasing lignin fragments. Moreover, the 386 

neutral conditions in SWE prevents silica extraction (main constituent of the ashes) to the 387 

liquid phase and remain in the insoluble residue; whereas silica in turn are much more soluble 388 

in the alkaline medium as silicic acid. 389 

During the hydrolytic treatment with sulphuric acid after bleaching, hemicelluloses and pectin 390 

were hydrolysed together with the amorphous part of the cellulose and became soluble, thus 391 

obtaining cellulosic fractions with hemicellulose content of 1% or lower in both cases. The 392 

CNC purification process consisted of 1-week dialysis, sonication and final centrifugation to 393 

remove the largest particles. Interestingly, in the case of the bleached sample resulting from 394 

the SWE process (RH-H-B sample) with high ash content (16.6%), the hydrolysis stage for 395 
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the CNC isolation also enables the recovery of silica particles from the CNC suspensions. The 396 

silica particles were sedimented during the centrifugation, together with the larger cellulosic 397 

aggregates. However, around 2% of the ash from the initial RH-H-B sample remains in the 398 

suspension and justifies the high ash content found and the low yield in the CNC-H. 399 

 400 

Table 3. Chemical composition (in %wt) of rice husk and the samples obtained after the different 401 

process steps to obtain CNCs. 402 

 403 
aGravimetric yields calculated as % in dry weight of the individual processes 404 
bTotal carbohydrate content after quantification by 2-step sulphuric acid hydrolysis and HPAEC-PAD.  405 
cMonosaccharide composition (in %wt) of the total carbohydrate content. Fucose, rhamnose, mannose, 406 
galacturonic and glucuronic acid were not detected (<0.1). 407 
dCellulose content reported as the total Glc content 408 
eHemicellulose and pectin content reported as the total Xyl+Ara+Gal content 409 
fLignin content determined by Tappi test method T222 om-06 410 
gAsh content determined by thermogravimetric analysis 411 
hExtractives determined by Soxhlet extraction in water/ethanol 412 
iCNC-H obtained after centrifugation of the CNC suspension for the separation of larger cellulosic aggregates 413 
and silica particles. 414 
n.d: not detected. N/A: non applicable. 415 
 416 

The morphological surface changes during the hydrothermal and alkaline processes were 417 

followed by SEM (Figure 3A). The fibre bundles of the rice husk remained after alkali 418 

extraction and SWE, which indicates the retention of the lignin fraction acting as a binder in 419 

the fibre components and preserving the bundle shape during both treatments. Nonetheless, 420 

 Rice Husk Alkali process Hydrothermal process 

  RH-A RH-A-B CNC-A SWE RH-H-B CNC-Hi 

Yields (%DW)a N/A 48.4 59.1 14.0 69.2 50.2 4.4 

Carbohydrate 

content (mg g-1)b 

544.8±12.7 748.7±24.1 920.1±2.0 951±54.5 470.9±9.3 953.7±98.0 558.0±56.0 

Ara (%)c 3.3±0.2 2.9±0.1 1.5±0.1 n.d. 0.8±0.1 0.3±0.0 n.d. 

Gal (%)c 1.7±0.3 0.9±0.0 0.1±0.0 n.d. n.d. <0.1 n.d. 

Glc (%)c 64.4±2.2 79.9±0.4 80.0±0.3 98.9±0.1 78.1±0.5 85.6±0.2 99.9±0.0 

Xyl (%)c 30.6±1.8 16.3±0.3 18.5±0.4 1.1±0.1 21.1±0.5 14.1±0.2 <0.1 

Glucans (mg g-1)d 350.9±3.8 598.2±22.1 735.8±1.0 941.1±53.4 367.8±7.2 816.5±0.2 558.0±56.0 

Hemicellulose/ 

pectin (mg g-1)e 

193.9±16.5 150.4±2.0 191.5±4.2 10.3±1.1 103.6±2.38 137.3±12.3 n.d. 

Klason lignin 

(%)g 

16.8 14.7 5.5 N/A 22.0 8.4 N/A 

Ash (%)h 17.0±0.2 5.8±1.2 3.5±0.2 3.0±2.0 17.4±0.7 16.6±0.1 39.0±1.0 

Extractives (%)i 5.46±0.01 N/A N/A N/A N/A N/A N/A 
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during the alkali treatment a large part of the pectin and hemicellulose fraction was removed, 421 

thus opening the cell walls for the further treatments of rice husk. Most of the lignin was 422 

removed after the bleaching treatments, liberating the cellulosic fibres. However, the bleached 423 

materials after the hydrothermal treatment showed the presence of some fibre bundles and 424 

