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Truth is much too complicated
to allow anything but approximations.

- John von Neumann






ABSTRACT

One of the most important targets in nuclear safety analyses is the fast and
accurate computation of the power evolution inside of the reactor core. The
distribution of neutrons can be described by the neutron transport Boltzmann
equation. The solution of this equation for realistic nuclear reactors is not
straightforward, and therefore, numerical approximations must be considered.

First, the thesis is focused on the attainment of the solution for several steady-
state problems associated with neutron diffusion problem: the A-modes, the
~v-modes and the a-modes problems. A high order finite element method is used
for the spatial discretization. Several characteristics of each type of spectral
problem are compared and analyzed on different reactors.

Thereafter, several eigenvalue solvers and strategies are investigated to compute
efficiently the algebraic eigenvalue problems obtained from the discretization.
Most works devoted to solve the neutron diffusion equation are made for the
approximation of two energy groups and without considering up-scattering. The
main property of the proposed methodologies is that they depend on neither
the reactor geometry, the type of eigenvalue problem nor the number of energy
groups.

After that, the solution of the steady-state simplified spherical harmonics equa-
tions is obtained. The implementation of these equations has two main differences
with respect to the neutron diffusion. First, the spatial discretization is made at
level of pin. Thus, different meshes are studied. Second, the number of energy
groups is commonly bigger than two. Therefore, block strategies are developed
to optimize the computation of the algebraic eigenvalue problems associated.

Finally, an updated modal method is implemented to integrate the time-dependent
neutron diffusion equation. Modal methods based on the expansion of the dif-
ferent spatial modes are presented and compared in several types of transients.
Moreover, an adaptive time-step control is developed that avoids setting the
time-step with a fixed value and it is adapted according to several error estima-
tions.






RESUMEN

Uno de los objetivos més importantes en el analisis de la seguridad en el campo
de la ingenieria nuclear es el célculo, rapido y preciso, de la evolucién de la
potencia dentro del nucleo del reactor. La distribucién de los neutrones se puede
describir a través de la ecuacién de transporte de Boltzmann. La solucién de
esta ecuacién no puede obtenerse de manera sencilla para reactores realistas, y
es por ello que se tienen que considerar aproximaciones numéricas.

En primer lugar, esta tesis se centra en obtener la solucién para varios problemas
estaticos asociados con la ecuacién de difusién neutrénica: los modos A, los
modos v y los modos «. Para la discretizacién espacial se ha utilizado un método
de elementos finitos de alto orden. Diversas caracteristicas de cada problema
espectral se analizan y se comparan en diferentes reactores.

Después, se investigan varios métodos de célculo para problemas de autovalores
y estrategias para calcular los problemas algebraicos obtenidos a partir de la
discretizacion espacial. La mayoria de los trabajos destinados a la resolucién de
la ecuacién de difusiéon neutrénica estéan disenados para la aproximacién de dos
grupos de energia, sin considerar dispersiéon de neutrones del grupo térmico al
grupo rapido. La principal ventaja de la metodologia que se propone es que no
depende de la geometria del reactor, del tipo de problema de autovalores ni del
numero de grupos de energia del problema.

Tras esto, se obtiene la solucién de las ecuaciones estacionarias de armoénicos
esféricos. La implementacion de estas ecuaciones tiene dos principales diferencias
respecto a la ecuacién de difusiéon neutrénica. Primero, la discretizacién espacial
se realiza a nivel de pin. Por tanto, se estudian diferentes tipos de mallas. Segundo,
el nimero de grupos de energia es, generalmente, mayor que dos. De este modo,
se desarrollan estrategias a bloques para optimizar el cdlculo de los problemas
algebraicos asociados.

Finalmente, se implementa un método modal actualizado para integrar la
ecuacién de difusién neutrénica dependiente del tiempo. Se presentan y com-
paran los métodos modales basados en desarrollos en funcién de los diferentes
modos espaciales para varios tipos de transitorios. Ademas, también se desarrolla
un control de paso de tiempo adaptativo, que evita la actualizacién de los modos
de una manera fija y adapta el paso de tiempo en funcién de varias estimaciones
del error.
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RESUM

Un dels objectius més importants per a I’analisi de la seguretat en el camp de
I’enginyeria nuclear és el calcul, rapid i precis, de ’evolucié de la potencia dins
del nucli d’un reactor. La distribucié dels neutrons pot modelar-se mitjancant
I’equacié del transport de Boltzmann. La solucié d’aquesta equacié per a un
reactor realistic no pot obtenir’s de manera senzilla. Es per aixd que han de
considerar-se aproximacions numeriques.

En primer lloc, la tesi se centra en 1’obtencié de la solucié per a diversos problemes
estatics associats amb 'equaci6 de difusié neutronica: els modes A, els modes v i
els modes a. Per a la discretitzacié espacial s’ha utilitzat un metode d’elements
finits d’alt ordre. Algunes de les caracteristiques dels problemes espectrals
s’analitzaran i es compararan per a diferents reactors.

