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Abstract

Two types of guidance and control designs are compared under a linear quadratic
formulation: a separated approach and an integrated one. Analysing the integrated
approach, two types of autopilot —guidance laws are explored: a single—loop and a
two—loop configuration. In both cases, there is a full feedback on the guidance loop.
However, the two—loop scheme presents an inner autopilot loop designed separately
from the outer guidance loop. It is shown that both integrated schemes achieve
identical end —game scenario performance if and only if the number of guidance
commands is identical to the number of controllers. Hence, the integrated two—loop
configuration is preferred since it ensures the inner stability of the airframe, whether
the guidance loop is active or not. It is also proven that the performance of the
integrated designs is higher than the one of the traditional separated approach. The
guidance laws are illustrated using an exo—atmospheric dual control missile model.
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Chapter 1

Introduction

1.1 Background and motivation

Historically, homing missiles relied on both better manoeuvrability strategies and
higher velocities over their targets in order to achieve interception. However, new
missions require the interceptor to overcome different types of threats that necessarily
amplify the requirements of the missile design.

Nowadays, missiles have to fly longer and faster. The design of an interceptor must
be improved significantly in order to be more effective and efficient when engaging and
destroying the adversary. As a result, it becomes mandatory to magnify the missile
aerodynamics and exploit different types of guidance and control configurations.

To this end, the usual guidance and control designs use a decoupled architecture.
This approach is generally done assuming that spectral separation holds. However,
the rapid variations that occur during the end —game phase indicate that separation
does not hold when it gets close to interception and this may result in instability.
Thereafter, the miss distance can be increased significantly.

On the other hand, the integrated guidance and control scheme facilitates the
level of synergy between the guidance and control functions. Accounting for the
coupling between the subsystems, an optimal combination will significantly enhance
the performance of the interceptor missiles, maximising the lethality.

Additionally, there are several considerations to be made with regard to the
missile’s architecture. Interceptors with aerodynamic control present either canard
or tail control configurations. However, an appropriate combination of canard and
tail control results in an optimum utilisation. This is due to the fact that both the
overshoot and settling problems of the canard —control configuration as well as the
non—minimum phase effect of the tail —control configuration are eliminated when
the dual configuration is used.

This is why this thesis presents a hybrid combination of a thrust vector controller
added to a nose jet device as an alternative to canard or tail control. In essence, a
thrust vector controller provides additional forces and moments to the missile and
quickly aligns the velocity vector. However, once the motor is entirely burned out,
only the tail control remains available.
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1.2 Research objectives

The purpose of this thesis is to assure the effectiveness of the integrated guidance
and control design over the traditional one using a dual —controlled missile. This
overall objective can be divided into five main areas of study, which are:

1. Description of the terminal or end — game phase, which is generally the
most critical one. In essence, a missile flight consists of three phases: boost,
mid —course and terminal. The complexity of each phase depends upon the
mission assigned to the missile. However, during the end — game engagement,
the missile is required to have a high degree of accuracy and it may be required
to manoeuvre to maximum capability.

2. Development of a dynamics model for a dual —controlled missile: Its
hybrid configuration (a nose jet device added to a thrust vector control missile)
is presented as an alternative to canard or tail control.

3. Research on the separated guidance and control approach: An optimal
guidance law is proposed in order to formulate a two—loop guidance law for
a dual control missile. Furthermore, an evaluation and comparison of the
performance of the separated guidance law versus the integrated laws is carried
out.

4. Research on the integrated guidance and control approach: It ac-
counts for the coupling between the flight control and guidance functions. The
hypothesis of spectral separation between the subsystems is no longer valid. A
comparative analysis of the integrated single —loop scheme versus the integrated
two—loop scheme is performed. In the latter, two different autopilots schemes
are explored.

5. Autopilot design for the integrated two —loop scheme: Modern control
systems require multiple controllers and multiple terminal costs or objectives
in order to meet the goal that is to achieve small miss distances.

As a result, the autopilot will be illustrated using two different autopilot
schemes:

5.1. Single —input autopilot design: The guidance law issues an acceler-
ation command, which is the input to the autopilot. An appropriate
vectorial control law is used to divide the acceleration command into two
equivalent signals.

5.2. Multi—input autopilot design: The guidance law issues a 2D vector
aiming to control each controller individually.
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1.3 An overview of the thesis

This thesis is organised in seven different chapters, briefly described below, plus
auxiliary material enclosed in the appendices. The structure appears as follows:

Chapter 1: Introduction. Exploration of the challenges in the interceptor’s
design due to highly manoeuvrable threats. The thesis objectives are also
described here, in addition to a brief summary of each chapter and its contri-
butions.

Chapter 2: Literature review. This chapter presents a literature review
based on the research objectives. In addition, it introduces the dual —controlled
missile as the future alternative after reviewing the limitations of both canard
and tail control configurations.

Chapter 3: Problem formulation. The design assumptions are provided
in this chapter; followed by a schematic view of the end —game engagement
scenario.

Chapter 4: Autopilot —guidance design. This chapter provides the gen-
eral form of the different guidance laws schemes studied: a separated two—loop
autopilot — guidance design, an integrated single —loop guidance design and
an integrated two—loop autopilot—guidance design. A theorem regarding
a necessary condition to achieve the same performance for both integrated
schemes is also presented.

Chapter 5: Case study. Formulation of the dynamic model of a dual—
controlled exo—atmospheric missile with both nose and tail controllers; followed
by the end — game engagement scenario parameters and the kinematic equations.
Moreover, the guidance law schemes provided in the previous chapter are applied
to the DAC missile.

Chapter 6: Simulation results. The separated two—loop autopilot guid-
ance law is compared to the integrated guidance law via a Pareto front. Addi-
tionally, the integrated single —loop design is also compared to the integrated
two —loop design with the help of a Pareto front and sample runs. In the latter
case, the study is carried out using two different autopilot schemes that vary
in function of the number of inputs.

Chapter 7: Conclusions and future work. Presentation of the thesis
conclusions and further recommendations.

References.

Appendix A: Theorem proof. Illustration of the proof of a theorem presen-
ted in Section 4.5. This theorem ensures that, under given conditions, the
integrated single —loop multi—input scheme and the integrated two—loop multi—
input scheme achieve identical end —game performance.
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e Appendix B: Matlab® code. This chapter encompasses all the Matlab
files used to formulate the different guidance law schemes in addition to several
functions required to perform the analysis.

e Appendix C: Simulink® model. Presentation of the two autopilot schemes
for the two—loop case along with the diagrams of the separated autopilot —
guidance design, the integrated single—loop guidance design and the integrated
two —loop autopilot —guidance design.



Chapter 2

Literature review

2.1 Introduction

The purpose of this chapter is to review the literature in relation to the research
objectives listed in Section 1.2. Therefore, the limitations of both canard and tail
control configurations are briefly described in order to introduce the dual —controlled
missile as the future alternative.

On the other hand, the literature review is focused on clarifying how the dual
control problem has been formulated in former studies. For that purpose, research
on both the traditional guidance and control approach and the integrated one is
carried out in Sections 2.3 and 2.4, respectively.

2.2 Dual control missiles

There are several considerations to be made with regard to the latest interceptor
architectures. Firstly, missiles with aerodynamic control are capable of varying
their trajectory by deflecting movable fins in order to generate lateral acceleration
(normal to the missile longitudinal axis). These interceptors present either canard or
tail control configurations: a canard control interceptor deflects its forward control
surfaces to manoeuvre, whereas a tail —controlled one acts in a similar way on its
rear control surfaces instead.

Canard control configurations are commonly used for manoeuvrability purposes
in case of short —range air —to—air missiles; whereas tail — controlled interceptors are
effective when the missiles need to make initial sharp turns since they are capable of
saturating at high angles of attack. However, the latter system generates an initial
small lift in the direction opposite to the main lift, which results in a response delay.
This non—minimum phase effect is due to a zero in the right half s—plane of the
corresponding linear transfer function and its characteristics represent a significant
challenge. As a result of this, authors in [6] proved that a canard configuration
provides a higher performance than a tail control one.

Table 2.1 summarises the advantages and disadvantages of both configurations.
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Advantages Disadvantages
(1) Higher lift at small angles of (1) Saturation at low angles of at-
attack. (2) Higher moment arm tack. (2) Interaction of the vor-
due to deflection of the flow in the tices created by the forward con-
rear surfaces. (3) Easier to manu- trol surfaces with the tail. (3)
Canard

Tail

facture. (4) Easier to modify the
design. (5) More efficient design of
the control and the seeker systems
at the missile ogive.

(1) Low aerodynamic induced
drag. (2) Low induced rolling mo-
ment. (3) High effectivity at high
angles of attack. (4) Easy deflec-
tion of the control surfaces used
to control the roll channel.

Oscillations are present in the re-
sponse. (4) Long settling time re-
quired. (5) Loss of stability at
higher velocities.

(1) Smaller trim lift. (2) Delay
in the response (non-—minimum
phase effect). (3) Compromise
between manoeuvrability and sta-
bility. (4) Inefficient implementa-
tion of the control system.

Table 2.1: Comparison of canard and tail control configurations.

The table suggests that both configurations are complementary, and the optimum
utilisation could be an appropriate combination of canard and tail control.

As a matter of fact, authors in [18] achieved promising results for a dual control
missile autopilot using linear optimal control techniques. In this study, the missile
was considered to operate in divert mode, where both controls are deflected in the
same direction (Figure 2.1). Therefore, opposite directions of canard and tail controls
were not considered.

Figure 2.1: Dual control and divert mode for a missile with movable
forward and rear controls (taken from [40]).

The results obtained in [18] are shown in Figures 2.2 and 2.3, where the closed —loop
response of the autopilot for the dual configuration showed better performance than
the canard —only or tail —only configurations. It shows that both the overshoot and
settling problems of the canard —control configuration as well as the non —minimum
phase effect of the tail —control configuration are eliminated.
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Acceleration vs. Time
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Figure 2.2: Acceleration vs. time for canard, tail, and both control
configurations [18].

Pitch Rate vs. Time
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Figure 2.3: Pitch rate vs. time for canard, tail, and both control
configurations [18].
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Also, from Figure 2.3, it can be appreciated that the missile operates in divert mode,
as already mentioned above. As a result of this, the interceptor’s lift increases and
rotations are minor in comparison with the more traditional approaches. However,
dual control missiles operating in divert mode struggle to achieve high angles of
attack or high levels of lateral acceleration. Hence, divert mode is typically used for
small corrections right before the engagement.

To sum up, integrating both types of control does really enhance the performance
of the missile. This is why this thesis uses a dual control missile. In particular,
a hybrid combination of a thrust vector controller added to a nose jet device is
used. This missile quickly aligns the velocity vector since the thrust vector controller
provides additional forces and moments to the interceptor. However, once the motor
is entirely burned out, only the tail control remains available.

Additionally, this thesis uses an exo—atmospheric thrust vector controller missile
since the aerodynamic forces can be considered to be negligible.

Such missiles are primarily used in the following engagement scenarios:

1. Surface—to—air exo—atmospheric missions. The targets are mainly strategic
ballistic missiles operating in the end —game phase and at the high end of the
atmosphere.

2. Air—to—air endo—atmospheric tail attack defence; since tail aerodynamic
control may not always be sufficient to achieve interception.

3. Ground —to—air endo—atmospheric defence. In this case, the thrust vector
control provides manoeuvring capability after launching the missile when the
dynamic pressure is low.

Y

The most popular hybrid application is shown in Figure 2.4. It is a Jet Vanes
design known as Sidewinder 9—X. Its actuator was used to deflect both control
surfaces resulting in an increase of the interceptor’s reaction capability. However,
the interceptor’s initial non—minimum phase effect was also amplified.

)<
-

Figure 2.4: Aim 9-X Sidewinder.

