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ABSTRACT 

The wide spread of areal surface topography instruments in industry requires 

standard calibration procedures. Current ISO calibration standardisation efforts 

are in an incipient stage and calibration routines are being proposed by national 

metrology institutions such as the National Physical Laboratory (NPL). These 

calibration routines estimate the magnitude of a set of limited number of 

parameters called metrological characteristics, which are currently defined in the 

ISO documents. The aim of this project is to allow industrial users to calibrate of 

their own instruments based on current practices. 

Recently, NPL manufactured a new ISO compliant calibration artefact and 

developed an associated set of calibration routines. Providing a user-friendly 

software platform that is able to calculate the magnitude of the metrological 

characteristics and provide basic uncertainty estimates, NPL can take the 

opportunity to expand in the market of this new product. To increase the product 

visibility, the calibration procedures will also be integrated in MountainsMap, 

which is the market leader software platform in the field of surface texture 

analysis. 
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1 INTRODUCTION 

1.1 Introduction 

Areal surface topography measuring instruments provide 3D information 

about the surface (texture and form), or data from which the surface texture 

parameters can be calculated. Surface texture characterisation allows to predict 

the interaction of the surface and its surrounding and is of great importance in the 

functionality of manufactured components. It is estimated that 10% of the failures 

on components are caused by texture effects [1]. 

These instruments need to be calibrated. Calibration is the comparison of the 

quantity values resulting from a measurement with values proceeding from a 

calibration standard of known accuracy. Traceability of the calibration standard is 

required and these are usually traceable to a national standard held by a National 

Metrological Institute. The traceability is a property of a measurement result 

where the result is related to a reference through a documented unbroken chain 

of calibrations, each contributing to the measurement uncertainty [2]. 

Measurement uncertainties represent the ambiguity in the result of a 

measurement introduced by the fact of performing such measurement. The 

estimation of measurement uncertainties can be mathematically modelled. The 

inputs of such model are the influence factor, each one contributing to the 

measurement uncertainty. However, isolating the effect of each influence factor 

is complicated. Instead, the uncertainties can be estimated by a simple input-

output measurement model based on a limited amount of inputs, called 

metrological characteristics, described in ISO 25178-7, which incorporate the 

effect of the influence factor and which can be measured with the aid of a 

calibration artefact. These artefacts contain specific features over which perform 

the measurements required to estimate the metrological characteristics. 

1.2 Aim and objectives 

The aim of this project is to develop software to calculate the uncertainties of 

surface topography measuring instruments by using the new NPL calibration 

artefact. The calibration routines developed by the UK’s National Measurement 
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Institute, associated with its new artefact and in line with the new areal ISO 

standards, are to be implemented.  These calibration procedures present 

processing data complexities and knowledge on the field is required. The target 

here is to allow unskilled industrial users to do their own calibration routines by 

means of a user-friendly software. They would only need to input the required 

topographies and the software would process the data and present the results. 

1.3 Motivation and scope 

The project is part of a marketing strategy for NPL to expand its new product 

in the market, as the calibration artefact is needed. On their side, industrial users 

will gain independency, being able to calibrate their instruments on their own.  

The project is divided into work packages consisting in: measurement noise, 

flatness deviation, step heights and grids. Every package corresponds to one 

calibration routine, which is implemented in MATLAB® as described in section 4.  

1.4 Thesis layout 

The report is divided in six sections. After the introduction, a literature review 

covers the areal surface topography measuring instruments and the 

measurement uncertainties. Next the research questions, hypothesis and 

methodology are exposed. The fourth section presents the software 

implementation of the calibration routines. After it, the results are presented and 

discussed. Finally, the most relevant information is summarised in conclusions. 
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2 LITERATURE REVIEW 

2.1 Areal surface topography measuring instruments 

In the past, the main methodology to measure surface topographies was 

based on contact stylus instruments. Contact stylus instruments have been used 

since 1927 and contributed considerably to the control of manufacturing process. 

However, optical instruments are gaining popularity in the surface topography 

field thanks to their non-contact and faster measurements.  

Areal instruments are surface measuring instruments that perform 3D 

measurements of surface topographies (Figure 1). On the other hand, profile 

instruments make 2 dimensional measurements. To reconstruct a 3D surface, 

scanning of the sample is needed. 

 

Figure 1 – Surface topography measuring instrument. Coordinate system of the 

instrument (1), measurement loop (2) and z-scan axis (3) (ISO 25178-600) 

The optical methods for measuring surface topography listed in the ISO 2178-

6 document are: 
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• Confocal Microscopy 

• Focus Variation Microscopy 

• Coherence Scanning Interferometry 

• Phase Shifting Interferometry 

• Chromatic Probe 

• Structured Light and Triangulation 

• SEM Stereoscopy 

• Scanning Tunnelling Microscopy 

• Atomic Force Microscopy 

• Optical Differential Profiling 

• Angle Resolved SEM 

During this thesis, Coherence Scanning Interferometry has been used to test 

the implementation of the calibration routines. This method will be briefly 

introduced. 

Coherence Scanning Interferometry: 

Interferometers appeared in the late 19th century, invented by Albert 

Michelson. These instruments are based on a phenomenon called interference. 

This phenomenon occurs when waves with same frequency are combined, 

resulting in the addition of their amplitudes (superposition). The resulting wave 

presents its maximum when the signals are in phase.  

Interferometers combine at least two beams of light coming from a single 

source to create an interference pattern that can be analysed. The interference 

pattern contains information about the object being studied. A sketch of a Mirau 

interferometer is shown in Figure 2. A light beam is emitted from the microscope 

objective. It arrives to the beam splitter, where it is divided in two. One is directed 

to the sample and the other is directed to a reference surface. The two beams 

are reflected and collected at the photodetector for analysis. 
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Figure 2 - Mirau interferometer configuration [3] 

Figure 3 shows an interference signal over a profile.   The maximum occurs 

when the two signals resulting after splitting the main beam are in phase. That 

happens when the distance to the photodetector from the reference surface and 

from the sample are equal. Then, the interference presents a maximum. By 

scanning in the vertical axes, the maximums that delineate the profile are 

obtained.  

 

Figure 3 - Interference signal along a profile 

2.2 Measurement uncertainties 

Measurement uncertainty is the ambiguity that measurements present. It “is 

the doubt that exists about the result of any measurement” [4]. The parameters 

that characterise measurement uncertainties are the interval (Figure 4, in light 

green), the confidence level, which determines the probability of the true value 
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relying in that interval and the coverage factor, k, used to re-scale the confidence 

level (Table 1).  

 

Figure 4 - Scheme of a measurement result, with the measured value on the 

centre of the interval defined by the uncertainty, and the true value relying on it. 

Table 1 - Coverage factors and their associated confidence level 

k 
Confidence 

level 

1 68% 

2 95% 

2.58 99% 

3 99.7% 

Thus, the way to properly express a measurement with its uncertainty so as 

the reader can understand and use its information may contain the measurement 

result with the uncertainty interval, the statement of the coverage factor, the 

confidence level and how the uncertainty was estimated. The “Good Practice 

Guide No. 11” provides de following example: 

The length of the stick was 20 cm ±1 cm. The reported uncertainty is based 

on a standard uncertainty multiplied by a coverage factor k = 2, providing a level 

of confidence of approximately 95%. The uncertainty was estimated following the 

procedure explained in UKAS Publication M 3003. 

There are many sources of uncertainties that include the measuring 

instrument, operator, work piece, measurement process, imported uncertainties, 
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operator skills, sampling issues or the environment. However, in the case of 

surface topography, modelling each influence factor contribution is non-feasible 

and unnecessary for industrial applications. Measurement uncertainties can be 

calculated in an easier way through a set of limited number of the metrological 

characteristics (Table 2). A series of calibration routines which estimate their 

magnitude are defined in the ISO documents (ISO/CD 25178 part 600). This 

project does not cover resolution. 

Table 2 - Metrological characteristics 

Metrological 
characteristics 

Error along 

Measurement noise x, y, z 

Flatness deviation x, y, z 

Amplification z 

Linearity z 

Perpendicularity z 

Resolution x, y, z 

 

2.2.1 Measurement noise (NM) 

The measurement topographies are affected by the noise generated while 

taking the measurements. NM is affected by different sources of noise, such as: 

• Instrument internal noise (instability in the instrument electronics) 

• Environmental noise (ground vibrations, ventilation, sound, temperature 

fluctuations or external electromagnetic disturbances) 

• Drive units’ noise 

In order to estimate the measurement noise, generally a flat artefact with 

smooth surface and a maximum height of the scale limited surface (Sz) of 30 nm 

is used [5]. However, any surface could be used. No filter operations are required.  

NM needs to be isolated from the intrinsic roughness and flatness deviation of 

the sample. The recommended technique is subtraction, where Sq (2-1) is a 3D 

parameter expressing the Root Mean Square Roughness of the resulting 
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topography. Because all the values are squared, it does not differentiate between 

peaks and valleys. 

𝑆𝑞 = √
1

𝑛
(𝑧1

2 + 𝑧2
2 + ⋯ + 𝑧𝑛

2) 

(2-1) 

The subtraction technique requires two different measurements at the same 

position on the work piece taken in quick succession. The resulting two 

measurements will include the same region of the sample (εsample) and the 

flatness deviation of the instrument (εFLT), and the contribution of the 

measurement noise (δNM). By subtracting one measurement from another, the 

result will contain only the effect of the measurement noise, because the sample 

topography and flatness deviation are cancelled (2-2). 

𝑧1 = 𝛿𝑁𝑀 + 휀𝑠𝑎𝑚𝑝𝑙𝑒 + 휀𝐹𝐿𝑇

−                                                           
𝑧2 = 𝛿𝑁𝑀 + 휀𝑠𝑎𝑚𝑝𝑙𝑒 + 휀𝐹𝐿𝑇

𝑧𝑎𝑣𝑔 = 2𝛿𝑁𝑀                          
 

(2-2) 

Assuming that the measurement noise follows a normal distribution centred 

in the origin, the Sq calculated from the subtraction results will be equal to the 

standard deviation of two combined normal distributions. The rule of variance 

(squared standard deviation) combination for normal distributions is shown in 

equation (2-3), where σx and σy correspond to two different variances, and σx+y is 

the variance resultant from the combination of the other two.  As by subtraction 

two measurement noises are combined, the previous equation can be simplified 

to (2-4) and (2-5) can be obtained. 