Tanmateix, diversos solucionadors de problemes d’autovalors i estrategies es
desenvolupen per a calcular els problemes obtinguts de la discretitzacié espacial.
La majoria dels treballs per a resoldre ’equacié de difusié neutronica estan dis-
senyats per a I'aproximacié de dos grups d’energia i sense considerar dispersi6 de
neutrons del grup termic al grup rapid. El principal avantatge de la metodologia
exposada és que no depen de la geometria del reactor, del tipus de problema
d’autovalors ni del nombre de grups d’energia del problema.

Seguidament, s’obté la solucié de les equacions estacionaries d’harmonics esférics.
La implementacié d’aquestes equacions té dues principals diferéncies respecte
a lequacié de difusié. Primer, la discretitzacié espacial es realitza a nivell de
pin a partir de I’estudi de diferents malles. Segon, el nombre de grups d’energia
és, generalment, major que dos. D’aquesta forma, es desenvolupen estrategies a
blocs per a optimitzar el calcul dels problemes algebraics associats.

Finalment, s’implementa un metode modal amb actualitzacions dels modes per
a integrar ’equaci6 de difusié neutronica dependent del temps. Es presenten i es
comparen els metodes modals basats en 1'expansi6 dels diferents modes espacials
per a diversos tipus de transitoris. A més a més, un control de pas de temps
adaptatiu es desenvolupa, evitant I'actualitzacié dels modes d’una manera fixa i
adaptant el pas de temps en funcié de varies estimacions de ’error.
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CHAPTER

INTRODUCTION

1.1 Overview of modal analysis

The modal analysis, based on the definition given by Fu and He in 2001, is the
process of determining the inherent dynamic characteristics of a system in the
form of natural frequencies, damping factors and mode shapes; and using them
to formulate a mathematical model for its dynamic behaviour.

The dynamical behaviour of a system can be physically decomposed by position
and frequency. This is illustrated, for instance, in the analytical solution of PDEs
for continuous systems such as beams and strings. The modal analysis assumes
that a dynamic system can be represented as the linear combination of a set of
harmonics known as the natural modes. Each mode depends on the dynamic
system and it is defined by its physical properties and spatial distribution. Its
shape can be real or complex and each one usually is associated with a natural
frequency. The weight of each mode in the overall description of the movement is
computed both by properties of the excitation sources and by the modes shapes
of the system.

In the last decades, there are countless applications of modal analysis in fields
of engineering, technology and science. It is not possible to introduce each one
of these applications; nevertheless, a brief exposition of some practical works
will help to understand the potential of modal analysis. Traditionally, most
of practical work came from engineerings such as aeronautics, mechanics and
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automobiles. Nevertheless, in the last years, it becomes more interdisciplinary
discovering many applications for civil engineering, biomechanical problems, space
structures, optics, acoustical instruments, transport and nuclear engineering, etc.

In automotive engineering, there is great interest to understand the dynamic
properties of the vehicles to improve the design of automotive components and
the enhancement of dynamic properties. For instance, troubleshooting tool, by
using modal analysis, plays an important role in the study of vehicle noise and
vibration harshness mainly for body-in-white or a sub-frame structure (Freeman
and Weilnau, 2017). This technique derives experimentally natural frequencies,
damping factors, and mode shapes to understand the structural characteristics.
Another application is the study of the vehicle noise (Panza, 2015).

Other fields where the modal analysis is of great importance are the aeronautical
and astronautical industries. In fact, the development of modal analysis has been
associated with the rapid progress of this industry. Spacecraft structures require
high requirements for structural integrity and dynamic behavior. Several modal
tests have been conducted in areas ranging from an aircraft frame, a satellite to
an unmanned aerial vehicle. (Kerschen et al., 2013; Li et al., 2016; Boudjemai
et al., 2012).

On the other hand, modal analysis is widely applied to structural analysis for
studying the dynamic behaviour of civil structures under seismic and wind
charges. The response of a construction due to ambient vibration or external
loading relies on accurate mathematical models that can be derived for instance
by modal analysis. Examples of such applications range from tall buildings,
soil-structure interactions, bridge testings to a dam-foundation systems (Pioldi
et al., 2017; Brownjohn et al., 2010). Furthermore, acoustic modal analysis has
provided essential information in the design of speaker cabinets with improved
sound quality. Also, for the studies of instruments such as violins to provide
scientific data behind of instrument makers (Chaigne and Kergomard, 2016).

