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A Smart-distributed Pareto Front using the ev-MOGA EvolutionaryAlgorithmJ.M. Herrero, G. Reynoso-Meza, M. Martínez, X. Blaso and J. SanhisPreditive Control and Heuristi Optimization GroupDepartment of Systems Engineering and ControlUniversitat Politènia de ValèniaCamino de Vera 14, 46022 - Valenia, Spainjuaherdu�isa.upv.es, gilreyme�upv.es, mmiranzo�isa.upv.es, xblaso�isa.upv.es,jsanhis�isa.upv.esReeived (Day Month Year)Revised (Day Month Year)Aepted (Day Month Year)Obtaining multi-objetive optimization solutions with a small number of points smartlydistributed along the Pareto front is a hallenge. Optimization methods, suh as the nor-malized normal onstraint (NNC), propose the use of a �lter to ahieve a smart Paretofront distribution. The NCC optimization method presents several disadvantages relatedwith the proedure itself, initial ondition dependeny, and omputational burden. Inthis artile, the epsilon-variable multi-objetive geneti algorithm (ev-MOGA) is pre-sented. This algorithm haraterizes the Pareto front in a smart way and removes thedisadvantages of the NNC method. Finally, examples of a three-bar truss design andontroller tuning optimizations are presented for omparison purposes.Keywords: multi-objetive optimization; Pareto front; engineering design; evolutionaryalgorithms; multi-objetive evolutionary algorithms.1. IntrodutionMany engineering design problems an be translated into multi-objetive optimiza-tion (MO) problems. MO tehniques o�er advantages over single-objetive optimiza-tion approahes beause they enable a set of solutions to be found with di�erenttrade-o�s among the objetives. Therefore, the deision maker (DM) an analyze theset and selet the best solution. These three steps (measure, searh, and seletion)are fundamental for the suessful appliation of the MO tehnique.1In some engineering �elds, problem design is based on single-objetive optimiza-tion tehniques that weigh di�erent objetive funtions to obtain the best solutionfrom the design variables. 2 Choosing weighting fators for the ost index is usuallya tedious trial-and-error proess, and due to the on�guration of the index (for ex-ample, linear or quadrati), it is often impossible to �nd good trade-o� solutions. 3This is beause most the ost funtion to be optimized is usually stated from thepoint of view of the optimizer, despite a possible loss of �exibility when de�ning the1
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2 J.M. Herrero et al.desired balane among objetives.The MO methodology enables the designer to arry out a better seletion of the�nal solution, sine no part of the searhing spae is ignored. Solutions provided byMO algorithms should be representative of the whole design variable spae. Sineomputational algorithms perform a disrete searh in the spae of design variables,the group of solutions found should be evenly distributed to avoid over- or under-explored areas. This group of solutions should not ontain non-optimal solutions,sine this situation ould lead the DM to selet a potentially inappropriate valuefor some design variables.Solving an MO problem ould be assoiated with the approximation of thePareto front. Eah point of this Pareto front represents a solution to the MO prob-lem in the objetive funtion spae, whih is a Pareto optimal solution.4 That is, forany given pair of Pareto optimal solutions, an improvement in one of the ompo-nents entails a deterioration in the others. Therefore, we will have a set of optimalsolutions, with di�ering trade-o�s among the objetives. This is beause there isusually no overall optimal solution, whih is the best solution for eah individualobjetive.MO algorithms based on numerial optimization and random searh are analyzedin 5 and a new numerial optimization method was proposed: the normalized normalonstraint (NNC).a This approah o�ers aeptable properties sine it generateswell-distributed Pareto front approximations. However, beause it uses a searh-based Gauss-Newton method, the solution obtained is highly dependent on theobjetive seleted for optimization and on the initial optimization onditions.To avoid this major problem a modi�ed variant of the NNC (MNNC) an beused whih overomes the above mentioned disadvantages.6,7 MNNC enables theonstrution of the Pareto front regardless of the objetive seleted for optimization.It also presents an alternative to the onstrution of the Pareto front based on theredistribution of front points, and uses a geneti algorithm (GA) to ahieve globaloptimum solutions - but without dependene on the initial onditions. The prinipaldrawbak of this approah is its high omputational burden sine an independentoptimization proess (using a GA) is needed to ahieve eah point of the Paretofront.However, MNNC (and therefore also NNC) annot haraterize ertain areas ofthe Pareto front (as will be shown in Setion 2.1) when:

