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A new approach to the kinematic
modeling of a three-dimensional car-
like robot with differential drive using
computational mechanics

Francisco Rubio, Carlos Llopis-Albert , Francisco Valero and
Antonio José Besa

Abstract
This article presents a kinematic analysis of a four-wheeled mobile robot in three-dimensions, introducing computational
mechanics. The novelty lies in (1) the type of robot that is analyzed, which has been scarcely dealt with in the literature,
and (2) the methodology used which enables the systematic implementation of kinematic algorithms using the computer.
The mobile robot has four wheels, four rockers (like an All-Terrain Mobile Robot), and a main body. It also has two
actuators and uses a drive mechanism known as differential drive (like those of a slip/skid mobile robot). We character-
ize the mobile robot as a set of kinematic closed chains with rotational pairs between links and a higher contact pair
between the wheels and the terrain. Then, a set of generalized coordinates are chosen and the constraint equations are
established. A new concept named ‘‘driving modes’’ has been introduced because some of the constraint equations are
derived from these. The kinematics is the first step in solving the dynamics of this robot in order to set a control algo-
rithm for an autonomous car-like robot. This methodology has been successfully applied to a real mobile robot,
‘‘Robotnik,’’ and the results are analyzed.
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Introduction

A mobile robot involves advanced development in
areas such as locomotion, sensing, navigation, and con-
trol.1 If wheels are used as the locomotion system,
robots are known as wheeled mobile robots (WMRs),
and in the world of WMRs, there are many wheel and
axle configurations that have been used, which deter-
mine the kinematic properties of the robot.2 Campion
et al. considered a general WMR with an arbitrary
number of wheels of various types and various motori-
zations. They point out the structural properties of the
kinematic models, taking into account the constraints
on the robot’s mobility induced by the kinematic pairs.

They also introduce the concepts of degree of mobility
and degree of steerability and show the variety of possi-
ble robot constructions and wheel configurations.

Within WMRs, two broad families can be distin-
guished: (1) car-like four-WMRs (these can be referred
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to as OMRs or ordinary mobile robots), which are very
popular because they are very easy to build, maintain,
and control. Most of these robots can be analyzed in
the x–y plane, that is, the robot’s motion can be consid-
ered in two dimensions (2D). (2) Articulated, all-terrain
rovers (ATRs) with a sophisticated locomotion system,
usually with six wheels and a suspension system, enable
them to move on rough terrain. The motion is analyzed
in three dimensions (3D). This type of robot has impor-
tant applications such as deactivation of explosive
devices,3 space exploration missions,4 and autonomous
cars.5

A subcategory of both OMRs and ATRs is made up
of those that have differential kinematics: skid-steering
mobile robots or SSMRs.6 These usually have two,
three, or four wheels.

The kinematic model of any kind of mobile robot is
fundamental for navigation and control. The control
system is in charge of managing the driving forces and
their evolution over time to ensure correct navigation.
Its objective is to connect different locations in space
for the mobile robot by means of optimal trajectory
planning. The process of calculating the driving forces
involves solving the kinematics of the vehicle and their
temporal evolution. That is why kinematics is so impor-
tant, for which the mechanical structure and the loco-
motion system have to be considered.

Generally speaking, the modeling of the kinematics
of OMRs can be classified, to date, into three main
approaches: velocity vector, geometric, and transfor-
mation.7 The velocity vector approach considers the
velocity transformation between the robots’ rigid bod-
ies, taking into account the local and global reference
system. An example of this kind of analysis can be
found in the work by Wang et al.8 The geometric
approach is based on the geometric relationships
between the rigid bodies of the mobile robot.9 With this
approach, the relationship between the rigid body
motion of the robot and the steering and drive rates of
the wheels is developed. Explicit differential equations
are derived to describe the rigid body motions. The
transformation approach can be seen in the work by
Muir and Neumann,10 where matrix coordinate trans-
formations and their derivatives are used to link the
motion of the wheels to the motion of robots in a two-
dimensional (2D) space, that is, translation in the x–y
plane and yaw rotation. They also assume perfect roll-
ing motion on a flat, smooth surface with no side or
rolling slip. A recent paper based on this methodology
applied to a 3D robot was the work by Tarokh and
McDermott,11 where the authors use transformation
matrices to obtain the kinematics of the Rocky 7 robot,
a highly articulated prototype Mars rover. The kine-
matic model is then used to simulate the robot’s motion
on different surfaces.

