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ARTICLE TYPE

Solving random boundary heat model using the finite difference
method under mean square convergence

Abstract

This contribution is devoted to construct numerical approximations to the solution
of the one-dimensional boundary-value problem for the heat model with uncertainty
in the diffusion coefficient. Approximations are constructed via random numeri-
cal schemes. This approach permits discussing the effect of the random diffusion
coefficient, which is assumed to be a random variable. We establish results about
the consistency and stability of the random difference scheme using mean square
convergence. Finally, an illustrative example is presented.
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1 INTRODUCTION

Several problems in many areas of science are formulated via partial differential equations. The coefficients of any partial
differential equation can be deterministic values or random variables. Partial differential equations, whose coefficients are deter-
ministic, have been discussed for a long time. Theory and methods for solving, both analytic and numeric, are well developed.
However, inmany problems, partial differential equations with random coefficients are better suited to describe the real behaviour
of phenomenon than their deterministic counterpart. The randomness in the coefficients may arise because of errors involved in
measurement data or uncertainties due to lack of knowledge. Partial differential equations with random coefficients or incorpo-
rating stochastic effects have been increasingly used in the last few decades to deal with errors and uncertainty and represent a
growing field of great scientific interest.
We want to emphasize that there exist two main approaches to consider uncertainty within the context of partial differential

equations each one of them leading to different ways of performing the corresponding numerical analysis. The most common
approach is based upon SDEs where uncertainty is forced via the perturbation of model parameters by means of an irregular)
stochastic process such as a Wiener process or Brownian motion (whose trajectories are nowhere differentiable). This kind of
equations are typically written in terms of both Lebesgue and Itô stochastic integrals. The rigorous treatment of SDEs requires of
a special calculus usually referred to as Itô calculus whose cornerstone result is termed the Itô’s Lemma. A less known approach
is based upon RDEs for which random effects are manifested directly in coefficients, initial/boundary conditions and/or source
termwhich are assumed to behave regular (e.g., continuous) with respect to time and space. In recent literature1 has been pointed
out that there is a growing trend in the uncertainty quantification community to treat the terms SDE and RDE as synonymous
when in fact they are distinctly different and they require completely different techniques for analysis and approximation. As
rightly indicated in recent contributions2, this confusion could be because RDEs seem to have had a shadow existence to SDEs,
although they have been around for as long as if not longer and have many important applications. Throughout this manuscript
we will only work in the context of partial RDEs. This decision has specific advantages with respect to the Itô approach. First,
we do not require to apply Itô-Taylor type expansions, which usually involve technical hypotheses, to conduct the corresponding

0Abbreviations: IBVP, initial boundary value problem; PDE, partial differential equation; RDE, random differential equation; RFDS, random finite difference scheme;
SDE, stochastic differential equation
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numerical analysis for consistency since we are dealing with partial RDEs rather than partial SDEs. Second, there is a lack of
results in the context of random PDEs that need further investigation since the majority of contributions have focused on partial
SDEs. Third, model parameters can have a wider variety of probability distributions including the important Gaussian pattern.
For instance, the diffusion parameter in the heat equation is positive soGaussian distribution is not suitable to describe it and other
probabilities distributions with positive support could be more appropriate like the Beta distribution. Nevertheless, allowing a
wider kind of uncertainty in the context of RDEs is not straightforward from the properties of its deterministic counterpart since
the corresponding operational rules must be carefully legitimated. An appropriate overview of such difficulties can be checked
in recent contributions3.
Heat is energy that flows from higher to lower temperature. The heat can be transferred by conduction or convection4,5. Heat

equation arises from many fields, for example, the heat transfer, fluid dynamics, astrophysics, finance or other areas of applied
mathematics and physics. The temperature, u(x, t), in a random heat conducting insulated rod along the interval [0, 1] on x-axis
at the time instant t > 0 is modelled by means of the random partial differential heat equation in the form:

ut(x, t) = � uxx(x, t), t ≥ 0, 0 ≤ x ≤ 1, (1)

where t is the time variable, x is the space coordinate and � is the conductivity coefficient. The initial condition is given by

u(x, 0) = u0(x), (2)

and we take boundary conditions as
u(0, t) = 0, u(1, t) = 0. (3)