Modal analysis has also developed in other fields less known as the waveguides
analysis, very popular for instance, in the microwaves industry. Modal techniques
allow analyzing waveguide junctions and the propagation characteristics of a
given waveguide. An example is the mode matching method proposed by Wexley
(Wexler, 1967) that permits the efficient computation of the scattering parameters
of waveguide structures involving different planar discontinuities. Waveguides
are also important in the optical field. Many works are devoted to analyze,
through modal techniques, for example, the chromatic dispersion of optical fiber
(Silvestre et al., 2005) or shaped optical dielectric waveguides (Ortega-Mofiux
et al., 2006).



1.2 Motivation and objectives

In nuclear engineering, modal methods have been successfully used to study
the dynamics of reactor cores and to classify BWR instabilities (Mir6 et al.,
2000; Mir6 et al., 2002). Recently, modal analysis is developed to decompose the
neutron noise produced by fuel assembly vibrations (Yamamoto and Sakamoto,
2019).

1.2 Motivation and objectives

One of the most important subjects in the nuclear safety analysis is the computa-
tion of the power evolution inside of the reactor core. An accurate approximation
is essential for the design and safety of a nuclear reactor and other nuclear systems.
This power depends basically on the transport of neutrons that can be modeled
through the neutron Boltzmann equation or the neutron transport equation. The
solution of this equation in a realistic nuclear reactor is not straightforward, and
therefore, numerical approximations must be considered. The main aim of this
thesis is the study and the implementation of different techniques to integrate
efficiently the multigroup neutron diffusion equation and the simplified spherical
harmonics equation.

First, it is focused on the computation of several spatial modes associated with the
neutron diffusion equation. The previous section has emphasized the importance
of the modal analysis in several applications for nuclear engineering. The majority
of works are devoted to obtain the known A-modes or in less cases, the a-modes
and the y-modes. In this thesis, we analyze the spectral properties these types of
modes. For the spatial discretization of the equations, a high order finite element
method is considered. The main reason to use this methodology is the capability
of modelling any kind of geometry: using structured and unstructured meshes.

After that, some eigenvalue solvers and strategies are proposed to compute the
algebraic eigenvalue problems obtained from the discretization. Most works
related to solve the neutron diffusion equation are made for the approximation
of two energy groups and without considering up-scattering. The main property
of the proposed methodologies is that they are depend on neither the reactor
geometry, the type of eigenvalue problem nor the number of energy groups.

Thereafter, the solution of the steady-state simplified spherical harmonics equa-
tion (SPy) is obtained. The implementation of these equations has two main
differences concerning for the neutron diffusion computation. The first one is that
the spatial discretization is usually made at pin level. Thus, different strategies
of meshes are studied. The second one is that the number of energy groups is
commonly bigger than two. Therefore, block strategies are developed to optimize
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the computation of the associated algebraic eigenvalue problems. Furthermore,
the sizes of the problems for these equations can be sufficiently large to be
unfeasible to be solved in personal computers. Thus, a matrix-free methodology,
that avoids the allocation of the matrices in memory, has been studied, as well
as, eigenvalue solvers and preconditioners do no need the full problem matrices
allocated.

Finally, an updated modal method is efficiently implemented to integrate the
time-dependent neutron diffusion equation. The modal methods are based on the
expansion of the different types of eigenfunctions studied. Moreover, an adaptive
time-step control is developed that avoids setting the time-step with a fixed
value and it is adapted along the transient according to several error estimations.

The objectives of this thesis can be summarized as follows:

1. The implementation of a finite element code to solve the A, the o and the
~v-modes problem associated with the neutron diffusion equation to analyze
the different spectral problems.

2. The optimization of the eigensolvers throught different block iterative
methods, initialization techniques and preconditioners.

3. The resolution of the simplified spherical harmonics equations (SPy) in an
efficient way.

4. The integration of the time-dependent neutron diffusion equation with an
updated modal methodology based on different spatial modes.

5. The development of an adaptive time-step control to improve the updated
modal method.

1.3 Thesis outline

The thesis is organized in 6 chapters and 2 appendices. Chapter 2 exposes the
neutron transport equations and presents the different approximations that
are used in the next chapters: the time-dependent neutron diffusion equation,
the spatial modes problems associated with the neutron diffusion equation and
the A-modes problem associated with the simplified harmonics equations (SPx
equations). Moreover, this Chapter includes the definition some basic neutron
magnitudes and concepts.

Chapter 3 describes and tests the finite element method used for the spatial
discretization of the steady-state equation. Numerical results compare the spatial
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modes for the neutron diffusion equation and show the distribution of the A-modes
for the SPyN equations.

Chapter 4 presents the methods to solve the algebraic eigenvalue problems
obtained from the spatial discretization. This Chapter describes some of the most
used methods in nuclear engineering computations and presents the performance
of several block eigensolvers as alternative to these ones. The computational
efficiency of each eigenvalue solver can be improved through different techniques.
In this thesis, some initialization strategies, preconditioners and different matrix
allocations techniques are studied and tested on several reactors. The eigenvalue
solvers presented are used in both neutron diffusion and SPyn computations.

