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Abstract. We propose an ensemble of multilayer feedforward neural networks to

estimate the 3D position of photon interactions in monolithic detectors. The ensemble

is trained with data generated from optical Monte Carlo simulations only. The

originality of our approach is to exploit simulations to obtain reference data, in

combination with a variability reduction that the network ensembles offer, thus,

removing the need of extensive per-detector calibration measurements. This procedure

delivers an ensemble valid for any detector of the same design. We show the capability

of the ensemble to solve the 3D positioning problem through testing four different

detector designs with Monte Carlo data, measurements from physical detectors and

reconstructed images from the MindView scanner. Network ensembles allow the

detector to achieve a 2-2.4 mm FWHM, depending on its design, and the associated

reconstructed images present improved SNR, CNR and SSIM when compared to those

based on the MindView built-in positioning algorithm.

1. Introduction

There has recently been an increasing interest in the use of monolithic scintilation

detectors for positron emission tomography (PET) applications (Gonzalez et al. 2019).

Such detectors have several advantages including easier detector assembly and reduced

costs, without any associated reduction in the overall system performance in terms of

spatial resolution or sensitivity (Gonzalez-Montoro et al. 2017).

In pixelated detectors, the determination of the interaction position of a gamma

photon is usually performed by pixel identification. However, this procedure is not

applicable to monolithic detectors. In this case, position determination is often obtained

by a centrality estimate of the distribution of light collected by all photosensors,

such as for example the center of gravity of the light distribution. Similarly, depth

of interaction (DOI) estimation may be obtained by a dispersion estimate of this

distribution. Nevertheless, the sensor with the largest signal does not necessarily

correspond to the XY coordinates of the interaction, since a large fraction of the
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scintillation photons may be reflected within the crystal before detection. Likewise, the

dispersion of the measured light distribution may vary for each XY position at the same

DOI, due to different inner reflections. A reference measurement (with known positions

of irradiation) is usually used to correct these estimates, mitigating the aforementioned

issues. There are different approaches to the interaction positioning estimate depending

on the finish of the crystal (González et al. 2015, Llosá et al. 2013, Schaart et al. 2009,

Pani et al. 2009). However, most of them do not account for the presence of inner

reflections that, in turn, leads to a degradation in the system’s energy resolution.

New methods have been proposed in order to improve the interaction positioning

estimates, while trying to maximize the advantages and usability of monolithic detectors.

These methods include gradient tree boosting (Muller et al. 2018, Muller et al. 2019),

k-nearest neighbours approaches (Marcinkowski et al. 2016, Borghi et al. 2015, van

Dam et al. 2011, Maas et al. 2009) or neural networks (Wang et al. 2013, Bruyndonckx

et al. 2008, Bruyndonckx et al. 2004).

On the other hand, all of these approaches require the measurement of reference

events which tend to be extensive and time consuming (Schaart et al. 2009). In this work,

we present a method, based on neural network ensembles, that does not require any

reference measurement, but instead, uses data from Monte Carlo simulations. Moreover,

our proposed approach estimates the interaction point for any detector of a particular

design (as opposed to a per-detector calibration), with a single ensemble being able

to process an entire scanner. The benefits of the Monte Carlo simulation approach

include parallel computing and automation, noiseless and scatter-free reference events,

and arbitrary size of the training dataset. Although the proposed algorithm is applicable

to different monolithic detector designs, its performance in this work has been tested

using elementary detector data from the MindView scanner (Gonzalez et al. 2019).

The evaluation included overall system acquired phantom and patient datasets. The

implementation of the Monte Carlo simulations and neural network ensembles will be

made publicly available upon the publishing of this work‡.

2. Materials and Methods

The light intensity distribution output in a monolithic detector is the outcome of some

transformation of the measurements on its array of photosensors, usually, their sum

by rows and columns into c channels. A common approach to obtain the interaction

XY coordinates is to use a centrality function, such as for example the center of

gravity (Anger 1958) (i.e. Anger logic). The DOI (Z) of an event is obtained in a similar

manner, using a dispersion function to measure the width of the light distribution.

In addition, corrections are applied to these function, obtained by irradiating the

scintillator at known positions, thus, being able to translate the centrality and dispersion

estimates into interaction coordinates. The specific details of the correction functions

vary with the finish of the scintillator, due to differences in the reflections inside

‡ https://github.com/amibcar/eNN-PET
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Figure 1: The overall methodology scheme is

shown here. We start with the simulation of the

output of the detector to obtain a training dataset.

Training multiple networks, we select the best

performing ones to form an ensemble. Finally, the

position of a measured event is estimated through

ensemble averaging.

the crystal. Teflon wrapping for example, increases the complexity of the correction

functions due to diffuse reflections, while having a positive impact on other features,

such as energy resolution (Lecoq 2016, Llosá et al. 2010). Moreover, the XY correction

function requires an accurate estimate of the Z coordinate, due to differences in the

required correction along different heights in the crystal, while the Z correction requires

an XY estimate for similar reasons.

We assume that in general, there exists a function f that maps an intensity

distribution I = (I1, I2, . . . , Ic) to the corresponding interaction position (x, y, z). Our

goal in this work is to obtain f̂ , an approximation of f , for a given detector design,

without requiring the irradiation of the scintillator at known positions. Different

detectors (or sectors of a detector) following the same scintillator design might have

differences in optical coupling, photosensor response, etc, affecting their output.

However, f̂ should be applicable to any detector based on the same design.

Multilayer feedforward neural networks are known to be universal approxima-

tors (Hornik et al. 1989, Hornik 1991). However, if we obtain f̂ through a single network,

the aforementioned variability in I may introduce inter- and intra-detector variability in

the predictions. Hence, in this work we use a network ensemble (or committee) (Hansen

& Salamon 1990), which are known to reduce variability in predictions. Regarding the

training dataset required for the network, it is generated from Monte Carlo optical sim-

ulations. This allows a) avoiding the introduction into the training dataset of inter- and

intra-detector variation, and b) avoiding to irradiate the scintillator to obtain reference

events. The proposed method is outlined in figure 1 and described in the following

sections. It should be noted that the elements contained in the gray box (see figure 1)

are only computed once per detector design. Thus, in a scanner with N detector mod-

ules following the same design, only one ensemble is required, predicting interaction

coordinates for all N modules.