• The optimal solution of two objetives (or more) is the same (for problemswith three or more objetives).
• The optimal solution of one objetive (or more) is multimodal.Both the NNC and MNNC algorithms approximate evenly distributed Paretofronts but they are not neessarily the most appropriate approximation. In some

aAn implementation of the NNC algorithm is available in MATLAB Central.http://www.mathworks.om/matlabentral/�leexhange/38976
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A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 3ases, it ould be more interesting for the less desired parts of the Pareto front tohave a lower degree of haraterization than the more desired parts.8 For example,the regions where the slope of the front is lower ould be haraterized with a lowerdensity of solutions. This kind of distribution is known as a smart distribution.9To ahieve a smart distribution, both NNC and MNNC �rst need to aomplish auniform, dense distribution of solutions on the front; they then use a smart �lter toredue the number of points in the regions with less slope. Solutions with pratiallyinsigni�ant trade-o� (PIT) are omitted from the Pareto set approximation. Theresulting set will be smaller, alleviating the DM's need to ompare solutions withuninteresting trade-o�s. This is important, sine the seletion proedure is usuallymore time onsuming than the optimization proess1. This also means that somepoints will be eliminated, despite the omputational burden invested in obtainingthem.Another interesting alternative for solving MO problems is based on the use ofevolutionary algorithms (EAs), whih allow several elements of the Pareto front tobe generated simultaneously (in parallel and in a single run) owing to the popula-tional nature of EAs. (10,11,12,13)Many di�erent operators or strategies have been developed that onvert theoriginal EAs into multiobjetive evolutionary algorithms (MOEAs). MOEAs on-verge towards the Pareto optimal set and their solution is diverse enough to be ableto haraterize it. The good results obtained with MOEAs and their apaity tohandle a wide variety of problems with di�erent degrees of omplexity explain whythey are being inreasingly used; 14 indeed they are urrently one of the areas wheremost progress is being made within the �eld of EAs. 15,16,17,18,19,20In this work, a new MOEA algorithm alled the epsilon-variable multi-objetivegeneti algorithm (ev-MOGA)b has been designed to ahieve a redued but well-distributed representation of the Pareto front. Front solutions are smartly dis-tributed without using a �lter, so avoiding the need to eliminate solutions a pos-teriori, and ensuring that no omputational burdens are wasted. In addition, thealgorithm adjusts the limits of the Pareto front dynamially, and prevents solutionsbelonging to the ends of the front from being lost. This algorithm, as it will beshown, inorporates the PIT riterion. This feature makes it an algorithm loser tothe deision making step that is fundamental in the MO tehnique. This is impor-tant, sine MOEAs usually only fous on providing a dense set of Pareto optimalsolutions - regardless of the subsequent seletion proess.21To evaluate the performane of the ev-MOGA algorithm we used two opti-mization problems and ompared the results with those obtained using the NNCalgorithm with a smart �lter. This paper is organized as follows. Setion 2 presentsthe mathematial foundations of the NNC method and the smart �lter. Setion 3presents the ev-MOGA algorithm based on the ǫ−dominane onept. Setions 4

bev-MOGA algorithm is now available in MATLAB Central.http://www.mathworks.om/matlabentral/�leexhange/31080
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4 J.M. Herrero et al.and 5 ompare the performane of the ev-MOGA and NNC algorithms with twooptimization problems: a three-bar truss example; and a proportional-integral (PI)ontroller tuning problem. Finally, some onluding remarks are provided in Setion6.2. NNC Method with Smart Pareto FilterThe MO problem an be formulated as follows:

minJ(θ) = min[J1(θ), J2(θ), . . . , Js(θ)] (1)subjet to:
gq(θ) ≤ 0, (1 ≤ q ≤ r)

hk(θ) = 0, (1 ≤ k ≤ n)

θli ≤ θi ≤ θui, (1 ≤ i ≤ L)

(2)where Ji(θ), i ∈ B := [1 . . . s] are the objetives to be optimized, θ is a solu-tion inside the L-dimensional solution spae D, gq(θ) and hk(θ) are eah of the rinequality and n equality problem onstraints respetively, and θli and θui are thelower and upper onstraints that de�ned the solution spae D.To solve the MO problem the Pareto optimal set ΘP (solutions where nonedominate any of the others) must be found. Pareto dominane is de�ned as follows:A solution θ
1 dominates another solution θ

2, denoted by θ
1 ≺ θ

2, if
∀i ∈ B, Ji(θ

1) ≤ Ji(θ
2) and ∃k ∈ B : Jk(θ

1) < Jk(θ
2) .Therefore, the Pareto optimal set ΘP is given by

ΘP = {θ ∈ D | ∄ θ̃ ∈ D : θ̃ ≺ θ} . (3)
ΘP is unique and normally inludes in�nite solutions. Hene a set Θ∗

P , with a�nite number of elements from ΘP , should be obtained.cBelow, an extrat of the NNC method to solve an n-objetives optimizationproblem is presented. A detailed desription of the method an be found in 5.Step 1: Anhor points omputation. Firstly, the minimum of eah objetivefuntion, J∗
i (i ∈ B), is alulated by solving the following optimizationproblems:

θ
i∗ = min Ji(θ) (i ∈ B) (4)subjet to (2).

cNotie that Θ∗

P
is not unique.