Chapter 5 is devoted to integrate the neutron diffusion equation. The modal
methodology with different spatial modes is studied to this aim. First, the modal
methodology is compared for several spatial modes. Then, the updated modal
methodology is used to avoid to use a high number of modes in the modal
expansions. Finally, an adaptive updated modal method is developed such that
the time-steps to update the modes are chosen depending on the state of the
transient to minimize the error and maximize the performance of the method.
This methodology is compared with a backward differential method for different
transients.

Chapter 6 collects the main conclusions and results of this thesis. Appendix A
develops the analytic solution of the spatial modes problems associated with the
neutron diffusion equation for a three-dimensional homogeneous reactor. Finally,
Appendix B describes the benchmarks used along the manuscript.






CHAPTER

THE NEUTRON TRANSPORT EQUATION

The prediction of the position of neutrons, the direction they are going and the
velocity they are moving is essential for the design and the safety of nuclear
reactors because neutros cause the nuclear fission of nuclei. This behaviour
depends on the interactions between neutrons and nucleus and it can be described
(under several assumptions) by the neutron transport equation, also known as
Boltzmann equation. It states that the variation of the number of neutrons
located in a control volume is due to the imbalance between the number of
neutrons appearing and disappearing in this control volume.

This equation is an integro-differential equation with (usually) seven independent
variables, whose solution is not smooth, and which can only be solved analytically
for the simplest problems. For this reason, all neutron problems of practical
interest must be solved either approximately or numerically. Two type of methods
can be found to simulate and approximate neutron transport and interactions in
the reactor. Deterministic methods that solve the Boltzmann transport equation
numerically as a differential equation. And stochastic methods where discrete
particle histories are tracked and averaged in a random walk directed by measured
interaction probabilities. Even though, deterministic methods are faster, both
types of methods are time demanding, to obtain approximations in realistic
reactors.

The approximated equations for deterministic methods are normally classified by
its angular dependence treatment. The most used approximation over the years is
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the neutron diffusion equation. This equation, even if its use is limited by certain
conditions, gives accurate solutions in a relatively short time. More accurate
approximations of the neutron transport equations are used through different
angular discretizations such as the discrete ordinates (Sy) or the spherical
harmonics expansion (Py) for the angular variable. Both discretizations, although
different, can yield to equivalent solutions by taking an appropriate quadrature
set in the definition of the discrete ordinates method, (Sanchez, 2012). However,
in spite of the angular discretization, a large set of equations is needed to be
solved to obtain precise results.

For the case of Py equations, a simplified formulation was developed by Gelbard
in (Gelbard, 1960) to reduce the computational cost known as the simplified Py
equations or SPy equations. They are derived from the Py equations where odd
moments are solved and replaced again in the the equations, leading a simplified
formulation where the number of variables is decreased. Gelbard applies heuristic
arguments to justify the approximation. Over the years, several works (Larsen
et al., 1996; Klose and Larsen, 2006) have verified its approach.

This chapter describes the underlying theory of the neutron transport equation
and two types of approximations: the neutron diffusion equation and the simpli-
fied spherical harmonic equations. Section introduces 2.1 some basic magnitudes
used in the context of the transport equation. Section 2.2 describes the neutron
transport equation as well as the boundary conditions for this problem. Section
2.3 presents different modal problems associated with the neutron transport
equation. Section 2.4 describes the time-dependent neutron diffusion equation.
Section 2.5 presents the spatial modes associated with the neutron diffusion
equation. Moreover, this Section includes the definition of the adjoint prob-
lems. Finally, Section 2.6 exposes the simplified spherical harmonic equations in
steady-state.

2.1 Concepts of reactor physics

Nuclear reactors are based on the extraction of energy produced by nuclear
fission reactions. In this process, a large fissile atomic nucleus such as U-235
or Pu-239 absorbs a neutron and it may undergo a nuclear fission. The heavy
nucleus splits into two or more lighter nuclei, (the fission products), releasing
kinetic energy, gamma radiation, and free neutrons (Lamarsh and Baratta, 2001).
The neutrons produced are:

« prompt neutrons, emitted immediately after the fission (~ 10714 s);
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¢ delayed neutrons, emitted after beta decay of one of the fission fragments
(neutron precursors) anytime from a few milliseconds to a few minutes later
because a small fraction of precursors can undergo the neutron emission
instead of the gamma emission.

Many precursors of delayed neutrons may appear, each having its neutron decay
constant, Aq. Frequently, neutron precursors are grouped into six groups according
to their half-life. We denote the decay constant of the group k as )\i. Moreover,
we call the fraction of delayed neutrons of group k, as Bj. It represents the number
of delayed neutrons in the group k divided by the total number of neutrons
emitted. The number of precursor groups is K. The total fraction of delayed
neutrons, 3, is given by

B=Y B (2.1)
=1

The total fraction of delayed neutrons is small, being, for instance, 0.0127 for
U-238, 0.0065 for U-235 and 0.0021 for Pu-239.

