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Abstract

Nowadays, the detection, localisation and quantification of different kinds of features in an RGB

image (segmentation) is extremely helpful for e.g. process monitoring or customer product accep-

tance. In this article some of the most commonly used RGB image segmentation approaches are

compared in an orange quality control case-study. ANalysis Of VAriance (ANOVA) and Corre-

spondence Analysis (CA) are combined for determining their most relevant differences and high-

lighting their pros and cons.

Keywords: segmentation, colour information, textural information, graphs, Multivariate Image

Analysis (MIA)

1. Introduction

The quality evaluation of products and processes mostly depends on the identification of fea-

tures which are distinct from standard patterns. Nowadays, such an identification is more and

more often carried out by Computer Vision Systems (CVS) comparing images collected along

the production chain with reference ones. Nevertheless, if these references are not available, the

aforementioned quality assessment cannot be addressed by direct comparison or pattern recog-

nition. This is generally the case in e.g. fruit industry, whose products may exhibit completely
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different shapes, colours and/or defects even if collected in the same area or from the same tree.

Considering in addition that a single inspection line commonly controls about 9 tons of fruits per

hour flowing at a very high speed, the problem seems far from being simple to solve. For this

reason, CSV have had limited success and diffusion in this specific field, where Manual Visual

Inspection (MVI) still plays a predominant role. On the other hand, MVI clearly lacks objectivity

and is deeply influenced by the mood and/or the fatigue of the operators. Furthermore, it is biased

by both between- and within-inspector variability. Therefore, it is important to develop automatic

image processing techniques, capable of coping with these kinds of issues.

One of the first steps in image processing is the so-called segmentation. In the computer vision

field, segmentation is usually defined as the process of partitioning a digital image into multiple

segments (sets of pixels also known as super-pixels) and is aimed at distinguishing the different

objects or regions of interest present in a picture. More precisely, it permits to assign each one of

its pixels to a specific class or category so that those belonging to the same subgroup share certain

characteristics [1]. Such a task can be accomplished by numerous disparate methods, which are

commonly classified according to various criteria [2, 3], for instance whether they are supervised

(they take advantage on the a priori knowledge on the class-belonging of a specific set of pixels

for the assignation of new ones) or unsupervised (they look for clusters or groups of pixels, which

are not known beforehand) [4]. Here, a classification based on the nature of the information ex-

ploited for assigning each pixel to a specific class or region and on the data modelling approach is

proposed. Specifically, i) colour analysis-based, ii) texture analysis-based, iii) graph-based and iv)

Multivariate Image Analysis (MIA)-based techniques are distinguished.

The main objective of this article is to compare some of the segmentation strategies representative

of these four categories (see Table 1) and, concretely, determine which ones enable a correct iden-

tification of sound and green areas as well as of scale blemishes on the surface of several orange

samples. Such strategies, namely Nearest Centroid (NC), K-Means (K-M), Standard Deviation,

Range, Entropy, Felzenszwalb-Huttenlocher approach (F-H), Partial Least Squares Discriminant

Analysis (PLSDA), Kernel Partial Least Squares Discriminant Analysis (K-PLSDA), Q-statistic

and D-statistic, are probably the most popular, widespread and commonly used (in the forms and

configurations described in the following section) to tackle problems of this type [2, 16, 17] and
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can be found coded in many ready-to-use routines for programming suites like Matlab [18] and

R [19]. This study does, however, not aim at identifying which of them constitute the best seg-

mentation methods to be applied in fruit quality control case-studies, but is rather an attempt of

determining their most relevant differences and highlighting their pros and cons by means of clas-

sical statistical approaches, i.e. ANalysis Of VAriance (ANOVA) and Correspondence Analysis

(CA). As far as the authors are concerned no similar works have been reported in the scientific

literature before.

2. Methods

As detailed before, segmentation consists of assigning each pixel of an image to a specific

category or class, which defines its nature. In this case, pixels belonging to sound, green or

blemished orange peel areas are to be discriminated. This can be achieved according to different

classification rules, depending on the algorithmic procedure underlying the adopted methodology,

and exploiting different kinds of information that can be extracted directly from the picture.