Other paper that uses a vectorial method to calculate
velocities using matrix notation is the work by
Seegmiller and Kelly.12 This paper presented a simple,
algorithmic method to construct 3D kinematic models
for WMR robots. Also, experimental results are pre-
sented to validate the model formulation, showing odo-
metry improvement by calibrating to data logs and
modeling 3D articulations. Kim and Lee13 studied dif-
ferent robots’ working conditions to take advantage of
the robot kinematics. In this paper, a kinematic-based
rough terrain control has been developed to control the
rover’s motion, keeping traction and minimizing energy
consumption. The rover presents four-wheeled differen-
tial kinematics. The results of the experiments show
good performance in terms of maximizing traction and
minimizing energy use, while tracking the desired velo-
city despite traversing a variety of rough terrain types.
A similar study on uneven terrains was done by Xu
et al.,14 in a car-like robot with six independently dri-
ven wheels. Transformation matrix method is used to
introduce the kinematics.

In any case, an important aspect to consider is the
contact between the wheels and the ground. In the work
by Ghotbi et al.,15 the interaction of the vehicle with
different types of terrain has been analyzed.

One of the latest papers in which the kinematics is
considered is the work by Zhang et al.16 The authors
analyzed what they call ‘‘the robot’s steering modes’’ in
a multi-axle wheeled robot in order that the robot’s
wheel can steer without slipping and it can improve its
steering flexibility. Then, three steering control schemes
are proposed. They have used an equivalent robot’s 2D
model in their research.

In the work by Shuaiby et al.,17 a sliding mode–
based robust tracking control for a redundant wheeled
drive system is presented, which is designed for energy
saving and fail safe motion. In this paper, the kine-
matics of the robot are obtained using a vectorial
method expressed in a matricial way. Then, the four-
WMRs are reduced at a 2D model. Simple dynamics
properties are considered.

In this article, the direct kinematic problem has been
solved for the mobile robot known as Robotnik (see
Figure 1). This robot is a mixture of an OMR and an
ATR, insofar as it consists of a main body, four wheels,
four rocker arms, and a suspension system. It is an
SSMR, four-wheeled differentially driven robot
(OMR), but with four rocker arms (ATR), which nor-
mally moves on a generic road surface without longitu-
dinal wheel slippage. Depending on what the authors
call ‘‘driving modes,’’ the motion can be considered
either in 2D (e.g. when it moves in a straight line on a
horizontal road) or in 3D (e.g. when it travels over a
bump).

The chosen approach for analyzing the kinematics
of this robot is different from the three types mentioned
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above. This new approach is based on computational
mechanics. Two main novelties are introduced in this
article: one is related to the type of robot analyzed and
the other one with the method to solve it.

The Robotnik’s kinematics will be used, in future
works, to calculate the dynamics and both the kine-
matics and dynamics will be used in control algorithms.

The mobile robot

The Robotnik robot to be modeled is as shown in
Figure 1. It consists of the chassis, four rockers, and
four fixed wheels (like an ATR) designed to move on
surfaces that are not too steep (like an OMR). Without
loss of generality, it is considered that the rear wheels
are driven by two actuators. The rocker arms are
attached to the chassis and wheels by means of revolu-
tion pairs of the same type R(y), that is, with the revo-
lution axis in the local Y-direction (see Figure 3). Four
torsion springs act on the rockers at the point where
they join the chassis. There are also four dampers, the
ends of which are attached to the chassis and the wheel
(see Figure 2).

This robot presents differential kinematics, that is,
the wheels are fixed and only rotate around their center.
Therefore, it can be considered an SSMR. In the

contact between the tire and the ground, depending on
the driving mode, there will be pure rolling and slip.

Kinematic analysis

We will solve the direct kinematic problem of the
Robotnik robot when its geometry, the angular veloci-
ties of the rear wheels, and the driving mode are known.
From the temporary values of the angles associated
with the degrees of freedom (DOFs) of the system, the
intention is to determine the position of all the system’s
bars, as well as their velocities and accelerations. The
results obtained will be used in future works to address
the inverse dynamic problem, also known as the control
problem, which involves calculating the driving forces.
The resolution of the direct kinematic problem is neces-
sary to solve the inverse dynamic problem, which in
turn is fundamental for the control algorithm so that
the robot can be autonomous.