Otober 23, 2013 15:2 WSPC/INSTRUCTION FILE evMOGAsmart
A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 5The anhor points thus obtained determine the ends of the Pareto front

J∗
i = J(θi∗). Additionally, the utopia point,d denoted by J

u, omprises thegood elements of eah anhor point.
J
u = [J1(θ

1∗) J2(θ
2∗) · · · Js(θ

s∗) ]T (5)Step 2: Objetive spae normalization. By de�ning the matrix Ls as the max-imum distanes in eah omponent of the anhor points relative to theutopia plane, a normalization of the searhing spae an be performed.
Ls =

[

l1 l2 · · · ls
]T

= J
S − J

u (6)where J
S is the nadir point

J
S =

[

J1
S J2

S · · · Js
S
] (7)

Ji
S = max

[

Ji(θ
1∗) Ji(θ

2∗) · · · Ji(θ
s∗)

] (8)whih leads to the normalized design metri as
J i =

Ji − Ji(θ
i∗)

li
, i ∈ B (9)Step 3: Utopia line vetor generation. Let vetors Nk be de�ned as the dif-ferene between the normalized anhor vetors (Figure 1), from J

k∗ to J
s∗for k ∈ 1, 2, ..., s− 1.

Nk = J
s∗

− J
k∗ (10)Step 4: Normalized inrement de�nition. The normalized inrement δk is de-�ned, in diretion Nk for a presribed number of solutions, as mk.

δk =
1

mk − 1
, (1 ≤ k ≤ s− 1) (11)where the resulting segment size an be expressed as

∆k = δk|Nk| (12)Step 5: Generate utopia line points. The points distributed over the utopiahyperplane are desribed as
Xpj =

s
∑

k=1

αkjJ
k∗ (13)where

∑s
k=1 αkj = 1 0 ≤ αkj ≤ 1 (14)

dSine it is the best point, but annot be ahieved.
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6 J.M. Herrero et al.Step 6: Pareto front approximation. The NNC method states that the solu-tion to the MO problem (1) an be transformed into the minimization ofXpjsingle-objetive problems, but in the normalized domain. The optimizationproblem an be formulated as:

min Js(θ) (15)subjet to:
gq(θ) ≤ 0, (1 ≤ q ≤ r)

hk(θ) = 0, (1 ≤ k ≤ n)

θli ≤ θi ≤ θui, (1 ≤ i ≤ L)

(16)
N

T

k (J −Xpj) ≤ 0 k = 1 . . . s− 1

J = [J1(θ) · · · Js(θ)]
T

(17)Note that for eah problem j, s− 1 additional onstraints (17) are added. Eahonstraint represents the salar produt of vetor Nk and the vetor formed bythe di�erene between the points of the feasible area J and point Xpj . By makingthis salar produt smaller than zero, the optimization is fored to searh for theminimum value when the hyperplanes are in opposition.e This ensures that thisminimum (θj∗) in the Pareto front will be found for eah point Xpj (see Figure 1).
2

J

2*

J

Feasible Region

Unfeasible Region

1
N

1

10

pjX

1
J

1*

J

J

Figure 1. NNC in the bi-objetive ase and m1 = 6. For the sake of simpliity, only the bi-objetive ase is presented graphially.
eIn the bi-objetive ase, hyperplanes are singled-out vetors (Figure 1).
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A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 7The onstrution of the Pareto front from equation 15 an inlude non-Paretoor loal Pareto points in its solution.f Θ

∗ is de�ned as the disrete set of all thesolutions found in the optimization problems (15) and (4) that are arried out. A�lter is used to eliminate the solutions that do not belong to the Pareto front andto obtain the �nal Θ∗
P .

Θ
∗
P = {θ∗ ∈ Θ

∗| ∄ θ̃ ∈ Θ
∗ : θ̃ ≺ θ

∗}. (18)Notie that Θ∗
P will ontain Pareto points that are evenly distributed aross thePareto front.The density of the points should be high enough to allow haraterization ofthis front. To obtain a redued sample of points of Θ∗

P in 9 the appliation of asmart �lter to Θ
∗
P to obtain Θ

∗
SP is proposed. Therefore, from Θ

∗
P several pointsare eliminated using the PIT riterion to obtain Θ

∗
SP (see 9 for more details aboutPIT and the smart �lter).

Figure 2. Regions of the PIT for the bi-objetive ase. The gray area is the Ji PIT. J̃2 and J̃1represent deviations of the respetive objetives from the point Ji. J2 belongs to the Ji PIT, andtherefore it will be removed when the smart �lter is applied, whereas J1 and J3 do not belong to
Ji PIT and so they will ontinue in Θ∗.Given a Pareto front point J

i, its PIT is de�ned by means of ∆m and ∆Mdesigner parameters as shown in Figure 2g. For two Pareto points in Θ
∗
P whosedi�erene between their objetives values is less than∆m, the PIT riterion prevents

fLoal Pareto points are those that are not loally dominated by any other point. Non-Paretopoints are loally dominated.
gSine the smart �lter is applied to Θ∗

P
Pareto points, the �rst and third quadrants are notpopulated and onsequently are not onsidered.
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8 J.M. Herrero et al.them being in Θ

∗
SP - unless the di�erene between any other objetives is greaterthan ∆M .Let ν be the absolute vetor between the two points being ompared:

ν = abs(Ji − J
k).Therefore J

k is removed when it is ompared to J
i, if

νm < ∆m and νM < ∆Mwhere νm and νM are minimum and maximum vetor omponents of ν.In Figure 2, for instane, as J2 belongs to the J
i PIT it will be removed whenthe smart �lter is applied to Θ