undisrupted tissue fragments, due to the lower effectiveness of SWE at quantitatively 425 

removing the non-cellulosic material.  426 

The morphology and size distribution of the CNCs produced through both processes were 427 

studied by AFM (Figure 3B), including the distribution of the particle diameters (D) and 428 

lengths (l) of the CNCs. The obtained CNCs had the typical rod-like aspect mainly due to the 429 

strong hydrogen bonds established between them.19 The length (l) and diameter (D) 430 

distributions of the CNCs from rice husk were in the common range expected for CNCs 431 

isolated from plant biomass (diameter: 2-20 nm and length: 100-600 nm).37 The diameter 432 

dispersion for both obtained CNCs range from 2.5 to 8 nm, which is higher than those 433 

reported for forest residues using the same CNC isolation procedure18 and lower than other 434 

CNC diameter values obtained previously for rice husk (ranging from 15 – 50 nm).10, 36 These 435 

discrepancies can be justified since these size parameters can be affected by the nature of the 436 

lignocellulosic raw material, mechanical process, pre-treatment and conditions of the acid 437 

hydrolysis and purification step.38 On the other hand, the length dispersion values are slightly 438 

lower for the CNC-A (105-465 nm) than for the CNC-H (135-495 nm) and similar to those 439 

obtained for CNC from pine-cones by using the same CNC isolation procedure.18 440 

As it was mentioned earlier, the hydrothermal process also enables the recovery of silica 441 

particles from the CNC suspensions after acid hydrolysis of the bleached samples (RH-H-B) 442 

and centrifugation. The morphology of the sedimented particles shows large aggregates with 443 

broad size heterogeneity, between 9 – 54 m of diameter (Figure 3C). The elemental analysis 444 

of the sedimented particles by energy dispersive X-ray spectroscopy (EDX) reveals a large 445 
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abundance of Si, thus confirming the successful isolation of a silica rich fraction (Figure 3C). 446 

This is a proof of concept for the simultaneous recovery of silica particles and CNCs with the 447 

hydrothermal approach. Further efforts must be devoted to optimize the hydrolytic conditions 448 

to improve the low yield of CNCs obtained using the hydrothermal process, and for the 449 

recovery of the silica particles after the acid hydrolysis step at larger scales using technologies 450 

such as sedimentation or membrane filtration. Silica particles constitute a valuable by-product 451 

with numerous applications in the glass, foundries, construction, ceramics and the chemical 452 

industry. Moreover, it is also used as functional filler for paints, plastics, rubber, and as silica 453 

sand in water filtration and agriculture.  454 

 455 
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 456 

Figure 3. Morphological evolution of the isolation of cellulose nanocrystals and silica particles from 457 

rice husk: (A) Scanning electron micrographs of the solid fractions of untreated rice husk (RH), rice 458 

husk after alkali treatment (RH-A), rice husk after alkaline and bleaching (RH-A-B), rice husk after 459 

subcritical water extraction (RH-H), and rice husk after SWE and bleaching (RH-H-B). (B) 460 

Morphology of the cellulose nanocrystals (CNCs): AFM image of the isolated CNCs in amplitude 461 

mode and size distributions of the CNCs obtained in the alkali-treatment process (grey bars) (CNC-A) 462 

and the hydrothermal process (green bars) (CNC-H). Averaged particle diameter and length values are 463 

shown from the analyses of 100 individual CNC particles using image analyses. (C) Morphology of 464 
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the sedimented silica particles: Scanning electron micrographs at different magnifications (300 and 465 

1000); energy dispersive X-ray analysis of the surfaces.  466 

 467 

The structural and thermal properties of the cellulosic fractions were evaluated using X-ray 468 

diffraction, Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analyses. 469 

The X-ray diffraction patterns (Figure 4A) exhibit in all samples the typical crystalline peaks 470 

of type I cellulose (2θ: 15–16° [110], 22° [200]), as reported by other authors.10, 18, 36 As 471 

expected, these peaks become more defined along the conversion from macro- to nano-472 

dimension, due to the progressive removal of the amorphous phase. This increase resulted in a 473 

higher degree of crystallinity as the CNCs isolation processes progressed (Table 4). During 474 

the alkaline treatment, the highest CrI increment was observed, in line with the higher 475 

increase in the cellulose content of this insoluble fraction. Comparing both alkaline and 476 

hydrothermal processes, the latter yield less crystalline samples throughout the production of 477 

CNCs, due to its lower effectiveness at removing the amorphous components of the rice husk.  478 