Modeling the mobile robot

This robot has been modeled with nine bars, eight revo-
lution pairs, and four contact pairs between the tire and
the terrain. The revolution pairs are found in the joints
between the rocker arms and the chassis and tires. They
are of type R(y), that is, their rotational axes are aligned
with the local Y-axis associated with the chassis.

Figure 1. Robotnik robot to be modeled.

Figure 2. Damper location.

Figure 3. Location of the robot significant points.
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The robot has F= 2 DOFs associated with the
angles rotated by the rear wheels. Nevertheless, its
motion takes place in 3D, since there is the possibility
of yaw, pitch, and roll motions. Whether these types of
motion occur will depend on the vehicle’s driving mode,
which will be seen in section ‘‘Tire–ground contact
pair.’’

A robot configuration Cj is uniquely established
using Ps = 13 significant points. Each significant point
is defined by six variables (three Cartesian coordinates
and three angles). The position and orientation in space
of the significant point i are represented by the vector q
as follows

q
if g

j = x
if g

j , y
if g

j , z
if g

j ,u if g
j , u

if g
j ,c

if g
j

n o

where i= 1, . . . ,Ps is the point name and j is the con-
figuration number. Any robot’s generic position is
expressed as qfig= fxfig, yfig, zfig,ufig, ufig,cfigg.

These points are located at the center of mass (CM)
of each bar. Two significant points are also used to
characterize each tire–ground contact at
A,H , J , and N . Their arrangement is shown in
Figure 3. The tire–ground contact points for each
wheel are shown in more detail in Figure 4.

A generic configuration j can be expressed in terms
of the significant points that define the robot, so that

Cj =Cj q
if g

j

� �

where i= 1, . . . ,Ps.
Considering the elements of the vector q
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13f g
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13f g
j g
ð1Þ

The variables used to define the configuration are
not independent. In space, each free link has 6 DOFs,
which implies the use of six variables to define its loca-
tion and orientation. When connecting the bars to each
other, depending on the type of kinematic pair, some
of these DOFs are constrained. A 3D revolution pair
has 1 DOF and five are constrained, which implies that

five constraint conditions of the variables (constraint
equations) must be introduced. For the connection
between the tire and the ground, the treatment depends
on the mobile robot’s driving mode. For example, if
the vehicle moves in a straight line (moving with or
without acceleration), it is considered that there is a
pure rolling motion between the tire and the ground,
which has 2 DOFs and introduces four constraint
equations (see section ‘‘Tire–ground contact pair’’).
The total number P of significant points used in the
modeling of the mobile robot is equal to the number of
points Ps used to define the geometry of the robot, plus
the points required to characterize the tire–ground con-
tact for each wheel (A,H , J , and N , four points located
on the ground, and the fixed bar, see Figure 3).

Therefore, P=Ps + 4.
The total number of variables involved is

N=P3 6= 102

The DOFs of the mobile robot are

F= 2GDL

associated with rear wheel rotation. It is a sub-actuated
vehicle, since the resulting motion can be 2D or 3D,
depending on the ‘‘driving mode’’ concept introduced
in section ‘‘Tire–ground contact pair.’’

The number of constraint equations required is

M=N� F= 100 ð2Þ

Any generic configuration of the mobile robot is
determined by the configuration vector Cj given in
equation (1), where the values of the variables are
known.

Constraint equations

As stated in the previous section, the variables used to
define a robot configuration are not independent. They
are bound by the constraint equations. These equations
are obtained from the following:

(a) Revolution pairs: giving rise to 40 equations;
(b) Contact points fA,H , J ,Ng on the tires: 24

equations;
(c) Tire–ground contact for each wheel: 16

equations;
(d) Contact points fA,H , J ,Ng on the ground: 16

equations;
(e) Considerations for chassis motion: 4 equations.

The resulting equations are analyzed in the following
sections.

Figure 4. Significant points between the tire and the ground.
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Revolution pair. Consider the revolution pair R in B,
between rocker 2 and wheel 6 (Figure 5). This type of
pair gives rise to the following constraint equations:

1. Vector equation 1: B is the common point of
links 6 and 2; therefore

Ec1[0~rO0B =
0~rO0O2

+ 0~rO2B ð3Þ

where o~rOoB = fxf6g, yf6g, zf6gg since qB = fxf6g, yf6g,
zf6g,uf6g, uf6g,cf6gg; o~rOoO2

= fxf2g, yf2g, zf2gg where
qO2 = fxf2g, yf2g, zf2g,uf2g, uf2g,cf2gg;
2~rO2B = � BC

2
, 0, 0

� �
, where BC is the length of

rocker 2.