∗, whereas J1 and J
3 do not belong to J

i PIT andso they will ontinue in Θ
∗ for the moment.A smart �lter starts with a J

i in Θ
∗
P whih is delared smart and omparedwith suessive points J

k in Θ
∗
P . Points in J

i PIT are eliminated from Θ
∗
P . Thisproedure is repeated with other Ji points in Θ

∗
P until every point in Θ

∗
P has beendelared a smart point. The points �nally remaining in Θ

∗
P onstitute Θ

∗
SP .Figure 3 shows the proess of smart �ltering. ◦ points are eliminated beausethey belong to PIT regions of • points whih are delared smart. Given a Θ

∗
P set,the resulting Θ

∗
SP is not unique sine it depends on the analysis order followed, asshown in ases (a) and (b) in Figure 3.

2J (a)

(b)2J
1J

1JFigure 3. • and ◦ onstitute Θ∗

P
. • represents the Θ∗

SP
obtained after eliminating points in PITregions. (a) Analysis order 1. (b) Analysis order 2.
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A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 92.1. NNC algorithm drawbaksThe proedure used by the NNC algorithm is extremely dependent on the anhorpoint alulation. Therefore, if these are not orret the algorithm may not ade-quately haraterize parts of the Pareto front. Two examples of this situation areshown in this setion. An example is shown in Figure 4 when objetive funtionsare multimodal and therefore the anhor points obtained ould not orrespond withthe real ends of the Pareto front. This is beause the anhors are stati and are notupdated in the NNC algorithm one alulated.

0

0

J2

J3

J1

Minima of J1

Pareto Front

J( )θ
1*

J( )θ
3*

J( )θ
2*

J3

J2

J1

s

s

s

(1,0,1)

(1,1,0)

(0,1,1)
Xpj

J( )θ
j*

Figure 4. NNC in a three objetive ase when the objetive funtions are multimodal.For instane, if J1 is minimized any solution in the highlighted line (minimumof J1) ould be obtained. Assume that the J(θ1∗) solution is obtained and that
J(θ2∗) and J(θ3∗) are also obtained when J2 and J3 are minimized, respetively.These solutions de�ne the utopia point (0, 0, 0) and the nadir point (JS

1 , J
S
2 , J

S
3 )used to normalize the objetive spae and to de�ne the utopia plane (limited bythe points represented by squares in the �gure). For eah point Xpj in the utopiaplane, a single-objetive optimization is made and a Pareto front point J(θj∗) willbe obtained that haraterises the Pareto front under the utopia plane. However, asthe utopia plane does not ompletely over the Pareto front, it would not be totallyharaterized and parts of it would not be obtained.Another example is shown in Figure 5. In this three objetive ase, the minimumsolution for objetives J1 and J2 is the same, and the utopia plane is redued to a
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10 J.M. Herrero et al.line. This fat, means that only Pareto points under this line would be obtained,and therefore, the Pareto front would be inompletely haraterized.

J1

J2

J3

Pareto Front

1

1

1

J = J
1* 2*

J
3*

N = N
1 2

Xpj

J

Figure 5. NNC in a three objetive ase when two anhor points are the same J
1∗

= J
2∗.3. ev-MOGAThe ev-MOGA 22 is an elitist multi-objetive evolutionary algorithm based on theonept of ǫ-dominane, 23 whih is used to ontrol the ontent of the arhive A(t)where the result of the optimization problem is stored. ev-MOGA tries to ensurethat A(t) onverges toward an ǫ-Pareto set, Θ∗

Pǫ in a smart distributed manneralong the Pareto front J(ΘP ) with limited memory resoures. This is due to the
ǫ-dominane onept whih helps maintain solutions with signi�ant trade-o� andthe dynami adjustment of the limits of the Pareto front by preserving its extremes(anhors). This reates the possibility of overoming the aforementioned problemsin the NNC algorithm.For this reason, the objetive spae is split into a �xed number of boxes. Foreah dimension i ∈ B, n_boxi ells of ǫi width are reated where

ǫi = (Jmax
i − Jmin

i )/n_boxi, (19)
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A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 11

Jmax
i = max

θ∈Θ∗

Pǫ

Ji(θ), J
min
i = min

θ∈Θ∗

Pǫ

Ji(θ). (20)This grid preserves the diversity of J(Θ∗
Pǫ) sine eah box an be oupied byonly one solution in A(t), and at the same time produes a smart distribution aswill be shown later.hThe onept of ǫ-dominane is de�ned as follows. For a solution θ ∈ D, boxi(θ)is de�ned by

boxi(θ) =

⌈

Ji(θ)− Jmin
i

Jmax
i − Jmin

i

· n_boxi

⌉

∀i ∈ B. (21)Let box(θ) = {box1(θ), . . . , boxs(θ)}. A solution θ
1 with value J(θ1) ǫ-dominates the solution θ

2 with value J(θ2), denoted by θ
1 ≺ǫ θ

2, if and onlyif
box(θ1) ≺ box(θ2) ∨

(

box(θ1) = box(θ2)andθ1 ≺ θ
2
)