2.1. Colour analysis-based segmentation techniques

These techniques directly deal with the three colour intensity values (red, green and blue) of

the pixels of the various images under study. These images are unfolded into two-dimensional

arrays so that each one of their rows contains the intensity values associated to a single specific

pixel and subsequently analysed as such [3].

2.1.1. Nearest Centroid (NC)

The Nearest Centroid (NC) classification, also known as Nearest Prototype or Rocchio clas-

sification, is a non-parametric approach usually exploited for pattern recognition purposes [5].

Unlabelled pixels are classified as belonging to the category to whose centroid (estimated from a

set of training data) their distance (here, euclidean) is minimum.

2.1.2. K-Means (K-M)

K-Means (K-M) is a vector quantisation algorithm, popular for unsupervised cluster analysis

[6]. It aims at partitioning all the pixels of an image into K classes in an iterative fashion:
4



1. The centroids of the K classes are initialised;

2. Every pixel of the image is assigned to the class with the nearest centroid;

3. The centroids of the K classes are recalculated after the classification step;

4. The procedure is repeated until a convergence criterion is met.

Clearly, there is no need of training data to carry out a segmentation by K-Mi.

2.2. Texture analysis-based segmentation techniques

Texture analysis provides information about pixel intensity changes within pre-defined spatial

domains [7]. In this work, the original RGB images are converted to grey-scale ones. Afterwards,

each new intensity value is substituted by a first-order statistic, derived from a neighbouring win-

dow surrounding its corresponding pixel and capturing the aforementioned local variabilityii. If an

unlabelled pixel is found to be characterised by a value of this first-order statistic within a partic-

ular interval, determined based on training data and typical of one of the considered classes, it is

assigned to such a category.

2.2.1. Standard deviation

Probably the best known index to perform a textural transform of RGB images is standard

deviation. Generally, it applies that the smoother (more homogeneous) the examined image area,

the lower its respective standard deviation values, and vice versa.

2.2.2. Range

As for standard deviation, also range permits to catch the textural information contained in

RGB images. Smooth textures (homogeneous image regions) usually result in lower range values

and vice versa.

2.2.3. Entropy

Entropy relates to the non-homogeneity of a scene [20]. It is estimated as:

E = −
∑
i∈H

pi log pi

∑
i

pi = 1 (1)

iEach image is handled separately and independently from the others.
iiSpecifically, 3 × 3 pixel windows were circumscribed to compute standard deviation, range and entropy.

5



being pi the relative frequency of the i-th intensity value in the neighbouring window of interest

and H its global intensity range.

Homogeneous image regions are known to feature low entropy, and vice versa.

2.3. Graph-based segmentation techniques

Graph-based segmentation techniques look at RGB images as kinds of networks, also known

as graphs, i.e. sets of edges connecting certain pairs of adjacent pixels (vertices or nodes). Each

one of these edges is associated to a weight, which is function of the dissimilarity between the

pixels it connects (e.g. the difference in their intensity, location or some other spatial attribute).

Segmentation is then addressed by finding a subgroup of meaningful edges, separating image re-

gions encompassing pixels with different properties. Several decision criteria can be taken into

account to achieve the identification of such a subgroup. Here, the algorithmic procedure pro-

posed by Felzenszwalb and Huttenlocher in [8] (F-H) is applied, which attains the selection of the

significant edge weights by adaptively assessing both pixel intensity differences across boundaries

(to be maximised) and intensity differences between neighbouring pixels within single delimited

areas (to be minimised)iii. Once performed a single segmentation per colour channel separately,

the three of them are intersected in order to achieve the final pixel discrimination.

2.4. Multivariate Image Analysis (MIA)-based segmentation techniques

Multivariate Image Analysis (MIA) stands for the study of the image-intrinsic information

through multivariate models. The basic principle of MIA is to unfold the investigated images into

a matrix, say X, whose row and column dimensions relate to the pixel mode and the colour and/or

texture mode, respectively, and analyse the resulting data structure by means of e.g. Principal

Component Analysis (PCA) [21] or Partial Least Squares regression (PLS) [22]. Details about the

various ways of accomplishing this unfolding stepiv are provided in [3].

iiiNot even this segmentation strategy requires training data.
ivHere, both colour and textural information were combined to conduct the comparison.