2.1. Neural Networks

Multilayer feedforward neural networks are the building block of the proposed method.

The goal of each network is to predict a single coordinate of the interaction point

based on c features corresponding to a light intensity distribution I = (I1, I2, . . . , Ic).
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Figure 2: Outline of the i-th component of the

network ensemble, generating the j-th prediction.

In case that there is an applicable symmetry, the i-

th component can be reused to generate the (j+1)-

th prediction. Otherwise, the (i + 1)-th component

generates the (j + 1)-th prediction. This outline

describes the contents of the network ensemble box

in figure 1.

We impose on each network the following fixed hyperparameters: ReLU (Nair &

Hinton 2010) activation function, no dropout (Srivastava et al. 2014) and no batch

normalization (Ioffe & Szegedy 2015). Additionally, all networks are trained with RMSE

loss function and adagrad (Duchi et al. 2011) optimizer, which provides adaptive learning

rates. These restrictions define a set of networks that differ only in the number of hidden

layers h and the number of nodes in each layer (n1, n2, . . . , nh) ∈ Nh.
⋃

h Nh is the set of

all possible configurations of the form (n1, n2, . . . , nh) for any h. We consider a subset

A ⊂ ⋃hNh of candidate configurations (search space), and for simplicity, we will use

the variable i as the i-th element (candidate configuration) of A.

For a given network configuration i, we separately train three versions of it,

considering as labels the corresponding coordinate of the interaction point. Thus, we

solve the problem of finding an approximate of

f(I) = (x, y, z) , (1)

where (x, y, z) is the interaction position, by finding triples of networks that compute

f̂i(I) = (x̂i(I), ŷi(I), ẑi(I)) . (2)

We assume that in general, the problems of predicting X, Y and Z coordinates are of

similar complexity. Therefore, a successful configuration i = (n1, n2, . . . , nh) for a given

detector design, requires a good performance in the three predictions. Since there is no

evident relationship between detector designs and successful configurations, we define A
a search space of candidate configurations. As we train and test the candidates, we save

the better performing (triples of) trained networks to form an ensemble. After testing

all the candidates, we obtain the best networks for a given detector design in the defined

search space.

In this work, test an A containing all configurations for h ∈ {2, 3, 4, 5, 6} and

ni ∈ {100, 200, 400} in any order, totalling 1089 candidate configurations for each

coordinate. From these candidates, we select the 10 best performing f̂i(I). Let

(I1, I2, . . . , Ic/2) be the light distribution collected along the rows of the photosensor,

and correspondingly (Ic/2+1, Ic/2+2, . . . , Ic) for the columns. Then, due to symmetry in

the studied detectors, from every

I = (I1, . . . , Ic/2, Ic/2+1, . . . , Ic) ,
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we generate a second input

I> = (Ic/2+1, . . . , Ic, I1, . . . , Ic/2) , (3)

that is the light distribution of the same interaction, after transposing the photosensor

array. Thus, we assume that if f(I) = (x, y, z), then f(I>) = (y, x, z). So, for every

selected f̂i(I) we will add an additional

f̂i(I
>) =

(
ŷi(I

>), x̂i(I
>), ẑi(I

>)
)

(4)

to the ensemble, leaving an ensemble size of 20 point predictors for every measured I

(see figure 2). In case that this symmetry cannot be exploited, we would simply select

the 20 best performing f̂i(I). The final prediction, which is an approximate of (1), is

the ensemble average

f̂(I) =
1

20

(
10∑
i=1

x̂i(I) + ŷi(I
>),

10∑
i=1

ŷi(I) + x̂i(I
>),

10∑
i=1

ẑi(I) + ẑi(I
>)

)
or (5a)

f̂(I) =
1

20

(
20∑
i=1

x̂i(I),
20∑
i=1

ŷi(I),
20∑
i=1

ẑi(I)

)
. (5b)

Recall that i refers to a given configuration and in this case it refers to the 10 (or

20) better performing network configurations, depending on whether the previously

described symmetry can be exploited (5a) or not (5b). Let N be the number of networks

in our ensemble. The result of (5a) for a given I converges as N increases. However,

each network used in the ensemble increases the computational cost of the solution. We

would like to find an N so that the inclusion of the (N + 1)-th network in the ensemble

changes its result by less than τ in most of the cases (see section 3.3).

Regarding the implementation details, I is normalized before the input layer, so

that
c∑

k=1

Ik = 1 . (6)

This allows the networks to be insensitive to differences in inter-detector gain, although

they are still sensitive to intra-detector gain variations. This normalization also ensures

that there will be no large scale differences between features from different events. Thus,

there is no reason to introduce any batch normalization. Regarding the dropout, the

explicit search of different network configurations in A replaces the potential benefits

of dropping out units. Even though it is an efficient model averaging technique, it

is important for the heterogeneity of the ensemble to avoid the potential inclusion of

duplicate (n1, n2, . . . , nh) for the prediction of the same I. The explicit search over

A without using dropout ensures total control over the included architectures on the

ensemble.

In terms of training, validation and testing, we shuffle and split simulated events

into three datasets: train (50%), validation (5%) and test (45%). Let an epoch be the

number of steps necessary to train a network over all train dataset records. Networks
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are trained from train and predict the validation data (which do not form part of the

training) every 4 epochs. When the validation results stop progressing, or we reach 20

epochs, the training stops. The following step is to predict the test data, yielding the

score of the network. In all our cases, training reached 20 epochs without degradation

of the validation results (see section 3). The loss function and the selection criteria for

the ensemble are discussed in the following section.