. (22)Hene, a set Θ∗
Pǫ ⊆ ΘP is ǫ-Pareto if and only if

∀θ1, θ2 ∈ Θ
∗
Pǫ, θ

1 6= θ
2, box(θ1) 6= box(θ2)andbox(θ1) ⊀ǫ box(θ

2) (23)Therefore, ev-MOGA is responsible for updating the ontent of A(t) by savingonly ǫ-dominant solutions that do not share the same box. When two mutually
ǫ-dominant solutions ompete, the solution that prevails in A(t) will be the onethat is losest to the enter of the box. It is thereby possible to prevent solutionsbelonging to adjaent boxes (neither of them dominating the other) from being toolose to eah other, thus enouraging a smart distribution.The aim of ev-MOGA is to ahieve a Θ

∗
Pǫ with the greatest possible number ofsolutions in order to haraterize the Pareto front adequately. Although the numberof possible solutions will depend on the shape of the front and for n_boxi, it willnot exeed the following level

|Θ∗
Pǫ
| ≤

∏n
i=1 n_boxi + 1

n_boxmax + 1
, n_boxmax = max

i
n_boxi (24)whih is advantageous, as it is possible to ontrol the maximum number of solutionsthat will haraterize the Pareto front.Furthermore, thanks to the de�nition of the box, the anhor points Ji(θi∗) areassigned a value of boxi(θ

i∗) = 0, whereby Ji(θ
i∗) = Jmin

i . Therefore, no solution
θ an ǫ-dominate beause, by applying the de�nition of box, their boxi(θ) ≥ 1.Figure 6 shows what Θ

∗
Pǫ would be obtained by applying onepts of ǫ-dominane for a bi-objetive example, when n_box1 = n_box2 = 10 is used. Thevalues ǫ1 and ǫ2 depend on the limits of the front Jmin

1 , Jmin
2 , Jmax

1 and Jmax
2 ,whih adjust dynamially in aordane with the utopia solution alulated in eah

hThe algorithm only heks oupied boxes (not all boxes). This ontent management of A(t) avoidsthe need to use other lustering tehniques to obtain adequate distributions, and so onsiderablyredues omputational ost (see referene 23).
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12 J.M. Herrero et al.generation. It an be seen that the distribution of solutions omprised by J(Θ∗

Pǫ)along the front depends on objetive exhange. The greatest number of points areaumulating in the entral area (indiated by a dotted line) where the trade-o�among objetives hanges quikly. This property is equivalent to the smart �lterused in the PIT riterion and therefore, helpful in the deision making proess. The
ǫ-dominane onept is helpful for avoiding a high density of solutions in the ap-proximated Pareto front and brings useful solutions for the DM. Approahes usingrowding measures (for example) seek to avoid high density areas, with no regardfor PIT riterion.

J1
max

J1
min

J2
min

J2
max

e1

e2

n_box =101

n_box =102

J( )QP

J(QPe)
*

J( )q
i

Grey area is

-dominated bye

are the
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Figure 6. The onept of ǫ-dominane. ǫ-Pareto front J(Θ∗

Pǫ
) in a bi-objetive problem. Jmin

1 ,
Jmin
2 , Jmax

1 , Jmax
2 , Pareto front limits; ǫ1, ǫ2 box widths; and n_box1, n_box2, number of boxesfor eah dimension.A desription of the ev-MOGA algorithm for obtaining an ǫ-Pareto front J(Θ∗

Pǫ),is presented below. The algorithm, whih adjusts the width ǫi dynamially, is om-posed of three populations:(1) Main population P (t) explores the searhing spae D during the algorithmiterations (t). Population size is NindP .(2) Arhive A(t) stores the solution Θ
∗
Pǫ. Its size NindA is variable but bounded(see equation (24)).(3) Auxiliary population G(t). Its size is NindG, whih must be an even number.The pseudoode of the ev-MOGA algorithm is given by1. t:=02. A(t):=∅
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A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 133. P(t):=ini_random(D)4. eval(P(t))5. A(t):=storeini(P(t),A(t))6. while t<t_max do7. G(t):=reate(P(t),A(t))8. eval(G(t))9. A(t+1):=store(G(t),A(t))10. P(t+1):=update(G(t),P(t))11. t:=t+112. end while
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Figure 7. Funtion spae areas (Z) and limits (J). (a) two-dimensional ase; (b) tri-dimensionalase.Eah line of the pseudoode is detailed as follows:Line 1. Initialize termination ondition (generation ounter).Line 2. Initialize arhive A(t)Line 3. P (0) is initialized with NindP individuals (solutions) that have been ran-domly seleted from the searhing spae D.Line 4. Funtion eval alulates the funtion value (Equation (1)) for eah indi-vidual in P (t).Line 5. Funtion storeini heks individuals in P (t) that might be inluded in thearhive A(t) as follows:(1) Non-dominated P (t) individuals are deteted, ΘND.(2) Pareto front limits Jmax
i and Jmin

i are alulated from J(θ), ∀θ ∈ ΘND.(3) Individuals in ΘND are analyzed, one by one, and those that are not ǫ-dominated by individuals in A(t), will be inluded in A(t).Line 6. The algorithm will exeute while t<t_max.
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14 J.M. Herrero et al.Line 7. With eah iteration, the funtion reate reates G(t) as follows:(1) Two individuals are randomly seleted, θP from P (t) and θ