2.3 Separated guidance and control architecture

Figure 2.5 represents the guidance and control loop for an interceptor missile with a
traditional decoupled architecture. This architecture separates the guidance from
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the flight control function, presented below in two consecutive blocks in the figure.
The aim of the given guidance and control loop is to achieve minimum miss distance.

Target
Dynamics
xTr,Tr
Tpr, T +
M, LM /f —\
-\
0 Ve Lime_—l,o—go
Estimate
n Guidance
Ty = f(xg,n4a) nk
Missile
Translational
Dynamic
Vi
Autopilot
To = f(wﬂ-') wsd)
a0
Missile FinServos
Rotational o £, = Flay) ~— Unmodeled dynamics T,
Dynamic N = =

Figure 2.5: Schematic view of a separated autopilot —guidance approach
(taken from [40]).

Here, is a short description of the guidance and flight control functions. First, the
guidance block takes the calculation of the acceleration command (n%) in real time
and on board of the missile. This acceleration command is based on both the
engagement kinematic equations and the missile dynamics.

Then, the autopilot block transforms the acceleration command (nk) into an
appropriate missile’s response (z5,). In other words, the autopilot is a feedback loop
itself since its purpose is to monitor the achieved acceleration (n?) and to generate
the appropriate fin deflections [14]. The biggest delay introduced in the guidance
and control loop is due to the autopilot’s initial time response.

Nowadays, the great majority of interceptor missiles use a variant of proportional
navigation. According to [4], a proportional navigation approach has been proved
to be optimal for non —manoeuvring targets and missiles with ideal dynamics. But
on the other hand, an augmented proportional navigation is the most frequently
used approach when the target performs a constant manoeuvre; whereas an optimal
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guidance law is implemented when the missile is represented by a first —order dynamic
system [3, 18, 21].

Former research has focused on the formulation of optimal guidance laws for the
dual - controlled missile. Levy et al., in [15], provided a solution to the end —game
engagement scenario linearised about the initial LOS for a separated two—loop
autopilot —guidance design. However, this approach did not predict the missile’s
response accurately since it was designed based on a first —order autopilot model. As
a result, the separated approach did not issue an appropriate guidance command and
its performance was proven to be inferior than the one of the integrated approach.

2.4 Integrated guidance and control architecture

Figure 2.6 presents the integrated approach in a schematic way, where the control
input both guides the missile and stabilises all the internal states of the interceptor.
The integrated autopilot —guidance scheme is a finite —horizon control problem that
depends on the time remaining until interception (fg,).

Target,
Dynamics

LT, LT

mada
=)

rrm, Ve time-to-go
Estimate

— g

Missile Integrated
Dynamic &r = f(xr, ©s,) nr

Tsy

FinServos
Iy Ty, = .f (Esa)

«~— Unmodeled dynamics, T,

Figure 2.6: Schematic view of an integrated autopilot—guidance ap-
proach (taken from [40]).

Exploiting the coupling that exists between the guidance and flight control subsystems
improves the performance of the interceptor. This idea of modifying the scheme
presented in Figure 2.5 combining both subsystems is not new. In fact, a large
amount of research has been carried out over the last 30 years in relation to this
topic.
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According to [14], the term ‘integrated guidance law’ has been used in the
scientific literature in two different meanings. In its first meaning, ‘integrated’” means
a single —loop guidance scheme that directly generates the control deflections, having
a full -state feedback [12, 17, 21, 22, 30]. However, in its second meaning, the term
‘integrated” means having an inner autopilot loop designed apart from the outer
guidance loop, but also with a full -state feedback [32].

Starting from the basic definitions, an integrated single —loop guidance law is
capable of ensuring the interception of the target as well as the inner stability of
the airframe. An integrated two—loop autopilot —guidance law can be defined as
a two—loop guidance and control system in which the design includes both the
engagement kinematics and the missile dynamics.

Authors in [12, 16, 27, 28, 29, 30] have investigated the solution to the integrated
single—loop and two—loop guidance—autopilot for dual control missiles. Table 2.2
summarises the numerous studies concerning this topic.

Reference Aerodynamic model G&C Control method

[12] Constant coefficients ~ IGA SMC
[16] Constant coefficients ~ IGA LQR
[27] Transfer functions IGA LQD
[28] Transfer functions IGA LQD
[29] Transfer functions IGA LQD
[30] Constant coefficients ~ IGA SMC
[33] Constant coefficients ~ IGA SMC

Table 2.2: References on DAC missile guidance.

Shima et al., in [28], derived a differential game guidance law taking into account the
controllers” bounds. It was proven that the canard channel should predominate over
the tail’s channel in order to enhance the interceptor’s performance. The treatment
of the bounds was done both directly [28], and indirectly through weighting factors
in the cost index [29].

In the latter cases, the studies were focused on exo—atmospheric hybrid missiles
but the results are extensive to DAC missiles. Figure 2.7 presents the aerodynamic
model used in this research, where both control channels are represented by linear
transfer functions. It can be seen that the guidance law directly introduces the
commands to the canard and tail control channels.

Integrating the guidance and the flight control systems can also be achieved by
using the sliding mode control technique. Shima et al., in [30], applied the sliding
mode control method to derive an integrated single—loop guidance law for a dual
control missile. The interceptor’s model was based on two control surfaces and a
single terminal cost. The objective was to minimise a quadratic cost function given
that there was a penalty imposed by the miss distance.

The SMC methodology was also used by Gutman and co—workers in [9], where
the use of an additional controller and the need to derive two sliding manifolds
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ensured a higher performance of the interceptor.

In [33], back —stepping and high —order sliding mode control techniques were used
in an integrated two—loop guidance—autopilot architecture. The inner loop was
constrained to track the LOS rate command in the presence of uncertainties; whereas
the purpose of the outer guidance loop was to the maintain the sliding surface close
to zero.

Flight contral

u | l+s7

Figure 2.7: Dual control missile model [29].

Furthermore, it is valuable to briefly consider the approaches taken in several
research studies with regard to canard —only configurations, since these approaches
are extensive to dual control missiles. Besides, a canard —only configuration may be
preferred over a dual —controlled one in research such as [18]. Hence, it is essential
to take into consideration these approaches. Table 2.3 reviews the literature on the
subject.

Reference Aerodynamic model G&C Control method

2] Constant coefficients ~ IGA OGL
6] Transfer functions IGA LQD
9] Transfer functions IGA LQD
[12] Transfer functions IGA SMC
[15] Transfer functions IGA LQD
[17] Transfer functions IGA LQR
[21] Constant coefficients ~ IGA LQD
[22] Transfer functions IGA TDC

Table 2.3: References on canard —control missile guidance.

Firstly, in [2], a variety of proportional navigation guidance laws were obtained in
a closed —form solution. The transverse acceleration command was combined with
the dynamics of the airframe in order to derive an autopilot control law. Park and
co—workers, on the other hand, derived a time —delay system in [22] aiming to design
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an integrated single—loop scheme. In this case, the guidance law depended on the
controller’s sampling time.

Menon and Ohlmeyer [17] implemented the feedback linearisation technique
combined with a linear control design method to derive the pseudo controller variable
in an integrated single—loop guidance scheme. The transformation of the non—
linear system into a linear, time —invariant one was achieved by differentiating the
state —space equations.

Palumbo and co—workers [21] implemented an integrated single—loop design
formulating the problem as a finite —horizon dynamic game and using partial —state
information. The goal was to minimise a given performance index under the worst
engagement scenario (target manoeuvre and measurement disturbances).

Shima et al. [15] demonstrated that the integrated single—loop and two—lop
scheme achieved the same performance for a single —input single —output system (a
single guidance command and terminal cost).

Finally, in [6], Gutman used the SMC technique to derive a canard configur-
ation missile and demonstrate that a canard—only configuration provided better
performance than the tail—only configuration. The sliding manifold was established
by a zero effort miss term obtained from the differential game formulation. The
same methodology was used by Shima et al., in [12], in order to derive an integrated
single —loop guidance law for a canard control missile, where the objective was to
minimise a quadratic cost function.

2.5 Conclusions

The latest research shows that the most frequently used methods to design autopilots
for dual control missiles have been the non—linear second—order sliding mode
one [12, 13, 33] in addition to the non—linear State Dependent Riccati Equation
[4, 7, 37]. As a matter of fact, from the revision of MIMO non—linear methods,
SDRE techniques emerge as the most suitable ones since these techniques are capable
of handling the non —minimum phase effect of tail configurations.

On the other hand, linear control techniques including linear quadratic tracking
[1, 18] or proportional plus integral optimal regulators [1] have also been widely
presented in the literature.

As a matter of fact, a linear quadratic formulation is used in this thesis to
design the autopilot for a dual control missile. The main purpose is to demonstrate
the efficiency of integrated guidance approaches versus traditional ones, since the
integrated approach is still being challenged in view of the fact that some research
proves that it is not capable of providing any improvement in the performance versus
a two—loop design in an idealised engagement scenario [16].

In order to address this challenge, this thesis deals with pitch control but does not
address roll control. Additionally, the aerodynamic cross—control coupling effects
due to interferences between the canard and the tail, and the effect of noises or
radome errors are not analysed.






Chapter 3

Problem formulation

3.1 Introduction

This chapter describes the design assumptions and the linearised end — game geometry
used for the analysis of the guidance laws. The scenario presented is based on a
perfect information end —game scenario between a missile and a manoeuvring target.
It is assumed that all missile and guidance variables are available for control feedback
and are noise —free.

Following the design assumptions and the interception scenario description, the
set of linear equations of motion is detailed and the theoretical solution framework
to be used is summarised.

3.2 Design assumptions

The missile model and guidance laws are formulated based on the following assump-
tions:

1. It is considered a skid —to —turn roll —stabilised missile. The three — dimensional
motion of such missile can be interpreted separating its motion into two
perpendicular channels since the pitch and yaw channels can be treated as
an independent two—dimensional problem. Therefore, only planar motion is
considered.

2. Both the pursuer missile and the evasive target have linear dynamics.
3. Also both the pursuer missile and the evasive target have constant speeds.

4. Tt is assumed that perfect information of the future target’s manoeuvre strategy
is known and that it performs a constant manoeuvre.

agp = 0 (3.1)
5. The plant disturbance is given to be zero.

15
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6. The missile’s and target’s deviations from the collision triangle are negligible
during the end —game phase. In this manner, the requirement on the impact
angle is satisfied and, consequently, the relative end — game trajectory can be
linearised about the initial line of sight (LOS).

3.3 End-—game scenario description

The Figure 3.1 presents a schematic diagram of the planar engagement scenario. In
this figure, the Cartesian reference frames are found to be X1p — O1p — Z1p. It can
be seen that the X axis is parallel to the initial line of sight (LOS,) and the Z axis
is aligned to the relative displacement between the adversaries (y). In other words,
the Z axis is perpendicular to the initial LOS.

().!p

VAT VA

Figure 3.1: Planar engagement scenario.

In the schematic diagram, two subscripts can be found. These subscripts P and F,
respectively represent the pursuing missile and the evading target. V' denotes the
speed whereas a represents the acceleration. Thus, apy and agy are respectively the
pursuer and evader acceleration normal to the initial LOS. Additionally, v represents
the path angle.

Furthermore, r denotes the range between the missile and the target. The angle
between the LOS and the X;r axis is \. Thus, Ay represents the angle between
the initial LOS and the X;r axis. Finally, the variable y represents the relative
displacement between the missile and the target normal to the initial line of sight.

The pursuer’s and evader’s accelerations normal to LOS, are:
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apy = ap COS (’YPo - )\0)

apny = ap cos (Yeo + o)

On the other hand, considering A+, is the impact angle error:

Ave = Y5 +7P — Ve

Hence, the kinematics equation can be written as follows:
Y = apn —apn

AY. = Y +9p

where
. _ Aag
YE = Vs
. ap
TP = Vp
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(3.7)

(3.8)

Furthermore, we have assumed that the target performs a constant manoeuvre and
that perfect information of the future target’s manoeuvre strategy is known. These

assumptions imply:

3.4 Linear equations of motion

(3.9)

There are several equations of motion, and these equations can be divided into three
types such as the kinematics or guidance equations, the equations of dynamics and

the equations of servo model.