Lastly, the selected optimizer has several advantages in this framework. It avoids

the need to introduce any control on sampling of training events over crystal dimensions.

This is particularly useful over the Z dimension, due to the exponential decay of counts

along the depth of the scintillator. Thus, there is no need to tune learning rates, since

those are estimated by the optimizer to compensate for uncommon parameter updates.

On the other hand, the adagrad optimizer reduces the magnitude of gradient over time,

eventually preventing further learning. Other optimizers with different learning rates’

estimation policies can be also considered within the proposed framework. The neural

networks have been implemented using TensorFlow (Abadi et al. 2015) open source

software library.

2.2. Figures of merit

In the j-th prediction, let q̂j be the predicted value of the interaction coordinate qj.

After N predictions, we evaluate a network with the root mean square error, defined as

RMSE =

√√√√ 1

N

N∑
j=1

(q̂j − qj)2 . (7)

RMSE is the loss function during training, since we seek to minimize large discrepancies

between f and f̂i.

When considering predicted points p̂j = (x̂, ŷ, ẑ) of an interaction position pj =

(x, y, z), we evaluate the performance of an ensemble of networks based on their distance

as the mean absolute error

MAE =
1

N

N∑
j=1

‖p̂j − pj‖ . (8)

We use MAE to analyze the results of each ensemble through the scintillation block, since

it provides a convenient magnitude of the expected error in each region of the crystal.

Additionally, as it is computed from the test dataset, it shows a lower bound for such

errors. Implemented and simulated detectors might differ, potentially decreasing the

performance of the predictions. However, depending on the performance objectives of a

detector design, other metrics might be also used. Neither training or ensemble selection

are influenced by (8).

We also consider the accuracy within t of a coordinate prediction as

Acc =
|P |
N

such that P = {q̂j : |q̂j − qj| < t} , (9)
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Figure 3: Accuracy (9) within 1 mm of the prediction of the

X coordinate as a function of RMSE (7).

where |P | denotes the cardinal of the set P . As figure 3 shows in our context, the

Accuracy is strongly correlated with RMSE. On the other hand, Accuracy provides an

intuitive quantification of the performance of a network in [0, 1], and disregards the

magnitude of errors lower than t, therefore not counting them towards the penalty of

a network to be part of the final ensemble. Accuracy, as defined by (9), does not take

into consideration the magnitude of errors larger than t, but instead accounts them as

misses. However, since we use RMSE as a loss function, we expect that the optimization

of each network prevents errors of large magnitude. The reason behind this definition of

Accuracy is that, in our context, we are not especially interested in further minimization

of the error in certain regions (e.g., center), while having large errors in others (e.g.,

edges). Instead, we are interested in having a response as uniform as possible through the

scintillation volume, maximizing the expected events that will be considered reasonably

close to the interaction point. As figure 3 shows, for a given RMSE, there could be

several networks with different accuracies. Thus, we rank networks based on (9) for

each coordinate, in order to maximize the number of events that will be considered

sufficiently close to the interaction point.

Given a triple of networks according to (2), we consider its accuracy predicting an

interaction point as

Accsel = AccX ·AccY ·AccZ , (10)

where AccX , AccY and AccZ represent the accuracy in predicting X, Y and Z

coordinates separately. Therefore, (10) is used to decide which networks form the final

ensemble. For a given network configuration i = (n1, n2, . . . , nh), AccX , AccY and AccZ
are computed from the test dataset when the respective trainings are finished, avoiding

the need to save the resulting predictions (which could have non-negligible size for large

tests). On one hand, it is convenient that X, Y and Z trainings can be executed in no

particular order. On the other hand, it is also convenient to know as soon as possible

if i will perform better than one of the configurations in the current ensemble. Assume

the worst configuration w of the provisional ensemble have an accuracy Alow according

to (10). During the search of the best configurations:

• As soon as any AccX , AccY or AccZ is lower than Alow, the current network can be

discarded and its pending trainings canceled.

• Whenever all AccX , AccY and AccZ are known, the new configuration either

replaces w if Alow < (10), or it is discarded.
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After the exploration of the search space it is relevant to determine the accuracy

predicting an interaction point as an extension of (9), based on the distance between

the two points

Accuracy =
|P |
N

such that P = {p̂j : ‖p̂j − pj‖ < t} , (11)

assessing the performance of an ensemble as the percentage of predictions p̂j closer than

t to their interaction point pj.

Finally the obtained interaction position maps are compared according to the

signal-to-noise and contrast-to-noise ratios as well as the structural similarity (Wang

et al. 2004) defined as:

SNR = 10 log10

(
µr

σr

)
(12)

in dB, where r is an homogeneous volume far from ROI borders, and µr and σr are its

mean and standard deviation.

CNR =
|µr − µb|√
σ2
r + σ2

b

, (13)

where b is a homogeneous volume in the background, far from ROI borders.

SSIM(I1, I2) =
(2µ1µ2 + C1)(2σ12 + C2)

(µ2
1 + µ2

2 + C1)(σ2
1 + σ2

2 + C2)
, (14)

where µ1 and µ2 are local means of I1 and I2, σ1 and σ2 are the corresponding local

standard deviations, and σ12 is the covariance between I1 and I2. Regularization

constants C1 and C2 are set as suggested by the authors of the metric in (Wang

et al. 2004).

We evaluate metrics given by (12), (13) and (14) (see section 3.6) on the

reconstructed phantoms. We use a digital reference object (DRO) to define a region of

interest (ROI) of constant activity. After erosion, we obtain r, a homogeneous volume

of constant activity, far from ROI borders. Then, we compute the SNR (12) of the

activity inside the phantom. Likewise, after inversion and erosion of the DRO, we

obtain b, a background volume inside the phantom, far from ROI borders. We use b to

compute the CNR (13) between activity and background regions inside the phantom.

Finally, we apply a 2 mm Gaussian filter to the DRO and compute the SSIM (14)

between this and both reconstructed images. Thus, we assess the preservation of DRO’s

structures (Jaouen et al. 2018) in the reconstructed images without taking into account

the post-reconstruction filtering.