In recent years, mathematical models are described as PDEs in many areas of science and engineering, also in medicine and
finance for example. The heat equation is a model of diffusive systems since the physical meaning may be imagined in which
heat is considered to be a fluid inside matter, free to flow from one position to another4,6. The heat equation has a great deal of
application in many branches of sciences, naturally in different models from chemistry, theoretical physics and others4. There
are analytical and numerical processing for dealing with problem (1). In the case that the conductivity diffusive coefficient is a
constant or a deterministic function, some authors study the problem by taken the initial condition to be a step function, others,
using the green function under the existence and uniqueness of solution and others solve this problem by using the separation
of variables when the spatial domain is bounded7,8. An algorithm9 for solving the heat problem on unbounded domains has
been developed. This algorithm depends on the evolution of the continuous spectrum of the solution. Fast solver10 for heat
equation in free space is proposed and some authors presented an exact artificial boundary condition to reduce the original
initial-boundary-value problem heat equation on a finite computational domain11,12. The finite difference method is very useful
to approximate partial differential equations in the deterministic scenario13,14,15,16. Some authors have studied the stability and
consistency for the finite difference method in mean square but, for solving initial value boundary conditions problem for heat
equation by taken the diffusion coefficient as constant value and also by adding a white noise term17. This approach is usually
solved by means of the Itô calculus18,19,20. Also, some others discussed the mean square consistency and mean square stability
for the finite difference method in order to solve the initial value boundary conditions problem by taken the diffusion coefficient
as a random variable21.
In this problem, we assume that u0(x) is a deterministic initial data function measuring the temperature along the whole

spatial, while � = �(!), ! ∈ Ω, is a positive random variable defined in a complete probability space (Ω, ,ℙ) and it represents
the random conductivity coefficient of the material used to make the rod. Since we assume � is a positive random variable, it
implies that material properties are random variables and depend on the location in the rod. It means that we are considering an
inhomogeneous material, that is, containing impurities. The physical meaning of the thermal diffusion coefficient is associated
with the speed of the flux of heat into the material during changes of temperature over time. The propagation rate of heat is
proportional to the thermal diffusivity4,22. As � is a random variable, the solution of the IVBP (1)–(3) is a stochastic process,
namely, u(x, t)(!). In order to avoid a cumbersome notation, throughout this paper has been omitted the notation of ! parameter,
often referred to as the hidden parameter23.
This paper is concerned with the application of the mean square consistency and the mean square stability for finite difference

methods. Some authors recently developed random difference schemes to solve some Cauchy problems strongly related to this
contribution24,25.
In the following, we introduce some definitions and important results in the deterministic context that will be used and

extended to the random context throughout this paper.
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Definition 1. 14,26 A finite difference scheme Lnku
n
k = G

n
k (L

n
k is the discretization operator) approximating the partial differential

equation Lv = G (L denotes the differential operator) is said to be mean square consistent if the solution, v, of the PDE satifies:

V n+1 = Q V n + (Δt)Gn + (Δt)�n,

with ‖�n‖ → 0 as Δx,Δt→ 0, and being ‖⋅‖ an arbitrary norm. V n denotes the vector whose k-th component is v(kΔx, nΔt).

Definition 2. 14,26 A finite difference scheme Lnku
n
k =G

n
k (L

n
k is the discretization operator) approximating the partial differential

equation Lv = G (L denotes the differential operator) is said to be mean square stable, if there exist some positive constants �,
� and non-negative constants �, � such that

‖

‖

‖

un+1‖‖
‖

≤ �e�t‖‖
‖

u0‖‖
‖

,

being u0 the initial data, for t = (n + 1)Δt, 0 < Δx ≤ �, 0 < Δt ≤ �, and ‖⋅‖ denotes an arbitrary norm.

Definition 3. 14 A finite difference scheme Lnku
n
k = G

n
k (L

n
k is the discretization operator) approximating the partial differential

equation Lv = G (L denotes the differential operator) is said to be accurate of order (p, q) to a given PDE if:

‖τn‖ = (Δxp) + (Δtq),

where τn is the truncation error, and ‖⋅‖ denotes an arbitrary norm.

To extend previous definitions to random scenario, throughout this paper, ‖⋅‖ in random context will denote the mean square
norm defined as

‖x‖ =
(

E

[

(

sup
k

|

|

xk||

)2
])1∕2

, (4)

where x =
(

x1,… , xs
)

is a random vector and E [⋅] denotes the expectation operator. Throughout this paper, we will work with
bounded random variables. In particular this hypothesis is assumed for the single random input in our target problem (1), i.e.,
�. This is a realistic assumption since in most of the physical problems the involved input parameters take finite values.
This contribution is organized in the following form. In Section 2 a random difference scheme is constructed to solve problem

(1)–(3). Next, sufficient conditions are established in order to guarantee consistency and stability in a mean square sense. In
Section 3 theoretical results are illustrated by means of a numerical example. The obtained results are compared with other
numerical methods. Finally, some conclusions are drawn in Section 4.