The evolution of the chemical changes induced by the different treatments during the process 479 

for isolation of the CNCs was monitored by FTIR (Figure 4B). The alkali-treated samples 480 

and the corresponding bleached and hydrolysed samples showed a higher peak in the region 481 

related to the stretching vibrations of OH groups of the cellulose (3330 cm-1)39 when 482 

compared to the untreated rice husk, due to the relative increase in the hydrogen bond strength 483 

caused by the removal of the amorphous components present in the untreated material.10, 18 484 

This change in the FTIR spectra was less noticeable in the samples obtained from the 485 

hydrothermal process, due to the lower effectiveness of the SWE process to disrupt the tissue 486 

structure and release the different amorphous components. The peaks at approximately 1700-487 

1590 (carboxylic acid), 1509 (acetyl group) and 1250cm-1 (methyl ester group), which are 488 
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related to the lignin structure, were also disappearing along the conversion from macro- to 489 

nano-dimension, thus proving the removal of most of non-cellulosic material. Interestingly, 490 

the peak at approximately 800 cm-1 appearing in the rice husk is retained in all the samples 491 

obtained from the hydrothermal process, and it can be to the amorphous silica (SiO2). 492 

 493 
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Figure 4. Structural and thermal properties of the rice husk (RH) and the insoluble fractions during the 494 

alkaline (RH-A: alkali treated; RH-A-B: alkali-bleached treated; CNC-A: cellulose nanocrystals) and 495 

hydrothermal treatments (RH-H: SWE treated; RH-H-B: SWE-bleached treated; CNC-H: cellulose 496 

nanocrystals): A. X-ray diffraction patterns; B. FTIR spectra; C. Thermal decomposition: 497 

thermogravimetric (TG) and derivative (DTG) curves. 498 

 499 

Table 4. Crystallinity index (from X-ray diffraction) and thermogravimetric parameters of the rice 500 

husk (RH) and the insoluble fractions from the alkali and hydrothermal process. 501 

 502 

Finally, thermogravimetric analyses were carried out to determine the thermal stability of the 503 

rice husk fibres and the different samples obtained along both processes. Figure 4C shows the 504 

mass loss (TG) and derivative (DTG) curves obtained for the different samples, where two 505 

main mass loss steps at higher and lower temperatures are distinguished, excluding the CNC 506 

samples. The thermogravimetric parameters for each mass loss steps, including the mass loss 507 

and the onset and maximum decomposition temperatures are presented in Table 4. The mass 508 

loss step (<3%) at lower temperature (25-150oC) is attributed to the loss of the absorbed 509 

water, whereas the main step (>55%) at temperatures between 180oC and 550oC is assigned to 510 

the thermal degradation of the cellulose, hemicellulose and lignin components. The TGA 511 

Sample XRD Thermogravimetric parameters 

CrI (%) [25-150] oC [180-550] oC Residue 

Mass loss 

(%) 

Tmax (oC) Tonset (oC) Mass loss 

(%) 

Tmax (oC) Mass (%) 

RH 58.0±0.6 2.77±0.04 70.3±0.9 252.3±1.3 55.0±0.4 345.4±0.8 32.6±0.2 

RH-A 63.4±0.1 3.01±0.05 67.2±2.1 274.6±0.5 63.6±1.3 330.8±0.1 23.8±1.7 

RH-A-B 71.0±0.2 2.86±0.09 60.5±4.2 303.0±0.3 74.7±0.2 346.8±0.1 15.9±0.2 

CNC-A 80.5±0.3 2.11±0.04 60.0±2.0 207.5±0.3 87.5±3.0 265±1.0/ 

349±1.0/ 

418±1.0 

10.0±2.9 

RH-H 60.1 2.13±0.10 59.3±0.4 318.3±0.3 59.9±0.3 363.8±0.5 28.9±0.4 

RH-H-B 67.7±2.4 2.63±0.01 55.0±0.6 301.8±1.3 63.5±0.4 344.4±0.1 27.9±0.6 

CNC-H 74.0±1 2.03±0.50 54.9±0.5 189±2.4 49.0±2.4 226.0±2.0/ 

265.9±2.0/ 

350.0±1.0 

48.8±2.7 



28 

 

results also validated the extraction of the amorphous non-cellulosic components during the 512 

alkaline and bleaching treatments, since the main degradation peak showed smaller shoulders 513 

at lower temperatures (between 250°C-300°C), attributed to the hemicellulose and lignin 514 

fractions on the DTG curve. These amorphous components have a lower degradation 515 

temperatures compared to cellulose and their progressive removal resulted in a higher thermal 516 

stability of the insoluble fractions. However, the sulphuric acid hydrolysis resulted in more 517 

thermosensitive CNCs, due to the surface sulfation.10 The CNCs obtained from the alkali 518 

treatment (CNC-A) showed higher thermal stability than those from the hydrothermal process 519 