2.3. Studied detectors

The studied detectors have a 12× 12 SiPM custom readout, coupled to the scintillation

block with optical grease. The scintillation block is a LYSO crystal with a base of 50 mm

in X and Y dimensions. All its faces are polished and the surface in contact with the

SiPM array is not coated in any configuration. Regarding the output of the detector, it

consist of 24 channels, each being a signal proportional to the sum of a row or a column.
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Figure 4: Considered scintillator designs. DB : light absorbing coating on all faces (a). DT : teflon

wrapping on all faces (b). DR: light absorbing coating on all faces except the entrance face, which has

a retroreflective device installed (represented in blue) (c). DR20: same design as (c) but with a crystal

height of 20 mm (d).

We selected four different detector designs that cover a range of design options.

Additionally, they pose different challenges for a generic position determination

algorithm, due to the differences in their inner reflection patterns. The four designs

are depicted in figure 4 and defined as follows:

DB light absorbing coating in all faces: decrease inner reflections in order to increase

the accuracy of centrality and dispersion functions to estimate interaction positions.

This has a negative impact in energy resolution, since a considerable amount of

scintillation light is absorbed rather than detected.

DT teflon wrapping on all faces: increase inner reflections in order to increase the energy

resolution through a larger collection of scintillation light. This has a negative

impact in the position estimation through centrality and dispersion functions, due

to inner reflections.

DR light absorbing coating on all faces except the entrance face, which has a

retroreflective device installed: reach a compromise regarding inner reflections in

a way that mitigates the degradation of centrality and dispersion estimates (e.g.

retroreflective devices). This has a positive impact in energy resolution compared

to the minimization of inner reflections.

DR20 same as DR with a crystal thickness of 20 mm: increase the crystal thickness

in order to increase the interaction count. This is the detector design used in the

MindView system (Gonzalez et al. 2019, Gonzalez-Montoro et al. 2017).

All detectors, except DR20, are 15 mm in Z, while DR20 is 20 mm. DB is coated

with black paint with an estimated absorption of 90%. DT is wrapped with Teflon tape

with no coupling component (air) between the Teflon and the crystal. DR and DR20

have a retroreflective device in their entrance face, instead of paint. The retroreflective

device is coupled with optical grease to the crystal in both cases.

We measured coincidences of an 11× 11 array of 22Na collimated sources with the

previously described detectors. Measured data consisted of ∼ 2 × 106 coincidences for

the array.
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2.4. Clinical Data

Additionally, figure 4 (d) allows to test out method with phantom and patient data

from the MindView system. Phantom data have been acquired from a Hoffman phantom

filled with ∼ 15 MBq of a solution of FDG and Gadolinium, and scanned for 20 minutes.

Patient data have been acquired from a 72 year old dementia patient, with an injected

dose of ∼ 200 MBq, and scanned for 15 minutes (85− 100 minutes after injection). In

section 3, we compare image reconstructions using the built-in position determination

of the MindView system, and using our proposed method.

2.5. Training Data

One of the main features of our proposed approach is to generate the training data

from Monte Carlo optical simulations, instead of irradiating the scintillator at known

positions. We use the GATE/GEANT4 (Agostinelli et al. n.d.) optical model (van der

Laan et al. 2010) to define and run simulations of the previously described detectors.

This has several advantages:

• The training dataset can be arbitrarily large.

• The simulation of each event can be executed in parallel.

• The labels (positions) for training are noiseless.

Moreover, we avoid the inclusion of inter- and intra-detector variability, mechanical

inaccuracies or collimator scatter in the training data. This, in turn, prevents trained

models (networks or other machine learning algorithms) from learning these errors as if

they were part of the underlying model.

The simulation concerns a single detector and a spherical gamma source of 0.1 mm

in radius. The description of the detector consists of the scintillator crystal, its coating,

the photosensor array, and its coupling (see figure 4). Specifically, the gamma source

emits 511 keV photons perpendicular to the entrance face of the crystal (−Z direction).

It is placed at a givenXY coordinate at Z = 100 mm. The base of the crystal is placed at

Z = 0. It is defined as LYSO material with a scintillation yield of 30/keV, an attenuation

length of 1.2 cm for 511 keV, and a refractive index of 1.82. The photosensor array is

in contact with the base of the crystal. It is defined as the G4 SILICON DIOXIDE

built-in material, with 4.36 mm pixel pitch, and an active area of 3 mm2 per pixel. This

models a high-density custom designed array of SiPMs from SensL (MindView-Series

type, similar to J-series) (Jackson et al. 2014).

Both coating and coupling are modeled through boundary behavior. The simulation

uses the UNIFIED model (Nayar et al. 1991, Levin & Moisan 1996) in GEANT4 for the

reflection of photons at surfaces. The photosensor is coupled with optical grease to the

crystal, and this is modeled at its boundary. We consider that every photon that leaves

the crystal at this boundary is detected, so it is defined as a dielectric-metal boundary,

since, in this case, only reflection and absorption (no refraction) are possible under the
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UNIFIED model. These boundaries override the refractive index of the pixel to that of

the optical grease (1.4), in order to model the coupling.

The coating is modeled at the rest of the boundaries of the crystal, which are in

contact with air. Since the crystal is polished, a photon might suffer specular reflection

before crossing a boundary. In the case of black paint, the boundary overrides the

refractive index of air to that estimated for the paint (1.45). In the case of teflon tape,

the refractive index is set to 1, since we expect a thin layer of air between the crystal and

tape. If a photon crosses the boundary, we assume that it will be reflected back into the

crystal with some probability, following Lambertian reflection rules. We experimentally

estimate these probabilities for paint (0.1) and teflon (0.7) coatings, and implemented

this behavior using both groundbackpainted and reflectivity properties of the UNIFIED

model.