1. Kinematic or guidance equations. The guidance state vector contains the kin-
ematic states of the engagement scenario. It includes the relative displacement
between the missile and the target, the separation rate, the evader’s normal

acceleration and the impact angle error.

XG GR”GXI

(3.10)

2. Dynamic equations. By definition the dynamic state vector contains the
dynamic states of the engagement scenario. For instance, the missile body

angle and the missile body angle rate.
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xp € R"P*! (3.11)

3. Servo model equations. The equations of motion take into account the servo
dynamics. In this manner, the nose and tail controller deflections are included
in the servo state vector.

xg € R™s*! (3.12)

As it happens the equations of dynamics are coupled with the equations of servo
model, but the reverse is not possible. Therefore:

] =L - s o

In the above given expression, App € R"?*"> Apg € R™ *™ and Ag € R"s*"s,
Note that @ is the input provided to the servo and [0] is a zero matrix of appropriate
dimensions (ng X np).

The set of kinematic equations is given by:

XG
XG = |:AGG AGD Ags] XD (314)

Xs

At the end, these equations can be summarised and there the general set of equations
can be found and presented as following:

Age Agp Ags | |[Xc

Xxp| = | [0] App Aps| [Xp| + Hgﬂ i (3.15)
Xg 0] [0] Ag | |xs
where
T
X = [XG XD xs} (3.16)
Ace Acp Acgs
F = 0] App Aps (3.17)
0] [0] As
0
G- {[ ]} (3.18)
Bs
The general set of equations (x = Fx + Gu) is time—varying. However, for

simplicity, the time dependency is not explicitly written.
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3.5 Conclusions

This chapter showcases a perfect information end —game scenario between a missile
and a manoeuvring target as a two—dimensional problem. Furthermore, the for-
mulation of the guidance laws is based on the assumptions of linear dynamics and
constant speed for both adversaries; and a relative end —game trajectory linearised
about the initial LOS.

In addition, the linear equations of motion have been introduced, taking into
account the kinematic states of the engagement scenario (y, y, apy and A~.); the
dynamic states (f and ) and both controller’s deflections (4, and ;).

In later chapters different types of autopilot —guidance schemes for multi—input
single —output missile systems are presented. The guidance laws are exemplified
using a dual —controlled missile.






Chapter 4

Autopilot —guidance design

4.1 Introduction

This chapter provides the separated two —loop autopilot — guidance law, the integrated
single —loop guidance law and the integrated two—loop autopilot —guidance law. In
addition, a theorem is presented concerning a condition for achieving the same
performance for the integrated single—loop design and the integrated two—loop
design.

Note that the formulation of the guidance laws presented in this chapter as well as
the theorem are valid for both linear quadratic single—input single —output systems
and linear quadratic multi —input multi—output systems.

4.2 Separated two—loop autopilot —guidance law

Traditional missile guidance laws are designed independently of the autopilot. In
its most basic form, the guidance law during the end —game phase requires that
the missile generates an acceleration perpendicular to the speed’s missile. This
acceleration is equal in module to:

u = NVyA (4.1)

where N’ is the navigation constant and A is the angle rate between the X;p axis
and the LOS.

Nevertheless, it is well -known that usual derived guidance laws, such as propor-
tional navigation, are highly effective when the target has less manoeuvre capability.
As targets increase their capabilities, the missile requires a more sophisticated
guidance law.

In order to address this challenge, a guidance law using linear — quadratic optimal
control theory is derived to obtain an analytic feedback solution. In general, optimal
control techniques optimise the missile performance using a cost function.

21
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The linear quadratic optimisation problem is formulated as [15]:

min J (x(to), u(to), to) = x’ (t¢) Qpx (tg) + / ' u’ (t)Ru(t) dt (4.2)

u(t) to

subject to:
x = Ax+ Bu (4.3)

In other words, the objective is to find a minimum control u (t) during the time
interval [to, t¢] that minimises the quadratic cost function of the final relative dis-
placement between the pursuing missile and the evading target and subject to the
specified dynamic constraints.

The plant will be designed using the decoupled guidance and control architecture
shown in Figure 4.1.

AEN 4+ < 1 1] Y
— p Autopilot
apn ¥ Guidance u X

- -
aEN aw e TT, Ta o1 -
- Law :.‘:eervn | IAn-fra,mel
apn, Model,  Dynamics)
>
L€

Figure 4.1: Block diagram of a separated two—loop autopilot — guidance
law [15].

The outer guidance loop is stated as a solution of the finite —horizon control problem.
Therefore, it is designed assuming a simplified low —order model of the closed —loop
autopilot dynamics. The inner autopilot loop is treated as a solution of the infinite —
horizon control problem, designed to follow the guidance acceleration commands.
The problem is stated in a general two—dimensional form.

The separated guidance law is based on a low —order autopilot dynamics model.
However, it has to be taken into account that when using ideal or first —order
approximation of the autopilot dynamics, the airframe response isn’t described
accurately. This implies a deterioration of the end — game performance.

The formulation of the guidance law based on linear —quadratic optimal control
and a low —order approximation of the autopilot is presented further in Section 5.6.

4.3 Integrated single —loop guidance law

This section formulates the guidance law’s optimisation problem for the integrated
single —loop scheme. The diagram is presented in Figure 4.2. It can be clearly seen
that the guidance law is directly related to the dynamics of the airframe. As a
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result of this, the information of the internal states of the missile can be used by the
guidance law.

agN + 1 ! Y
5 8
_j /f. . 1 - 3
apN Y Guidance| u Servo 4 Airframe X

AEN_|  Taw * Model *| Dynamics
X

Figure 4.2: Block diagram of an integrated single —loop guidance law
[15].

I
=1

 J

[C =
[~

The guidance law is defined as a solution to the finite —time control problem. Different
types of cost functions can be applied in order to achieve the control requirements.
The quadratic cost function can be minimised and the expression is given here below:

min J = x7 (t¢) Qg x (t) + /tf u’ (t)Ru(t) dt (4.4)

u(t) to

The optimal controller is also known as a linear feedback law and the expression is
given by:

=1 =-R!'GTPx (4.5)
Substituting Equation 4.5 into Equation 3.15:

x=[F-GR'G"P] x(t) (4.6)
where P is known as the solution to the differential Riccati equation.

~P=PF+F P-PGAR'GLP+Q (4.7)

P (tr) = Q; (4.8)

4.4 Integrated two—loop autopilot —guidance
law

In the two—loop design approach, the guidance system and the autopilot are designed
individually as shown in Figure 4.3.

Here the input to the servo is no longer the guidance command as shown in
Figure 4.2, but instead it is an equivalent controller as a result of the inner autopilot
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loop. It can be described with the help of the following terms:

u=C(u+up) (4.9)
TEN 4 ' . !; Y : Servo Model & Airframe Dynamics
a8 8 -
lapn Y » Guidance *p Ap *p o] | x
apN A= 5 = s ® >
Nl Law Xg 0] | Ag *s Bg

Figure 4.3: Block diagram of an integrated two-—loop autopilot—
guidance law [15].

Another formulation of the controller equation, equivalent to the previous one is:

ﬁ:é(u+uA):é(u—[kD ks] [XDD (4.10)
Xs
where kp € R™&éX"p kg € R™¢*"s and uy € R™¢*!. The input to the missile’s
autopilot is @ € R™*! where C € R™*m¢,
Hence the integration of the cost function can be represented by a function of a.
Therefore, the following expression:

J :XT(tf) QfX(tf>+/tfﬁT<T)Rﬁ(T) dr (411)

And substituting Equation 4.10 in Equations 3.15 — 3.18 provides the resulting set
of equations:

X = FAX+GAU (412)
T T T1T
x = [x§ x5 x3] (4.13)
where
Acc Acp Ags
Fa = | [0] App Aps (4.14)

0] -BsCkp Ag—BgCks

on - [y0] a1
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4.5 Guidance laws theorem

The theorem is formulated for the general form of the guidance laws presented in
Sections 4.2, 4.3 and 4.4.

Definition 1. A system is considered to be SISO if it has a single terminal cost
(input) and a single controller (output). Furthermore, a system is considered to be
MIMO if it has multiple terminal costs and multiple controllers.

Theorem 1. The solution of the linear quadratic optimisation problem of the integ-
rated single —loop design (4.4 —4.8) and of the integrated two —loop design (4.9—4.15)
1s identical for SISO and MIMO guidance systems. The necessary and sufficient
condition is that C is non singular.

Proof. See Appendix A.2. O

Remark 1. If C € R™ ™6 js q non singular matrix, it must be a square matriz. For
instance, its dimensions must be mg X mq. Thus, the number of quidance commands
must be identical to the number of inputs to the servo.

Remark 2. Recall that @ € R™ ! and w € R™*L. If mg < m, then C constrains
the command input to the autopilot model. In this manner, the guidance law cannot
issue the appropriate command to each of the controllers since it loses degrees of
freedom. For instance, a missile with multiple controls (both nose and tail controls)
with a guidance law that issues a scalar acceleration command.

4.6 Conclusions

This chapter explored two different types of guidance and control designs: a traditional
separated approach and an integrated one. Moreover, the integrated approach, both
a single—loop guidance law and a two—loop autopilot —guidance law were presented.

Furthermore, a theorem has been introduced showing that the necessary and suf-
ficient condition to obtain the same performance for both integrated linear quadratic
optimisation problems is that C is a non singular matrix. The proof of Theorem 1
can be found in Appendix A.2.






Chapter 5

Case study

5.1 Introduction

The separated two—loop autopilot —guidance law, the integrated single —loop guid-
ance law and the integrated two—loop autopilot — guidance law were introduced in
their general form in Sections 4.2, 4.3 and 4.4. Thereafter, this chapter presents the
formulation of the three different guidance systems applied to our missile’s model.

Regarding the missile’s model, it is a dual —controlled exo—atmospheric missile
with both nose and tail controllers. Thus, the objective is to provide its linearised
dynamic model, followed by the kinematic equations and the end —game scenario
parameters. Also this chapter explores the corresponding autopilot designs (Section
5.5) depending on the number of inputs.

5.2 Dynamics model

The pursuer’s model is based on a thrust vector control missile, where a nose jet
device has been added. The standard configuration of the dual —controlled missile
chosen is given in Figure 5.1.

Figure 5.1: Configuration of a dual —controlled missile.

As mentioned above, when describing the end —game scenario, the frame X — O — Z
has its X axis aligned with the initial LOS whereas the Z axis is perpendicular to it.

27
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In Figure 5.1, the coordinate system Xgr — CG — Zgr is considered to be parallel
to the X — O — Z frame and the origin of the frame is considered to be at the center
of gravity of the missile. Regarding the Xpr — CG — Zgg coordinate system, it is a
rotating frame linked to the missile’s center of gravity. In this manner, the Xgg axis
is always aligned with the longitudinal axis of the missile.

In its basic configuration, the missile has a nose controller (a thrust vector
controller) and a tail controller. The missile’s body angle is defined by 6; whereas 4,
and d; are the nose controller and the tail controller deflections. Furthermore, 7" and
T,, denote the thrust and the nose jet force. Lastly, we define [,, and [; respectively
as the distance from the center of mass to the nose jet and the distance from the
center of mass to the thrust vector controller.

The missile has been defined as an exo—atmospheric missile. Therefore, since
the density is low outside the atmosphere, the aerodynamic forces and the wind can
be ignored.

As it has been mentioned previously, the missile’s thrust vector can be projected
along the X and Z axis. The thrust force is described in Figure 5.2.