6



2.4.1. Partial Least Squares Discriminant Analysis (PLSDA)

Partial Least Squares Discriminant Analysis (PLSDA) [9, 10] is the direct extension of PLS,

developed for classification purposes: X is regressed via PLS on a dummy binary-coded response

matrix, Y, made up by a set of piled Z-dimensional row vectorsv, constructed so that, if their

corresponding pixels are members of the z-th class, they have a 1-value in their z-th entry and

0-values in all the other ones. Whenever new images are collected and unfolded, the a posteriori

probabilities that each one of their pixels belongs to each category are calculated. The assignation

is finally carried out according to the highest-probability rule.

2.4.2. Kernel Partial Least Squares Discriminant Analysis (K-PLSDA)

Especially when more than two classes of pixels are dealt with, their possible overlap may dra-

matically jeopardise the quality of the final PLSDA-based segmentation. One option to overcome

such an issue is resorting to a non-linear variant of PLSDA, Kernel Partial Least Squares Discrim-

inant Analysis (K-PLSDA). K-PLSDA first converts X through a specific transformation function

into a squared array, i.e. the so-called kernel matrix, which permits to map the original data onto a

new feature space, allowing possible non-linear relationships to be described in a linear way [23].

The transformation function may be of different types (linear, polynomial, gaussian etc.) and its

final form is commonly chosen in order to maximise the discriminant or predictive ability of the

fitted modelvi. The kernel matrix is then double-centred to preserve its symmetry [11, 12, 24] and

subjected to classical PLSDA.

2.4.3. Q- and D-statistic

Alternatively to PLSDA, PCA can be applied to every single subset of X (namely Xz), in-

cluding only the information associated to the pixels belonging to the z-th category, so that Z

vZ equals the number of categories to be discriminated.
viIn this case, several functions with a growing degree of non-linearity were tested: linear, 2nd-9th order polynomial

and Gaussian. Notice that the last one embraces a supplementary parameter, σ, which needs to be adjusted. Values

of σ varying from 0.5 (yielding an extremely non-linear transformation) to 5000 (yielding an approximately linear

transformation) were spanned.

7



independent class models are subsequently built. Thus, unlabelled pixels can be discriminated

according to two distance indices:

• Q-statistic, reflecting their perpendicular distance to each model hyperplane [13, 14];

• D-statistic, reflecting the distance from the origin of each model hyperplane to their projec-

tion onto it [13–15].

For a fair comparison, such pixels are assigned to the class, for whose model they show the lowest
Qz

Qz,95
or Dz

Dz,95
ratio, where Qz,95 and Dz,95 denote an empirical 95% confidence threshold for Q andD,

respectively, estimated from training data.

3. Dataset

30 RGB images of sweet oranges, collected from the Citrus Germplasm Bank at the Instituto

Valenciano de Investigaciones Agrarias, were recorded by a Canon EOS 550D digital camera with

a resolution of 0.0625 mm/pixel, installed in an inspection chamber (see Figure 1) internally illu-

minated by eight fluorescent tubes (OSRAM L 18W/965 BIOLUX, colour temperature = 6500 K,

colour rendering index > 90%).

The samples were collected at different ripening stages and, therefore, their colour varied from

green to orange depending on their maturity status. Most of them were also characterised by

particular dark spots, mainly generated by California red scale (Aonidiella aurantii), long mussel

scale (Lepidosaphes gloverii) and purple mussel scale (Lepidosaphe backii) infestations, which

Figure 1 - Image capturing computer vision system

8



Figure 2 - Details of 6 different orange images highlighting sound, green-coloured and blemished peel areas

depreciated their commercial value and whose detection is then of utmost importance from a qual-

ity control perspective. Hence, three distinctive features were observed: sound orange-coloured,

green-coloured and blemished peel areas (see Figure 2).

Except for K-M and Graphs, 3330 training pixels per each one of the aforementioned regions were

randomly selected from 5 images to establish the segmentation criteria or calibrate the segmenta-

tion/classification models. The potential of the single methods illustrated in the previous section

was evaluated by exploiting the remaining 25 test pictures.