(CNC-H), which could be related with their higher crystallinity. 520 

The morphological and thermal properties of the CNCs influence their performance and their 521 

potential application as reinforcement in composite materials. The morphology of the CNCs 522 

depends not only on the source of the original lignocellulose feedstock, but also largely on the 523 

isolation process. The physico-chemical properties of the isolated CNCs from rice husk using 524 

both alkali and hydrothermal processes are here compared and discussed in terms of aspect 525 

ratio (l/D), crystallinity and thermal stability (Table 5). The aspect ratio for both isolated 526 

CNCs are higher than 10, therefore these nanoparticles have the potential to behave as good 527 

reinforcing agents in composites.40 The aspect ratio distribution of the alkali treated CNC was 528 

broader than for the CNC-H. The averaged aspect ratio for both CNC-A and CNC-H was 529 

similar (47 and 50, respectively) and higher than previous aspect ratio values of CNCs 530 

isolated from rice husk (15).10, 36 Therefore, the rice husk CNCs obtained by both processes 531 

can potentially provide very high reinforcing effects as deduced from their high aspect ratio, 532 

enhancing mechanical properties of composite materials when used as fillers at low loadings.  533 

 534 
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Table 5. Physico-chemical properties of the isolated cellulose nanocrystals from rice husk the alkali 535 

treatment process (CNC-A) and the hydrothermal process (CNC-H). 536 

 537 

 538 

 539 

The centrifugation step for the purification of CNC-H after the hydrolytic treatment also 540 

retained part of the inorganic silica particles, thus contributing to the higher ash content and 541 

the reduced purity of the CNC-H fraction compared to the CNC-A from the alkaline process 542 

(Table 5). However, further efforts should be devoted to the selective separation of the CNC 543 

and the inorganic silica particles in other applications where high purities are required. When 544 

comparing the CNCs produced by the alkaline (CNC-A) and the hydrothermal treatments 545 

(CNC-H), the latter shows lower crystallinity compared to those obtained by the traditional 546 

alkaline process. This may indicate that the presence of silica hinders the acid hydrolysis of 547 

the amorphous parts of the cellulose, resulting in CNC-H samples with higher amorphous 548 

regions, which correlates well with the observed higher lengths. In addition to this, the onset 549 

temperature for the nanocrystals obtained from the alkaline process is higher than the 550 

equivalent ones from the hydrothermal process, which is as well related to the crystallinity 551 

and morphology of the crystals. A consideration for the proposed process would be to 552 

introduce an alkaline step after the initial subcritical water extraction. This additional step 553 

would enable the isolation of the bioactive hemicelluloses during the subcritical water process 554 

and provide a cleaner cellulose fraction with milder bleaching conditions. However, the silica 555 

particles would be dissolved under alkaline conditions and would be therefore not recovered. 556 

The implementation of these alternatives at a larger scale should consider holistically the 557 

value of the recovered fractions and the technical sustainability of the process. 558 

 CNC-A CNC-H 

Purity 96±5 56±6 

Aspect ratio (l/D) 14-162 50-178 

CrI (%) 80.5±0.3 74±1.0 

Tonset (oC) 207.5±0.3 189±2.4 
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Conclusions 559 

A cascade process for the isolation of arabinoxylans and cellulose nanocrystals (CNC) from 560 

rice husk, combining subcritical water extraction (SWE), bleaching and acid hydrolysis, is 561 

here monitored from the macro- to the nano dimensions and compared to the traditional 562 

alkaline process. The hydrothermal and alkaline processes result in arabinoxylan populations 563 

with distinct molecular structures in terms of substitutions and molar mass. The hydrothermal 564 

process enables the extraction of arabinoxylans with antioxidant and antibacterial activity, 565 

which is attributed to the preservation of the phenolic acid moieties (mainly ferulic acid) that 566 

are lost during the alkaline process. The hydrothermal process can be envisaged as a suitable 567 

pre-treatment for the isolation of CNCs and the recovery of silica particles after the 568 

subsequent bleaching and acid hydrolysis steps. The resulting CNCs from the hydrothermal 569 

process have suitable morphology, aspect ratio, crystallinity, and thermal stability, although 570 

with lower purities than the alternative alkaline process due to the co-extraction of silica 571 

particles. However, the synergistic potential of using both CNCs and silica particles as 572 

reinforcing agents in biocomposite applications remains an exciting and unexplored 573 

possibility for this fraction. This cascade process constitutes an eco-friendly strategy towards 574 

the integral valorization of rice husk into multiple valuable components, which can be 575 

replicated in other important agricultural by-products. 576 

 577 
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