T, +Tsind,

Figure 5.2: Thrust vector for a dual —controlled missile.

The two components are alongside and perpendicular to the missile’s longitudinal
axis Xpgg. In this manner, letting d7,; denote the angle between the Xpgp axis and
the total thrust vector, and ¢ the angle between the Xpgp axis and the total thrust
vector, it can be proceeded in order to obtain the missile’s dynamic model.

From the above considerations, the thrust vector components can be projected
and these are written as follows:

E =T sin(St (51)

T, = T cosd; (5.2)

Here, T, denotes the axial thrust force. The total thrust force perpendicular to the
longitudinal axis Xpgg is given by:

T, = T,+T, = T, + T siné, (5.3)

Then, the total thrust force is given by:

Tro = \JT2+ (T, + T,)? (5.4)
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And the angle between the Xgg axis and the total thrust vector is:

T, +Tsind
SIn Oppp = % (5.5)
Tot

~Y

If §; is considered very small, we can assume that sind; = J; and cosd; = 1. The
equation of moment with respect to the center of gravity can be written with the
following expression:

Ieg = Tyl, — T 61, (5.6)
Define:
T,
5, & 1o .
- (57)
T,
o & Tt (5.8)
T,
M;, = (5.9)
Ica
My, & Ih (5.10)
Ica

Substituting Equations 5.7 and 5.8 in Equation 5.4 and rearranging the total thrust,

one gets:
Tot T T .

Assuming that §,, and ¢, are small angles and taking into account only first order
terms:

Tro & TA\J1+62 426,640 =~ T (5.12)
Recall that the angle between the thrust vector and the Xpzg axis is given by:
Orot = Op + Oy (5.13)
Substituting 5.9 and 5.10 in Equation 5.6:

0 = Ms, 6, — Ms, 0, (5.14)
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Ms,
+¥

e E i

o M;,

Figure 5.3: Dynamics for a dual - controlled missile.

In the same manner, we assume ¢ to be small in order to obtain a set of linear
equations. Thus, we assume that sin @ = ¢. The pursuer’s acceleration perpendicular
to the initial LOS can be obtained using the perpendicular thrust component.

T
apN = —(b (515)
m
where
¢:9+5T0t 29+5n+5t (516)

Assuming first order servo models for both nose and tail controllers:

1
Oy = o¢ 1
T,s+1 " (5.17)
0y = 1 o¢ (5.18)
P o s+1 0t )

The dynamic state —space formulation results:

)= Lo ]+ o) o

where the dynamic state vector xp, the servo model state vector xg and the control
input vector u are defined as follows:

xp = [0 6] (5.20)
xs = [0, 0] (5.21)
a=[oc o] (5.22)
Finally, the state space matrices are:
Ap = [App Aps| = 0L 0 0 (5.23)

0 0 M, —M,

t
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-1 9
L0
Bs = {76 i} (5.25)

Remark 3. In a TVC missile, the mass, speed and inertia are time—wvarying.
However, since the guidance law is being formulated for the terminal phase, these
variables can be assumed to be constant.

5.3 Kinematics equations

As stated before the kinematic equations are:

J = agn —apy = ag cos (Ygo + No) — ap cos (Ypo — o) (5.26)
. . . ag ag
AY, = = — 4+ = 5.27
Ye = YE P VE—I_VE (5.27)
since
Ave = vE+7P — e (5.28)

Assuming perfect information of the future target’s manoeuvre strategy and consid-
ering that the target’s manoeuvre is constant, then the following equation can be
written:

ag = 0 (5.29)

Furthermore, the pursuing missile’s acceleration has been obtained in Equations 5.15
and 5.16 (a PN = % d)). Therefore the following mathematical expressions:

0
XD 9
- C{XS] —zoz | (5.30)
0y
where
cC=1[5 0% 7 (5.31)

Finally, using Equations 5.26, 5.27 and 5.29, the kinematics state —space formulation
is given by:
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XG = AGxg+Bgﬁ

where
X = [y ¥ apn A%}T

Ac = [Acec Acp Acs] = [Ace Acg,ps]

0 1 0 0
0 0 1 0
Ace = | g 0 0
1
0 0 VE cos(YEo+Xo) 0
[0]
-C
AG},DS = [0]
C
Vp cos(ypo—Xo)
Be = [0]

5.4 Scenario parameters

The scenario parameters can be represented with the help of Table 5.1.

Parameter Value Units

Yo 10 m
Vp 300 m/s
Vi 300 m/s
AN 10 m/82
T/m 120 m/s?
Ve 10 deg
YPo 0 deg
YEO 0 deg
0o 0 deg
Ms, 200 1/s?
Ms, 200 1/s?

Tn 0.1 S

Ty 0.15 s

Table 5.1: Scenario parameters values.

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)
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5.5 Autopilot design

The objective of the autopilot is to ensure that the missile follows the guidance
acceleration commands issued by the guidance law. Essentially, the autopilot block
for the two—loop case is designed in order to obtain a given damping ratio and gain
margin. Two different schemes will be presented based on the number of inputs to
the block.

Besides, in contrast with the two—loop autopilot scheme, the autopilot for the
single —loop case is designed for the sake of consistency with the two—loop autopilot
scheme.

5.5.1 Autopilot design for the single —loop case

The design gains for the single —loop scheme are given in Table 5.2. As mentioned
above, these gains are chosen in accordance with the multi —input two—loop autopilot —
guidance scheme.

Gainset K, K; ¢, ¢

1 0.04 0.04 026 -0.1

Table 5.2: Single—loop autopilot design gains.

5.5.2 Autopilot design for the two—loop case
5.5.2.1 Single —input autopilot scheme

In the classical guidance—autopilot design, the guidance law issues a single ac-
celeration command. This acceleration command is divided into two equivalent
command signals and is delivered to the controllers by the vectorial control law given
in Equation 5.38.

Cv = [én &) (5.38)

Figure 5.4 illustrates the single—input autopilot scheme, where the input is the
acceleration command (a%) issued by the guidance law.

Additionally, Table 5.3 presents the design gains for the autopilot scheme. In the
single —input case, the guidance law is forced to use a combination of both controllers
for all the values of o (the weight on the nose control command). Therefore, in order
to investigate the limiting cases, the gains ¢, and ¢; are changed instead. From now
on, ’Autopilot X’ will refer to the gain set number X of the single—input scheme.

Basically, the first gain set is chosen for the sake of the consistency with the
two —loop multi—input autopilot scheme; whereas the second set is established so
as to analyse the resulting effects when the same control effort is enforced for both
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controllers (|é,] = |¢&| = 0.1). Finally, the third set is defined in order to investigate
the limiting case where there is only canard —control.

Gain set K Ky, Cn Ct

1 0.04 0.04 0.26 -0.1
2 0.035 0.035 0.1 -0.1
3 0.04 004 20 -0.1

Table 5.3: Single—input autopilot design gains.

Vectorial
Control Law

Figure 5.4: Autopilot design for the two—loop single —input guidance—
autopilot scheme.

Figure 5.5 presents the missile’s step response. It exemplifies the 3 autopilot versions
given in Table 5.3. In all cases, the absence of the non —minimum phase effect due
to the tail —only configuration can be appreciated at the beginning of the missile’s
response. Besides, it can be seen that these configurations ensure zero steady —state
error to constant acceleration command inputs.

Furthermore, it can be appreciated that ’Autopilot 1’ presents a peak response
of 1.07 m/s? and a settling time to within 2% of 1.7 seconds. On the other hand,
"Autopilot 2’ has a settling time to within 2% of 1.08 seconds. Lastly, it can be seen
that "Autopilot 3’ has a peak response of 1.05 m/s? and a settling time to within 2%
of 1.65 seconds.

5.5.2.2 Multi—input autopilot scheme

According to theorem 4.5, the number of guidance commands has to be identical to
the number of controllers in order to achieve the same performance than the one of
the single—loop autopilot case.
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Step response

1.2 T T T T
1 — i
Autopilot. 1
0871 — Autopilot 2 1
. —— Autopilot. 3
= —— Acceleration command
g 06 ]

a

021 7

D 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

Time (s)

Figure 5.5: Step response for the two—loop single—input guidance—
autopilot scheme.

Figure 5.6 illustrates the multi—input autopilot design, where two different inputs
can be appreciated: the nose and the tail acceleration commands. This results in two
degrees of freedom since each controller is controlled separately by the corresponding
acceleration command.

Tn-5+1

Figure 5.6: Autopilot design for the two—loop multi—input guidance—
autopilot scheme.



36 CHAPTER 5. CASE STUDY

The chosen design gains are shown in Table 5.4.

Gainset K; K; ¢, Ct

1 0.04 0.04 0.26 -0.1

Table 5.4: Multi—input autopilot design gains.

Additionally, Figure 5.7 shows the step response for the two—loop multi—input
guidance —autopilot scheme. The autopilot response has a peak amplitude of 1.07
m/s? and a settling time to within 2% of 1.7 seconds.

Step response
1.2 T T T T T

Autopilot. 1
Acceleration command

0.2 §

0 1 1 1 1 1
0 0.5 1 1.5 2 25 3
Time (s)

Figure 5.7: Step response for the two—loop multi—input guidance—
autopilot scheme.

5.6 Separated two —loop autopilot —guidance law
formulation

As seen before, when applying the optimal control theory to missile guidance, the
results lead to a better end —game performance than when using the classical guidance
laws such as proportional navigation. In this manner, when using OGL, the missile
achieves smaller miss distances against manoeuvring targets.
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Therefore, in this section, OGL is derived assuming that the adversaries are in the
end —game phase. Note that we consider a separated two—loop autopilot —guidance
design based on a low —order approximation of the autopilot dynamics. Thus, it is
assumed that the missile responds to the acceleration command via a first —order
transfer function:

o = T (535

The state vector of the linearised two dimensional problem includes the missile
acceleration and is given by:

x=ly v ag O/p}T (5.40)

Therefore, the linear quadratic optimisation problem formulated as:

min J (x(to), u(to), to) = x’ (tr) Qe x (t) —i—/fuT(t)Ru(t) dt (5.41)

u(t) to

is subject to:

v 010 0 Yy 0
g1 |00 1 -1 v 0
ag| 1000 0] |ag| " |o]" (5:42)
ap 000 =] [ap -
The performance weighting matrices are:
R=1 (5.43)
¥ 00 0
0 00O
Qr = 0 00O (5:44)
0 00O

where b is the penalty imposed by the miss distance. In other words, b is the penalty
on the relative displacement between the adversaries when ¢ = t;. Therefore, a large
value of b implies smaller miss distances. For perfect interception, it is necessary to
assume b — inf.

Finally, the closed —form solution of the guidance law is [19]:

A ) 1 _(tao tGo
U:a%:ﬁ—G y+tho+§aEtZGO—aE72(e (Cj)+<i>—1>:| (545)
Go
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where the navigation ratio Ag is given by:

6 ()" (%) 4 (1) —1)
Ag = - - (5.46)
2 (fe)® 4346 (lee) — 6 (1ee)? — 12 (fee) ¢ () — 3e72(%)
Furthermore, the zero effort miss distance is given by:
B . 1 9 2 [ —(ice) tco
z—y+th0+§aEtGo—aET e \'r )+ = -1 (5.47)

Optimal guidance laws are considered as an optimisation of proportional navigation
laws with two additional gains in the linear model. Therefore, OGL can deal with
high manoeuvring targets.

However, the acceleration command is issued by the outer guidance loop, which
means that there is no feedback available of the target state to the control system.
Furthermore, the autopilot introduces a delay as the autopilot and the guidance
systems are operating at a different frequency; and this delay has a considerable
effect on the miss distance.

This is why it is necessary to study a different approach where both the guid-
ance system and the autopilot are integrated so as to achieve a better end —game
performance. This approach will be formulated below in Sections 5.7 and 5.8.