On the other hand, the fission products have different energies. The spectrum
of the neutrons produced by fission (Watt Fission Spectrum) at energy F is
denoted by X(E). Therefore, the fraction of neutrons with energy between E
and E + dF is given by X(F)dE. As emitted neutrons can be prompt or delayed,
we make the distinction by the superindex p for the prompt neutrons and d, k
for delayed neutrons of delayed group k. These spectrums satisfy

/ XP(E) dE =1, / X*ME)dE =1, Vk=1,...,K. (2.2)
0 0

Furthermore, we define v that represents the average number of neutrons obtained
per fission.

Fission is not the only type of reactions of importance (Lamarsh and Baratta,
2001; Demaziere, 2019) and other nuclear reactions need to be taken into account.
In reactor physics, these reactions are divided into two types:

¢ Scattering reactions, where a neutron collides on a target nucleus and
can change its energy and direction after the collision. An scattering
reaction can also lead to the formation of a compound nucleus before
neutron emission. They can be elastic collisions or inelastic collisions. The
laws of conservation of momentum and kinetic energy govern the elastic
scattering interactions. Inelastic scattering causes a loss of kinetic energy
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of the neutron due to an increase of the energy state of the nucleus. This
kind of reaction is denoted by the subscript s.

o Absorption reactions, where a neutron is absorbed by a target nucleus.
In this case, there are two possibilities: either the compound nucleus does
not emit neutrons (i. e. it emits v rays, a particles, etc), or the compound
nucleus does emit neutrons. The last one is referred to as fission reaction.
Absorptions reactions are denoted by the subscript a and fission reactions
are denoted by the subscript f.

To quantify the probability of a nuclear reaction taking place, the microscopic
cross-section is defined as
R,
o, = ,
e nviN,

where R, denotes the total number of collisions of type o per second and n
the number of neutrons travelling with velocity v (cm/s) in a material with
N,, nucleus in the target. The subscript o denotes the reaction type p = s, a,t.
The sum of the cross-sections for all possible interactions is known as the total
cross-section and is indicated by the symbol oy; that is

(2.3)

o = 04+ 0g. (2.4)

The value of o, remits to the concept of cross-sectional area of interaction
presented to the neutron for a reaction of type 0. Microscopic cross section are
usually measured in barns where 1 barn = 10724 cm?. This cross-sectional area
can be much larger than the geometric cross section of the nucleus (Stacey,
2018).

Usually, the product of the atom density N4 and microscopic cross section o,
appears in the equations of nuclear engineering. Thus, this value is refereed to
as macroscopic cross-section and it is denoted by X,. In particular, ¥; := Nyo;
denotes the total macroscopic cross-section; ¥, denotes the fission macroscopic
cross-section; Y, the scattering macroscopic cross-section; and X,, the absorption
macroscopic cross-section. This variable indicates the probability of iteration of
a neutron per unit path length. Macroscopic cross-sections are measured in 1/cm
(Stacey, 2018). From this point onwards, all cross section will be macroscopic by
removing the details of the interaction processes.

The complex behaviour of neutron cross sections means that these cannot be
obtained from first principles using properties of the nucleus (Weinberg and
Wigner, 1958). Therefore, data must be calculated empirically as a function
of energy for each nuclide and reaction. The estimation of the neutron cross
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2.1 Concepts of reactor physics

sections has required years of effort in measuring, calculating and evaluating
cross sections for hundreds of isotopes. These efforts are gathered in evaluated
nuclear data files (ENDF) that contain the cross sections of the main reactions,
the energy and the angular distributions of the resulting particles. Nowadays,
the most complete collection of experimental results is the EXFOR computer
library (Otuka et al., 2014). It includes the major evaluated nuclear data files:
United States Evaluated Nuclear Data File (END/B-VII.1), Joint Evaluated
File of NEA Countries (JEFF-3.2), Japanese Evaluated Nuclear Data Library
(JENDL-4.0) and Russian Evaluated Nuclear Data File (BROND-3.1), among
others (Vidal Ferrandiz, 2018).

2.1.1 Functions in reactor physics

The distribution of neutrons depends on independent variables with space support
of dimension seven: the position, 7, described by three spatial coordinates; the
direction of travel, (1, given by two angles; the particle energy, F, and finally,
the time denoted by t.

The neutron density probability distribution, n(7, E, Q, t), is defined such
that n(7, E, Q, t) dV dQ dE is the number of neutrons in a differential volume

element dV" about 7 travelling in the direction dQ around O with energies between
E and E + dE at time ¢ (Henry, 1975; Hébert, 2009).

Normally, the transport problems are expressed in terms of the angular neutron
flux given by
U(r, E, Q, t) =v(E)n(r, E, Q, t), (2.5)

where v(FE) is the neutron speed. The angular flux can be defined as the total
path travelled during dt by all particles in the differential phase space volume
dV dQdE.