4. Comparative study

Once determined the membership class of all the test pixels, the image segmentations led to

by the various adopted approaches were compared to reference ones manually elaborated by an

expert operator. Segmentation accuracy degree was assessed in terms of F − score, computed for

the n-th image and the z-th category as:

F − scoren,z = 2 ×
precisionn,z × recalln,z

precisionn,z + recalln,z
∀n = 1, 2, . . . , 25 ∀z = 1, 2, 3 (2)

being

precisionn,z =
TPn,z

TPn,z + FPn,z
(3)

9



recalln,z =
TPn,z

TPn,z + FNn,z
(4)

where TPn,z, FPn,z and FNn,z stand for True Positives (the number of pixels of the n-th image

correctly identified as belonging to the z-th category), False Positives (the number of pixels of

the n-th image mistakenly identified as belonging to the z-th category) and False Negatives (the

number of pixels of the n-th image mistakenly identified as not belonging to the z-th category),

respectively.

For every z-th class, statistically significant differences among the F-score indices associated to the

techniques under study and constituting measures of their general performance were detected by a

two-way ANalysis of VAriance (ANOVA) taking into account one fixed factor (i.e. segmentation

method) and one blocking factor (i.e. orange sample). For a more comprehensive overview of

their power, pros and cons, the contingency tables made up by the total number per class of True

Positives, True Negatives (TN, the number of pixels correctly identified as not belonging to the z-

th category), False Positives and False Negatives, resulting from the distinct methodologies, were

investigated by means of Correspondence Analysis (CA) [25], which is conceptually similar to

PCA, but was proposed for categorical rather than continuous data processing.

5. Results

Tables 2, 3 and 4 list the global values of TP, FP, FN, TN, precision, recall and F-score, re-

lated to the 25 test images, yielded by the different segmentation strategies for the sound peel area,

green peel area and surface blemishes class, respectively. As the effect of the two factors included

in the ANOVA models was found to be statistically significant (p−values � 0.05), the 95% Least

Significant Difference (LSD) intervals were calculated for each single considered category. They

are displayed in Figures 3a), 3b) and 3c)vii. Clearly, PLSDA and K-PLSDA outmatched the other

approaches under study (F-H was as effective as them only when detecting surface blemishes).

Colour analysis- (NC and K-M) and texture analysis-based techniques (Standard deviation, Range

and Entropy) were not able to satisfactorily identify green and blemished peel areas. NC worked

viiNotice that the LSD intervals are centred around the average F-scores calculated over the 25 test images, which

do not necessarily correspond to the global values shown in Tables 2, 3 and 4.
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Figure 3 - 95% Least Significant Difference (LSD) intervals resulting from the ANOVA models built on the F-score

indices yielded by the compared segmentation approaches for a) the sound peel area class, b) the green peel area class

and c) the surface blemishes class. The vertical dotted lines separate the different categories of methods (see Table 1)
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generally better than K-M while D-statistic always guaranteed a statistically significantly larger

F-score than Q-statistic. It is also important to notice that the outcomes associated to the surface

blemishes class are on average negatively biased: according to Table 4 most of the methods gen-

erated an acceptable quantity of TP and FN (high recall) but too many FP (low precision). This is

due to the extreme variability affecting the intensity of the pixels belonging to it.

By looking at the CA bi-plots in Figures 4a), 4b) and 4c), some additional insights can be gleaned.

As the two CA dimensions relate to TP/FN and TN/FP, respectively, the best segmentation strate-

gies can be found lying in the TP/TN quadrant (highlighted). This is always the case for both

PLSDA and K-PLSDA. In comparison with the other approaches, F-H produced a very large

number of FP for the sound and the green peel area categories, but not for the surface blemishes

one. That means F-H cannot adequately discriminate the pixels of the first two classes. Regarding

the surface blemishes, Q-statistic, D-statistic, NC and K-M delivered the highest number of FP.

Conversely, K-M returned a more considerable amount of FN than the other techniques for all the

three categories as well as Q-statistic and Range for the sound peel area class and NC for the green

peel area class.