𝜎𝑥+𝑦
2 = 𝜎𝑥

2 + 𝜎𝑦
2 (2-3) 

𝜎𝑥+𝑥
2 = 2𝜎𝑥

2 (2-4) 

𝑁𝑀 =
𝑆𝑞

√2
 

(2-5) 

The operation should be repeated at least three times to ensure no large 

variability in the results [6]. For every subtraction, NMi is calculated, and a final 
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value of measurement noise is obtained by calculating root mean square (2-6). 

The result should be the same as the standard deviation of all the set of values 

obtained in every subtraction. Measurement noise uncertainty is thus propagated 

as a normal distribution centred in the origin and with a standard deviation equal 

to NM 

𝑁𝑀 = √
1

𝑛
(𝑁𝑀1

2 + 𝑁𝑀2
2 + ⋯ + 𝑁𝑀𝑛

2 ) 

(2-6) 

There is another technique that averages many measured topographies so 

that the influence of the measurement noise is decreased by the square root of 

the number of measurements. See reference [7] for more detail.  

2.2.2 Flatness deviation (Zflt) 

Flatness deviation characterises the quality of the areal reference of the 

instrument, against which the surface topographies will be measured. The 

surface texture parameter used to quantify it is Sz, which is the maximum height 

of the scale limited surface, i.e., the difference between the highest peak and the 

deeper valley (Figure 5). 

The calibration artefact employed to estimate the value of this metrological 

characteristic is a flat like the one described in the previous section. The analysis 

is performed over an averaged topography. Averaging decreases the influence 

of spurious data caused by undesirable factors and reduces de influence of 

measurement noise and sample topography. These measurements are to be 

performed by only moving the sample in x-and/or y-direction.  

 

Figure 5 - Sketch of an areal reference surface profile and the parameter Sz 



 

18 

The number of measurements required to define Zflt is not clearly stablished. 

In general terms, it can be affirmed that the necessary number is this such that 

the value of Sz stabilises, not varying more than 5%. However, spurious data can 

suddenly increase the average values of peaks and valleys and hence, a big 

amount of data may be required. To mitigate this problem, a threshold operation 

can be applied. 

Spurious data are generally high spatial frequency components. The errors 

introduced by the instruments, as these caused by the lenses, are normally low 

spatial frequencies. To analyse the parameter Zflt, these low frequencies should 

be neglected. The spurious data can be eliminated by fitting a polynomial and 

subtracting it, or by using a high pass Gaussian filter. The implementation of this 

method is described in detail in section 4.2. 

The flatness contribution to measurement uncertainties is propagated as a 

rectangular distribution, R(-Zflt/2, Zflt/2), with a variance equal to 𝑍𝑓𝑙𝑡
2 /12 

2.2.3 Amplification, linearity and perpendicularity 

Amplification and linearity establishes how well the instrument response curve 

fits the ideal response curve for the three of the scales, x, y and z. The linearity 

is defined by the maximum distance between the measured curve of the 

instrument and its linear regression curve, whose slope is the amplification 

coefficient (Figure 6). This coefficient can be numerically calculated as equation 

(2-7):  

𝛼 =
∑ 𝐶𝑖𝐼𝑖

𝑛
𝑖

∑ 𝐶𝑖
2𝑛

𝑖

, 
(2-7) 

where Ci are the calibrated values, Ii are the indicated values, n indicates the 

number of step height artefacts used. 



 

19 

 

Figure 6 Instrument response curve: 1 - measured quantities; 2 - input quantities; 

3 - ideal response curve; 4 - instrument response curve; 5 - linear curve (from 

ISO 25178-601 2010) 

Repeatability contribution to the measurement uncertainty is defined as the 

standard deviation of a set of measurements taken under the same conditions 

and in a short period of time. Reproducibility contribution is the standard deviation 

of a set of measurements taken in different conditions, as for example measuring 

at different positions in the vertical scale. According to International Vocabulary 

of Metrology (IVM),  measurement traceability is a “property of a measurement 

result whereby the result can be related to a reference through a documented 

unbroken chain of calibrations, each contributing to the measurement 

uncertainty.” Error contribution to the uncertainties can be estimated as the 

difference between the measured value and the calibrated value. 

The overall scale contribution to the measurement uncertainty can be 

calculated as a combination of the repeatability and/or reproducibility, 

measurement errors and traceability. If it is assumed that these contributions are 

not correlated, a linear addition model can be used to obtain the overall 

uncertainty associated with the point coordinate measurement for each of the 

three axes (2-8).  
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𝑢 =  √𝑢𝑟𝑒𝑝𝑒𝑎𝑡
2 + 𝑢𝑟𝑒𝑝𝑟𝑜𝑑

2 +𝑢𝑒𝑟𝑟
2 + 𝑢𝑡𝑟𝑎𝑐

2  
(2-8) 

The error contribution is propagated as a rectangular distribution centred in 

zero, with -δerr as a minimum value and δerr as a maximum and a variance equal 

to δerr
2 /3, R(-δerr, δerr). On the other hand, both repeatability and reproducibility 

present a normal distribution centred in the origin with a variance equal to the 

square of their value, N(0, δ2
repeat) and N(0, δ2

reprod). 

Calibration of z-axis scale 

Although there is no standardised procedure for step height areal 

measurement, the standardised profile procedure can be applied by extracting 

profiles from the surface. The ISO 5436-1 suggests an average of 5 

measurements. However, a much higher amount of profiles can be extracted and 

analysed from an areal surface topography.  

The above mentioned standardised method corresponds to Type A1 grooves: 

“These measurement standards have a wide calibrated groove with a flat bottom, 

a ridge with a flat top, or a number of such separated features of equal or 

increasing depth or height. Each feature is wide enough to be insensitive to the 

shape or condition of the stylus tip” (ISO 5436-1, section 5.2.1). Such grooves 

are characterised by their width, W, and their depth, d.  Over a profile of width 

3W, regions A, B and C are determined as shown in Figure 7. 

 

Figure 7 - Type A1 groove profile for depth calibration 
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The procedure consists in fitting equation (2-9) by the method of the last 

squares to the regions of the average profile, where α, β and δ are unknown 

coefficients and where δ takes the value +1 in regions A and B and the value -1 

in region C. The depth of the step height, d, is twice the value of the estimated h. 

In simple words, the depth is being determined by calculating the distance 

between two parallel lines, one passing through regions A and B, and the other 

passing through region C. 

𝑍 =  𝛼 · 𝑋 +  𝛽 + ℎ · 𝛿 (2-9) 

  

Calibration of the x-and-y-axes scales 

To calibrate the horizontal scales of the instrument, a calibrated cross-grafting 

artefact (type ACG) can be used (Figure 8). Amplification, linearity and 

perpendicularity are assessed by measuring the centre of gravity of the squares 

of the ACG. There are two approaches for that. The first consists in calculating 

the centre of gravity of the pore, thus considering its depth. The second is based 

on feature identification. The squareness between axes x and y can be 

determined by measuring the angle between two nominally orthogonal rows of 

square holes. 

 

Figure 8 – 2D and 3D surface topography representation of a type ACG artefact 

plotted by MountainsMap® 
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Figure 9 - Pore identification by fitting a binary mask (blue) and their centroids 

(red) 

2.3 Knowledge gaps 

The knowledge gap in the field of calibration routines for topography 

measuring instruments is how to implement the procedures in software. The 

definitions present in the standard documents (ISO 25178-600 and ISO 5436-1) 

need to be shaped and implemented in code. Own contributions need to be 

developed to follow the standards while treating the data in an automatic way.  

 Moreover, the calibration routines are to be implemented in MATLAB® and 

then called by MountainsMap®. The reason why the routines cannot be directly 

implemented in MountainsMap® is its lack of automation capability.  The aim of 

the project is to procure automatic calibration routines. Hence, the link with 

another platform that supports automation is needed. MATLAB® is able to read 

the files generated by the instrument and MountainsMap®, process them, 

generate results and send them back to MountainsMap®. 

 

 



 

23 

3 RESEARCH QUESTIONS, HYPOTHESIS AND 

METHODOLOGY 

3.1 Research questions 

The main question of this project concerns the possibility of creating an 

automated calibration system that allows unskilled users to perform the 

calibration of their instruments and obtain measurement uncertainties. 

3.2 Research hypothesis 

The main hypothesis is that it is possible to implement such automation and 

that MountainsMap® is able work with the MATLAB® extension to successfully 

obtain the measurement uncertainties.  

For every metrological characteristic package, particular hypotheses have 

been assumed regarding the data that is going to be used to estimate their 

magnitude: 

Measurement noise 

• It is stationary in a statistical sense 

• It presents a normal distribution centred in the origin 

• There are not non-measured points 

Flatness deviation 

• It behaves as a systematic error 

• There are not non-measured points 

• The influence of noise decreases with the number of averaged 

topographies 

• The effect of the sample contributions decreases with the number of 

averaged topographies 

Amplification, linearity and perpendicularity 

• There are no interpolation errors 

• There are not non-measured points 
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However, the measured data does not always accomplish these assumptions. 

Hence, some methods to test the data and solvent these issues are developed in 

the software. 

3.3 Research methodology 

Figure 10 illustrates the methodology of this project. It starts with an initial 

research and understanding effort of the surface topography measuring 

instruments field. It continues with a review of the metrological characteristics and 

calibration procedures. The next step enters in an iterative process where the 

routines are implemented in MATLAB and the code is tested. Finally, the 

procedures are implemented in MountainsMap. 

 

Figure 10 - Flowchart of the research methodology 
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4 SOFTWARE DEVELOPMENT 

Every software developed or maintained at or for NPL requires a quality plan. 