The retroreflective device cannot be modeled using a single boundary, thus, we

include a layer of epoxy at the entrance face of the crystal. This 1 mm layer generates

two boundaries: crystal-epoxy and epoxy-air. The first models a polished interface that

allows a photon to remain inside the crystal through specular reflection. The latter

is used if a photon leaves the crystal and always reflects the photon in the direction

that it came from. This behavior is achieved by using the backscatterconstant and

both dielectric metal and reflectivity properties of the UNIFIED model. Since the

retroreflective device is coupled to the crystal with optical grease, we modified the

refractive index of the epoxy to 1.4.

Considering all instances, the XY coordinates of the gamma source range from

−24 to 24 in 1 mm increments, so that the entire crystal is covered. Each instance has

an autogenerated seed for the random engine and simulates events at different depths

inside the crystal, according to its attenuation length. Several runs through the XY

range allow a proper crystal depth coverage. In this work, we simulated ∼ 8 M and

∼ 9 M events, yielding an average of 216 and 185 events/mm3, for each of the 15 and

the 20 mm thick detectors respectively.

3. Results

3.1. Network Training

All networks are trained for 20 epochs while their performance is monitored through the

validation dataset. This performance is shown in figure 5 as the absolute difference in

RMSE between validations. We set an early stopping condition checking for an increase

in RMSE between the i-th and the (i−2)-th validations (totalling 8 epochs of difference).

In our case, this condition was never triggered in the first 20 epochs of training for any

network.

Variation of RMSE decreases faster predicting XY than Z coordinates, as seen in

figures 5 (a) and (b) respectively. This shows potential improvement in extending our

epoch limit for Z coordinate predictions. However, as we show later in section 3.4, there
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Figure 5: Training convergence expressed

as the absolute difference in RMSE between

consecutive validation steps. Results correspond

to networks for all detector designs predicting

XY (a) and Z (b) coordinates.
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Figure 6: Accsel (10) within 1 mm as a function of hidden layers (left column) and total network

nodes (right column). Each row corresponds to a different detector design: DB (a) (e), DT (b) (f), DR

(c) (g), and DR20 (d) (h). Results of (10) for every group of configurations are represented as box and

whisker plots.

is an important region near the photosensors that cannot be properly determined due

to scintillation light sampling.

3.2. Hidden Layers and Number of Nodes

Each configuration in the search space defines the hidden layers and nodes of a triple

of networks (2) which are independently trained to predict each coordinate of the

interaction point. We rank each triple of networks f̂i to form the ensemble that will

later be used for the interaction prediction (5a). Assuming that all f̂i avoid large errors

as much as possible due to their optimization during training to minimize RMSE, we

are interested in including into the ensemble those f̂i that generate as many predictions

as possible close to the interaction point. Thus, the rank follows their Accsel (10) within

1 mm in the test dataset.

Results are summarized in figure 6 as a function of the number of layers and total

number of nodes. The number of layers and nodes used in the selected ensembles of

the four detector designs are shown in figure 7. The better-performing networks in our

search space have around 1400 nodes distributed into 6 layers.

Regardless of the notable differences on the four detector designs, their best
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Figure 7: Number of layers (a) and total number

of nodes (b) used in the networks of the selected

ensembles.
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Figure 8: Ensemble convergence with DB (a), DT (b), DR (c) and DR20 (d), represented as the

variation of the ensemble’s output as its number of networks increases. The variation shown at i

corresponds to the distances between the predictions with the best i − 1 networks and the predicted

points including the next better performing network i. Grayed area includes the variation of 90% of the

events (leaving out the 5% least and most varying predictions). Inner line corresponds to the average

variation.

configurations do not differ much in terms of total number of nodes and layers. However,

the Accsel (10) scores for each detector do vary between designs. On one hand, DB

and DT yield similar results. On the other hand, DR and DR20 show significant

differences. While DR is associated with the best results of all designs, DR20 shows

a remarkable decrease in accuracy. Moreover, when grouped by layers, the Accsel (10) of

DR20 converges after 4 layers, unlike the other detector designs. Figures 6 and 7 show

potential improvement using more than 6 layers for all of the other designs.

3.3. Network Ensemble Size

Figure 8 shows the convergence of the ensemble average (5a) as N increases in the four

studied detector designs. The convergence is represented by the distance between the

predictions of ensembles with i− 1 and i networks. These distances are obtained from

the first 2 × 105 events in each detector measurement. In each case, below the upper

bound are the lowest 95% differences predicting these events. For N = 20, 95% of

predictions change less than τ = 0.1 mm in all detectors.

3.4. Ensemble Testing

Once the ensemble is defined, its performance on predicting interaction coordinates is

tested. The aim of these tests is to estimate the error associated with the approximate

f̂ at different regions of the crystal. There are two sources of error at this stage:
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(a) (b)

(c)

Figure 9: Interaction coordinates of the test

dataset. Interactions are obtained from 49 × 49

sources located every 1 mm, from −24 to 24

in the XY directions, emitting gamma photons

perpendicular to the entrance face of the crystal.

This data correspond to DB , but the other designs

present similar results. Views correspond to an XY

histogram including all Z ∈ [0, 6] mm (a), an XY

histogram including all z > 6 mm (b), and an

XZ histogram including all Y ∈ [−3, 0] mm (c).

All histogram bins are 0.25 mm in width and

height. Figures 10-13, and 17-20 follow the same

representation.

a) from the networks that form the ensemble, i.e., f̂(I) is not a good approximate of

f(I).

b) from the detector design, i.e., there is no detectable difference between I1 and I2
corresponding to two different interaction points (x, y, z)1 and (x, y, z)2.

In general, errors of the type a) are due to a wide variety of reasons. However, with

this methodology, there could be two main causes: a.1) The training dataset does not

include a proper sampling of f ’s domain or image, i.e., does not include enough samples

of possible Is or does not cover interactions in some regions of the crystal, respectively.