5.7 Integrated single —loop guidance law
formulation

The application of the modern control theory allows a new approach for studying the
relation between the missile guidance law and the autopilot based on the integration
of both subsystems, which means that there is no separation between them.

The result is a guidance law that issues a two dimensional vector with the nose
and tail deflection commands. Besides, the guidance law takes into consideration
both the missile and the target states.

The general form of the single—loop guidance law optimisation problem was
already presented in Section 4.3. This section deals with the formulation of the
guidance law optimisation problem applied to the chosen test case — a dual control
missile.

Using the kinematic equations (5.32 - 5.37) described in Section 5.3 and the
dynamic model equations (5.19 - 5.25) described in Section 5.2, the state—space
representation of the linear set of equations becomes:

x = Fx+Gu (5.48)
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T

U=u=[6 0] (5.49)
where
. : T
X = [y Yy apn Av. 0 0 6, 575} (5.50)
Ay Ay
F = 5.51
o A (55
01 0 0
00 1 0
A = 00 0 0 (5.52)
1
00 Vi cos(vEo+Xo) 0
0 0 0 0
-T 0 T -
Ay = 76 0 8 78 (5.53)
r__ 1 __ g T 1 T 1
m Vp cos(ypo—Ao) m Vp cos(ypo—Ao) m Vp cos(ypo—Ao)
01 0 0
0 0 Ms —Ms,
00 0 -2
[0] [0]
G= |- [0 (5.55)
0] -
Finally, the chosen weight matrices are:
a 0
R = {0 11 (5.56)
Voifi=j=1
Qe(i,j) = ¢ & ifi=j=4 (5.57)

0 otherwise

where 1 <17, j < 8.
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5.8 Integrated two—loop autopilot —guidance
law formulation

In Section 4.4 the general form of the two—loop guidance law optimisation problem
was introduced. In this section, the optimisation problem is applied to our chosen
test case, and it is exemplified using the two autopilot schemes presented in Section
5.5.

Again, the input to the autopilot is an equivalent controller, which can be
rewritten as a function of the state vector and the guidance controller as follows:

a:é(u+uA)=C(u—[kD ks] {’;{‘;D (5.58)
i = Cgqx+ Dgqu (5.59)
where
x = [x& x5 xF°* (5.60)
Cgq = [0 ~Ckp —Cks] (5.61)
Dgq = C (5.62)

Substituting Equation 5.58 into Equation 4.11:

J = XT(tf)Qfx(tf)Jr/f (" Rau+2x"Sau+x"Quax) (1)dr  (5.63)

where
Q [0] [0] (5.64)
A [O] CEqRCEq ‘
Sa— | o (5.65)
Cgq R Dgq '
R, = D, RDg, (5.66)

It is necessary to take into account the fact that the guidance commands in the multi—
input autopilot scheme are the acceleration commands; whereas in the single —input
autopilot scheme, the guidance commands are the deflection commands.
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Therefore, the acceleration command has to be multiplied by the appropriate

factor (m/T) in order to obtain the deflections.

C m C
¢ = (5.67)

Using the kinematic equations (5.32 - 5.37) from Section 5.3 and the dynamic model
equations (5.19 - 5.25) from Section 5.2, the state —space representation results:

X = FaAx+Gau (568)

where x is defined in Equation 5.50. The matrix F4 is given by:

All A12
= 5.69
[ 0] AzJ (5:69)
0 1 0 0
0 0 Ms, — —DMs,
Agpo = | & Koy 1y, & (5.70)
B Y N £
The weight matrices are:
a 0
R = [0 1} (5.71)
Voifi=j=1
Qe(i,j) = ¢ & ifi=j5=4 (5.72)

0 otherwise

where 1 <, j < 8.

5.8.1 Single—input autopilot scheme

The guidance command, as it has been explained before, is determined by the
autopilot scheme. In the single—input case, the guidance command is the pursuer’s
acceleration command u = a5%.

Note that the guidance law issues a scalar (a single command) as it is shown in
Figure 5.4. In this manner, the acceleration is divided into two equivalent commands
using the vectorial control law given by ¢, and ¢;. Thus, the equivalent controllers
are given by the following expression:
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0
_ fenl e Ky e ] |6

0

where u is the acceleration command. As mentioned above, the matrices Cgq and
Dgq are given by the autopilot type.

(0] ¢ K; o oén e
Crq {[0] & Ky e & (5.74)
Ep
Dgq = Lté} (5.75)

The state space matrix G, is also determined by the autopilot block diagram.
Therefore, in the single —input case:

=)

eI =
N3 N3

Ga = (5.76)

5.8.2 Multi—input autopilot scheme

Using the multi—input autopilot scheme shown in Figure 5.6, it can be seen that the
guidance law issues a two dimensional vector given by:

u = [af af;t]T (5.77)
Thus, the equivalent controller is obtained as follows:
0
R e Ky, G Gl |0
v { 0 & %] v {ét K, & éJ 5 (5:78)
Ot
where the matrices Cgq and Dgq are given by:
_|[0] e Ky Cn G
CEq |:[0] ét K@f ét ét (579)
_ & 0
Dgq { 0 & %] (5.80)

In the multi—input autopilot scheme, the state space matrix G, is also determined
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by the autopilot scheme and it is given by:

0] [o]
Ga = |22 0 (5.81)
0 =7

5.9 Conclusions

After starting with the general form of the guidance laws in Sections 4.2 — 4.4,
the above sections provided the formulation of the separated two—loop autopilot —
guidance law, the integrated single —loop guidance law and the integrated two —loop
autopilot —guidance law applied to a dual —controlled exo—atmospheric missile.

In order to do so, the dual—controlled aerodynamic model and the kinematic
equations based on the linearised end —game engagement scenario were also provided.
Besides, the scenario parameters values were defined in Section 5.4.

Furthermore, it required the exploration of two possible schemes for the autopilot
when studying the integrated two —loop autopilot — guidance law scheme. The two
autopilot designs were based on the number of inputs to the autopilot block. In the
single —input autopilot scheme, the guidance law issued the acceleration command;
whereas in the multi—input autopilot scheme, the guidance law issued a two dimen-
sional vector: the nose and tail controller commands. Finally, the design gains for
the autopilot blocks were chosen in order to achieve a given damping ratio and gain
margin.






Chapter 6

Simulation results

6.1 Introduction

The purpose of this chapter is to compare the separated two—loop autopilot —guidance
law and the integrated two —loop autopilot — guidance law with the integrated single —
loop law. In the integrated single—loop law, the airframe dynamics and kinematics
are combined. As a result of this, the response of the missile is described in a more
accurate way.

Therefore, the integrated single —loop is expected to achieve the best end —game
performance and, consequently, it can be used as a benchmark to analyse the other
guidance laws’ performances. Furthermore, the results of the integrated two—loop
autopilot — guidance case will be computed for both the single —input autopilot scheme
(Figure 5.4) and the multi—input autopilot scheme (Figure 5.6).

The results of the simulations will be displayed with the help of a Pareto front.
Sample runs will also be used in order to explain the simulations.

6.2 Pareto front

The Pareto front has been extensively used in multi—objective optimisation problems
in order to compare different solutions.

The concept of Pareto can be defined as a set of non—dominated solutions, where
none of the objectives can be modified or improved without worsening at least one
objective among the chosen objectives.

The concept will be illustrated using the given cost function:

7= R e+ [ o sy a 6

to

When imposing zero miss distance (b — inf) and zero impact angle error (¢ — inf),
the cost function depends only on a. Therefore, there are two design criteria:

45



46 CHAPTER 6. SIMULATION RESULTS

f = / 7 o2t dt (6.2)

B s an (6.3

The Pareto curve shown in Figure 6.1 is obtained by changing the variable « of the
cost function. It is clear that the curve A — B represents the Pareto curve. Thus,
any point in the curve cannot be improved in one criteria without worsening the
other criteria.

It has to be pointed out that the point P, which is above the curve A — B, is not
an optimal solution since any point in the curve A — B has at least one of the two
design criteria optimised.

Figure 6.1: Example of a perfect interception Pareto front.

6.3 Separated two—loop autopilot —guidance law

The simulation results are shown in Figure 6.2 via a Pareto front for a perfect
interception case, and for a separated guidance law and an integrated single—loop
guidance law. Hence, the obtained curves present the optimal performance in terms
of both controllers’ effort and subject to the given guidance law approach.

Each point located in the Pareto front curve is a simulation result obtained for a
fixed miss distance penalty (), a fixed impact angle error penalty (¢) and a different
nose control effort penalty («). Note that, in both schemes, when « — inf, the nose
control effort decreases; whereas when v — 0, the tail control effort does. The values
of the parameters b and c are given in Table 6.1.

Analysing the Pareto front curves, the separated guidance law curve appears
above the integrated one, which implies that the optimal combination of nose and
tail control efforts is given by the integrated approach. Essentially, the separated
two —loop scheme was expected to predict a less accurate missile’s response since it
has no feedback available of the target states to the control system, and first —order
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approximation of the autopilot dynamics are assumed. In addition, the integrated
approach has a full feedback to the control system and, therefore, uses information
on both states (kinematic and dynamic states); whereas the separated one only uses
information on the kinematic states. Thus, Figure 6.2 demonstrates the superiority
of the integrated approach.

Gain set b c

1 0.0001 1

Table 6.1: Separated two—loop design parameters.

0.12 T T T T

01| \ _

0.08 - Integrated Approach g
# Separated Approach

=" 0.06 7

0.04 1

0.02 1

0 0.05 0.1 0.15 0.2 0.25
fSn

Figure 6.2: Pareto front curves for a perfect interception case: separated
guidance law and integrated single —loop guidance law.

6.4 Integrated two—loop single —input
autopilot — guidance law

Figure 6.3 presents the Pareto front curves for the integrated single —loop multi—input
guidance law and the integrated two —loop single —input autopilot — guidance law. It
is done for a perfect interception case. As expected, the control effort required for the
integrated two—loop is greater than the control effort required for the single—loop
multi—input case.
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As a matter of fact, the single—input autopilot in the two—loop configuration
cannot generate the appropriate commands to control each of the controllers separ-
ately since it loses one degree of freedom. Therefore, for a multi —input multi —output
system, the guidance law is not precise when the number of controller commands is
smaller than the number of controllers available in the missile’s model.

0.12
* Single Loop
0.1 + #* # Two Loop Autopilot 1
%
0.08 *
#*
*
*
<" 006 **
*
;k_
0.04 | Fobe
0.02
0 I 1 1 I
0 0.05 0.1 0.15 0.2 0.25

)
n

Figure 6.3: Pareto front curves for a perfect interception case: integ-
rated two—loop single—input autopilot—guidance law and integrated
single—loop guidance law.

Furthermore, the single—input two—loop autopilot scheme is exemplified using
different design gains in order to study limiting cases. Table 6.2 summarise the 3
autopilot versions and the fixed values for the miss distance and impact angle error
weights.

Gain set K K,, Cn Cy b C
1 0.04 0.04 026 -0.1 0.0001 1
2 0.035 0.035 0.1 -0.1 0.0001 1
3 0.04 0.04 20 -0.1 0.0001 1

Table 6.2: Integrated two—loop single—input design parameters.

Note that changing the value of o would not have any effect on the second gain set,
since Ms, = M;, and the same control effort is enforced to both controllers.