This software is to be developed using approved procedures. The necessary 

documents are subjected to the Software Integrity Level (SIL), which is 

determined by using a risk based approach. 

The primary model for software development at NPL, as well as the 

corresponding to this project, is the iterative development process. It starts with 

risk assessment and continues with an iterative sequence consisting of user 

requirements, functional specifications, design and code, verification, validation 

and review (Figure 11).   

 

Figure 11 - Flowchart of the iterative software development process [8] 

The calibration routines developed by NPL to calculate the measurement 

uncertainties of the areal surface topography measurement instruments have 
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been implemented in MATLAB®. The routines to estimate the metrological 

characteristics have been grouped in three work packages: 

• Measurement noise 

• Flatness deviation 

• Amplification, linearity and perpendicularity 

where the last one is subdivided in z-axis scale and x-and-y-axis scales. The 

implementation of the routines is described below. 

4.1 Measurement noise 

There are two approaches for the subtraction technique. To do n subtractions, 

it is possible to take n+1 measurements in a same position, or n pairs of 

measurements, each one in a different position by moving in the horizontal plane. 

The last option enables the use of the same measurements to calculate another 

metrological characteristic, flatness deviation, which will be addressed in the next 

subsection. The developed code is suitable for both options. 

The methodology employed to estimate measurement noise is outlined in 

Figure 12. The 3D topographies are transferred to MATLAB. Then, in order to 

eliminate spurious data, a threshold is applied. If the amount of thresholded pixels 

and/or non-measured points is above 5% (see ISO 25178-700 27/02/2017), the 

measurement is considered invalid and thus discarded. Subtraction is performed 

at every pair of valid measurements and NMi is calculated. After all the 

subtractions have been performed, the overall NM is estimated. 



 

27 

 

Figure 12 - Flowchart of measurement noise process 

• The first task (step 1 in Figure 12) is to read the data generated by 

MountainsMap® by using a modified version of the module “SUR_read2” 

provided by NPL. This module transfers the data to MATLAB® as a matrix of 

height values. It also determines the units of the measurements. The 

modifications include the suppression of the outputs that are not used in this 

application, such as x and y data, and the addition of an output coefficient to 

transform the data into micrometres. A pair of measurements is stored in two 

matrices at each iteration. The matrices are overwritten every time . 

• Because non-measured points from MountainsMap® do not appear as NaN 

after transferring the data to MATLAB®, non-measured points need to be 

identified. For every topography, the NPL module assigns all non-measured 

points an equal value, being the minimum. Hence, data having a value equal 

to the minimum is diagnosed and set as NaN. After that, pixels exceeding a 

±3σ threshold are rejected and thus set as NaN (step 2).  

• If the total amount of NaN exceeds 5%, the measurement is not considered 

(step 3). 

• At every iteration, two surfaces are subtracted (step 4) and stored in a matrix, 

and NM is obtained as defined in (2-5), (step 5), whose values are stored in 

another matrix. This process is repeated for every pair of measurements and 

the overall NM is calculated as detailed in (2-6), (step 6). 
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4.2 Flatness deviation 

In this implementation, it has been applied a methodology in which the long 

wavelength terms were removed to threshold the surface. After that, the terms 

were added back to estimate Zflt. The main steps of the procedure are described 

in Figure 13. The routine consists in averaging surfaces until Zflt does not vary 

more than 5%. The form removal operation is applied by fitting a polynomial to 

the topography and subtracting it. The threshold limits are calculated so as the 

error data produced by the instrument are not eliminated.  After thresholding and 

adding back the form, the topography is levelled and added to the average. Zflt is 

estimated over the average surface. 

 

Figure 13 - Flatness deviation flowchart 

• The data is transferred to MATLAB® by using the NPL module and stored in 

a matrix, as explained before (step 1, Figure 13). 

• Form removal is applied to remove the long wavelength components (step 2, 

Figure 13). A fifth order polynomial (4-1) is applied by using the MATLAB® 

function “fit” and the coefficients are obtained with the function “coeffvalues”. 

The polynomial is substracted from the original data (Figure 14). 
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𝑝 =  𝑐10𝑥 + 𝑐01𝑦 + 𝑐20𝑥2 + 𝑐11𝑥𝑦 + 𝑐02𝑦2 + 𝑐30𝑥3 + 𝑐21𝑥2𝑦 + 𝑐12𝑥𝑦2

+ 𝑐03𝑦3 + ⋯ + 𝑐05𝑦5 

(4-1) 

 

Figure 14 - Polynomial fitting on a surface affected by long wavelength 

components (left) and same surface after form removal (right) 

• The next step is thresholding. However, the threshold limits need to be 

defined. The procedure to do so is sketched in Figure 15. The data originated 

by the instruments will be repeated in every measurement. Hence, it is not 

necessary repeating the procedure for every topography. This means that the 

definition of the limits needs to be performed only once.  

• Hence, only two topographies are considered (step 1, Figure 15).  

• Mean and standard deviation of this set of measurements are calculated (step 

2, Figure 15). 

• An initial pair of threshold limits are defined as Th1=μ±3σ (step 3, Figure 15). 

• The data outside the threshold is diagnosed and the coordinates of the pixels 

are determined (step 4, Figure 15). 

• The two topographies are averaged (step 6, Figure 15). 

• To determine if the error data was produce by the instrument or it is spurious 

data, the value of the diagnosed data is compared before and after averaging. 

In the case of belonging to the instrument, the error pixels will be present in 

both topographies and thus their values will not be decreased after averaging. 

Th2 is initialised at 0 and defined as the maximum value belonging to the 

interval [Zi,j,1 - Sq < Zi,j,avg < Zi,j,1 + Sq] (step 6, Figure 15). 

• The final threshold is defined as the maximum value of Th1 and Th2 (step 7, 

Figure 15).  
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• Once the limits are defined, the maps are thresholded (step 3, Figure 13). 

• The polynomial removed in step 2, Figure 13, is added back (step 4, Figure 

13).   

• The topography is levelled by using the module “level” provided by NPL (step 

5, Figure 13). 

• The topography is added to the average (step 6, Figure 13) and Zflt is 

calculated (step 7, Figure 13).  

• As mentioned before, topographies are added and the process (excluding the 

threshold definition) is repeated until Zflt acquires a stable value, not varying 

more than 5%.  

• Whenever a surface presents more than 5% of NaN, corresponding to non-

measured points and/or spurious data, the topography is removed. 

 

Figure 15 - Flowchart of threshold limits selection process 

4.3 Amplification, linearity and perpendicularity 

Two independent modules have been programmed for the calibration of the 

vertical scale and the horizontal scales. 
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4.3.1 z-axis calibration 

Figure 16 summarises the most important steps of the z-scale calibration 

routine.  A binary mask is created over the step topography transferred to 

MATLAB® to apply a level operation over this mask. Then, another binary mask 

is applied to identify the edges of the groove. The angle of the groove is 

determined and if it is higher than 1º, the measurement is considered invalid. 

Many profiles are extracted from the identified groove and an average profile is 

calculated. The Type A1 step height analysis described in ISO 5436-1 is applied 

over the average groove and its depth is estimated. Every groove is measured n 

times, and so the process is repeated n times. An average value of the n depths 

is calculated. The same process is repeated for every groove. The amplification 

coefficient is calculated as the slope of the linear fitting of the estimated depths 

against the calibrated values, crossing zero. The linearity is estimated as the 

maximum difference between the linear regression and the ideal curve. After 

repeating the whole process for different positions of the instrument in the vertical 

range, the reproducibility, repeatability, error and traceability contribution to the 

measurement uncertainty are determined. 
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Figure 16 - Flow chart of the calibration of the z-scale 

• The groove topography (Figure 17) is transferred to MATLAB® (step 1, Figure 

16). 

 

Figure 17 - Topography map of a step height (left) and its 3D view from 

MountainsMap® 
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• The MATLAB function “imgradient”, which provides the gradient of the z data, 

is used to create binary masks. A threshold gradient is defined as the mean 

value of the maximum and minimum gradient. An initial mask is created, 

setting all the values at “0”. Then, the pixels on the mask corresponding to the 

gradient image pixels with values higher than the threshold are set as “1”. The 

module “level” provided by NPL levels the surface using the mask for plane 

fitting. The points with “1”, corresponding to the transition zone of the step, 

are excluded from the plane fitting (step 2, Figure 16). 

• After levelling, a second binary mask is created following the same procedure. 

The binary mask is used to identify the groove edges (Figure 19). A minimal 

bounding rectangle is fitted to the cloud of binary data by using the function 

“minboundrect” (by John D'Errico, 2007), (step 3, Figure 16). Nonetheless, it 

may introduce interpolation errors. 

• By using the positions of the corners, the angle of the groove respect to the 

x-and-y axes is determined. If it is higher than 1º, the measurement is 

discarded. The orientation (vertical or horizontal) of the longest direction of 

the groove is also identify.  

• A set of profiles perpendicular to the longest direction of the groove, ranging 

from 30% to 70% of its length, are extracted. The module “Depth_a1_pmh” 

provided by NPL averages the profiles (step 4, Figure 16) and applies the 

procedure described in ISO 5426-1 (step 5, Figure 16) to estimate the depth 

(step 6, Figure 16). See Figure 18 
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Figure 18 - Type A1 step height analysis (ISO 5436-1) 

 

• This process is repeated for the n measurements of every groove. Then, an 

average depth is estimated. The routine does the same procedure for the six 

steps present in the calibration artefact. After the completion of the analysis 

of each groove, the routine checks if all the grooves have been analysed (step 

7, Figure 16). If it is not so, the routine goes back to step 1, Figure 16. 

• When all the grooves have been analysed, the function “polifix” (by Are 

Mjaavatten, Telemark University College, 2015) finds the coefficients of the 

polynomial that does a linear regression of estimated depth data against the 

nominal values, crossing zero (step 8, Figure 16). 
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Figure 19 - Raw surface in MATLAB® (top left), gradient image (top right), binary 

mask (bottom left) and identified edges of the groove (bottom right) 

• Amplification is defined as the first coefficient provided by “polifix”, which 

corresponds to the slope of the curve. Linearity is obtained as the maximum 

absolute value of the difference between the linear fitting and the nominal 

values (step 9, Figure 16). 