Sometimes, the direction is not relevant in the computation of reaction rates. In
this cases, the scalar neutron flux is used integrating 1 over all directions. It
can expressed as

O(F, B, t) = / U7, O, B,t)dO. (2.6)
(dm)

This term does not mean a flow of neutrons through a surface, but it corresponds
to the total length travelled by all neutrons per unit time and volume. It can be
interpreted as the number of neutrons per unit area, energy and time.

11



Chapter 2. The neutron transport equation

The net current density vector is a vectorial quantity defined as

-

J(F, B, t) = / QU(F, Q, E, t)d. (2.7)
(4m)

Given a position, energy and time, the definition of

-

o7, E, t) =7 J(F Q, E, t) = /(ﬁ-ﬁ)\IJ(F, O, E, t)dQ. (2.8)
(4r)

gives the net number of particles crossing per unit area of surface per unit time
and per unit energy in the positive direction of the normal vector, 7i. The angular
current is positive if the particle crosses in the direction of 77, and negative
otherwise. Thus, we can define the outgoing current, J*, and incoming current,
J~ by integrating the angular current over outgoing and incoming directions,
respectively, as

i :  7-QU(F Q, E, t)dQ,

J+:/ 70w 0, B, t)dQ, Jn_:_/
Q-1i>0 Q-n<0

Jo(Fy B t) = JFH(F E t)— J, (¥, E, t). (2.9)

2.2 The neutron transport equation

The behaviour of a nuclear reactor core is governed by the distribution of the
neutrons (in space, angle, energy and time) in the system. This can be modelled
by the neutron transport equation, often called the Boltzmann transport equation.
This equation is a balance between the proportion neutrons which enter and the
proportion of neutrons which exit in a control volume (Lewis and Miller, 1984).
This equation, assuming that delayed neutrons and fission neutrons are emitted
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isotropically in the reference system, can be expressed as

18\11

G2 Q,t)=—Q-VUF E, Q t)— %(F, E, t)U(F, E,Q, t)

+/dE’/dQ’ (7, B = E, O -0, ) U(7, E', O 1)

(4)

+(1-B) Xp /zf o(F, B, t)dE'

X (E) <
N2 (7t X7 E.Q,t).
+kz::1 k Ar Ck("“, )+Q (Ta ) ) )

(2.10)
%t , represents the time-variation of the number of neutrons.
The first term on the right hand side, Q-v U, represents the neutron transfer
going out the phase control volume during dt, where Q) is the unit vector denoting
the direction of neutrons. The second term, ¥; ¥, describes the disappearance of
neutrons during dt, i.e. the rate at which neutrons are absorbed or scattered to
other energies or directions. The third term represents the neutrons introduced
into the volume element by scattering from other energies and directions. In
writing 34(7, ' — E, Q- ﬁ, t), the dot indicates that scattering in media with
randomly distributed scattering centers, is rotationally invariant. That means
that the probability that a neutron scatter from direction O to direction (¥
depends only on the scattering angle 6y between O and (V. The fourth term
represents the number of prompt neutrons introduced inside the volume element
by fission processes. The fifth term takes into account the quantity of delayed
neutrons that appear from the precursor decay. Finally, the emission density of
neutrons of a possible external source is given by Q®*(7, E, Q, t).

The first member,

The concentration of delayed neutron precursors, Ci, for the precursor group
k=1,..., K, satisfies the equation

OCy,

o 5’f/dE / AQUE; (7, B, 1) U(7, B, Q1) — \*Cy(F 1),

0 Um (2.11)

:/Bk/dEVZf(FaE7t) CD(F7E7t) _)‘d’kck(f’?t)a

where v is the average number of neutrons released per fission.
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Chapter 2. The neutron transport equation

The neutron transport equation is an integro-differential equation whose solution
is unique and non-negative provided all cross sections, sources and non negative
initial and boundary conditions (Lewis and Miller, 1984).

In the following, we develop the multigroup neutron transport equation approxi-
mation by discretizing the energy variable E into G intervals. We suppose the
scalar energy starts in Fg = 0 and ends in a sufficiently large value for energy
Ey. The neutrons with energies between F, and F,_; with F, < E,_; belong to
group g. Under this assumption, one can define the group angular flux ¥ as

Eg1
U, (7.0, 1) = / v(7, O, B,1)dE. (2.12)
Ey

In this way, one can suppose that a function f(E) can be defined such that
(7, G, B,t) = f(B)¥,(7, G,t), (2.13)
where the energy-dependent weighting function f(FE) is normalized as
Eg_1
f(E)dE =1. (2.14)
Eq

This formalism is needed to preserve the quantities involved in the neutron
transport equations.