A from A(t).(2) A random number u ∈ [0 . . . 1] is generated.(3) If u > Pc/m (probability of rossing/mutation), θP and θ
A are rossedover by means of the extended linear reombination tehnique. 24(4) If u ≤ Pc/m, θP and θ

A are mutated using randommutation with Gaussiandistribution 24 and then inluded in G(t).This proedure is repeated NindG/2 times until G(t) is �lled.Line 8. Funtion eval alulates the funtion value (Equation (1)) for eah indi-vidual in G(t).Line 9. Funtion store heks, one by one, whih individuals in G(t) must beinluded in A(t) on the basis of their loation in the objetive spae (see Figure7). Thus ∀θG ∈ G(t)(1) If J(θG) belongs to the area Z1 and is not ǫ-dominated by any individualfrom A(t), it will be inluded in A(t) (if its box is oupied by an individualthat is also not ǫ-dominated, then the individual lying furthest away fromthe enter box will be eliminated). Individuals from A(t) whih are ǫ-dominated by θ
G will be eliminated.(2) If J(θG) belongs to the area Z2 then it is not inluded in the arhive, sineit is dominated by all individuals in A(t).(3) If J(θG) belongs to the area Z3, the same proedure is applied as wasused with the funtion storeini but now applied over a population P ′(t) =

A(t)
⋃

θ
G, that is, storeini(P ′(t), ∅). In this proedure, new Pareto frontlimits and ǫi widths ould be realulated.(4) If J(θG) belongs to the area Z4, all individuals from A(t) are deletedsine they are all ǫ-dominated by θ

G. θG is inluded and the objetivespae limits are J(θG).Line 10. Funtion update updates P (t) with individuals from G(t). Every in-dividual θG from G(t) is ompared with an individual θP that is randomlyseleted from the individuals in P (t) whih are dominated by θ
G. θG will notbe inluded in P (t) if there is no individual in P (t) dominated by θ

G.Line 11. Iteration ounter t is inremented by one.Line 12. Algorithm terminates. Individuals from A(t) omprise Θ
∗
Pǫ, the smartharaterization of the Pareto front.4. Three-bar truss exampleThe �rst optimization problem is related to the three-bar truss desribed in Figure8. This truss is broadly used as a benhmark to de�ne the best solutions based onertain spei�ations. The truss is statially indeterminate; thus the solution of thebalane of fores has to be supplemented with the deformation equations. For thisase, the parameters L = 1m, β = 45o, α = 30o and F = 20kN proposed in 5,6
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Figure 8. Three-bar truss problem with β = 45o and α = 30o.The problem an be formulated as follows:
minJ(θ) = [J1(θ), J2(θ)] (25)subjet to

0.1 · 10−4m2 ≤ θi ≤ 2 · 10−4m2, i = 1 . . . 3,where:
J1(θ) = 0.25δ1 + 0.75δ2, (26)
J2(θ) = L

(

θ1
sinβ

+ θ2 +
θ3

sinα

)

. (27)Deformations δ1 and δ2 are alulated as 25:
[

δ1
δ2

]

=
L

E

[

γ1 γ2
γ2 γ3

]−1 [
F

F

]

, (28)where E = 200GPa. is the Young 's modulus and
γ1 = θ2 + θ1 sin

3 β + θ3 sin
3 α,

γ2 = −θ1 sin
2 β cosβ + θ3 sin

2 α cosα,

γ3 = θ1 sinβ cos2 β + θ3 sinα cos2 α.Moreover, the problem is subjet to three onstraints related to the reationfores in eah bar Ni:
|Ni|

θi
≤ σ, i = 1 . . . 3, (29)
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16 J.M. Herrero et al.with σ = 200MPa. These reation fores are alulated aording to the follow-ing expressions: 25

N1 =
θ1E

L
(δ1 sinβ − δ2 cosβ) sin β, (30)

N2 =
θ2E

L
δ1, (31)

N3 =
θ3E

L
(δ1 sinα+ δ2 cosα) sinα. (32)The onstraints (29) will be taken into aount through stati penalty funtions.