• Finally, the contribution to the measurement uncertainties is calculated (step 

10, Figure 16). Repeatability is estimated as the maximum standard deviation 

of depth values at each groove. Reproducibility is calculated as the maximum 

standard deviation of linearity and amplification. The error contribution is 

defined as the maximum absolute error plus its repeatability. Finally, the 

traceability contribution is read from. 

4.3.2 x-and-y-axes calibration 

The procedure is similar to the previous routine. The data is transferred to 

MATLAB® and two binary masks are applied. The first mask is used for levelling, 
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and the second to identify the pores of the grid. Then, the centroids are found 

and their locations are compared to the calibrated locations (Figure 20). 

 

Figure 20 - Flowchart of the x-and-y scales calibration routine 

• Data is transferred to MATLAB® (step 1, Figure 20). 

• A binary mask is applied to level the topography (step 2, Figure 20). 

• A binary mask is applied to identify the pores of the grid (Figure 21) (step 3, 

Figure 20). 
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Figure 21 - Pores identification by the use of a binary mask 

• The function “regionprops” returns measurements for the specified properties. 

The function is used with the property ‘Centroid’. This module finds the 

centroids as the centre of mass of the regions and returns a vector with their 

coordinates (step 4, Figure 20). 

• The described steps are repeated for the set of measurements and the 

centroids are stored in a matrix. Then, the module “ls2dptm” provided by NPL 

is applied to align the grids. The module provides translation and rotation 

matrices to switch the centroids of each grid to a same coordinates system.  

• Every centroid needs to be averaged with its analogue in the rest of grids. 

Thus, the matrix storing the centroids coordinates needs to be ordered. The 

matrix is ordered by ascendant y coordinate and grouped in sets of the 

number of points per row. By this, every group of pairs of coordinates contains 

a grid row. Then, for every row, the data is ordered by ascendant x coordinate.  

• Then, the centroids are averaged (step 5, Figure 20). 

• The “ls2dptm” module is applied to align the averaged grids and the calibrated 

values.  
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• Their values are compared and errors and standard deviations are extracted 

(step 6, Figure 20). 
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5 RESULTS AND DISCUSSIONS  

At the completion of this project, the calibration routines to estimate 

measurement uncertainties associated with measurement noise, flatness 

deviation, amplification, linearity and perpendicularity have been successfully 

implemented in MATLAB. Some examples are provided below. The 

measurements were performed with a CSI instrument. 

Measurement noise 

NM is isolated by subtraction. The program outputs a histogram with the set of 

values resulting from all the subtractions, together with its associated normal 

distribution (Figure 22).  Whenever a topography contains more than 5% of non-

measured and/or spurious data, a message box is displayed warning about it 

(Figure 23). At the end of the analysis, a message box is displayed showing the 

number of subtractions considered (Figure 24). Another box shows the overall 

NM and the standard deviation of the set of values resulting from the subtractions. 

Ideally, they should have the same value (Figure 25). 

 

Figure 22 - Histogram of all the values corresponding to the subtractions in blue. 

Normal distribution curve N(μ,σ) with μ and σ corresponding to the mean and 

standard deviation of all the set of values, in red. Over this curve, normal 

distribution N(μ,σ) with μ and σ corresponding to 0 and √𝟐𝑵𝑴
𝟐 , in yellow 
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Figure 23 - Message box warning that a surface has been rejected 

 

Figure 24 - Message box indicating the number of subtractions considered 

 

Figure 25 - Message box showing the overall NM and its standard deviation 

 

Flatness deviation 

Flatness deviation routine outputs a graph showing the values of Zflt for each 

iteration. An example is provided in (Figure 26). A message box displays the Zflt 

value (Figure 27).  For this case, Zflt did not acquire a stable value not changing 

more than 5% after averaging 24 topographies and refusing 8, being 32 the total 

number of topographies in the set of measurements. The flatness deviations 

estimated for this case was Zflt=3.426 nm. However, although changing less than 
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4 nm, the graphs shows a decreasing trend which indicates a potentially lower 

value.  More measurements would be required for this case. 

 

Figure 26 - Flatness deviation for each iteration 

 

Figure 27 - Message box displaying the flatness deviation 

Not considering any operation on the surface to reduce the spurious data can 

lead to the necessity of a large amount of topographies to stabilise Zflt. It was 

wanted to be analysed the improvements of this averaging technique, in which 

the topographies are thresholded, against the simple method, were the maps are 

averaged without any operation. It was made a comparison of both methods to 

analyse the improvements (Figure 30). The stabilisation criterion has been 

changed to 0% to analyse the behaviour of Zflt along the whole set of 

measurements. For the first 12 iterations, both results converge to a close value. 

However, the simple averaging method (in blue) presents instabilities due to 

spurious data, which causes huge slopes followed by a decreasing trend that tries 
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to reach the stable value. Thus, this method is very dependent on the quality of 

the measurements. 

 

Figure 28 - Comparison between simple averaging method (blue) and 

thresholding-averaging method (orange) 

Amplification, linearity and perpendicularity – Vertical scales 

The routine to determine the amplification and linearity of the vertical scale 

outputs a graph with the instrument curve, its linear fitting and the ideal instrument 

curve (Figure 30). It also provides a message box showing a table with the 

calibrated depth (CT), measured depth (M), error (e), traceability (Tr), 

repeatability (R) and the measurement uncertainty for each groove (u) (Figure 

29). The traceability data was not available at the moment of the analysis and so 

the values were set as 0.  
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Figure 29 - Message box showing calibrated depth (CT), measured depth (M), 

error (e), traceability (Tr), repeatability (R) and the measurement uncertainty for 

each groove (u)   

 

Figure 30 - Curve response of the instrument (blue), linear fitting passing per 

zero (red) and ideal curve (green)  

 

Amplification, linearity and perpendicularity – Horizontal scales 

Finally, the routine for the estimation of the uncertainties in the x-and-y-scales 

provides a plot with of the calibrated and measured centroids of the pores, 

showing the distortion of the measurements (Figure 31). The error of the 

measured centroids is magnified 50 times for better comprehension. These errors 
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are presented in a histogram (Figure 32). The standard deviation for the 

coordinates of each centroid is also provided (Figure 33). 

 

Figure 31 - Calibrated centroids (blue) and measured centroids with errors 

magnified x50 (orange) 
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Figure 32 - Histogram of centroid errors 

  

Figure 33 - Histograms of the standard deviation of the coordinates of the 

centroids 

5.1 Key issues and challenges 

The MATLAB extension in MountainsMap does not allow to run scripts which 

call external functions. Moreover, it only allows to work on one loaded studiable, 

applying the operations coded on a single script. The calibration routines 

developed in this project use external functions and work with many topography 

files at a same time. Hence, it has not been possible to include the routines in the 

metrology software. However, the routines are still useful as they are available   
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to run directly on MATLAB and could potentially be integrated on MountainsMap 

after some modifications on the topography software. 

The light source of the CSI instrument that was being used for performing the 

measurements required to test the routines did not work. Thus, it was necessary 

to wait for measurements taken at NPL, delaying the process. 

Finally, it has been challenging to work within the metrology field, which has 

exposed myself to numerous new concepts, in whose comprehension is based 

the implementation of the routines developed in this thesis. 
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6 CONCLUSIONS 

At the completion of this project, the calibration routines to estimate the 

measurement uncertainties related to measurement noise, flatness deviations, 

and amplification, linearity and perpendicularity of the scales have been 

successfully implemented in MATLAB ®. However, for reasons out of the scope 

of this project, it has not been possible to integrate them in MountainsMap®. 

Nonetheless, the routines are ready to be included in the metrology software and 

it will potentially be possible in the future. 

It has been made a comparison between the flatness deviation routine 

implemented by following the minimum requirements specified in ISO 25178 and 

an optimization of it, thresholding the topographies. The simple technique 

presents instabilities when spurious data is present, leading to the requirement 

of a big set of data. However, by thresholding the topographies before averaging, 

the convergence of the flatness deviation presents a stable trend.  

Amplification and linearity of the vertical scale has been faced with a new 

method based groove identification by using binary masks, followed by a minimal 

bounding rectangle fitting. Based on this fitting, the profiles are extracted and 

analysed. 

Amplification, linearity and perpendicularity of the horizontal scales have been 

implemented following a similar approach based on feature identification. A 

binary mask is applied to identify the pores of the grids. Then, the centroids are 

estimated as the centre of mass of the regions formed by the binary mask. The 

results are to be compared with the current NPL approach, which estimates the 

centroids by finding the centre of gravity of the pores and thus considering their 

depth. 

Although the routines are successfully implemented, further development, 

modifications and comparisons are suggested as future work: 

• The routines for the calibration of the vertical and horizontal scales have 

not been tested in reproducibility conditions and it is something suggested 

to be done.  
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• In addition, the results obtained with the methodology developed in this 

project to determine the centroids in the analysis of the vertical scales 

needs to be compared with the NPL method, so as to contrast their 

performance in the uncertainty estimation. 

• The developed routines for x-and-y-axes calibration considered that the 

measured grids contain the same number of pores than the calibrated 

sample. However, the field of view of some instruments may not enclose 

the whole grid. Thus, the measurement would not match in numbers of 

pores and the analysis would not be possible. To face it, it needs to be 

implemented some routine that identifies the pores in the measured 

topography, select the analogue pores in the calibration sample and aligns 

them for comparison.  

• The results of the flatness deviation routine were compared with the simple 

averaging method. The implementation and comparison of another 

approach to threshold the topographies before averaging is suggested. It 

consists in subtracting pairs of topographies. The high values belonging to 

the instrument would be eliminated together with the flatness, and the 

remaining spurious data could be identified.  

• The integration of the routines in the market leader software platform, 

MountainsMap®, is still pending and recommended to be carried out. 