2 RANDOM FINITE DIFFERENCE TECHNIQUE

This section is devoted to introduce the finite difference technique, that will be applied later, in order to find the solution stochastic
process to the random IBVP (1)–(3). For the sake of clarity, we introduce some notation that will be useful throughout our
subsequent analysis. Therefore, let us consider a uniform grid for space,

x0 = 0 < x1 <⋯ < xM−1 < xM = 1,

where
Δx = xk − xk−1, 1 ≤ k ≤M,

and also, a uniform grid for time
t0 = 0 < t1 <⋯ ,

where
Δt = tn − tn−1, n ≥ 1,

which defines a two-dimensional time-space mesh grid, where the exact solution stochastic process to the random IBVP (1)–(3),
u(x, t), will be obtained numerically.
Let

unk ≈ u(kΔx, nΔt),
denotes the approximation solution for the random IBVP (1)–(3), u(x, t), at the point (xk, tn) = (kΔx, nΔt). To obtain the
numerical method, the following expression is used to approximate the time derivative in (1)

)u
)t
=
u(x, t + Δt) − u(x, t)

Δt
+  (Δt) . (5)
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For the spatial derivative we use a centered second order approximation

)2u
)x2

=
u(x − Δx, t) − 2u(x, t) + u(x + Δx, t)

(Δx)2
+ 

(

(Δx)2
)

. (6)

By replacing derivatives in (1) by the corresponding approximations, (5)–(6), in each interior point (kΔx, nΔt), 1 ≤ k ≤M−1,
n ≥ 1, of the mesh, we obtain

un+1k − unk
Δt

= �
unk+1 − 2u

n
k + u

n
k−1

(Δx)2
. (7)

So, the numerical method associated to the interior points, for each n ≥ 1, can be stated as

un+1k = unk + r(u
n
k+1 − 2u

n
k + u

n
k−1), k = 1, 2,… ,M − 1, (8)

where
r =

�Δt
(Δx)2

. (9)

For the initial condition in (2) we have:

u0k = u0(kΔx), k = 0, 1,… ,M. (10)

For the boundary conditions in (3) we have:

un0 = u(0, nΔt) = 0, n ≥ 1,
unM = u(MΔx, nΔt) = u(1, nΔt) = 0, n ≥ 1.

(11)

Notice that the initial and boundary solutions, given by (10) and (11), are established directly from (2) and (3), respectively.
So, taking the vector of unknowns in a time tn,

un =
(

un1, u
n
2,… , unM−1

)

,

RDFS (8)–(11) can be rewritten as

un+1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 − 2r 1 0 0 ⋯ 0
1 1 − 2r 1 0 ⋯ 0

⋱ ⋱ ⋱

0 ⋯ 0 1 1 − 2r 1
0 0 ⋯ 0 1 1 − 2r

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

un, n ≥ 1, (12)

then, we can advance one step to calculate the whole numerical solution at time instant t1, u1, in an explicit way by means of
RFDS (12), and the initial condition u0 defined by (10). The approximations of the solution at the time instant tn are recursively
obtained from the approximations calculated at tn−1.
Consistency, stability and convergence are important topics in deterministic and stochastic theory for many numerical

methods14. In the next two subsections, we extend these concepts to the numerical scheme (8) using the mean square approach27.

2.1 Mean square consistency of the random finite difference scheme
Definition 4. A random finite difference scheme Lnku

n
k = G

n
k that approximate the random partial differential equation Lv = G

is said to be mean square consistent if the solution of the random partial differential equation, v, satifies:

Vn+1 = QVn + (Δt)Gn + (Δt)τn, (13)

and

E

[

(

sup
k

|

|

�nk||

)2
]

→ 0,

as Δx,Δt→ 0. Vn denotes the vector whose k-th component is v(kΔx, nΔt).