26,27 i Therefore, the objetive funtions (26) and (27) result in:
J1(θ) = 0.25δ1 + 0.75δ2 + C(θ), (33)
J2(θ) = L

(

θ1
sinβ

+ θ2 +
θ3

sinα

)

+ C(θ). (34)where:
C(θ) =

3
∑

i=1

max

[

0,
|Ni|

θi
− σ

]

. (35)To solve this optimization problem, the NNC with a smart �lter and ev-MOGAalgorithms are used and their results are ompared to hek their strengths andweaknesses.The parameters of the ev-MOGA algorithm were set to:
• NindG = 4 and NindP = 100.
• tmax = 4975, resulting in 20000 evaluations of J1(θ) and J2(θ).
• Pc/m = 0.1.
• n_box1 = n_box2 = 50 so the maximum number of points in the Pareto frontwill be fewer than 52.The parameters of the NNC algorithm and the smart �lter were set to:
• m1 = 200 in order to obtain a good density of points in the Pareto front.j
• ∆m = 0.02 and ∆M = ∞.
∆m was set to 0.02 with the intention of omparing the smart Pareto front and

ǫ-Pareto front sine 1/0.02 = 50, whih is the number of boxes the objetive spaeis split into with ev-MOGA.Figure 9 shows the results of the multi-objetive optimization problem. Notiethat the Pareto front is onave and disjointed. Both algorithms have aptured the
iWith this tehnique, the greater the non-ful�llment by a solution, the greater is the value of C(θ),and it will therefore be onsidered a worse solution; while if a solution ful�lls all the onstraints,then C(θ) = 0 and the equations (26) and (27) orrespond to (33) and (34) respetively.
jFor the method based on the NNC algorithm to give good results, the front must be haraterizedwith a large number of uniformly distributed points.
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A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 17anhor points perfetly and they have haraterized the Pareto front with the samenumber of points (20 points) with a Smart distribution whih is more or less thesame. This proves that ev-MOGA and NNC Pareto front haraterizations an beequivalent if ∆m,∆M and n_boxi are set in an appropriate manner. The box limitsare inluded in the �gure to hek the ǫ-dominane onept.
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Figure 9. Three-bar truss example. '·' is the Pareto front obtained with NNC (it is omposed of200 evenly distributed points). '◦' is the ǫ-Pareto front obtained with ev-MOGA using n_box1 =
n_box2 = 50. The horizontal and vertial lines represent the limit boxes. '♦' represents the smartPareto front obtained with NNC results and ∆m = 0.02 and ∆M = ∞ are smart �lter parameters.The main advantage of the NNC algorithm over the ev-MOGA algorithm isits low omputational burden, sine it only needs about 5000 evaluations of the
J1(θ) and J2(θ) funtions to obtain the 200 points in the Pareto front; versusthe 20000 required by the ev-MOGA algorithm. Conversely, determining the initialonditions of the optimizations addressed by the NNC is not so straightforward. Forthis partiular example, eah of the 200 optimizations was solved by strategiallyhoosing its initial onditions so as to avoid loal minimums.5. Proportional-integral ontroller tuning exampleThis example is related to the proportional-integral (PI) ontroller tuning problemdesribed in 28 by means of multi-objetive optimization design. 29,30 The PI transfer
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Gc(s) = kc

(

1 +
1

Tis

)

E(s) (36)where kc (the proportional gain) and Ti (the integral time) are the design vari-ables, θ = [kc, Ti]. PI ontrollers are a reliable and pratial ontrol solution for in-dustrial environments. They are widely used and any e�orts to develop new tuningtehniques are worthwhile. 31,32 This optimization proedure fouses on ahieving atrade-o� between load disturbane rejetion, robustness, and setpoint response. Itde�nes as a parameter for design a given value of the maximum sensitivity funtion
Ms = max

∣

∣

∣

∣

1

1 +Gc(ω)Gp(ω)

∣

∣

∣

∣

∈ [1.2, 2.0] (37)and the maximum omplementary sensitivity funtion
Mp = max

∣

∣

∣

∣

Gc(ω)

1 +Gc(ω)Gp(ω)

∣

∣

∣

∣

∈ [1.0, 1.5], (38)where Gc(ω), Gp(ω) represents the ontroller and proess transfer funtionsin the frequeny domain, respetively. A numerial non-onvex optimization is em-ployed, by inreasing as muh as possible the integral gain ki = kc/Ti subjet tothe pre-de�ned Ms and Mp values.Therefore, a multiobjetive optimization problem an be stated, where a trade-o� between performane (integral gain, J1(θ) = −kc/Ti) and robustness (J2(θ) =
Ms, J3(θ) = Mp) is formulated as:

min J(θ) = [J1(θ), J2(θ), J3(θ)] (39)subjet to
kc + kc/Ti ≤ Ku, (40)
1.2 ≤ Ms ≤ 2.0, (41)
1.0 ≤ Mp ≤ 1.5. (42)
0.0 ≤ kc ≤ Ku. (43)
0.01 ≤ Ti ≤ 20.0. (44)Constraint (40) is used to bound the maximum allowed ontrol ation e�ort to theultimate gain Ku. Constraints (42) and (43) are used to obtain a Pareto front J∗

Pthat is useful from the ontrol point of view, while (43) and (44) determine thesearhing spae.The proess transfer funtion to be used is:
Gp(s) =

1

(s+ 1)
3

(45)with Ku ≈ 7.8.
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A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 19The onstraints (40, 41, 42) will be taken into aount by using penalty funtionsagain. 26 In this ase, the problem is reformulated as follows:
min
θ∈ℜ2

J(θ) =















J(θ) if 5
∑

k=1

Ck(θ) = 0o�set+ (

5
∑

k=1

Ck(θ)

)