• Finally, it is encouraged to record and edit a video showing the how 

software works and presents the results, for marketing purposes.  
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APPENDICES 

Appendix A MATLAB® scripts  

A.1 Measurement noise 

 

%% *Calculus of measurement noise (Sqnoise)* 

  
%Sqnoise: standard deviation of noise distribution 

  
%This script loads data from *.sur files and process it to calculate 
%Sqnoise 

  
%All the *.sur files must be gather together in a folder. No other 

*.sur 
%files than the ones object of analysis should be in that folder. 

  
%Units: um 

  
%Patricia Giménez Belando 
%Last updated: 03/09/17 
%% 
close all 
clear all 
clc 

  
%% 
%READ DATA FROM 

FOLDER%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% directory='C:\Users\Patricia 

Giménez\Documents\CRANFIELD\THESIS\Coding\Noise data 05062017'; 
prompt = {'Enter the directory of the files:'}; 
dlg_title = 'Directory'; 
num_lines = 1; 
directory = strjoin(inputdlg(prompt,dlg_title,num_lines)); 
direc=[directory '/*.sur']; 
names=dir(fullfile(direc)); 
list_names={names.name}; 

  
%DEFINE/INITIALISE VARIABLES%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
noise=[]; 
measurements=length(list_names); 

 
% figure 
Sqnoisei=[]; 
noise_all=[]; 
for h=2:2:24 
    file_name_cell_1=list_names(h-1); 
    file_name_cell_2=list_names(h); 
    file_name_1=strjoin(file_name_cell_1); 
    file_name_2=strjoin(file_name_cell_2); 
    [z,a]=SUR_read2_z(file_name_1); 
    z_data_1=z*a; 
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        p=length(z_data_1);  
        sum=zeros(p); 
    [z_data_2]=SUR_read2_z(file_name_2); 
    z_data_2=a*z_data_2; 

   

        
  %%   
    % ELIMINATE SPURIOUS DATA%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Identify NA from Mountains and make them NaN 
    NA1=min(z_data_1(:)); % because NA from mountains are established 

as a same min value 
    find1=find(z==NA1); 
    if length(find1>1)  
        for j=1:length(find1) 
            l=ceil(find1(j)/p); 
            k=find1(j)-p*(l-1); 
            z_data_1(k,l)=NaN; %change to NaN 
        end 
    end 
    NA2=min(z_data_2(:)); 
    find2=find(z==NA2); 
    if length(find2>1) 
        for j=1:length(find2) 
            l=ceil(find2(j)/p); 
            k=find2(j)-p*(l-1); 
            z_data_2(k,l)=NaN; %change to NaN 
        end 
    end 
    z_data=[z_data_1,z_data_2];     

    
    %Threslhold  
    z_data_test=z_data; 
    z_data=[]; 
    for i=1:2 
        flag=0; 
        m=z_data_test(:,p*i-(p-1):p*i); 
        mu=nanmean(m(:)); 
        vari=nanvar(m(:)); 
        for i=1:p 
            for j=1:p 
                if m(i,j)>mu+3*sqrt(vari)||m(i,j)<mu-3*sqrt(vari) 
                    m(i,j)=NaN; 
                end 
            end 
        end 
        length(find(isnan(m(:)))); 
        if length(find(isnan(m(:))))>0.05*p^2 %if NaN > 5% of data, 

don not consider it (ISO 25178-700 27/02/2017) 
            msgbox('This surface contains more than 5% of non-valid 

points. This surface will not be considered.'); 
            flag=1; 
            break;             
        else 
            z_data=[z_data m]; 
        end 

         

        
    end 
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%% 
    %SUBSTRACT AREAL TOPOGRAPHIES%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

     
    if flag==0 && nanvar(z_data(:))~=0 
        i=2; 
        sub=z_data(:,p*i-(p-1):p*i)-z_data(:,p*(i-1)-(p-1):p*(i-1)); 

%subtraction of each pair of measurements 
        mu_sub=nanmean(sub(:)); 
        sub=sub-mu_sub; 
        noise=sub; 
        noise_all=[noise_all noise]; 
        %borrar 
%         figure 
%         surf(noise,'EdgeColor','none') 
 %%        
        %     noise=[noise sub]; 

         

  

         
 %%        
        %CALCULATE 

SQNOISE%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        Sqi=sqrt(nanmean(noise(:).^2));%RMS excluding NaN 
        Sqnoisei=[Sqnoisei Sqi/sqrt(2)]; 
 %% 
       %PLOT 
%         subplot(4,4,h/2) 
%         hold on 
%         histogram(noise,'Normalization','pdf','EdgeColor','None') 
% %         hold on 
%         mu=nanmean(noise(:)); 
% %         str=sprintf('mean=%f\nvar=%f\n',mu,nanvar(noise(:))/2); 
% %         legend(str); %%%%%%%%%%%%%%%%%%How to determine a fixed 

place?%%%%%%%%%%%%%%%%% 
%         hold on 
%         x=[mu-

4*sqrt(nanvar(noise(:))):0.0001:mu+4*sqrt(nanvar(noise(:)))]; 
%         norm=normpdf(x,mu,Sqnoisei(end)*sqrt(2)); 
%         plot(x,norm,'LineWidth',4) 
%         xlim([x(1), x(end)]) 
    end 
end 
%%OBTAIN FINAL SQNOISE 
Sqnoise=sqrt(nanmean(Sqnoisei(:).^2)) %ojo, no RMS 
Sqnoise2=Sqnoise^2 
%Calculus of normal distribution of global measurement noise: mu and s 
variance_all=nanvar(noise_all(:))/2 %divided by 2 because noise(i) is 

a combination of 2 distributions 
mu_all=nanmean(noise_all(:)); 
msgbox( sprintf('NM=%1.3d um\n Std=%1.3d um',Sqnoise, 

sqrt(variance_all))); 
msgbox( sprintf('Number of subtractions analysed: %d.\n The minimum 

recommended is 3.',length(Sqnoisei))); 

  
%% 
% 

%PLOTS%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure 
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histogram(noise_all,'Normalization','pdf','EdgeColor','None') 
hold on 
x=[mu_all-4*sqrt(variance_all):0.0001:mu_all+4*sqrt(variance_all)]; 
norm=normpdf(x,mu_all,sqrt(nanvar(noise_all(:)))); 
plot(x,norm,'LineWidth',6) 
xlim([x(1), x(end)]); 
hold on 
norm2=normpdf(x,0,Sqnoise*sqrt(2)); 
plot(x,norm2,'LineWidth',2) 
% str=sprintf('mean=%f\nvar=%f\n',mu_all,variance_all); 
% legend(str); 

  

A.2 Flatness deviation 
%% *Calculus of flatness deviation (Sz)* 

  
%Sz: maximum height of the scale limited surface 

  
%This script loads data from *.sur files and process it to calculate 

Sz 

  
%Units: um; 

  
%Patricia Giménez Belando 
%Last updated: 31/08/17 

  

  
%% 
close all 
clear all 
clc 
%% 
%DEFINE/INITIALISE VARIABLES 
noise=[]; 
meas=1; 
Sz0=Inf; 
counter=0; 
z_d=[]; 
sum1=0; 
Szs=[]; 
hh=0; % counter that indicates the surface treated 
Th2=0; 
%% 
%READ DATA FROM FILES 
directory='C:\Users\Patricia 

Giménez\Documents\CRANFIELD\THESIS\Coding\Noise data 05062017'; 
% prompt = {'Enter the directory of the files:'}; 
% dlg_title = 'Directory'; 
% num_lines = 1; 
% directory = strjoin(inputdlg(prompt,dlg_title,num_lines)); 
direc=[directory '/*.sur']; 
names=dir(fullfile(direc)); 
list_names={names.name}; 
measurements=length(list_names); %number of stored measurements 
for h=1:1:measurements %because are pairs of measurements, only one of 

each pair is taken 
    file_name_cell_1=list_names(h); 
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    file_name_1=strjoin(file_name_cell_1); 
    [z_data_1,a]=SUR_read2_z(file_name_1); 
    z_data=a*z_data_1; 

     
    if h==1 %to initialise the values only the first time 
        p=length(z_data); 
        sum=zeros(p); 
        d=2*ones(p);%number of measurements at each pixel 
    end 
    %Identify NA from Mountains  
    NA=min(z_data(:)); % because NA from mountains are established as 

a same min value   
    NAs=length(find(z_data(:)==NA)); 
    if NAs/p^2>0.05 % if more than 5% non measured points 
        flag_nan=1; 
        msgbox('This surface contains more than 5% of non-valid 

points. This surface will not be considered.'); 

  
    else 
        flag_nan=0; 
        hh=hh+1; 
    end 
    if h==5 
        borrar=1; 
    end 
    if flag_nan==0 

       

         
        %% 
        %To threshold the surface, a form removal operation is 

applied. By 
        %removing the long wavelength coponents it's possible to 

identify 
        %te spurious data and eliminate them. Once thresholded, the 

form is 
        %added back.  
        %The surfaces are levelled and the mean is subtracted so as to 

sum 
        %at the same level when averaging 

         
        %FORM REMOVAL by polynomial fitting 
        %Create x and y vectors 
        x=[]; y=[];z=[]; 
        y1=1:p; 
        x1=ones(1,p); 
        for i=1:p 
            y=[y y1]; 
            x2=i*x1; 
            x=[x x2]; 
        end 
        x=x'; 
        y=y'; 