Theorem 1. The RFDS (8) associated to problem (1) is mean square consistent.
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Proof. Let us consider RFDS (8)–(9),

un+1k = unk + r(u
n
k+1 − 2u

n
k + u

n
k−1), r =

�Δt
(Δx)2

,

and let u(x, t) be a solution to random PDE (1). Using Taylor expansions at (xk, tn) we have

un+1k = unk + (ut)
n
k(Δt) + 

(

(Δt)2
)

,

unk−1 = u
n
k − (ux)

n
k(Δx) + (uxx)

n
k
(Δx)2

2
− (uxxx)nk

(Δx)3

6
+ 

(

(Δx)4
)

,

unk+1 = u
n
k + (ux)

n
k(Δx) + (uxx)

n
k
(Δx)2

2
+ (uxxx)nk

(Δx)3

6
+ 

(

(Δx)4
)

.
Now, we compute (Δt)τnk using these Taylor expressions

(Δt)τnk = u
n+1
k −

{

unk + r
[

unk+1 − 2u
n
k + u

n
k−1

]}

= unk + (ut)
n
k(Δt) + 

(

(Δt)2
)

− unk − ru
n
k − r(ux)

n
k(Δx)

− r(uxx)
n
k
(Δx)2

2
− r(uxxx)

n
k
(Δx)3

6
+ 

(

(Δx)4
)

+ 2runk − ru
n
k

+ r(ux)
n
k(Δx) − r(uxx)

n
k
(Δx)2

2
+ r(uxxx)

n
k
(Δx)3

6
+ 

(

(Δx)4
)

.

Hence we have:
Δt τnk = (ut − �uxx)

n
kΔt + 

(

(Δt)2
)

+ 
(

Δt (Δx)2
)

.
since, ut − �uxx = 0, then we have:

τnk = (Δt) + (Δx)2. (14)
Finally, taking the supremum and the expectation operator, one gets,

‖

‖

�k‖‖
2 = E

[

(

sup
k

|

|

�nk||

)2
]

→ 0, Δx,Δt→ 0.

Hence, the RFDS (2) is mean square consistent.

2.2 Mean square stability of the random finite difference scheme
Definition 5. A random difference scheme Lnku

n
k = Gnk (Lnk is the discretization operator) that approximates a random PDE

Lv = G (L denotes the differential operator) is said to be mean square stable, if there exist some positive constants �, �, non-
negative constants �, � and u0 is initial data such that:

E
[

sup
k

|

|

|

un+1k
|

|

|

2
]

≤ �e�tE
[

sup
k

|

|

|

u0k
|

|

|

2
]

(15)

for t = (n + 1)Δt, 0 < Δx ≤ �, 0 < Δt ≤ �.

Theorem 2. Under the condition
Δt ≤ (Δx)2

2�1
, 0 < �(!) ≤ �1, ! ∈ Ω, (16)

the random finite difference scheme (8) for the random partial differential equation (1)–(3) is mean square stable.

Proof. From RFDS (8) we have

E
[

sup
k

|

|

|

un+1k
|

|

|

2
]

= E
[

sup
k

|

|

|

(1 − 2r)unk + ru
n
k+1 + ru

n
k−1

|

|

|

2
]

≤ E
[

[

(1 − 2r)2 + r2 + r2 + 2r |1 − 2r| + 2r |1 − 2r| + 2r2
]

sup
k

|

|

unk||
2
]

.

If 0 < r ≤ 1
2
then we have |1 − 2r| = 1 − 2r. Hence,

E
[

sup
k

|

|

|

un+1k
|

|

|

2
]

≤ E
[

sup
k

|

|

unk||
2
]

≤⋯ ≤ E
[

sup
k

|

|

|

u0k
|

|

|

2
]

.

Therefore, the RFDS (8) is mean square stable with � = 1, � = 0 and under the condition (16).
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Remark 1. The hypothesis of boundedness assumed in (16) for the random variable � allows us to generalize the corresponding
results that are well-known in the deterministic scenario. This provides a consistent connection between the deterministic and the
random setting. It must be pointed out that this hypothesis is not new at all since this kind of condition has been imposed by other
authors in dealing with the study of both random ordinary and partial differential equations to extend important deterministic
results to the random scenario28,29,30.