Figures 6.4 — 6.7 present the results for the 3 different versions of the integrated
two —loop single—input autopilot —guidance law and the integrated single—loop
multi—input guidance law. The sample runs were obtained for the given fixed
weights: b = 0.0001, ¢ = 1 and a = 1.
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It can be appreciated that the miss distance tends to zero at the end of the
engagement in all cases. Furthermore, Figure 6.6 illustrates the missile’s body angle
and its rate. It can be seen that for ‘Autopilot 2’ the values of § and € remain zero

throughout the interception. Thus, taking |é,| = |¢&| restrained the missile body
angle.
10 SRR . . .
. 5F — Single Loop
=] s  Two Loop Autopilot 1
- Two Loop Autopilot 2
o0 |——Two Loop Autopilot 3
_5 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 14
Time (s)
20 T T T T T T
=
)
<
=
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time (s)

Figure 6.4: Kinematic states 1: Single—input design.
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Figure 6.5: Kinematic states 2: Single—input design.
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Figure 6.6: Dynamic states: Single—input design.
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4 T T T
Single Loop
!“\\ # Two Loop Autopilot. 1
S 2F »  Two Loop Autopilot 2| 4
L) \ // e — — -Two Loop Autopilot 3
E ....... R Y A e TR
< OM 5 Y & o v
- A U ! ~ -~ —_—
\ ; R
-2 S g I I I I I
0 0.2 04 0.6 0.8 1 1.2 1.4
Time (s)
1 T T T T T T
B L
; R A e R P
@ 051 f.-’ \ 1
\ w s
k=) ;f _*_;k-?k_ %k_*%* N e " o
— ~
< e — *W DN ===
oot \ / y -
N -'J/ S
0|5 1 1 1 1 1 1
0 0.2 04 0.6 0.8 1 1.2 1.4
Time (s)

Figure 6.7: Servo states: Single—input design.

Figures 6.8 — 6.10 illustrate the equivalent acceleration commands and their compon-
ents. The acceleration commands can be rewritten as follows:

5 = & (60— 0) — K, 6 (6.4)
When ¢, > ¢ (‘Autopilot 3’) df is close to — Ky, 0. In the same manner, when
Cn < ¢, 0y, would be closer to — K 0. Hence, the guidance law is enforced to use
both controllers even for higher or smaller angles of «.

Moreover, when § = 0 (‘Autopilot 2'), the relation between 6¢ and 6¢ is inversely
proportional to the ratio given in Equation (6.5). In other words, bigger controller
deflections are required for smaller steering moments.

5; B Ms,
& Ms,

(6.5)

Furthermore, the missile acceleration command is proportional to the missile’s body
angle and both controller deflections. Therefore, J;, and d; in "Autopilot 2’ must be
increased so as to compensate the absence of rotation of the missile (the missile’s
body angle is bounded to zero). Note that, in this version of the autopilot, the nose
and tail controller deflections are identical since both provide the same moments
about the center of gravity.

! (0 +0n + 0r) (6.6)

apN = —
m
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6.8: Equivalent acceleration commands: Single—input design

(Autopilot 1).
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Figure 6.9: Equivalent acceleration commands: Single—input design

(Autopilot 2).
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Figure 6.10: Equivalent acceleration commands: Single—input design
(Autopilot 3).

6.5 Integrated two—loop multi—input
autopilot — guidance law

Figure 6.11 illustrates the Pareto front curve for an integrated two —loop guidance
law and an integrated single—loop guidance law with a multi—input block diagram.
Again, the Pareto front curve is created for a fixed miss distance penalty (b), a
fixed impact angle error penalty (¢) and varying the nose control effort penalty («).
Therefore, each point of the curve is a simulation result in terms of the nose and
the tail control effort. When oo — oo, the guidance laws are forced to use more tail
control effort; and vice versa when v — 0.

It can be appreciated that the results of the integrated two—loop scheme are
identical to the ones of the integrated single —scheme. In both cases, there is a full
feedback on the guidance loop. However, in the two—loop configuration, the inner
autopilot loop is designed individually from the outer guidance loop. Hence, Figure
6.11 demonstrates that the integrated two —loop approach takes into consideration
the inner autopilot dynamics due to the full feedback.

Note that the integrated two—loop configuration is preferred over the single —loop
one since it ensures the inner stability of the airframe, even if the outer guidance
loop is not active.

Additionally, it should be noted that the guidance command issued by the
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integrated single—loop scheme is directly the deflection command. However, the
integrated two—loop guidance law issues an equivalent command, which was given in
Equation (5.58). As a result, in order to achieve identical scenario performance and
obtain the same value for the quadratic cost function, this equivalent acceleration
command must have the same values as the guidance deflection commands generated
by the single —loop scheme.

Table 6.3 summarises the design parameters used in the integrated two—loop
multi—input scheme.

Gainset K; K; ¢, Ct b c

1 0.04 0.04 026 -0.1 0.0001 1

Table 6.3: Integrated two—loop multi—input design parameters.
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Figure 6.11: Pareto front curves for a perfect interception case: Integ-
rated multi—input designs.

Furthermore, Figures 6.12 — 6.13 showcase the kinematic states. It can be appreciated
that the miss distance tends to zero as the relative displacement between the
adversaries decreases. The impact angle error also decreases. Recall that the initial
values of the scenario parameters were given in Table 5.1. Finally, note that both
guidance laws achieve identical results for the kinematic states.

On the other hand, Figures 6.14 — 6.16 illustrate the dynamic states, the servo
states and the servo commands (or guidance commands) of both guidance laws.
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Concerning the missile’s body angle, it can be appreciated that the interceptor had a
2 deg angle of attack right before interception. As expected, it can be seen that the
equivalent acceleration commands generated by the integrated two—loop scheme are
identical to the deflection commands issued by the integrated single —loop scheme.
Note that the result obtained for both servo commands is equal in module.
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Figure 6.12: Kinematic states 1: Multi—input design.
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Figure 6.13: Kinematic states 2: Multi—input design.
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Figure 6.14: Dynamic states: Multi—input design.
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Figure 6.15: Servo states: Multi—input design.
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Figure 6.16: Deflection commands: Multi—input design.






Chapter 7

Conclusions and future work

7.1 Conclusions

The main contribution of this thesis was proving and exemplifying that under a
linear quadratic formulation the single —loop and two—loop configurations achieve
identical performance if and only if the number of guidance commands is equal to the
number of controllers. In addition, it was also proven that the performance of the
integrated approaches is higher than the one of the traditional separated approach.

In order to address these challenges, three different types of guidance and control
schemes were designed under a linear quadratic formulation: a separated two—loop
autopilot —guidance design, an integrated single—loop guidance design, and an
integrated two—loop autopilot —guidance design. Moreover, in the latter scheme,
two possible autopilot block diagrams were examined: a single —input scheme and a
multi—input scheme. The guidance laws were illustrated using an exo—atmospheric
dual control missile model.

In addition, given that the integrated single—loop guidance law was expected
to achieve the best engagement scenario performance subject to the given missile’s
model, this scheme was used as a benchmark system to evaluate the other guidance
laws’ performance. Simulations were carried out using the Pareto front concept and
sample runs.

On one hand, a traditional separated approach was designed using a decoupled
architecture. In order to address this challenge, the analytic feedback solution in
Equation (7.1) was used to generate the acceleration command:

t

A . 1 —(tae tao
u:aCP:tQ—G y+tho+§aEt2GO—aET2(e (T>+(i>—l>} (7.1)
Go

where Ag was the navigation ratio.

This scheme had no feedback available of the target states to the control system.
As a result, the separated autopilot —guidance Pareto curve appeared above the
integrated one, demonstrating the superiority of the integrated approach. However,

29
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a low —order approximation of the autopilot dynamics was assumed in the separated
approach, which lead to a less accurate missile’s response.

On the other hand, multiple —input single —output integrated guidance laws were
designed while minimising the quadratic cost function given in Equation (7.2). These
integrated schemes were two—input single —output systems, where the two inputs
were the nose and tail control surfaces of the missile and the single output was the
terminal cost on the miss distance.

min J (x(to), u(to), to) = x’ (t¢) Qe x (ts) —i—/fuT(t)Ru(t) dt (7.2)

u(t) to

Analysing the integrated approach, two types of autopilot—guidance laws were
explored: a single—loop and a two—loop configuration. In both cases, there was a
full feedback on the guidance loop. However, in the two—loop configuration, the
inner autopilot loop was designed individually from the outer guidance loop.

It was proven through simulations using the Pareto front concept that both
integrated schemes achieve identical end —game scenario performance if and only if
the number of guidance commands is equal to the number of controllers. However,
the integrated two—loop configuration is preferred over the single—loop one since it
ensures the inner stability of the airframe, whether the outer guidance loop is active
or not.

In order to address this challenge, a single—input autopilot block was also
implemented for the integrated two—loop configuration, proving that the multi—
input autopilot scheme achieved better homing performance than the single —input
autopilot configuration. Thereafter, for a MIMO guidance system, a single —input
autopilot cannot generate the appropriate commands to control each of the controllers
since it loses one degree of freedom. However, by using a multi—input autopilot
design, the guidance law generates two accelerations commands, and the autopilot is
able to control both nose and tail controllers individually.

7.2 Future work

Deeper research is necessary since this thesis focused on an ideal engagement scenario
where the real effects were not taken into consideration. In particular, the guidance
and the flight control subsystems were considered to be linear, the missile’s speed re-
mained constant, the missile’s aerodynamic model was based on constant coefficients,
and the aerodynamic saturation was not contemplated.

Therefore, a more realistic approach should be addressed where the engagement
scenario is not confined into a plane and linearised about the initial line of sight.
Besides, both the missile’s body angle (#) and the control deflections (6,, and &)
were restrained.

The separated guidance law was based on first —order autopilot dynamics, which
implied that the airframe response wasn’t described accurately and there was a
deterioration of the end —game performance. Therefore, it would be mandatory to
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design a guidance law based on a higher —order dynamics model in order to obtain
a better end —game performance when studying the separated autopilot —guidance
scheme [11, 33].

Moreover, the aerodynamic cross —coupling control shall be investigated in addi-
tion to the missile’s drag and its effect on the guidance law. This thesis was carried
out considering that the controls acted separately. However, if the aerodynamic
coupling between the two channels is considered, the tail response will be affected by
the canard downwash, which will also vary with the missile’s body angle and the
canard deflection.

A further extension could also be to define the weighting matrices (R and Q)
or the vectorial control law parameters (¢, and ¢) as functions dependent upon the
relative distance between the missile and the target.

On the other hand, no investigation has been carried out regarding the effect of
noise, radome errors, and plant uncertainties. Therefore, further research shall be
done without assuming perfect knowledge of the target’s manoeuvre strategy and
taking into consideration the non—linear aecrodynamics effects.

Also, only constant manoeuvre has been explored and both outer guidance loops
of the separated and integrated approaches depend upon the missile’s manoeuvre.
Hence, further analysis shall be carried out considering that the target performs a
different manoeuvre strategy, for instance like a sinusoidal manoeuvre.
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Appendix A

Theorem proof

A.1 Equivalent problem formulation

Note that some results from the theory of matrices explained in [23] are used to
proof Theorem 1.

Definition 2. An n x s matriz A is said to have B as a left inverse if BA = 1. In
this case I must be s x s, and B then must be s x n. Similarly, if there is a matriz C
such that AC = I, then C is called a right inverse of A. The matrixz I in this case
must be n z n and C must be s z n.