· [1, 1, 1] otherwise (46)o�set = [0, 2.0, 1.5] (47)
C1(θ) = max{0, kc + kc/Ti −Ku} (48)

C2(θ) = max{0, 1.2−Ms} (49)
C3(θ) = max{0, 1.0−Mp} (50)
C4(θ) = max{0,Ms − 2.0} (51)
C5(θ) = max{0,Mp − 1.5} (52)The parameters of the ev-MOGA algorithm were set to:

• NindG = 16 and NindP = 160.
• tmax = 500, resulting in 8160 evaluations of J1(θ), J2(θ) and J3(θ).
• Pc/m = 0.1.
• n_box1 = n_box2 = n_box3 = 50 so the maximum number of points in thePareto front will be fewer than 2602.The parameters of the NNC algorithm and the smart �lter were set to:
• m1 = 200 in order to obtain a good density of points in the Pareto front.
• ∆m = 1/50 = 0.02 and ∆M = ∞.Figure 10 shows the results of the multi-objetive optimization problem obtainedwith NNC and ev-MOGA algorithms.In this example, the solution that minimizes the objetive J3(θ) and J2(θ) isthe same. Therefore, there are only two anhor points and the utopia hyperplaneis redued to a line - whih in the ase of NNC leads to fewer solutions in theentral area of the Pareto front than with ev-MOGA. This prevents the NNC fromharaterizing the surfae of the Pareto front in the entral area.When J3(θ) is minimized in order to obtain the anhor points, so that thereare several solutions suh as J3(θ) = Mp = 1.0 (J3 is multimodal). There is noguarantee that the NNC algorithm will obtain the most useful J3 anhor.To evaluate the performane of eah MOEA, the hypervolume (or Lebesguemeasure) omputed by means of a Monte-Carlo approximation method has been
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Figure 10. PI design example. '◦' is the Pareto front obtained with NNC. '∗' is the ǫ-Pareto frontobtained with ev-MOGA.obtained and the results are:k
• NNC=0.1563
• ev-MOGA=0.1676That is, ev-MOGA improves the hypervolume indiator by 7.2% in omparisonwith NNC with a smart �lter.Both hypervolume and qualitative inspetion of the Pareto front show that ev-MOGA algorithms an haraterize the Pareto front better than NNC, mainly dueto the geometry and shape of this Pareto front and the problems previously de-sribed for NNC.6. ConlusionsA multi-objetive evolutionary algorithm, ev-MOGA, based on the onept of ǫ-dominane has been presented to haraterize the Pareto front in a smart way andompare it with the NNC with the smart �lter method. To evaluate the performane

kHypervolume was omputed taking [0, 2, 1.5] as a referene point and 100,000 as the numberof samples used for the Monte-Carlo approximation. The Matlab funtion used is available atwww.mathworks.om/matlabentral/�leexhange/19651.
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A Smart-distributed Pareto Front using the ev-MOGA Evolutionary Algorithm 21of these algorithms, two optimization problems were utilized.Some of main onlusions are:

• The NNC method generates evenly distributed Pareto fronts but:(1) The solution is dependent on the initial optimization onditions sine ituses a searh-based Gauss-Newton method whih an ause some loalPareto points to be obtained.(2) May have di�ulties properly haraterizing the Pareto front when two ormore anhor points are the same (in three or more objetive problems).(3) Something similar ould happen when an objetive funtion is multimodalsine the anhor points annot orrespond to the end of the Pareto front(in three or more objetive problems).(4) With an a priori knowledge of the Pareto front geometry it is possible toimprove the NNC algorithm to overome the latter di�ulties. Neverthe-less, suh information is not always available.(5) The omputational burden grows exponentially with respet to the dimen-sion of the objetive funtion spae sine the transformed optimizationproblem to be exeuted also grows exponentially if the same density ofPareto points is required.
• The MNNC eliminates the �rst NNC disadvantage, but the seond disadvantageis inreased onsiderably.
• A smart �lter based on PIT is a very e�etive and �exible proedure to obtainsmart Pareto fronts, but the result depends on the order in whih the analysisof the Pareto points is arried out. To redue this problem, it is very importantthat the NNC method haraterizes the Pareto front with many points, whihagain inreases the omputational burden.
• ev-MOGA algorithm eliminates the �rst NNC disadvantage. Its omputationalburden is also more ompetitive than that of MNNC, thanks to the fat thatthe Pareto points are generated in parallel and in a single run. Other featuresof ev-MOGA are:(1) It dynamially adjusts the preision of the Pareto front without inreasingthe arhive size, so that the memory requirements are always bounded(n_boxi parameters).(2) It adapts the extremes of the Pareto front, regardless of the parameters

n_boxi and ensures that anhor points are not eliminated from the arhive.At the same time this eliminates the seond NNC disadvantage.(3) It automatially haraterizes all kinds of Pareto fronts (i.e. non-onvexand disjoined ones) in a smart way in a similar manner to NNC with smart�lter methods if ∆M = ∞.(4) It is an algorithm useful for the designer, sine it approximates the Paretofront (searh proess) with signi�ant solutions for the DM (seletion step).
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