3 A NUMERICAL EXAMPLE

In this section we illustrate our previous theoretical results with an example. With this aim, we need to choose the distribution of
the random variable �. As � must be positive we have chosen for � a beta distribution with parameters 1 and 3, i.e., � ∼ Be(1, 3),
whose density is given by f�(�) = 3(1 − �)2, 0 < � < 1. Observe that the mean of this random variable is 1∕4 and its variance
is 3∕80 ≈ 0.0375. Thus, according to (16), �1 = 1. For the initial condition, we take

u(x, 0) = sin(�x). (17)

With this condition is easy to check that the analytical solution of problem (1)–(3) is given by

u(x, t) = e�2t� sin(�x). (18)

Solving a random problem implies not only to obtain the solution but also its statistical moments, as the mean and variance.
In this case, we can compute the analytical mean, that is given by

E[u(x, t)] =
3 e−�2t

(

e�2t
(

�4t2 − 2�2t + 2
)

− 2
)

sin(�x)

�6t3
. (19)

This allows us to compare the proposed numerical solution with the analytical solution.
We have solved the numerical scheme (8)–(11) for several meshes. In particular, we present the results for three different

meshes at the level time tN = 1∕2. For the first mesh, we fix Δx = 1
32
≈ 0.0625. In order to guarantee the stability, Δt is chosen

so that it satisfies condition (16). As

0.00042 ≈ 1
2400

= Δt ≤ (Δx)2

2�1
= 1
2048

≈ 0.00049,

if we take Δt = 1
2400

stability is guaranteed. This corresponds withM = 32 spatial intervals and N = 1200 levels of time. To
check the order of the method, the successive meshes are constructed multiplying by two the spatial increment, Δx, and by four
the temporal increment, Δt. This corresponds toM = 16 andM = 8, respectively. In all cases stability is reached.
In Fig. 1, we have plotted the expectation of the analytical solution in solid lines and the expectation of the numerical solution

in points for the different meshes corresponding toM = 32,M = 16,M = 8. In this figure we can observe that results are very
satisfactory, being a little worst at the bottom figure. In order to appreciate better the difference between the different meshes,
we have calculated the error corresponding to the difference in absolute value between the analytical and numerical solutions.
These errors are drawn in Fig. 2.
In Table1 we show the meshes we have used for computations and the error for the mean defined as the maximum of the

difference in absolute value between the analytical mean and the numerical one.
From the data displayed in Table 1, we can observe that the numerical method we have developed is of order one in time and

order two in space, i.e., (14) fulfils.
A similar study have been performed for the variance. The analytical variance to (18) is given by

Var[u(x, t)] = �2[u(x, t)] =
3 e−2�2t

(

e2�2t
(

2�4t2 − 2�2t + 1
)

− 1
)

sin2(�x)

4�6t3
. (20)

In Fig. 3, we have plotted the variance of the analytical solution in solid lines and the variance of the numerical solution for
the different meshes in points. Again we can observe that results are very satisfactory, being a little worst at the center points of
the bottom figure. Similarly to the expectation, we have calculated the error corresponding to the difference in absolute value of
the variance between the analytical and numerical solutions. These errors are drawn in Fig. 4.
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In Table 2 we show themeshes we have used for computations and the error defined as the difference in absolute value between
the variance analytical solution and the numerical one.
As in the case of the expectation, from the data displayed in Table 2 we can observe that the numerical method we have

developed is of order one in time and order two in space. Numerical results agree with theoretical findings about the order of
the method given by equation (14).
If we solve problem (1)–(3) with the initial condition (17) and � ∼ Be(1, 3) by Monte Carlo method, we obtain the results

displayed in Table 3. Comparing Table 1, Table 2 and Table 3 we can observe that the method we have developed improves the
obtained via Monte Carlo method. If a dishonest method31 is applied (substituting the random variable � by its mean) an error
for the mean of 0.12 is obtained.
Now, we complete the previous numerical analysis highlighting the key role that the random variable � plays in problem (1)–

(3). To show this important fact, now we assume that � ∼ Be(2, 6), whose density is given by f�(�) = 42(1 − x)5, 0 < � < 1,
so that random variable � has the same mean as in the previous numerical experiment, i.e., 1∕4, but a slightly smaller variance
1∕48 ≈ 0.0208333. In spite of this small change, we can see its the remarkable effect on the mean (Fig. 5) which is reduced,
and particularly on the variance (Fig. 6) of the solution stochastic process, that is reduced approximately by half. In Table 4 and
Table 5, we show the absolute errors for the mean and the variance, respectively, while the values of these errors via Monte
Carlo simulations are reported in Table 6.