Analogously, to the angular flux, the neutron transport equation, (Equation (2.10)),
can be integrated for all energy interval to obtain the multigroup neutron trans-
port equation

i%(ﬁ Q1) =— Q- VU7, Q, t) — B4y (F, )0, (7, D, 1)
vy Ot
G 2, = —
Y | Sage(F Q- Q1) W (F Y ) dY
9"=1(4r)

o (2.15)
X5 . .
+ Z(l — ﬂ)EVgEfg/(r,t)ég/(r, t)
g'=1

K xdk .
+ D MG 1) + QF(F O, 1)
P——
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2.2 The neutron transport equation

and the concentration on neutron precursors

C . G . . .
8—:(7“,15) =61 Y Uy (Fo 1) @y (7, £) — MCL(F, 1) . (2.16)

g'=1

The magnitudes associated with each group ¢ are defined as

Ey 1
B, (7, 1) = / ®(F, E, t)f(E)dE (2.17)
Eq
Eg1
1 1
— = | —fE)dE, 2.18
- E{V(E)f() (2.18)
Eg1
5, (7, O, 1) = / S(7, B, ) f(E)dE, (2.19)
E,
Ey_\E

Yoo, G -G, 1) = (7 B — B, 00, ) f(E)dEJE’, (2.20
gyg
E! E,

Eg_1
VS5 (7) 1) = / vS((F, B, t)f(E)dE, (2.21)
EQ
Eg_1
XE = / XP(E)f(E)dE, (2.22)
Eg
Eg_1
Xk = /Xd’k(E)f(E)dE, k=1,....K, (2.23)
Eg
Eg1
Q= [ Q=f(E)dE. (2.24)
Eg

In the following, we assume that there are not external sources in the neutron
transport equation, i.e. Q@ = 0.
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Chapter 2. The neutron transport equation

2.2.1 Boundary conditions

The reactor domain V is surrounded by a boundary I' = 9V where boundary
conditions are imposed. The solution of the neutron transport equation (Equation

(2.10)) requires the knowledge of the incoming angular flux ¥ (7, i, E) for

Qin - 1 < 0 where 71 is the outward normal vector at 75 € I'. The most usual
boundary conditions are:

¢ Albedo boundary condition. The incoming flux is related with the
known outgoing flux by means of an albedo coefficient 5,. This condition
can be written as

(7, Gin, B) = Bar U(7y, Qout, E), for Q-7 <0, 7y el (2.25)

where €y, is the refection angle corresponding to an outgoing direction

Qout .

¢ Vacuum boundary condition. Also it is known as free surface boundary
condition and it can be expressed as

U(r0, m) =0, for Qi 71 < 0,pel. (2.26)
Note that, they are a particular case of albedo condition taking £, = 0.

¢ Reflective boundary condition can be defined as
(T07 1n) (TO; out) for Qm n < 0 T() el. (227)

This type of boundary condition is a particular case of albedo boundary
conditions taking 8, = 1, since all outgoing particles are reflected back.

¢ White boundary condition. It is a reflective condition where all neutrons
leaving the system through the boundary are isotropically emitted back
into the domain. This is expressed as

. JH (7 o
(7, Qi) = ( 0), for Oy, -7 <0, 7 el. (2.28)

2.3 Spatial modes definition

Some steady-state transport calculations are carried out by using the equation
without taking into account the time dependence. However, in this multiplying
system (i.e. X # 0), the critical state of the reactor must be considered. It is
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2.3 Spatial modes definition

said that a reactor is in critical state if there is a self-sustaining time-independent
chain reaction in the absence of external sources of neutrons, @°* = 0. This
means that if neutrons are inserted in a critical system, a time-independent
distribution of neutrons will exist in which the rate of fission neutron production
is just equal to the losses due to absorption and leakage. When an equilibrium
cannot be established, the asymptotic distribution of neutrons will not be in
steady state and will either increase or decrease exponentially. In these cases,
the system would be supercritical or subcritical, respectively.

Different kind of spatial modes can be defined for the neutron transport equation
to force the criticality of the system by modifying the cross-sections in different
ways (Bell and Glasstone, 1970; Henry, 1975; Ronen et al., 1976), obtaining
different eigenvalue problems such as the A-modes (denoted in these works as
k-modes), the a-modes, y-modes or the A-modes. In (Ronen et al., 1976; Velarde
et al., 1978) these spatial modes are discussed and compared for fast neutron
plutonium systems. Other modal problems are the §-modes. These are proposed
by Avvakumov et al. by connecting to self-adjoint part of the operator of neutron
absorption-generation to make an a priori estimate of neutron flux dynamics.
Modal methods have been developed for these modes (Avvakumov et al., 2018b).
In this thesis, the modal study has been restricted to the A-modes, the a-modes
and the v-modes.