In our case, this is prevented during the simulation of the training through the grid of

sources, size of training, and Monte Carlo randomness. a.2) The network does not have

sufficient nodes to approximate f(I). This is prevented through the search of different

configurations.

As an example of ground truth, figure 9 shows three views of the interaction

coordinates in the test dataset (corresponding to the simulation of the DB design,

but nearly identical to the rest of the detector designs considered). Views consist on

2D histograms of the interaction coordinates through XY and XZ dimensions. A

background of interactions is present due to the inclusion of Compton interactions in

the simulation. In the ideal case, the output of the ensembles (or any other positioning

algorithm) should be identical to figure 9.

Interactions predicted by the selected ensembles are shown in figures 10 for DB,

11 for DT , 12 for DR, and 13 for DR20 designs. These figures include an additional

histogram comparing the frequency of the simulated and predicted Z coordinates along

the depth of the crystal. This frequency should decay exponentially along the crystal

depth, reflecting the attenuation of the scintillator for 511 keV photons. Since in all

of the studied designs use LYSO, the exponential decay in frequency along Z should

maintain the same rate in all cases.

When comparing figure 9 (c) and figures 10-13 (d), we can observe a clustering of

the predicted positions (around the centers of the 12 photosensors) in the lower regions of
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Figure 10: Prediction of test dataset for DB .

(a), (b) and (d) follow the same representation

as figure 9. (c) shows an histogram of predicted

Z coordinates (blue) and Z labels (red). Gray

dashed line represents the photosensor plane.
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Figure 11: Prediction of test dataset for DT .

(a), (b) and (d) follow the same representation

as figure 9. (c) shows an histogram of predicted

Z coordinates (blue) and Z labels (red). Gray

dashed line represents the photosensor plane.
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Figure 12: Prediction of test dataset for DR.

(a), (b) and (d) follow the same representation

as figure 9. (c) shows an histogram of predicted

Z coordinates (blue) and Z labels (red). Gray

dashed line represents the photosensor plane.
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Figure 13: Prediction of test dataset for DR20.

(a), (b) and (d) follow the same representation

as figure 9. (c) shows an histogram of predicted

Z coordinates (blue) and Z labels (red). Gray

dashed line represents the photosensor plane.
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Figure 14: MAE of the test dataset for DB (a)(e), DT (b)(f), DR (c)(g), and DR20 (d)(h). MAE is

presented in ten contours corresponding to the legend on top of the figure.

figures 10-13 (d) (close to the photosensor plane). These errors are of type b), present in

all designs and caused by the sampling of the scintillation light. For a given photosensor

size, when an interaction occurs close enough to a photosensor, light measured by the rest

of photosensors is marginal or zero. This difference in magnitude of the measurement

of the photosensor below the interaction and the rest of the photosensors, makes nearby

interactions (over the same photosensor) indistinguishable. The response of f̂ is to

output the center of the photosensor, minimizing the RMSE. Figures 10-13 (c) show

the same error but in Z coordinate frequency near the photosensors in all designs.

Figures 10-13 (c) show a systematic underestimation of the Z near the last millimeter

before the entrance face of the crystal. While present in all designs, it is more significant

in the DT design (see figure 11 (c)).

There is also a systematic error in the XY edges of the crystal, noticeable when

comparing figures 9 (a) and (b), and figures 10-13 (a) and (b). It can be seen how the

first and last two rows and columns of sources are compressed towards the center of

the crystal. Despite seeming a type a) compression artifact, figures 10-13 (b) and (d)

images show that this compression stays constant along a wide range of Z. The reason

behind this error is again the scintillation light sampling. Those two rows and columns

occur past half of the first and last photosensor. Again, past that point, light measured

by most of photosensors is marginal compared to light measured by the photosensor

below the interaction. Thus, the response of f̂ is driven by the loss function, providing

the coordinate that minimizes the RMSE for all those indistinguishable inputs. An

amplified version of this effect can be seen on the corners of the crystal, in which the

difference between collected light by the different photosensors is even bigger. However,

in this last case, the design of the detector is relevant, due to the proximity of crystal
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Figure 15: Energies of the four array measurements (top row) with energies of the simulated test

dataset (bottom row). Each row correspond to a different design, namely, DB (a)(e), DR20 (b)(f),

DR (c)(g) and DT (d)(h). Red areas on left column correspond to the selected energy window for

measurements. Red areas on right column correspond to the energy windows for measurements applied

to the test dataset and are shown for reference.

faces that generate inner reflections. Specifically, DT (amongst the studied designs)

minimizes this corner effect.

Except for the previously described errors, the 1 mm spaced sources are

distinguishable along the entire crystal, and the exponential decay in frequency of the

Z coordinate matches the attenuation of the LYSO crystal and, thus, the simulation.

Figure 14 presents a summary of the MAE for each detector design, where errors near

photosensors, edges and corners are better seen. Additionally, figures 14 (e), (f), (g)

and (h) show a noticeable increase in MAE for z > 9 mm in all cases, and a general

increase in MAE when the geometry of the crystal is extended to 20 mm in depth.

Considering the previous results, and specially figures 10-13 (b), the trained ensembles

solve properly the positioning problem.

3.5. Ensemble Performance with Measured Data

Once the ensemble is tested, we determine its suitability for measured data, or

equivalently, we test if measured interactions are similar to simulated populations used

during training. For each design, we estimate the interaction positions of an array of

11× 11 collimated sources. Figure 15 shows the energy spectrum of each measurement

and test dataset (for reference). Each energy window has been obtained by fitting the

energy peak to a normal distribution, and defining lower and upper limits around its

mean µ as [µ − wµ, µ + wµ]. Specifically, for DB and DR, w = 0.25 and for DT and

DR20, w = 0.15.

Interaction positions for the measured arrays are summarized in figures 17-20,

following the representation of previous figures. We include the obtained FWHM after
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Figure 16: Sources included at each distance to the center regarding the

computation of the FWHM in figures 17-20 (d).

fitting each source to a Gaussian distribution, grouped by the distance of each source

to the center of the detector. The different groups of sources are illustrated in figure 16.