0~rO2B =R0
2 � 2~rO2B

R0
2 =RotZ u 2f g� �

� RotY u 2f g� �
� RotX c 2f g� �

=
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sin u 2f g� �
+ cos c 2f g� �

sin u 2f g� �
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sin u 2f g� �
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+ sin c 2f g� �

sin u 2f g� �
cos u 2f g� �

� sin u 2f g� �
cos u 2f g� �
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cos u 2f g� �

0
BB@

1
CCA

2. Vector equation 2: the axis of rotation is com-
mon to links 6 and 2 (Figure 6)

Ec2[0~u6 3 0~u2 = 0! R0
6 � 6~u6 3 R0

2 � 2~u2 = 0 ð4Þ

where 2~u2 = f0, 1, 0g, 6~u6 = f0, 1, 0g
and

R0
6 =RotZ u 6f g� �

� RotY u 6f g� �
� RotX c 6f g� �

=
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cos u 6f g� �
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cos u 6f g� �
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sin c 6f g� �
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cos c 6f g� �
cos u 6f g� �

+ sin c 6f g� �
sin u 6f g� �

sin u 6f g� �
� cos c 6f g� �

sin u 6f g� �
+ sin c 6f g� �

sin u 6f g� �
cos u 6f g� �

� sin u 6f g� �
cos u 6f g� �

sin u 6f g� �
cos u 6f g� �

cos u 6f g� �

0
BB@

1
CCA

From the two previous vector equations, five scalar
constraint equations are extracted. Operating and call-
ing Fi(q) the vector that contains the constraint equa-
tions, the equations are as follows

F1 qð Þ[x 2f g � 1

2
� cos c 2f g� �

cos u 6f g� �
BC � x 6f g

F2 qð Þ[y 2f g � 1

2
� sin c 2f g� �

cos u 6f g� �
BC � y 6f g

F3 qð Þ[z 2f g+
1

2
� sin u 2f g� �

BC � xz 6f g

F4 qð Þ[ cos c 2f g� �
cos u 2f g� �

+ sin c 2f g� �
sin u 2f g� �

sin u 2f g� �
cos u 6f g� �

sin u 6f g� �
� cos u 2f g� �

sin u 2f g� �
cos c 6f g� �

cos u 6f g� �
+sin c 6f g� �

sin u 6f g� �
sin u 6f g� �

F5 qð Þ[ cos (u 2f g)cos u 2f g� �
� sin c 6f g� �

cos u 6f g� �
+ cos c 6f g� �

sin u 6f g� �
sin u 6f g� �� �

� ( sin c 2f g� �
cos u 2f g� �

+ cos c 2f g� �
sin u 2f g� �

sin u 2f g� �
)cos u 6f g� �

sin(u 6f g)

In all, there are 40 equations derived from the eight
revolution pairs and they can be grouped in a single
vector

Figure 5. Vectors used to model the revolution pair in B.

Figure 6. Axle direction.
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FR qð Þ=

F1 qð Þ
F2 qð Þ
F3 qð Þ:
:
:
:

F40 qð Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð5Þ

Tire–ground contact pair. To characterize this contact
pair, it is necessary to distinguish two different aspects:
on the one hand, the type of wheel used, and on the
other hand, the ‘‘driving modes’’ of the mobile robot.
In this robot, the wheels are conventional. The mobile
robot’s so-called ‘‘driving modes’’ are related to the
characteristics of its motion according to three criteria:

1. Type of surface on which it moves;
2. Trajectory followed;
3. Type of motion.

According to the above criteria, the driving modes
are as follows:

To characterize the tire–ground contact pair, it is
necessary to consider that the mobile robot presents
differential kinematics, that is, the wheels of the mobile
robot are of the fixed type. This means that they have a
fixed angle with respect to the chassis of the vehicle,
and they are forced to move forward or backward in
the plane that contains the wheel and can only rotate
around their axis.

On the other hand, each ‘‘driving mode’’ has certain
peculiarities that must be reflected in the constraint
equations. For example, for the driving mode ‘‘a.2.2’’
(curves on a flat horizontal surface at a constant speed),

it must be considered that the inner wheels must rotate
slower than the outer wheels for the vehicle to describe
the curve (Figure 7).