4 CONCLUSIONS

In this paper we have studied a randomized heat equation with deterministic initial and zero-boundary conditions. A random
difference scheme has been constructed and consistency and sufficient conditions to guarantee stability has been established
in the mean square sense. Theoretical findings have been tested with a test numerical example. Results have been compared
successfully with an analytical solution. Also, the proposed method has been compared with other random numerical methods
obtaining satisfactory results.
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TABLE 1 Size of the meshes and numerical scheme absolute error for the mean at t = 1∕2 applied to the IBVP (1)–(3) with
initial condition (17) and being � ∼ Be(1, 3).

M N Δx Δt error for the mean

32 1200 1∕32 1∕2400 0.000080
16 300 1∕16 1∕600 0.00032
8 75 1∕8 1∕150 0.0013
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TABLE 2 Size of the meshes and numerical scheme absolute error for the variance at t = 1∕2 for the IBVP (1)–(3) with initial
condition (17) and being � ∼ Be(1, 3).

M N Δx Δt error for the variance

32 1200 1∕32 1∕2400 0.000029
16 300 1∕16 1∕600 0.00012
8 75 1∕8 1∕150 0.00047
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TABLE 3 Absolute errors for Monte Carlo method for the IBVP (1)–(3) with initial condition (17) and being � ∼ Be(1, 3).

simulations error for the mean error for the variance

1000 0.017 0.0022
10000 0.0054 0.000056
100000 0.00045 0.000316
1000000 0.00019 0.000051

TABLE 4 Size of the meshes and numerical scheme absolute error for the mean at t = 1∕2 for the IBVP (1)–(3) with initial
condition (17) and being � ∼ Be(2, 6).

M N Δx Δt error for the mean

32 1200 1∕32 1∕2400 0.000093
16 300 1∕16 1∕600 0.00037
8 75 1∕8 1∕150 0.0015

TABLE 5 Size of the meshes and numerical scheme absolute error for the variance at t = 1∕2 for the IBVP (1)–(3) with initial
condition (17) and being � ∼ Be(2, 6).

M N Δx Δt error for the variance

32 1200 1∕32 1∕2400 0.000026
16 300 1∕16 1∕600 0.00010
8 75 1∕8 1∕150 0.00042

TABLE6Absolute errors forMonte Carlomethod applied to the IBVP (1)–(3) with initial condition (17) and being � ∼ Be(2, 6).

simulations error for the mean error for the variance

1000 0.0061 0.0035
10000 0.00032 0.00054
100000 0.00021 0.00074
1000000 0.00013 0.00017
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FIGURE 1 Expectation of analytical solution (solid lines) and expectation of numerical solutions (blue points) for different
meshes at t = 1∕2. Top:M = 32; Middle:M = 16; Bottom:M = 8, for the IBVP (1)–(3) with initial condition (17) and being
� ∼ Be(1, 3).
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FIGURE2Absolute error between expectation of analytical solution and expectation of numerical solutions for different meshes
at t = 1∕2. Top: M = 32; Middle: M = 16; Bottom: M = 8, for the IBVP (1)–(3) with initial condition (17) and being
� ∼ Be(1, 3).



15

0.2 0.4 0.6 0.8 1.0
x

0.02

0.04

0.06

0.08

σ2 [u(x,1/2)]

0.2 0.4 0.6 0.8 1.0
x

0.02

0.04

0.06

0.08

σ2 [u(x,1/2)]

0.2 0.4 0.6 0.8 1.0
x

0.02

0.04

0.06

0.08

σ2 [u(x,1/2)]

FIGURE 3 Variance of analytical solution (solid lines) and variance of numerical solutions (blue points) for different meshes
at t = 1∕2. Top: M = 32; Middle: M = 16; Bottom: M = 8, for the IBVP (1)–(3) with initial condition (17) and being
� ∼ Be(1, 3).
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FIGURE 4 Absolute error between variance of analytical solution and variance of numerical solutions for different meshes
at t = 1∕2. Top: M = 32; Middle: M = 16; Bottom: M = 8, for the IBVP (1)–(3) with initial condition (17) and being
� ∼ Be(1, 3).
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FIGURE 5 Expectation of analytical solution (solid lines) and expectation of numerical solutions (blue points) for different
meshes at t = 1∕2. Top:M = 32; Middle:M = 16; Bottom:M = 8, for the IBVP (1)–(3) with initial condition (17) and being
� ∼ Be(2, 6).
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FIGURE 6 Variance of analytical solution (solid lines) and variance of numerical solutions (blue points) for different meshes
at t = 1∕2. Top: M = 32; Middle: M = 16; Bottom: M = 8, for the IBVP (1)–(3) with initial condition (17) and being
� ∼ Be(2, 6).