Since we lack of a ground truth for the measurements, frequencies of Z coordinate in

figures 17-20 (e), are compared to

Ae−0.082z
(

erf

(
b− z√

2σ

)
− erf

(
a− z√

2σ

))
, (15)

where 0.082 mm−1 is the attenuation coefficient of LYSO for 511 keV, a and b are the

limits for DOI measurement, and σ is proportional to the DOI resolution. We fixed

a = 1, b = 14 (19 in the case of DR20) and σ = 0.5, while we obtained a least squares

fit for A. Figures 17, 18 (e), corresponding to DB and DT , obtain similar results. Both

follow (15) closely, which in addition to figures 17, 18 (c), indicates good DOI prediction

capabilities.

In case of figures 19, 20 (e), corresponding to DR and DR20, there is a systematic

overestimation of the Z coordinate. This is represented as an increase in frequency

between [10, 15] and [15, 20] mm respectively. Considering that the conditions of

the measurement do not change from DB or DT , and the simulation definition of

the absorbent coating and photosensor coupling is identical to that on DB, this

overestimation of the Z coordinate must be due to differences between simulated and

physical behaviors of the retroreflective device. There is also a systematic error in the

Z coordinate shown in figure 19 (e) in frequencies between [5, 9] mm. Even though, the

photosensor coupling is identical in all four designs and simulation definition is almost

identical between DR and DR20 (only varying with the depth of the crystal), this defect

is only present in DR. Additionally, it was not detected in any of the 60 DR20 detectors

on the MindView system either. Thus, we attribute it to an unexpected behavior in the

particular detector used to implement the DR design.

Regarding XY coordinates, figure 21 compares the centers of the sources predicted

by the ensembles (obtained from fitting) and their real position. Unlike in the simulated

test dataset, DB and DT show different performance, obtaining respectively 11% and

45% of sources at least 1 mm away of their real position. The lower half of the DT

prediction contains most of the positioning error. Let the rows and columns of the

array be numbered from 1 to 11, top to bottom and left to right respectively. Rows

7, 8 and 9 suffer compression towards row 10 (which is closer to the edge) instead of

towards the center of the crystal. The same behavior can be observed in columns 8 and
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Figure 17: Prediction of an 11 × 11 array of

sources with DB (a) (b) (c), including FWHM

(d) and DOI frequency (e).
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Figure 18: Prediction of an 11 × 11 array of

sources with DT (a) (b) (c), including FWHM

(d) and DOI frequency (e).
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Figure 19: Prediction of an 11 × 11 array of

sources with DR (a) (b) (c), including FWHM

(d) and DOI frequency (e).

(a) (b)

(c)





1 2 3 4 5

1.0

1.5

2.0

2.5

3.0

3.5

Distance to center (row / column)

F
W

H
M

(m
m
)

(d)

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

Z HmmL

C
o

u
n

ts
´

1
0

3

(e)

Figure 20: Prediction of an 11 × 11 array of

sources with DR20 (a) (b) (c), including FWHM

(d) and DOI frequency (e).
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(a) (b) (c) (d)

Figure 21: Predicted arrays with DB (a), DT (b), DR (c) and DR20 (d). Each array has an overlay

with the fitted center of each predicted source (red dot) and a 2 mm radius circle centered at the real

position of the source. Circles are presented as green disks for predicted sources closer than 1 mm to

the real position, and as red circles otherwise.
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Figure 22: Normalized sum of the output of each row and column for DB (a) (b), and DT (c) (d). Gray

dashed lines show the sum corresponding to both simulated test datasets, while red lines correspond

to both array measurements.

9, without observable symmetry in second row and column. Moreover, this effect is not

present on the other detector designs.

Figure 22 shows total collected energy by rows and columns regarding DB and DT .

It compares the normalized sums of the outputs of simulation and measurement. Intra-

detector variability is shown as a mismatch between the output of rows and columns,

as well as between the relative values of their sums. For example, in figure 22 (a), rows

6 and 7 should present higher values. While DB shows a close match to the simulation,

DT has important differences in rows 7 − 12, but especially in columns 7 − 12. These

columns correspond to the Y coordinate in the lower part of figure 21 (b), which shows

the misplacements of sources. This suggests that the cause of the different performance

between DB and DT is related to an unexpected behavior in the DT detector.

Table 1 summarizes the results obtained from measurements and test datasets for

each detector design. Differences between physical and simulated results have a strong

influence in the obtained FWHM, with respect to the expected Accuracy based on the

test datasets. Results on interactions closer to the photosensors (collected from the

test datasets) show that neural networks can take advantage of inner reflections to

better estimate the interaction position in that range. Even though differences between

simulated and measured interactions notably influenced the results, the obtained

network ensembles show reasonable outputs. Specifically, in the case of DT , systematic
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Table 1: Ensemble performance for the scintillator designs. Accuracy (11) and MAE (8) correspond to

the test dataset. Average FWHM are obtained from fitting all sources in the measured arrays. Results

are divided in three blocks, the first three rows (bold) correspond to data where 6 < z while the two

middle rows correspond to data where z ≤ 6 mm. The last two rows account for all data.

Figure of merit DB DT DR DR20

Accuracy (11) % 68.7 67.5 72.1 63.6

MAE (8) mm 1.11 1.15 1.00 1.28

Average FWHM mm 2.02 2.37 2.11 2.29

Accuracy (11) % 56.7 59.2 59.6 53.5

MAE (8) mm 1.22 1.16 1.13 1.36

Accuracy (11) % 64.9 64.9 68.1 61.6

MAE (8) mm 1.15 1.15 1.04 1.30

deviations between 10-30% in energy on some channels had a moderate impact (< 2 mm)

in the prediction of the interaction positions.