         
        %put z_data in a vector 
        z=reshape(z_data,p^2,[]); 
        f=fit([x,y],z,'poly55'); %For surfaces, degree of x and y can 

be up to 5. 
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        coeff=coeffvalues(f);    %The degree of the polynomial is the 

maximum of x and y degrees. 
        for i=1:p^2 
            pol(i) = coeff(1) + coeff(2)*x(i) + coeff(3)*y(i) + 

coeff(4)*x(i)^2 + coeff(5)*x(i)*y(i) + coeff(6)*y(i)^2 + 

coeff(7)*x(i)^3 + coeff(8)*x(i)^2*y(i) + coeff(9)*x(i)*y(i)^2 + 

coeff(10)*y(i)^3 + coeff(11)*x(i)^4 + coeff(12)*x(i)^3*y(i) + 

coeff(13)*x(i)^2*y(i)^2 + coeff(14)*x(i)*y(i)^3 + coeff(15)*y(i)^4 + 

coeff(16)*x(i)^5 + coeff(17)*x(i)^4*y(i) + coeff(18)*x(i)^3*y(i)^2 + 

coeff(19)*x(i)^2*y(i)^3 + coeff(20)*x(i)*y(i)^4 + coeff(21)*y(i)^5; 
        end 
        %   put pol (polynomial height data) in a matrix shape 
        pol_mat=[]; 
        for i=1:p 
            col=pol((i-1)*p+1:p*i); 
            %pol_mat=[pol_mat col']; 
        end 
        pol_mat=reshape(pol,[p,p]); %polynomial in matrix shape 
        z_data=z_data-pol_mat; %form removal 
        if hh==1 
            p1=pol_mat; 
        elseif hh==2 
            p2=pol_mat; 
        end 

         
        %ESTABLISH THRESHOLD LIMITS 
        counter=counter+1; 
        sum1=sum1+z_data; 
        if counter <= 2 
            z_d=[z_d z_data]; %hold the first 2 measurements 
            if counter==2 
                mean_t=mean(z_d(:)); %mean of the 2 surfaces 
                sigma_t=std(z_d(:)); %standard deviation of the 2 

surfaces 
                Sq=sigma_t; 
                y=[find(z_d(:)>mean_t+3*sigma_t); find(z_d(:)<mean_t-

3*sigma_t)]; 
                m1=z_d(:,1:p); 
                m2=z_d(:,p+1:end); 
                th_avg=sum1/2; %th_avg (threshold average) is the 

average of the first 2 surfaces, to determine the threshold 
                th_up=mean_t+3*sigma_t; 
                th_down=mean_t-3*sigma_t; 

                 
                for j=1:length(y) 
                    l=ceil(y(j)/p); 
                    k=y(j)-p*(l-1); 
                    if l>p 
                        l=l-p; 
                    end 
                    if th_avg(k,l)>mean_t && abs(th_avg(k,l))>(1-

Sq)*abs(m1(k,l))&& abs(th_avg(k,l))<(1+Sq)*abs(m1(k,l)) %means that it 

comes from the instrument 
                        th_1=th_avg(k,l); 
                        if th_1<th_up 
                            th_up=th_1; 
                        end 
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                    elseif th_avg(k,l)<mean_t && abs(th_avg(k,l))>(1-

Sq)*abs(m1(k,l))&& abs(th_avg(k,l))<(1+Sq)*abs(m1(k,l)) %means that it 

comes from the instrument 
                        th_2=th_avg(k,l); 
                        if th_2>th_down 
                            th_down=th_2; 
                        end 
                    end 

                     
                end 

                 
                %% FOR THE FIRST 2 SURFACES 
                %eliminate spurious data  of the first two 

measurements 
                m1(m1>th_up|m1<th_down)=NaN; 
                m2(m2>th_up|m2<th_down)=NaN; 
                %Identify NA from Mountains and make them NaN 
                NA1=min(m1(:)); % because NA from mountains are 

established as a same min value 
                m1(m1==NA1)=NaN; 
                NA2=min(m2(:)); % because NA from mountains are 

established as a same min value 
                m2(m2==NA2)=NaN; 
                if NA1>0.05 
                    msgbox('The 1st topography contains more than 5% 

NaN and may lead to wrong results.'); 
                end 
                if NA2>0.05 
                    msgbox('The 2nd topography contains more than 5% 

NaN and may lead to wrong results.'); 
                end 

                 
                %add polynomial 
                m1=(m1+p1);%-mean(nanmean(m1+p1)); %bring back form & 

remove mean 
                m2=m2+p2;%-mean(nanmean(m2+p2)); %bring back form & 

remove mean 

                 
                %average the first 2 surfaces 
                ms=[m1,m2]; 
                z_data=[]; 
                for s=1:2 
                    m=ms(:,p*(s-1)+1:p*s); 
                    mask=zeros(size(m)); 
                    m=level(m,mask); %level surface 
                    m=m-nanmean(m(:));%remove mean 
                    x=find(isnan(m)); 
                    m(isnan(m))=0;%change NaN to 0 
                    d0=d; 
                    for j=1:length(x) 
                        l=ceil(x(j)/p); 
                        k=x(j)-p*(l-1); 
                        %m(k,l)=0; 
                        d(k,l)=d(k,l)-1; %recalculate number of 

measurements at this pixel 
                    end 
                    z_data=[z_data m]; 
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                end 
                sum=z_data(:,1:p)+z_data(:,p+1:end);%m1+m2 
                %sum=m1+m2; 
                average=sum./d; 
                Szs=max(average(isfinite(average(:))))-

min(average(isfinite(average(:)))) %calculate Sz 

                 
            end 

             

             
        else %after the first 2 measurements calculation 
            %I'm putting the thresholded values as mean instead of NaN 
            %because level.m can't work with NaN. Because it is a 

levelled 
            %(after form removal) flat, it should affect too much.                        
            z_data(z_data>th_up|z_data<th_down)=NaN;%mean(z_data(:));                     
            %Check NaN 
            %NaNs=length(find(isnan(z_data(:)))); 
            NaNs=length(z_data>th_up|z_data<th_down); 

             
            %ADD POLYNOMIAL 
            z_data=(z_data+pol_mat);%-mean(nanmean(z_data+pol_mat)); 

%bring back form & remove mean 
            %Identify NA from Mountains and make them NaN 
            NA=min(z_data(:)); % because NA from mountains are 

established as a same min value 
            z_data(z_data(:)==NA)=NaN; %not sure how mean affects here 
            x=find(isnan(z_data)); %identify NaN 
            z_data(isnan(z_data(:)))=mean(z_data(:)); %level can't 

work with NaNs  
            %LEVELLING 

             
            mask=zeros(size(z_data)); 
            z_data=level(z_data,mask); %level surface 
            z_data=z_data-nanmean(z_data(:)); %subtract mean 
            %AVERAGING 
            z_data(z_data(:)==mean(z_data(:)))=0; 
            %z_data(isnan(z_data))=0; %change NaN to 0 
            d0=d; 
            d=d+1; 
            for j=1:length(x) 
                l=ceil(x(j)/p); 
                k=x(j)-p*(l-1); 
                d(k,l)=d(k,l)-1; %recalculate number of measurements 

at this pixel 
            end 
            sum=sum+z_data; 
            %     end 

             
            average=sum./d; %calculate average surface 
            average(average==0)=NaN; 
            Sz=max(average(isfinite(average(:))))-

min(average(isfinite(average(:)))) %calculate Sz 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            Szs=[Szs Sz]; 

             
            if length(Szs)>5 
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                max1=max([Szs(end-4),Szs(end-3),Szs(end-2),Szs(end-

1),Szs(end)]); 
                min1=min([Szs(end-4),Szs(end-3),Szs(end-2),Szs(end-

1),Szs(end)]); 
                max2=max(Szs); 
                min2=min(Szs); 
                fraction=(max1-min1)/(max2-min2); 

                 
                if NaNs<0.05*p^2  %less than 5% of NaN (ISO 25178-700 

27/02/2017) 
                    if fraction<0.05 %decreases and stable -> finish 
                        flag=1; 
                        break 
                    else %not stable-> add measurement 
                        %                 Sz0=Sz; 
                        meas=meas+1; 
                        %d=d+1; think I have to delete 
                    end 
                else % too many NaN -> remove 
                    sum=sum-z_data; 
                    d=d0; 
                    Szs=Szs(1:end-1); 
                    %Sz=Sz0; %is it used for something? wrong? remove? 

in case of break, to update Sz. 
                    msgbox('This surface contains more than 5% of non-

valid points. This surface will not be considered.'); 
                end 
            end 
            if flag==1 
                break 
            end 
        end 
    end 
end 
plot(1:length(Szs),Szs,'-*') 
msgbox( sprintf('Zflt=%1.3d um\n',Sz)); 

  

A.3 Amplification and linearity of the vertical scale 
%% 
%This script calculates the amplification and linearity of the z-

scale. 
%Measurement uncertainties are calculated, considering the 

contributions 
% of the traceability, errors, repeatiility and reproducibility 

  
%The calibrated values of the grooves are to be ordered from less to 

more 
%depth. 

  
%To check the reproducibility, different studies can be performed at 
%different positions in the vertical scale of the instruments -> 

levels 
%To check repeatibility, the measurement of a groove is repeated 

several 
%times -> cicles 
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%The measurements should be ordered as follows: 
%Level1 
%  -Groove 1 
%    - cycle 1 
%    - cycle 2 
%    -... 
%  -... 
%... 

  
%Units: um. 

  
%Two binary masks are applied: one for levelling, one for feature 
%identification. 