Lemma 1. If A has both a left inverse B and a right inverse C, A is non —singular
and B=C= A"

Recalling the single —loop and the two—loop optimisation problems:

7 =Xt Qextep) + [ o R (A1)
to
x = Fx+ Gi (A.2)
where
= i (A3)
x = [x§ x5 x¢]" (A4)

Ace Acgp Ags
F - [O] ADD ADS (A5)
0] [0] As

G- {[Oq (A.6)
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J o= X)) Qfx(tf)+/tfﬁT(T)Ra<T) dr — x7(1;) Qex(t))
+ /tf(uTRAu+2xTSAu+XTQAX) (1) dr (A.7)

X = FAX—I—GAU (A8)

where @ has been previously defined in (5.58), (5.59) (5.60), (5.61) and (5.62).
Recalling the state space matrices Fa and Gy

0] —-BsCkp Ag—BgCkg

on - [y "

With no loss of generality, it is assumed R=R=1IL,xm. The integrand expression
of the running cost in (4.11) can be rewritten as follows:

0
i"d = uTC Cu+2[xE x5 xI]|-kb| ¢ Cu
k¥
S
D e [
+ [x& x5 x3]|0 kpC Ckp kpC Cks | [X5| (A1)
0 KXC Ckp kTC Cks | |XS
Thus:
iTd = uTRu+2xTSu+xTQx (A.12)

Anderson, B. and Moore, J. [1] introduce the solution to the extended regulator prob-
lem considering that the performance index contains cross product terms. However,
the aim is to reduce the problem to a standard regulator problem by defining:

uy = u+ R, 'S x (A.13)

Note that the inverse of R exists since mg < m.
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Using the following identity:
uTRu+2xTSu+xTQx = (u—l—R_1 STX)T R (u—l—R_1 STX)
+ x' (Q-SR'S") x (A.14)
Substituting (A.4) and (A.13) in (A.8):

X = Fax+Gau=Fax+Gju (uO—RZlSXx)
= (FA—GARKISX)X—FGAUOZFX+GAUO (A15)

And rearranging the cost function:

ty
J = xT(t;) Qex(ty) + {ud Raup+x" (Qa —SaR,"SAx) x} dr

to

tf _
= xT(t) Qex(ty) +/ {ug Ra u0+xTQx} dr (A.16)
to
Q = Q) —SAR,'S} (A.17)
where
[0] [0]}
_ ; A8
_ [l0]
Sa = {s (A.19)
Ry =R=0C C (A.20)
5 kIC' Ckp kEC Cks o)
| KECT Ckp KTCT Ckg '
. kTl 1.
- [ N elle (A.22)
—k
S

The equivalent problem (A.15) — (A.22) can be solved as a finite time regulator
problem considering that R is positive definite and Q satisfies the non —negative
condition:

Q = Qs —SaR,'S} >0 (A.23)
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The optimal controller is given by:
u, (t) = —R,'GLPx (A.24)

And the differential Ricatti equation:

~P = P (Fa—GaR;'S}y) + (Fy —SaR,'G}) P

— PGARL'GLP + Q) — SAR,'SH (A.25)
—P =PF+F ' P-PGAR;'GLIP+Q (A.26)
P (t;) = Q¢ (A.27)

The previously defined constraint (A.23) has to be verified:
Q = Qs —SaR,'S: = [0] (A.28)
Recall that for any non —singular matrices A, B € R**F:
(AB) ' =B 1A (A.29)

Therefore, if C is non —singular, it can be inverted.
The theorem is valid for SISO systems, meaning it has a scalar controller:

i=C <u— [kp k] [XDD (A.30)

A.2 Proof of Theorem 1

Proof of T~he0rem 1. Sufficient condition. Substituting the terms Fo, Ga, Ra
and Sp in F and G Rgl GX:

AGG AGD AGS
F = FA—GARZIST: [0] App Aps
0] —BsCkp Ag—BgCkg
o1 L, .
— | o], (c c) (c c) 0] —kp —ks] = F (A.31)
Bs C

where
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AGG AGD AGS
F = [0] ADD ADS (A32)
0] 0] As

1 ~T 0] AT 2\ 71 AT
GAR;'GT = {BS C] (c C) [[0] G Bs] (A.33)
[0] [0] T
_ Al — GG A.34
0] BsCC ¢ ¢ BT (A34)
since
cele e =1 (A.35)

Concluding, the Riccati equations solved in the single —loop case and in the two—loop
case are identical. Therefore, the solution, P (t), will also be identical. The optimal
controller of the two—loop autopilot —guidance law is obtained by substituting (A.24)
in (A.13):

u = -R,* [GAP + Si]x (A.36)
When expressing 1 in terms of Ry and Su:
i=C (u+R'Syx) (A.37)
And substituting (A.36) in (A.37):
i=-CR!GIPx (A.38)

Substituting (A.38) in the running cost’s integrand of (A.7) and the terms Ga and
RAZ

TRia = xTPGAR;'C CR;'GIPx
T TN AT o 2T 2N
— xTPG, (c c) ¢ c(c c) GTPx

o

_ XTp };’i C (CT C)l ¢" [jo] BY] Px
T [[0]] &A@t AT AT T
= x P _BS_CC C " C [[0] Bg|Px
= xTP _l[S?i_ [[0] BS] Px (A.39)
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From (A.39) it has been proved that the single —loop guidance law is identical to the
two —loop autopilot —guidance law. Consequently, the cost function of both guidance
laws reaches the same minimum value.

Substituting (A.36) in (A.15):
x = Fax+Gau = [Fa—GaR,'Sy —GaAR,'G,P]| x (A.40)

And substituting the terms Ga, Ra and R:
x =Fax+Gau=[F-GG"P| x (A.41)
where
Fo=F-GG'P (A.42)

The differential set of equations (A.41) is identical to the differential set of equations
obtained in the single loop case. Therefore, the states will be exactly identical for
both cases.

Proof of Theorem 1. Necessary condition. It will be shown that if the single—
loop and the two—loop designs are equivalent, C has to be non—singular. If the
single —loop and the two—loop designs are equivalent, the closed —loop equations
and the cost function have to be identical.

The closed —loop equation of the single—loop case is:

x = [F-GG"Py] x (A.43)
where 1L stands for the single —loop design.

Fir. = F-GGTPy (A.44)

The closed —loop equation of the two—loop case is obtained by substituting (A.24)
in (A.15):

x = (FA—GaR;'Sy) x +Gaug = [F—GAR?AlG{PzL] x(t) (A.45)

where 2L stands for the two—loop design.
For = F— GARL G} Py, (A.46)

The solutions of both differential set of equations (A.43) and (A.45) will be identical,
cons}dering the same initial conditions, if and only if Fi;, = Far,. _
F = F has been proven by substituting the terms Fa, Ga, Ra and Sp in F in



A.2. PROOF OF THEOREM 1 73

(A.31). Therefore, it is left to proof that the solutions of the Riccati equation are
equivalent Py, = Pap, and that G, R* G{ = GGT.

Observmg the 2 Riccati equatlons is it clear that Pqy, = Par, if GA R, 1GY =
GGT F = F and Q = [0]. Since Q = [0] was settled in (A.28), it is left to proof
that GA R,'G} = GGT.

From (A.34) and aiming to satisfy Gs Ry' G} = G GT, it is required that:

~

¢ (cTC)_IC —1 (A.47)

Note that this condition has to be valid to obtain the cost functions in both designs.

If (A.47) is valid, CA = I where A is the right i inverse of C. On the other hand,
the left inverse of C exists since mg < m. Therefore, C has both a right and a left
inverse. In consequence, from Lemma 1, C is non— singular.






Appendix B
Matlab® code

The Appendix B.1 encloses a Matlab script with the scenario parameters values.
Besides, Appendices B.2, B.3 and B.4 include the Matlab scripts used to implement
the classical autopilot —guidance design, the integrated two—loop single—input
autopilot —guidance design, and the integrated multi—input autopilot —guidance
design, respectively. In the latter, both the single —loop and the two—loop schemes
are included.

Additionally, Appendices B.5 and B.6 include the functions used to calculate the
integrated autopilot —guidance law and the separated two—loop autopilot —guidance
law, respectively. In the latter, the guidance law is presented in the form of a
closed —solution. Finally, Appendices B.7 and B.8 enclose the functions used to
obtain the solution to the differential Riccati equation, and the minimum effort law
gains required to implement the separated autopilot —guidance law.
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B.1

Scenario parameters

APPENDIX B. MATLAB® CODE

% Name: Maria Morante Soria

% File: Scenario_Parameters.m

% close all;

% clc;

% clear all;

% Scenario Parameters Values

tau.n = 0.1; % Units [sec]

tau.t = 0.1; % Units [sec]

y-0 = 10; % Units [m]

Gamma_c = 10; % Units [deqg]

Gamma_-Ms1_0 0; % Units [deqg]

Gamma_Tgt_0 = 0; % Units [deqg]

Lambda_0 0; % Units [deqg]

Tm = 120; % Units [m/sec”2]

a_-Tgt = 10; % Units [m/sec”2]

a_Tgt_ N = a_Tgt*cos(Gamma_.Tgt_0 + Lambda_0); % Units [m/sec”2]
V_Msl = 800; % Units [m/sec]

V_Tgt = 300; % Units [m/sec]

MDelta_.n = 200; % Units [1/sec”2]

MDelta_.t = 200; % Units [1/sec”2]

% Parameters Interception

alpha = 1;

a = 0.0003;

b =1;

% Conversion Degrees to Radians

Deg2Rad = pi/180;

Rad2Deg = 180/pi;

Gamma_-c_Rad = Gamma._cxDeg2Rad; % Units [rad]
% Initial conditions State Space model Simulink
x_Initial = [y-0; 0; a-Tgt_N; —Gamma-c_-Rad; 0; 0; 0; 0];
x_Initial2 = [0; 0; 0; 01;
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B.2 Separated architecture

Name: Maria Morante Soria

File:

o o

MinimumEffort.m

Step in Target Acceleration
Minimum Effort Law

o° o oe

close all;
clc; clear all;

)

% Parameters Value

g = 9.81;
dt = 0.01;
dtg = dt;

Q

% Pursuit Evasion Parameters

t_Final = 2;

V_Closing = 600;

g-Max 15; % [g's]

ncg-Max = g-Maxxg; % [m/sec 2]

tau = 0.1;

tauD = 0.1;

% State Space Representation

% x = [y_-Tgt2Msl; dy_-Tgt2Msl; a_-Msl]

% u = aMsl

% w = a.Tgt

A=1[010; 001; 00 —1/taul;

B = [0; 0; 1/taul;

D = [0; 1; 0];

% Guidance Law Parameteres

invb = le—3; % Penalty on miss distance
Gamma = Inf; % One—sided optimal control
i_Feed = 1; % w is assumed to be measured

[

% Time to go measurement errors

)

t_Go_Error = 0; %
t_Go_Scale 1;

Zero bias

[

% Simulation — Initial Conditions

n = length(a);

7

Simulation — Non Ideal Missile & Ideal Target

(w is assumed to be constant)
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X = [10; zeros(n—1,1)];
nt = —1xg;

ntd = nt;

i = 0;

J.u = 0;

for t = 0:dt:t_Final

i=1i+1;

t_GoTrue = t_Final — t; % True time to go

t_GoMeas = t_GoTruext_Go_Scale + t_Go_Error; % Measured time to go
k = MinEffort_Gains (t_GoMeas, tau.D, inv_b, Gamma, i_Feed);

[

= k*x[x; ntd]; % Missile acceleration command

c

if (u > ncg_-Max)

u = ncg-Max;
elseif (u < —ncg_Max)
u = —ncg-Max;

end

J.u = J.u + u"2+«dt; % Integral control effort

w = ntd; % State Space Equations
dx = AxxX + B*xu + D#*w;
X = x + dx=*dt;
t_Vec (1) = t; % Store data — Graphics
y-Vec (1) = x(1);
dy_Vec (1) = x(2);
nL_Vec (1) = x(3);
ntd_Vec (1) = ntd;
nc_Vec (1) = uj
J_u_Vec (1) = J_u;
end
% Plots
N = i;
Miss = x(1);
Vel = x(2);
Angle = 180/pi*x(2)/V_Closing;
J = J_.u_Vec(N)/ (g 2+«t_Final);
Miss_Title = sprintf('Miss Distance (m) = %g', Miss);
Angle_Title = sprintf('Interception Angle (deg) = %g', Angle);
J_Title = sprintf ('Integral of u"2/g”"2+«tf = %g', J);
figure

subplot (2,2,1)
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plot (t_Vec,y_Vec);

xlabel ('"Time (s)');
ylabel ('Relative separation (m)');
grid on;

title(Miss_Title);

subplot (2,2, 2)
plot (t_Vec,dy_Vec);

xlabel ('Time (s)');
ylabel ('Relative velocity (m/s)');
grid on;

title (Angle_Title);

subplot (2,2, 3)
plot (t_Vec,nc_Vec/g,t_Vec,nL_Vec/q) ;

xlabel ('Time (s)');

ylabel ('Interceptor acceleration (g)');
legend('nc', 'nL");

grid on;

title('Acceleration Profile');

subplot (2,2,4)

plot (t_Vec, J_.u_Vec/ (g 2*«t_Final));
xlabel ('Time (s)');

yvlabel (J_.Title);

grid on;

title('Control Effort');