3.6. Image Reconstruction using Network Ensembles Position Estimates

In this section we show that one trained ensemble can be used to estimate interaction

coordinates on any detector that follows the same design. Using data from the MindView

system, which uses 60 monolithic detectors with the DR20 design, we predict the

interaction coordinates in all its detectors with the previously analyzed DR20 network

ensemble. Predicted coordinates are serialized in a list mode file for reconstruction.

We compare reconstructed images from the MindView’s native positioning system (see

section 2) and the DR20 network ensemble. All image reconstructions were performed

using the open source CASToR (Merlin et al. 2018, Customizable and Advanced Software

for Tomographic Reconstruction (CASToR) 2017) platform with OSEM (6 iterations,

12 subsets), 1 mm3 voxels, with the Siddon projector and 2 mm Gaussian post-filtering.

Figure 23 shows reconstructed images from a Hoffman phantom. (a) and (d)

columns correspond to the DRO after applying a 2 mm Gaussian filtering. (b) and (e)

correspond to the ensemble and (c) and (f) columns to centrality based reconstructions.

Figure 24 shows line profiles through these images. The line profiles include the filtered

(black line) and original (gray area) DRO values. Included arrows point to cases in

which DR20 network ensemble leads to better peak to valley ratios. These profiles, show

that the improvements occur near fine structures, where the effect of parallax error

is best appreciated. Table 2 shows the obtained results with the metrics introduced in

section 2.2. While we observe a slightly better SSIM score, there are clear improvements

in SNR and CNR when considering the ensemble network reconstruction over the

centrality estimate.

We provide a similar example in figure 25, showing reconstructed images from a

patient, in order to show that the position estimate quality is maintained under more
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(a) (b) (c) (d) (e) (f)

Figure 23: Different slices from reconstructed images of a Hoffman phantom. Columns (a), (d)

correspond to the DRO, (b), (e) correspond to the DR20 ensemble, and (c), (f) to interaction position

determination based on centrality estimates. All images have been normalized by linear histogram

stretching with saturation of the 0.3% highest values.
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Figure 24: Line profiles of slices in figure 23, columns (a), (b) and (c), row 3 (left), and columns (d),

(e) and (f), row 1 (right). Grayed area represents the value of the original DRO, while black curve is

its profile after applying a 2 mm Gaussian filter.
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Figure 25: Different slices from reconstructed images of a patient. Top row corresponds to MP

RAGE MRI, central row to the DR20 ensemble, and bottom row corresponds to interaction position

determination based on centrality estimates.

Table 2: Quantitative metrics (12), (13) and (14) obtained from the DRO and phantom

reconstructions.

Positioning algorithm SNR (dB) CNR SSIM

Ensemble (DR20) 9.56 3.487 0.849

Centrality based 5.99 2.497 0.833

realistic conditions (patient involuntary movement, etc). Reconstruction parameters

and normalization procedures remain the same over all images. Top row of figure 25

shows a simultaneously acquired rapid gradient-echo (MP RAGE) MRI. Central and

bottom rows of figure 25 correspond to the ensemble network and centrality estimates

respectively. Again, visual inspection reveals better contrast with the ensemble network

in some fine details.

The MindView built-in positioning system calibrates each detector separately,

correcting for inter- and intra-detector variability. The calibration is conducted on

arrays of sources, which events are positioned by centrality estimates and corrected to

match the real positions in the array. However, to be able to separate and locate the

sources in the centrality estimates, these sources have to be sufficiently distant in the

array. Additionally, the behavior of the detector is interpolated between each source,

and at different DOIs. Specifically in this case, the behavior of the last 4 mm to the edge

of the detector is defined from the correction of a single source. Although the network

ensembles cannot correct for intra-detector variability, taking advantage of a Monte

Carlo generated training provides a better sampling of the detector behavior. Moreover,

Monte Carlo reference data offers simultaneous and accurate (x, y, z) information for
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each interaction.

4. Conclusions

Since 2010, there has been active development in the optical simulation capabilities

of the GATE platform, that led to the inclusion of measured surfaces obtained by

atomic force microscopy, among other platform capabilities. The combination of these

developments with current machine learning techniques leads to a robust and accurate

approach to obtain the position of interaction in monolithic detectors, with minimum

implementation effort and no required per-detector calibration.

In this work we propose a methodology to obtain such positioning estimator through

an ensemble of multilayer feedforward neural networks, trained with data generated

from an optical Monte Carlo simulation. Our proposed approach is designed to work in

general with a cuboid-shaped monolithic scintillator on top of an array of photosensors.

We provide simulation parameters for four different detector designs, varying in surface

treatment and size. Additionally, we propose an event generation setup and training

size. We describe an easy-to-implement, robust network architecture, which can be

completely built using popular machine learning frameworks, such as TensorFlow, with

minimum implementation effort. We propose an heuristic to find the set of best hyper-

parameters for a given design and form the ensemble of networks that estimates the

interaction position. We show the capability of the ensemble to solve the positioning

problem considering the inherent sampling problems of monolithic detectors. We test

the obtained ensembles with measurements from physical detectors to verify validity of

the simulated training. Finally, we use one of the proposed ensembles to estimate the

interaction positions in the MindView scanner, comparing the reconstructed images, to

verify the applicability of a single ensemble to 60 detectors (not involved in any step of

the training). Reconstructed images are compared to those obtained with the built-in

positioning system of the MindView scanner.

Results show that Monte Carlo training is valid for an ensemble to estimate

interaction positions, including DOI. Furthermore, despite deviations from the simulated

behavior due to intra-detector variability (with systematic deviations between 10-30%

in gain of several channels), the ensembles of networks provide a robust 3D positioning

output (with errors of < 2 mm). With the studied detectors, network ensembles resolve

arrays of sources with average FWHMs of 2-2.4 mm depending on the design. Regarding

the DOI, the ensembles show a robust output, being remarkably accurate for some

designs. Reconstructed images based on ensemble estimations show improved SNR,

CNR and SSIM when compared to those based on the MindView built-in more typical

positioning algorithm.
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