  
%% 
clear all, close all, clc 
cycles=3; % number of repeated measurements of each groove 
grooves=6; %number of grooves (different height) 
linearities=[]; 
amplifs=[]; 
repeatibilities=[]; 
dep_reprod=[]; 

  
%% 
%READ DATA FROM FILES 
directory='C:\Users\Patricia 

Giménez\Documents\CRANFIELD\THESIS\Coding\Noise data 05062017'; 
% prompt = {'Enter the directory of the files:'}; 
% dlg_title = 'Directory'; 
% num_lines = 1; 
% directory = strjoin(inputdlg(prompt,dlg_title,num_lines)); 
direc=[directory '/*.sur']; 
names=dir(fullfile(direc)); 
list_names={names.name}; 
levels=1; %vertical range of the machine 

  
depths_g=[]; 
sd_g=[]; 
for k=1:levels %reproducibility 
    for i=1:grooves 
        depths=[]; 
        sum_z=0; 
        counter=0; 
        for j=cycles*i-(cycles-1):cycles*i %repeatibility 
            file_name_cell_1=list_names(j); 
            file_name_1=strjoin(file_name_cell_1); 
            [z,a]=SUR_read2_z(file_name_1); 
            z=a*z; 
            p=length(z);  
            filex=1:p; 

             
            %% 
            %LEVEL AND FIND EDGES 

             
            gimg=imgradient(z); %gradients matrix 
            mask=zeros(size(z)); %create base of 0s 
            thresh=mean([max(gimg),min(gimg)]); %define mask threshold 
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            mask(gimg>thresh)=1; %make 1s 
            mask = bwareaopen(mask,500); %delete spurious points out 

of edges 
            z=level(z,mask); %level 

             
            gimp=imgradient(z); %recalculate for levelled image 
            mask=zeros(size(z)); 
            thresh=mean([max(gimg),min(gimg)]); 
            mask(gimp>thresh)=1; 
            mask = bwareaopen(mask,500); 
            %         mask=imclearborder(mask); 

             
            edg=edge(mask); %find edges 
            list_edges=find(edg==1); 
            xr=[]; yr=[]; 
            if isempty(length(list_edges))==0 
                for j=1:length(list_edges) 
                    l=ceil(list_edges(j)/p); 
                    k=list_edges(j)-p*(l-1); 
                    xr=[xr l]; 
                    yr=[yr k]; 
                end 
            end 

             

             
            clear rectx recty area perimeter 
            [rectx,recty,area,perimeter] = minboundrect(xr,yr); 
            if (rectx(2)-rectx(1))>(recty(4)-recty(1)) %check 

orientation 
                orientation=0; %the longest side of the groove is 

horizontal 
            else 
                orientation=1; %the longest side of the groove is 

vertical 
            end 
            angle=atan(abs(recty(1)-recty(2))/(abs(rectx(1)-

rectx(2))))*180/pi; %groove angle 

             
            %MAIN CODE 
            %% 
            if orientation==1 
                length_groove=floor(recty(3)-recty(2)); 
                width_groove=ceil(mean([rectx(2)-rectx(1), rectx(3)-

rectx(4)])); 

                 
            else 
                length_groove=floor(rectx(3)-rectx(4)); 
                width_groove=ceil(mean([recty(4)-recty(1), recty(3)-

recty(2)])); 
            end 

             
            clear filez 
            if orientation==1 
                for i=ceil(recty(3)-0.3*length_groove):-

20:floor(recty(3)-0.7*length_groove) 
                    filez=z(i,:); 
                    filez = filez - mean(filez); 
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                    sum_z=sum_z+filez; 
                    counter=counter+1; 
                end 
                filez=sum_z/counter; %averaged profile 
            else 
                for i=ceil(rectx(2)-0.3*length_groove):-

20:floor(rectx(2)-0.7*length_groove) 
                    filez=z(:,i); 
                    filez = filez - mean(filez); 
                    sum_z=sum_z+filez; 
                    counter=counter+1; 
                end 
                %             filez=filez'; %CHECK THIS 
                filez=sum_z/counter; 
            end 

             
            %% 
            % Mean-centre data. 
            % 
            filex = filex - mean(filex); 

             
            %     end %%%%%%%%%%%%%%%% 

             
            % Find the start and end point of the data. 
            % 
            % hold off; %modified from: hold('off'); 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                 figure 
%                 plot(filex,filez,'b.','MarkerSize',20); 
%                 xlabel('x displacement/um'); 
%                 ylabel('z displacement/um'); 
% %                 [x,y] = ginput(2); %commented by PGB 
%                 hold on; %modified from: hold('on'); 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

             
            %% 
            %Added by PGB on 30/06/2017 
            %FIND EACH SIDE OF THE GROOVE 

             
            pos1=0; 
            for i=1:1024 
                if filez(i)<0 && pos1==0 
                    pos1=i; 
                elseif filez(i)>0 && pos1~=0 
                    pos2=i; 
                    break 
                end 

                 
            end 
            x=[filex(pos1); filex(pos2)]; 
            %End of added by PGB on 30/06/2017 
            %% 

             
            % Scale x-data, including start and end-points. 
            % 
            scale = max(abs(filex)); 
            filex = filex/scale; 
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            x     = x/scale; 
            % 
            % Calculate the areas A, B and C stipulated by ISO 6394. 
            %It's ISO 5436-1 by PGB on 17/07/17 
            % 
            W  = x(2) - x(1); 
            L  = length(filex); 
            xc = (x(1) + x(2))/2; 
            % 
            % Limits for area C ... 
            % 
            xLL  = xc - W/6; 
            xLR  = xc + W/6; 
            % 
            % Limits for area A ... 
            % 
            xUL1 = xc - (3*W/2); 
            xUR1 = xc - (5*W/6); 
            % 
            % Limits for area B ... 
            % 
            xUL2 = xc + (5*W/6); 
            xUR2 = xc + (3*W/2); 
            % 
            % Data in area C ... 
            % 
            pointer = 1; 
            clear xL zL 
            for i = 1:L; 
                if filex(i)>xLL && filex(i)<xLR %modified from: if 

and((filex(i)>xLL),(filex(i)<xLR)); 
                    xL(pointer) = filex(i); 
                    zL(pointer) = filez(i); 
                    pointer = pointer + 1; 
                end; 
            end; 
            xL = xL'; 
            zL = zL'; 
            % 
            %Remove flatness 
            %Added by PGB on 01/07/2017 -- Aparently don't need to in 

C 
            % polC=polyfit(xL,zL,12); 
            % polyC=polyval(polC,xL); 
            % zL=zL-polyC+mean(zL); 
            %End of added by PGB on 01/07/2017 

             
            % 
            % Data in areas A and B ... 
            % 
            pointer = 1; 
            clear  xU zU 
            for i = 1:L; 
                if (filex(i)>xUL1 && filex(i)<xUR1)||(filex(i)>xUL2 && 

filex(i)<xUR2) 
                    %modified from: if 

or((and((filex(i)>xUL1),(filex(i)<xUR1))),(and((filex(i)>xUL2),(filex(

i)<xUR2)))); 
                    xU(pointer) = filex(i); 
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                    zU(pointer) = filez(i); 
                    pointer = pointer + 1; 
                end; 
            end; 
            xU = xU'; 
            zU = zU'; 

             
            %Remove flatness 
            %Added by PGB on 01/07/2017 
            polAB=polyfit(xU,zU,12); 
            polyAB=polyval(polAB,xU); 
            zU=zU-polyAB+mean(zU); 
            %End of added by PGB on 01/07/2017 
            % 
            % Plot data. 
            % 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                 plot(scale*xL,zL,'g*','MarkerSize',20); 
%                 hold on %added 
%                 plot(scale*xU,zU,'r*','MarkerSize',20); 
%                 hold on %added 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % 
            % Calculate least-squares best-fit parallel lines. 
            % 
            A = [ xL, ones(size(xL)), -ones(size(xL)); xU, 

ones(size(xU)), +ones(size(xU)) ]; %%%%Check if that's working 

normal%%% 
            b = [ zL; zU ]; %modified 
            fit = A\b; 
            % 
            % Plot lines. 
            % 
            low1 = filex(1)*fit(1) + fit(2) - fit(3); 
            low2 = filex(L)*fit(1) + fit(2) - fit(3); 
            lowx = [filex(1),filex(L)]; 
            lowz = [low1,low2]; 
            up1  = filex(1)*fit(1) + fit(2) + fit(3); 
            up2  = filex(L)*fit(1) + fit(2) + fit(3); 
            upx  = [filex(1),filex(L)]; 
            upz  = [up1,up2]; 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                 plot(scale*lowx,lowz,'g','LineWidth',3); 
%                 hold on %added 
%                 plot(scale*upx,upz,'r','LineWidth',3); 
%                 hold on %added 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            % 
            % Plot residuals associated with fitted model. 
            % 
            % figure 
            % plot(b - A*fit, 'k.') 
            % ylabel('Residual errors/nm') 
            % 
            % Calculate depth. 
            % 
            depth = 2*fit(3); %depth of the profile 
            depths=[depths depth]; %depths of the profiles of a same 

groove 
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        end 
        depth=mean(depths); %averaged depth 
        repeat=std(depths); %repeatibility: std of the depth at each 

groove 
        depths_g=[depths_g depth]; 
        repeatibilities=[repeatibilities repeat]; 
    end 
dep_reprod=[dep_reprod mean(depths_g)]; 
%Calibrated values may need to be read from some file 
calibrated=[30 100 200 500 1000 2000]*1e-3; %calibrated values in um 

  
figure, plot(depths_g, calibrated, 'b--o','LineWidth',4); 
p=polyfix(depths_g,calibrated,1,0,0); 
lin_fit=p(1)*depths_g+p(2); 
hold on, plot(depths_g,lin_fit,'r','LineWidth',4), hold on,  

plot(calibrated, calibrated,'g','LineWidth',4) 
amplification=p(1) 

  
dif=abs(lin_fit-calibrated); 
linearity=max(dif) 

  
%Plot errors 
err1=depths_g-calibrated; 
figure, errorbar(depths_g,err1,repeatibilities,'o') 
err2=lin_fit-calibrated; 
figure, errorbar(depths_g,err2,repeatibilities,'o') 

  
linearities=[linearities linearity]; 
amplifs=[amplifs amplification]; 
end 

  

  

  
% %Calculate uncertainties 
% utrac=0; %data --> UPDATE! 
% urepeat= max(repeatibilities); 
% ureprod=std(dep_reprod); 
% %ureprod=max([std(linearities), std(amplifs)]); 
% uerr=max(abs(err1)+repeatibilities); %just invented it, CHECK if 

that's it 
% %uerr=sumsqr(err1)/3; 
% uz=sqrt(utrac^2+urepeat^2+ureprod^2+uerr^2) 

  
figure, plot(calibrated,err1,'-*') 

  
% msgbox( sprintf('amplif=%1.3d um\nlz=%1.3d um\nu_trac=%1.3d 

um\nu_repeat=%1.3d um\nu_reprod=%1.3d um\nu_err=%1.3d um\n\nuz=%1.3d 

um\n',amplification,linearity,utrac,urepeat,ureprod,uerr,uz)); 