Let us analyze ‘‘driving mode’’ a.1.1.2 (driving in a
straight line on a flat surface at a constant speed) in
more detail. In the contact between the tire and the
ground, there is a rolling pair, and it is assumed that
there is no sliding in the longitudinal direction of the
motion X. The wheel is allowed to make turns around
the X-, Y-, and Z-axes, although the rotation about the
Y-axis is related to its longitudinal displacement X. For
link number 6 (wheel) and contact point A, see Figure 8.

Figure 7. The vehicle as a whole, as a solid rigid body, follows
a circular path around the ICR (instant center of rotation).

Type of surface Trajectory Motion

a. Smooth flat surface (horizontal or sloping) a.1 Straight:
a.1.1 X = cte
a.1.2 Y = cte
a.1.3 bX + cY = cte

a.1.i.1 With positive acceleration (traction), i = 1.3
a.1.i.2 With constant vel.
a.1.i.3 With negative acceleration (braking)

a.2 Curve:
F(X, Y) = 0

a.2.1 With positive acceleration (traction)
a.2.2 With constant vel.
a.2.3 With negative acceleration (braking)

b. Smooth curved surface b.1 Straight:
b.1.1 Z = F(X = cte, Y)
b.1.2 Z = F(X, Y = cte)
b.1.3 Z = F(aX + bY = cte)

b.1.i.1 With positive acceleration (traction), i = 1,.,3
b.1.i.2 With constant vel.
b.1.i.3 With negative acceleration (braking)

b.2 Curve:
Z = F(X, Y)

b.2.1 With positive acceleration (traction)
b.2.2 With constant vel.
b.2.3 With negative acceleration (braking)

c. Flat rough and/or uneven surface (horizontal or sloping)
d. Rough and/or irregular curved surface
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The constraint equations are as follows

Ec3[0~rO0A6
= 0~rO0A1

ð6Þ

Developing equation (6) and considering that point
A6 belongs to link 6 then

0~rO0A6
= 0~rO0B +

0~rBA6
ð7Þ

The contact point is a common point. It cannot be
detached from the ground or embedded in it

Ec4[x if g=R � u if g ð8Þ

The angle of rotation about the Y-axis is related to
the longitudinal displacement of the wheel axis.
Equation (6) can be expressed as follows.

Following the numeration from equation (5), the
new constraint equations are

F41 qð Þ[x 14f g � x 10f g

F42 qð Þ[y 14f g � y 10f g

F43 qð Þ[z 14f g � z 10f g

F44 qð Þ[x 6f g=R � u 6f g

Considering the four contact points, 16 new equations
are introduced. And, from equation (7), because the
contact point A (10) is related to link 6

F45 qð Þ[x 6f g � sin c 6f g� �
� cos u 6f g� �

+ cos c 6f g� �
� cos u 6f g� �

� sin u 6f g� �� �
� R� x 10f g

F46 qð Þ[y 6f g � � cos c 6f g� �
� sin u 6f g� �

+ sin c 6f g� �
� cos u 6f g� �

� sin u 6f g� �� �
� R� y 10f g

F47 qð Þ[z 6f g � cos u 6f g� �
� cos u 6f g� �

� R� z 10f g

F48 qð Þ[c 6f g � c 10f g

F49 qð Þ[u 6f g � u 10f g

F50 qð Þ[u 6f g � u 10f g

In addition, 24 more equations are generated by con-
sidering the other three contact points. At this stage, 40
new equations have been introduced. In all, up to know
there are 80 equations.

Considerations for the movement of link 1 (chassis) according
to the driving mode. Several considerations must be
taken into account when modeling the actual behavior
of the vehicle in motion. On the one hand, when the
vehicle moves on a flat surface in a straight line at a
constant velocity, there are no rolling, pitching, or yaw-
ing angles. On the other hand, the height of the CM
remains constant. Therefore, the following additional
constraint equations must be considered

z
1f g

j =K; for a horizontal flat surface,

K = h, i:e: the height of the CM for rod 1
ð9Þ

u 1f g
j = 0 ð10Þ

u
1f g

j = 0 ð11Þ

c
1f g

j = 0 ð12Þ

When the vehicle describes a curved path at a con-
stant speed on a flat horizontal surface, the outer
wheels rotate faster than the inner wheels and a normal
acceleration is generated that influences the vehicle roll
angle. In addition, the position of the CM changes and
the steering angle must take certain values so that the
vehicle describes the curve correctly