6. Illustration case

The practical consequences of the previous results can be easily visualised by an illustrative

example. Figures 5, 6 and 7 show the segmentations accomplished manually and by the different

concerned methodologies for the sound peel areas, the green peel areas and the surface blemishes

of one of the 25 test images. In addition to what remarked before, it is worth pointing out that:

• although K-PLSDA is the only non-linear statistical technique applied here, a strict simi-

larity between it and classical (linear) PLSDA was observed. This is justified by the fact

that, for the former, an approximately linear kernel function (Gaussian with a σ-parameter

value around 500) was selected as the most appropriate to transform the analysed data struc-

ture, giving rise to a discrimination among the pixels of the three classes analogous to that

enabled by PLSDA. It is then possible to conclude that no strong non-linear relationships

needed to be modelled for a good classification, probably due to the limited number of han-
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Figure 4 - Correspondence Analysis (CA) bi-plots for a) the sound peel area class, b) the green peel area class and c)

the surface blemishes class. EV stands for Explained Variance. The TP/TN quadrant is highlighted
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Figure 5 - Sound peel area: segmentations accomplished a) manually (reference) and by b) NC, c) K-M, d) Standard

deviation, e) Range, f) Entropy, g) F-H, h) PLSDA, i) K-PLSDA, j) Q-statistic and k) D-statistic. White colour

identifies the pixels assigned to the concerned class
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Figure 6 - Green peel area: segmentations accomplished a) manually (reference) and by b) NC, c) K-M, d) Standard

deviation, e) Range, f) Entropy, g) F-H, h) PLSDA, i) K-PLSDA, j) Q-statistic and k) D-statistic. White colour

identifies the pixels assigned to the concerned class
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Figure 7 - Surface blemishes: segmentations accomplished a) manually (reference) and by b) NC, c) K-M, d) Standard

deviation, e) Range, f) Entropy, g) F-H, h) PLSDA, i) K-PLSDA, j) Q-statistic and k) D-statistic. White colour

identifies the pixels assigned to the concerned class
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dled categories;

• generally, K-M exhibited a similar segmentation performance to NC. However, across all

the test images, the three recognised clusters were not always corresponding to the same

pixel classes. I.e. in the various images the first cluster sometimes captured the sound

peel area category, sometimes the green peel area category and sometimes the blemished

area category. This is a consequence of the unsupervised nature of the iterative algorithmic

procedure K-M is based on, which makes the segmentation of series of different images

not univocal. That might constitute a critical issue when image segmentation has to be

performed automatically and sequentially. The reported outcomes also highlight this effect:

Figures 5c) and 6c) clearly show that in such an illustrative example the first and the second

cluster of pixels are inverted;

• solely for F-H sound and green peel areas could not be discriminated at all (Figures 5g) and

6g) are identical). This was found to be the main limitation of F-H and is the root cause of

the high amount of FP it led to;

• all the methods suffered from the same issue when dealing with the surface blemishes class:

too many pixels were incorrectly classified as belonging to it, confirming its rather large

internal variability, which prevented a more satisfactory segmentation.

• it can also be said that both the techniques which performed the best in this particular ap-

plication (i.e. PLSDA and K-PLSDA) are supervised. Notice this has to be looked at as a

circumscribed rather than general conclusion. In fact, in many other fields of interest (e.g.

remote sensing) that could easily not be the case.

7. Concluding remarks

A comprehensive comparative study among various segmentation methodologies (namely Near-

est Centroid, K-Means, Standard Deviation, Range, Entropy, Felzenszwalb-Huttenlocher approach,

Partial Least Squares Discriminant Analysis, Kernel Partial Least Squares Discriminant Analysis,

Q-statistic and D-statistic) was carried out to determine which strategies could enable a correct
20



discrimination of sound orange-coloured, green-coloured and blemished areas on the peel of sev-

eral orange samples. ANOVA-based LSD intervals highlighted that PLSDA and K-PLSDA out-

matched the other techniques in terms of F-score, a general measure of segmentation accuracy

and precision. Furthermore, CA permitted to more specifically appraise their pros and cons and

recognise in a very simple and direct graphical way those strategies yielding higher/lower than

average quantities of TP, FP, FN and TN, respectively. The final outcomes revealed that resorting

to both colour and textural information in combination with Multivariate Image Analysis (MIA)-

based segmentation approaches (i.e. PLSDA and K-PLSDA) might represent a suitable option

when dealing with complex problems like the one at hand in this specific case.
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