  
C{1} = '     CT(um)   M (um)      e (um)    Tr (um)     R (nm)   u 

(um)' ; 
C{2} = sprintf('1    %1.3f       %1.3f         %1.3f       %1.3f        

%1.3f     %1.3f', calibrated(1), depths_g(1), err1(1),utrac, 

repeatibilities(1)*10e3, sqrt( err1(1)^2+utrac^2+ 

repeatibilities(1)^2)) ; 
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C{3} = sprintf('2    %1.3f       %1.3f         %1.3f       %1.3f        

%1.3f     %1.3f', calibrated(2), depths_g(2), err1(2),utrac, 

repeatibilities(2)*10e3,sqrt( err1(2)^2+utrac^2+ 

repeatibilities(2)^2)) ; 
C{4} = sprintf('3    %1.3f       %1.3f         %1.3f       %1.3f        

%1.3f     %1.3f', calibrated(3), depths_g(3), err1(3),utrac, 

repeatibilities(3)*10e3,sqrt(err1(3)^2+utrac^2+ repeatibilities(3)^2)) 

; 
C{5} = sprintf('4    %1.3f       %1.3f         %1.3f       %1.3f        

%1.3f     %1.3f', calibrated(4), depths_g(4), err1(4),utrac, 

repeatibilities(4)*10e3,sqrt( err1(4)^2+utrac^2+ 

repeatibilities(4)^2)) ; 
C{6} = sprintf('5    %1.3f       %1.3f         %1.3f       %1.3f        

%1.3f     %1.3f', calibrated(5), depths_g(5), err1(5),utrac, 

repeatibilities(5)*10e3,sqrt(err1(5)^2+utrac^2+ repeatibilities(5)^2)) 

; 
C{7} = sprintf('6    %1.3f       %1.3f         %1.3f       %1.3f        

%1.3f     %1.3f', calibrated(6), depths_g(6), err1(6),utrac, 

repeatibilities(6)*10e3,sqrt( err1(6)^2+utrac^2+ 

repeatibilities(6)^2)) ; 
msgbox(C) 

 

A.4 Amplification, linearity and perpendicularity of the 

horizontal scale 
 

%% 
%This script calculates the amplification, linearity and 

perpendicularity of the x-and-y-scales. 

  
%Patricia Giménez Belando 
%Last update: 31/08/2017 
%Units: um. 

  
%Two binary masks are applied: one for levelling, one for feature 
%identification. 
%% 
clear all, close all, clc 
cycles=1; % number of repeated measurements of each grid 
% p=1024; 
% filex=1:1024; 
grids=5; 
CX=[]; 
Ix=[]; 
wX=[]; 
sum=0; 

  
%% 
%READ DATA FROM FILES 
directory='C:\Users\Patricia 

Giménez\Documents\CRANFIELD\THESIS\Coding\Noise data 05062017'; 
% prompt = {'Enter the directory of the files:'}; 
% dlg_title = 'Directory'; 
% num_lines = 1; 
% directory = strjoin(inputdlg(prompt,dlg_title,num_lines)); 
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direc=[directory '/*.sur']; 
names=dir(fullfile(direc)); 
list_names={names.name}; 
grids=length(list_names); 

  
for i=1:grids 
for j=cycles:cycles%*i-2:cycles*i %check this. why -2? 
        centroids=[]; 
        file_name_cell_1=list_names(i) 
        file_name_1=strjoin(file_name_cell_1); 
        [z,a]=SUR_read2_z(file_name_1); 
        z=a*z; 
        z=double(z); 

         
        %% 
        %LEVEL AND FIND EDGES 

         
        gimg=imgradient(z); %gradients matrix 
        mask=zeros(size(z)); %create base of 0s 
        thresh=mean([max(gimg),min(gimg)]); %define mask threshold 
        mask(gimg>thresh)=1; %make 1s 
        mask = bwareaopen(mask,500); %delete spurious points out of 

edges 
        z=level(z,mask); %level 
%         figure, surf(z,'EdgeColor','none') 

                 
        gimg=imgradient(z); %recalculate for levelled image 
        mask=zeros(size(z)); 
        thresh=mean([max(gimg),min(gimg)]); 
        mask(gimg>thresh)=1; 
        mask = bwareaopen(mask,500); 

  
cent=regionprops(mask,'Centroid'); %find centroids 
centroids = cat(1, cent.Centroid); %put centroids in a matrix 
CX=[CX;centroids]; 
Ix = [Ix;[1:length(centroids)]' (i*ones(1,length(centroids)))' ]; 
wX = [wX;ones(1,length(centroids))']; 
% wX = 

[wX;ones(1,length(centroids))',ones(1,length(centroids))',ones(1,lengt

h(centroids))']; 

  
% figure, plot(centroids(:,1),centroids(:,2),'r.','MarkerSize',20) 
% hold on, contour(mask,'k') 
% hold on, plot(x,y,'c.','MarkerSize',20) 

     
end 
end 
wX=[wX wX]; 

  
% CX=[CX, ones(length(CX),1)]; 
[Y,UY,X0,R0,f,F,sigmah,SS,SB,S0]=ls2dptm(CX,Ix,wX); %Least squares 

point matching in 2d. Alineate the measurements. 
nP=length(centroids); %number of pores in the grid 

  
%To average, it is necessary to match every pore with his 

corresponging 
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%pore in the other grids. Below, all data is ordered in ascendent y. 

Then 
%it's grouped on sets of the pores in a row. For every row, the pores 

are 
%ordered in ascendent x. 
CX_final=[];CX_final_all=[]; sum=0;  
for i=1:grids %grids? cycles? 
    X01=repmat(X0(i,:),nP,1); 
    CX((i-1)*nP+1:i*nP,:)=(R0((i-1)*2+1:2*i,:)'*CX((i-

1)*nP+1:i*nP,:)'+X01')'; %traslate & rotate 
    CX_g=CX((i-1)*nP+1:i*nP,:); 
    CX_y_o=sortrows(CX_g,2) %order CX_g in ascendent y 
    CX_final=[]; 
    for j=1:sqrt(nP) 
        CX_row=CX_y_o((j-1)*sqrt(nP)+1:sqrt(nP)*j,:) 
        CX_row_ordered=sortrows(CX_row,1); 
        CX_final=[CX_final; CX_row_ordered]; %ordered CX for one grid 
    end 
        CX_final_all=[CX_final_all; CX_final]; 
        sum=sum+CX_final; 
end 

  
x_coordinates=reshape(CX_final_all(:,1),nP,grids); 
y_coordinates=reshape(CX_final_all(:,2),nP,grids); 
figure, histogram(std(x_coordinates')), title('std x') 
figure, histogram(std(y_coordinates')), title('std y') 

  
CX_avg=sum/grids; %average of the position of the centroids of the 

measurements 
%figure, plot(CX_avg(:,1),CX_avg(:,2),'.','MarkerSize',20),hold on, 

plot(CX(1:256,1),CX(1:256,2),'.','MarkerSize',15) 

  

  
% %%%%%%%%%%%%%%%%%%%%%% 
%INVENTED 
% x=32:124:2048; 
x=[94:124:2048]; 
%x=[x x x x x x x x x x x x x x x x x]; 
x=[x x x x x x x x x x x x x x x x ]; 
y=[]; 
for i=94:124:2048%32:124:2048 
    y1=i*ones(1,16);%(1,17); 
    y=[y, y1]; 
end 
CX_cal=[x' y']; 
% %%%%%%%%%%%%%%%%%%%%%% 
%  
% CX_cal=CX(1025:end,:); %TRIAL. DELETE 
CX2=[CX_cal;CX_avg]; 
Ix21 = [[1:nP]' (ones(1,nP))']; 
Ix22= [[1:nP]' (2*ones(1,nP))' ]; 
Ix2=[Ix21;Ix22]; 
wX2=ones(2*nP,2); 
[Y,UY,X02,R02,f,F,sigmah,SS,SB,S0]=ls2dptm(CX2,Ix2,wX2); %Least 

squares point matching in 2d. Alineate the measurements. 
X02=repmat(X02(2,:),nP,1); 
%CX_comp=CX2(nP+1:2*nP,:)+X02; %traslate 
CX_comp=R02(3:4,:)'*CX2(nP+1:2*nP,:)'+X02'; %rotate 
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CX_final2=[];CX_final_all2=[];  
for i=1:2 %grids? cycles? 
    X012=repmat(X02(i,:),nP,1); 
    CX2((i-1)*nP+1:i*nP,:)=(R02((i-1)*2+1:2*i,:)'*CX2((i-

1)*nP+1:i*nP,:)'+X012')'; %traslate & rotate 
    CX_g=CX((i-1)*nP+1:i*nP,:); 
    CX_y_o=sortrows(CX_g,2) %order CX_g in ascendent y 
    CX_final2=[]; 
    for j=1:sqrt(nP) 
        CX_row=CX_y_o((j-1)*sqrt(nP)+1:sqrt(nP)*j,:) 
        CX_row_ordered=sortrows(CX_row,1); 
        CX_final2=[CX_final2; CX_row_ordered]; %ordered CX for one 

grid 
    end 
        CX_final_all2=[CX_final_all2; CX_final2]; 
end 

  
CX_cal=CX_final_all2(1:nP,:); 
CX_comp=CX_final_all2(nP+1:end,:); 

  

  
errors=CX_comp-CX_cal; 
figure, histogram(errors), title('errors'); 
CX_err=CX_comp+errors*50; 
figure, plot(CX_cal(:,1),CX_cal(:,2),'.','MarkerSize',30),hold on, 

plot(CX_err(:,1),CX_err(:,2),'.','MarkerSize',30) 

  
figure, plot(CX_cal(:,1),CX_cal(:,2),'r.','MarkerSize',30) 
hold on, plot(CX_comp(:,1),CX_comp(:,2),'c.','MarkerSize',20) 

     

 

 