x
1f g

j =P1 +Rc � sin �u 1f g� �
+ z 1f g sin c 1f g� �

� sin �u 1f g� �
ð13Þ

y
1f g

j =Rc � cos �u 1f g� �
� Rc + z 1f g sin c 1f g� �

� cos �u 1f g� �
ð14Þ

z
1f g

j = h � cos c 1f g� �
ð15Þ

c
1f g

j =KBal �
� _u

6f g � R
� �2

Rc

ð16Þ

u
1f g

j = 0 ð17Þ

u 1f g
j =

�u 6f g � R
Rc � 1� a=2 � Rcð Þ ð18Þ

Figure 8. Rolling pair at the tire–ground contact point.
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where j=1 . is the number of configurations, R is the
radius of the tire, Rc is the radius of the curve, a is the
distance between the wheels, KBal is the roll stiffness,
and P1 is the initial position of the vehicle in X.

When the vehicle accelerates or brakes, a transfer of
load occurs in the vehicle that affects the pitch angle.
The height of the CM also changes. These characteristics
must also be present in the constraint equations. Liu
et al.18 studied the reliability on a car’s brake system.

Additional constraint equations. The contact points
fA,H , J ,Ng are part of the ground which leads to four
more constraint equations

z
14f g

j =K1 ð19Þ

z
15f g

j =K2 ð20Þ

z
16f g

j =K3 ð21Þ

z
17f g

j =K4 ð22Þ

where the constant Ki with (i= 1, . . . , 4) depends on
the type of surface and j is the configuration number.
For horizontal surfaces, Ki = 0.

Since the contact points with the ground do not spin
fuf17g

j , u
f17g
j ,c

f17g
j g, the following equations can be

added for each point such as equation (17)

u 17f g
j = 0 ð23Þ

u
17f g

j = 0 ð24Þ

c
17f g

j = 0 ð25Þ

It leads to 12 additional equations. Finally, the set
of constraint equations (considering all revolution pairs
and the contact points of the tire with the ground, and
taking into account the different driving styles) leads to
a 100 3 102 system of equations (M=100).

All the constraints can be grouped in a single vector

F qð Þ=

F1 qð Þ
F2 qð Þ
F3 qð Þ:
:
:
:

F100 qð Þ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð26Þ

Resolution of the constraint equations

Position problem

The coordinate vector of the vehicle defining a j-config-
uration of the mobile robot is as follows

qj = fx
1f g

j , y
1f g

j , z
1f g

j ,u 1f g
j , u

1f g
j ,c

1f g
j , x

2f g
j , y

2f g
j , z

2f g
j ,u 2f g

j ,

u
2f g

j ,c
2f g

j , . . . , x
Psf g

j , y
Psf g

j , z
Psf g

j ,u Psf g
j , u

Psf g
j ,c

Psf g
j g

where Ps = 17.
The position problem consists of calculating the vari-

ables of the coordinate vector from the DOF of the
mobile robot. These coordinates are bounded by the M
constraint equations, which are grouped in the con-
straint vector F.

The solution of the system of constraint equations
provides the desired values

F qð Þ= 0 ð27Þ

This is a non-linear equation system, which can be
solved using Newton’s method. For this purpose, it is
necessary to estimate the variables for a certain config-
uration of the mobile robot

q0 = fx0
1, y0

1, z
0
1,u

0
1, u

0
1,c

0
1, x

0
2, y

0
2, z

0
2,u

0
2, u

0
2,c

0
2, . . . , x0

13,

y0
13, z

0
13,u

0
13, u

0
13,c

0
13g

ð28Þ

Equation (28), using the Taylor series, can be rewrit-
ten as follows

Fq qið Þ � qi+ 1 � qið Þ= �F qið Þ ð29Þ

The matrix Fq of the equation system as given by
equation (5) is the Jacobian. Each row contains the
first-order partial derivatives of the corresponding con-
straint equation with respect to each of the coordinates.
Its dimensions are M 3 N (M=100 and N=102)

∂F1

∂q1
j

� � � ∂F1

∂qN
j

..

. . .
. ..

.

∂FM

∂q1
j

� � � ∂FM

∂qN
j

0
BBBBB@

1
CCCCCA

M3N

Note that the variables associated with the DOF are
known and in successive iterations they take the same
value and can be eliminated together with the corre-
sponding columns of the Jacobian.