[

% Autopilot

y-0 = 10;
a_Tgt_N = ntd.Vec(l)/g;
V_Msl = 300;
V_Tgt = 300;
Tm = 120;

Gamma_c = 10xpi/180;

MDelta_.n = 200; % Units [1/sec”2]
MDelta_t = 200;

F11 = [0 1 0 0; 001 0; 00O0O0; 00 g/v_Tgt 0];

F12 = [0 0 0 0;j; —Tm O —Tm —Tm; O 0 0 0; Tm/V_Msl 0 Tm/V_Msl Tm/V_Msl];
F21 = zeros(4,4);

F22 = [01 0 0; 0 O MDelta.n —MDelta_t; 0 0 —1/tau 0; 0 0 0 —1/tau];
FA = [F11 F12; F21 F22];

GA = [0; 0; 0; 0; 0; 0; 1/(Tmxtau); —1/(Tmxtau)];

CA = eye(8);

DA = zeros(8,1);

x_Initial = [y_0; 0; a_-Tgt_N; —Gamma.c; 0; 0; 0; 0];
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B.3 Integrated architecture — SISO systems

% Name: Maria Morante Soria
% File: Missile_SISO.m

Scenario_Parameters; % Initialization Scenario Parameters Values
% Weight matrices

R = 1;
Qf diag([a”2 0 0 b"2 0 0 0 0]);

C=1[0000Tm O Tm Tm]; % a.PN = Cxx

% SISO Autopilot Scheme Design Gains

K_dTheta.n = 0.035;

K_dTheta_.t = —0.035;
cHat_n = 0.25;
cHat_t = —0.15;

%% FULL STATE SINGLE LOOP GUIDANCE LAW — SEPARATED G&C

F=1[010; 001; 00 01;

CSim = eye(3);
zeros (3,1);

-}
%)
s
3
Il

M= [a 00];

% Simulation

sim('Missile_LQ _Separated');

%% FULL STATE TWO LOOP AUTOPILOT GUIDANCE LAW

F11 100, 0010; 000 O0;

= [0
0 0 1/(V_.Tgt*cos (Gamma_-Tgt_0 + Lambda_0)) 0];

Fl2

[0O0O 0 0; —Tm 0 —Tm —Tm; O 0 O O;

Tm/ (V_Msl*cos (Gamma_Ms1_0 — Lambda_0)) 0
Tm/ (V_Mslx*cos (Gamma_Ms1_0 — Lambda_0))
Tm/ (V_Mslx*cos (Gamma_Ms1_0 — Lambda_0))1];

F21 zeros (4,4);

FA22 = [0 1 0 0; O O MDelta.n —MDelta_t;
—cHat_n/tau.n —K_dTheta_n/tau.n —(l+cHat_n)/tau.n —cHat_n/tau.n; ...
—cHat_t/tau_.t —K_dTheta_t/tau.t —cHat_t/tau.t —(l+cHat_t)/tau_t];

FA = [F11 F12; F21 FA22];
GA = [0; 0; 0; 0; 0; 0; cHat_.n/tau.n; cHat_t/tau_t];
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CASim = eye(8);
DASim = zeros(8,1);

P = Riccati(FA, GA, R, Qf, 2, 0.001);

% Simulation

sim('Missile_SISO_TwoLoop_2"');

%% FULL STATE TWO LOOP AUTOPILOT GUIDANCE LAW — SERVO & AIRFRAME
FA22 = [0 1 0 0; 0 O MDelta.n —MDelta_t;

—cHat_n/tau.n —K_dTheta_.n/tau.n — (l+cHat_n)/tau.n —cHat_n/tau.n;
—cHat_t/tau.t —K_dTheta_-t/tau.t —cHat_t/tau-t —(l+cHat_t)/tau-t];

FA = [FA22];
GA = [0; 0; cHat_.n/tau.n; cHat_t/tau_.t];
CASim = eye (4);

DASim = zeros(4,1);

Qf2 = diag([a”2 0 0 01);
P = Riccati(FA, GA, R, Qf2, 2, 0.001);

C2 = [Tm O Tm Tm]; % a_PN = Cxx

% Simulation

sim('Missile SISO_TwoLoop_Servo_Airframe');

B.4 Integrated architecture — MIMO systems

% Name: Maria Morante Soria
$ File: Missile_MIMO.m

Scenario_Parameters; % Initialization Scenario Parameters Values
% Weight matrices

R = [alpha 0; 0 1];
Qf = diag([a”"2 0 0 b2 0 0 0 01);

C=10[0000Tm O Tm Tm]; % a-PN = Cxx

[

% MIMO Autopilot Scheme Design Gains

K_.dTheta.n = —0.035;
K_dTheta_t 0.035;
cHat_n = 0.25;
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cHat_t = —0.15;
% sim('MIMO_2Loop');

%% FULL STATE SINGLE LOOP GUIDANCE LAW

F11 = [01 0 0; 0 O 1 0; OO0 O Oy
0 0 1/(V_.Tgt*cos (Gamma_Tgt_0 + Lambda_0)) 0];
F12 = [0 0 0 O;j —Tm O —Tm —Tm; O O 0 O;

Tm/ (V_Msl*cos (Gamma_Ms1_0 — Lambda_0)) 0
Tm/ (V_Msl*cos (Gamma_Ms1l_0 — Lambda_0))
Tm/ (V_Msl*cos (Gamma_Ms1l_0 — Lambda_0))1];

F21 = zeros(4,4);

F22 = [0 1 0 0; 0 0 MDelta.n —MDelta_.t; 0 0 —1/tau.n 0; 0 0 0 —1/tau_-t];
F = [F11 F12; F21 F22];
G=[00; 00; 00; 00; 00; 00; 1/taun 0; 0 1/tau-tl;

CSim = eye(8);
DSim zeros (8,2);

P = Riccati(F, G, R, Qf, 2, 0.001);
% Simulation

sim('Missile MIMO_SingleLoop');

%% FULL STATE TWO LOOP AUTOPILOT GUIDANCE LAW

F11 = [0 =1 0 0; O O 1 0; 0 O O O;
0 0 1/(V_.Tgt*cos (Gamma_Tgt_0 + Lambda_0)) 01];
F12 = [0 0 0 O;j —=Tm O —Tm —Tm; O O 0 O;

Tm/ (V_Msl*cos (Gamma_Ms1_0 — Lambda.0)) O
Tm/ (V_Msl*cos (Gamma_Ms1_0 — Lambda_0))
Tm/ (V_Msl*cos (Gamma_-Ms1l_0 — Lambda_0))1];

F21 = zeros(4,4);

FA22 = [0 1 0 0; 0 O MDelta.n —MDelta_t;
—cHat_n/tau.n —K_dTheta_n/tau.n — (l+cHat_n)/tau_n —cHat_n/tau.n;
—cHat_t/tau.t —K_dTheta_t/tau.t —cHat_t/tau.t —(l+cHat_t)/tau_-t];

FA [F11 F12; F21 FA22];
GA = [0 0; 0 0; 0 0; O0 0; O 0; O O; cHat_n/(Tmxtau_n) 0;
0 cHat_t/(Tm*xtau-t)];

CASim = eye (8);
DASim = zeros(8,2);

P = Riccati(FA, GA, R, Qf, 2, 0.001);
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% Simulation

% sim('Missile MIMO_TwoLoop');

B.5 Guidance law

Name: Maria Morante Soria
File: Guidance.m

function u = Guidance(y, dy, a.IN, R, G, P, x)

$#codegen
u = —inv (R) *transpose (G) *Pxx;
end

B.6 Guidance law: Closed form solution
% Name: Maria Morante Soria
% File: Guidance_ClosedFormSolution.m

function u = Guidance_ClosedFormSolution(y, dy, a-TN, a, M, F, Time)
$#codegen

t_Go = 3 — Time;

X = [y; dy; a-TN];
u = a*xt_Go/ (1 + a2+ (t_Go) "3/3)+transpose (M) xexp (Fxt_Go) *x;
end

B.7 Riccati equation

% Name: Maria Morante Soria
% File: Riccati.m

function P = Riccati (A, B, R, Qf, tf, dt)

i = 0;

P = Qf;

dp = zeros (size (P));
invR = inv (R);

for t = 0:dt:tf
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i =1 + 1;
transpose (B) *P;
dP_pre = dP;

=
Il

dp = transpose (A) *P + P*xA — transpose (M) *invRxM;
P =P + (dP + dP_pre)*dt/2;
P = (P + transpose(P))/2;

end

end

B.8 Minimum effort law gains

Name: Maria Morante Soria
File: MinEffort_Gains.m

o° oP

function [k, NO_Out] = MinEffort_Gains(t, tau, inv_b, Gamma, i_Feed)

Generalized Minimum Effort Law gains
Inputs

o° o

t: Time to go

tau: Missile time constant

inv_b: Miss distance weighting

Gamma: Target maneuver weighting

i_Feed: 1 = Apply feedback from target acceleration

o° o° o° o° o oe

0 = Zero gain on target acceleration
h = t/tau;
h2 = h.xh;
h3 = h2.xh;
he = exp(-h);

he2 = exp(—2+h);

tau2 = tau’2;

tau3 = tau”3;
if (Gamma ~= Inf)
Gamma2 = 1/Gamma”2;
f_Gamma = 1 — Gamma?2;
else
f_Gamma = 1;
end

epsl = le—14;

NO_Num = 6.%*h2x(he — 1 + h);

NO_Den 2+xh3*f_Gamma + 3 + 6xh — 6+xh2 — 12*hxhe — 3+%he2;
NO_Den = NO_Den + epsl + inv_b=*6/tau3;

NT NO_Num/NO_Den;

NOl = (6/tau2)*(he — 1 + h);
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NO2 = (6xh/tau)*(he — 1 + h);
NO_Out = NO_Den — epsl;
KL = NTx(he — 1 + h)/(h2 + epsl);
if (i_Feed == 1)

k = [-NO1/NO_Den, —NO2/NO_Den,
else

k = [-NO1/NO_Den, —NO2/NO_Den,

end

end

—KL,

—KL,
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Appendix C
Simulink® model

The Appendices C.1 and C.2 include the two autopilot schemes studied based on the
number of inputs. Appendix C.1 encloses the classical autopilot —guidance scheme
where the guidance law issues a single command. Besides, Appendix C.2 presents
the multi—input autopilot design, where there are two inputs to the autopilot (nose
and tail deflection commands).

Additionally, Appendices C.3, C.4 and C.5 include the separated two—loop
autopilot —guidance design, the integrated single—loop guidance design and the
integrated two—loop autopilot —guidance design, respectively.
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C.1 Single—input two—loop autopilot scheme
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Figure C.1: Single—input two—loop autopilot design.
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C.2 Multi—input two—loop autopilot scheme
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Figure C.2: Multi—input two—loop autopilot design.
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C.3 Separated two—loop autopilot —guidance
design
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Figure C.3: Separated two—loop autopilot —guidance design.
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INTEGRATED SINGLE —LOOP AUTOPILOT — GUIDANCE DESIGN

C.4.

C.4 Integrated single —loop autopilot —guidance
design
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Figure C.4: Integrated multi—input single—loop autopilot —guidance

design.
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C.5 Integrated two—loop autopilot —guidance

design
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