The system of non-linear equation (30) becomes a
system with dimensions M3M. Once the position
problem is solved, the configuration of the mobile robot
is determined for each DOF

qj = fx
1f g

j , y
1f g

j , z
1f g

j ,u 1f g
j , u

1f g
j ,c

1f g
j , x

2f g
j , y

2f g
j , z

2f g
j ,u 2f g

j ,

u
2f g

j ,c
2f g

j , . . . , x
Psf g

j , y
Psf g

j , z
Psf g

j ,u Psf g
j , u

Psf g
j ,c

Psf g
j g

The vector qj is known for j= 1, . . . ,Nc, where Nc is
the number of configurations for which the value of the
variables associated with the DOF is known.
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Velocity problem

The velocity problem consists of solving the temporal
derivatives of the coordinates of the mechanical system.
Briefly, the constraint equations are

F qð Þ= 0

Deriving the above expression with respect to time

Fq qð Þ � _q= 0 ð30Þ

The system of equation (5) is linear, where the
unknowns are the elements of the vector of velocities _q.
The Jacobian matrix is known from the previous sec-
tion. It consists of M equations (100) and N variables
(102). The velocities associated with the DOF are
known and can be passed to the second term of the
equation, leading to a square system where M= 100.

Acceleration problem

The acceleration problem consists of solving the tem-
poral derivatives of the velocities.

Deriving equation (5) with respect to time

Fq qð Þ � €q= � _Fq � _q ð31Þ

Both the Jacobian matrix and the right term of the
equation, which is a function of the positions and velo-
cities, are known. This leads to a linear system of
M= 100 equations with N= 102 variables. The accel-
erations associated with the DOF of the system are
known, so by performing the relevant operations, the
previous system is reduced to a square where M= 100.
The unknowns are the elements of the vector of accel-
erations €q.

Transition from a straight line to a
circumference arc: the clothoid curve

When a mobile robot moves in a straight line, there is
no normal acceleration. However, when it turns (e.g.
following an arc), there is a normal acceleration

an =
v2

R
ð32Þ

where v is the vehicle’s velocity and R is the radius of
curvature.

If the vehicle moves in a straight line and approaches
a curve, at the point of tangency, it experiences a sud-
den change in the centrifugal acceleration (as well as in
the radius of curvature and the curve itself). The same
occurs when the vehicle exits the circular curve.

In order to achieve a progressive change in the value
of the normal acceleration (and all other parameters), a
transition curve must be introduced between the

straight line and the circular arc. Since the velocity of
the vehicle is intended to be constant at any position,
whether straight or curved, the element must allow a
variation in the radius. A desirable situation is to
achieve a constant, progressive, uniform, linear varia-
tion of the normal acceleration (Figure 9).

If the link between the straight line and the curve of
radius R is performed by a transition curve of length lc

and the centrifugal acceleration is intended to change
from 0 to v2=Rc, an acceleration per unit of length is
required

anu =
v2

Rc

lc
ð33Þ

If the transition curve changes its radius from ‘ in
the straight line to Rc in the circular curve, for a generic
point of the curve located at a distance l from the begin-
ning of the curve, the mobile robot in contact with the
straight line will undergo a centrifugal acceleration. It
can be expressed in terms of the unit normal accelera-
tion, as follows

an =
v2

Rc

lc
l ð34Þ

In addition

an =
v2

R
ð35Þ

Matching both equations

v2

R
=

v2

Rc

lc

l=
v2 � l
Rc � lc

ð36Þ

= ∞

=

Tangent

Ci
rc

ul
ar

 c
ur

ve

Origin

Figure 9. Link between a straight section and a circular section
with the clothoid curve.
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As a result, equation (35) can be rewritten as follows:
Rc � lc =R � l.

And replacing this, Rc � lc =K2. The equation defin-
ing the clothoid curve is R � l =K2, which is a transition
curve between a straight section and a circular path so
that the normal acceleration undergone by the vehicle is
progressive rather than abrupt.

Examples of resolution of the direct
kinematics of the mobile robot

It is worthwhile to note that the computational time
needed to obtain a solution (motion simulation follow-
ing a desired path) is just a few milliseconds for the pro-
posed examples. The direct kinematics are solved for
the following four simple cases.

Figure 10. Mobile robot moving in a straight line on a
horizontal surface.

Figure 11. Kinematics for case A.
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Case A: driving in a straight line on a flat surface at a
constant velocity

The vehicle moves in a straight line in the X-direction.
Since it is a differential drive vehicle, the angular velo-
city of each rear wheel is the same (Figure 10). The val-
ues of the independent coordinates associated with the
rotation of the rear wheels (6 and 8), angular velocities,
and angular accelerations are as follows (Figure 11)

u6 =K � t; u8 =K � t
_u6 =K; _u8 =K

€u6 = 0; €u8 = 0

The values of the rotated angle, angular velocity,
and angular acceleration of the wheels are shown in
graphs a1, a2, and a3), respectively, for a value of

K=6. The rotated angle varies linearly, with constant
angular velocity and zero angular acceleration.

The results of position, velocity, and acceleration for
rod 1 of the vehicle are shown in graphs a4, a5, and a6).

Figure 12. Kinematics for case B.

Figure 13. Mobile robot describing a circular line on a
horizontal surface.
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As expected, they show how the longitudinal displace-
ment increases linearly. The transverse displacement takes
a constant value, since the vehicle moves in a straight line
parallel to the X-axis. The longitudinal linear velocity is
constant and the linear acceleration is zero.

Case B: driving in a straight line on a flat surface with
constant acceleration

The values of the independent coordinates associated
with the rotation of the rear wheels (6 and 8), angular
velocities, and angular accelerations are as follows
(Figure 12)

u6 =K � t2; u8 =K � t2

_u6 = 2 � K � t; _u8 = 2 � K � t
€u6 = 2 � K; €u8 = 2 � K

The value of K is defined as 0.14. Graph b4 shows
that the distance traveled by the vehicle is not linear, as
the angle rotated by the wheels is not linear. The velo-
city of rod 1 is linear, as is the angular velocity of the
wheels (b2). The acceleration of the vehicle is constant
in the X-direction and 0 in the transverse direction,
since the vehicle moves in a straight line in the X-direc-
tion (see b6).

Case C: driving in a circular curve on a flat surface at
a constant velocity

The values of the independent coordinates associated
with the rotation of the rear wheels (6 and 8), angular
velocities, and angular accelerations are as follows
(Figures 13 and 14)

Figure 14. Kinematics for case C.
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u6 = V � V � a
2 � Rc

� 	
� t; u8 = V +

V � a
2 � Rc

� 	
� t

_u6 =V � V � a
2 � Rc

; _u8 =V +
V � a
2 � Rc

€u6 = 0; €u8 = 0

Graphs c1–c6 show how the rotated angles evolve
and how they are different for the rear wheels (wheels 6
and 8). The vehicle moves relative to the rotated angles
and describes a circular curve, which is reflected in the
X and Y values of rod 1 (see graph c4). This circular
movement is also reflected in the velocity and accelera-
tion of rod 1 of the vehicle (c5 and c6).

Case D: generic driving (straight lines and curves) on
a flat surface

Figure 15 shows the mobile robot trajectory seen from
above.

In this case, the trajectory is divided into many sec-
tions, so that each section corresponds to a driving
mode, in which different equations are solved.
Subsequently, the kinematic results are used to obtain
the global direct kinematic values.

Conclusion

This article presents a new approach to the kinematic
analysis of a mobile four-wheeled car-like robot. First,
the generalized coordinates were defined, and subse-
quently, the constraint equations were proposed. With
the resolution of these equations, the problem of posi-
tion of the mobile robot is solved, making it possible to
obtain the configuration of the robot at any instant in
time. By successive derivations of the constraint equa-
tions with respect to time, the secondary velocities and
accelerations of the robot are obtained.

The methodology makes it possible to determine
which part of the constraint equations of the mobile
robot depends on the driving mode. The driving mode
covers situations such as whether the mobile robot
moves in a straight line or describes circular curves and
also whether or not it moves at a constant velocity. As
a starting hypothesis, the wheels are considered to
rotate without sliding when the vehicle moves in a
straight line.

From the analysis of the numerical results, it can be
concluded that when the vehicle moves in a straight line
with constant angular velocities of the rear wheels, the
main body of the vehicle (rod 1) moves with a constant
linear velocity. If the angular velocities of the rear wheels
are not constant (there is angular acceleration), as
expected, rod 1 of the vehicle also exhibits a linear accel-
eration. However, lateral acceleration is not recorded.

When the mobile robot describes a circular curve at
a constant velocity, a normal acceleration tends to
occur in link 1, which produces sway. The module of
the velocity of rod 1 remains constant, presenting velo-
cities in the X- and Y-directions, as expected.
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