The spatial modes have been defined for different approximations of the neutron
transport equation and used for different purposes. The A-modes are the most
common problem to study the criticality of the system (Verdu et al., 1994).
Moreover, these modes have been successfully used to study and classify the
neutronic oscillations in BWR reactors (March-Leuba and Blakeman, 1991;
Verdt et al., 1998; Miré et al., 2000) and to develop modal methods to solve
the time dependent neutron diffusion equation (Miré et al., 2002). The A-modes
problem is obtained by diving the fission term of the neutron transport equation
(Equation (2.15)) by a positive number \ as
a
G-V (7, Q) + S (M) (7, D) = Y [ By (7, - Q) (7, ) dY

=1
! ) (2.29)
1 Xg A /=
=3 Z 7ngfg’(7?)¢ (7,
A ] 4 g

where X, = (1 — 8)Xb + S ﬂ;&(;““, g=1,...,G.

In the A-modes problem, the dominant eigenvalue (the largest in magnitude) is
referred to as keg. The kqg is interpreted as the asymptotic ratio of the number
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Chapter 2. The neutron transport equation

of neutrons in one generation and this number in the next generation (Lewis and
Miller, 1984). The eigenfunction associated with this mode shows the distribution
of the neutrons in steady-state. Clearly, the system is critical when the dominant
eigenvalue is keg = 1. For values of ke < 1, the system would be subcritical
because not enough neutrons are produced by fission. On the other hand, values
of ke > 1 would imply that the system is supercritical.

The y-modes were presented in (Ronen et al., 1976). There is not a lot of work
devoted to this kind of modes but they have interesting spectral properties
to study the criticality (Carrefio et al., 2017b) and to develop modal methods
(Carreflo et al., 2019c). The y-modes problem is obtained diving the fission and
scattering terms of Equation (2.15) by a positive number v as

- . L 1 E& Lo .
G P D) + S (WD) = = 30 [ Syl ¥ D Pyasy
g'=1
(4m)

G
1 3 Xg L
- E / ’Y/ 9
+ v = 47TV9 fa (ﬂd)g (T)

(2.30)
where X, = (1 — 8)Xb + Zle ﬂkxg’k, g=1,...,G.

The classification of the criticality of the system according to these modes is
the same as for the A-modes. A value of v = 1 is obtained when system is in
critical state. Otherwise, the system will be in subcritical or supercritical state
depending on whether v < 0 or v > 0, respectively.

The a-modes problem is basic in the field of nuclear reactor physics (Bell and
Glasstone, 1970). These modes are important to develop monitoring techniques
for subcritical systems (Lewins, 2013; Képhazi and Lathouwers, 2012; Uyttenhove
et al., 2014). Recently, they are also used to decompose the neutron noise
(Yamamoto and Sakamoto, 2019). These modes are obtained by assuming an
exponential behaviour of the neutron flux in (2.15) as

Uy (7, O, t) = 5 (7, 1) (2.31)

Furthermore, the delayed neutron precursors are supposed to be in steady state
and the intermediate a-modes are obtained. Other treatment of the neutron
precursors leads to the prompt or total a-modes (Verdud et al., 2010). This
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problem has the following expression

- Z / S grg (7 0 - B)2 (7, V)Y

=1 (2.32)

1 .
EZX%SM (M6 (F) = a—y2 (7, ),

where X, = (1 — 8)X} + K Bng’k, g=1,...,G.

From the physical definition of criticality, we have that the system will be critical
if @« = 0. For values where v > 0 or a < 0 a supercritical or subcritical system is
obtained, respectively.

2.4 The neutron diffusion equation

The neutron transport equation, even if the multigroup approximation is consid-
ered, is a challenging problem that cannot be solved explicitly with deterministic
methods. Only approximated forms of the transport equation are solved that
are classified by the angular dependence treatment. The approximation most
commonly used over the years is the neutron diffusion equation. It removes
the angular dependence through the development of the flux and scattering
cross-section in spherical harmonics in the first approximation, P;. It is assumed
that the neutron current is proportional to the gradient of the scalar neutron
flux with a diffusion coefficient as

Jy(F,t) = —DyV,(F, 1), (2.33)

where J_;; is the current vector for the group g. This approximation is known as
the Fick’s first law. Moreover, it can assume that the neutron velocities are very
large and the transport cross sections are large.

Under these considerations the time-dependent multigroup neutron transport
equation (Equation (2.15)) can be integrated over all directions to obtain the
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time-dependent multigroup neutron diffusion equation (Lewis and Miller, 1984)

100, . B, I ﬁ } @ , ;
gaTg(r’ t)=V- (ng ®, (7, t)) — g (7, 1) @(7, 1) + gz_l Nsgg(r, t) Oy (7 1)
g'#g
G K
(1= BIXG D vgBpy (7, 1) By (7, 1) + Y MXGTCr(7 1), g=1,.... G,
g'=1 k=1

(2.34)
where the concentration of neutron precursors is written in the form

aC, ,

G
W(r, £) = B Y vgSsg(F, t)By(7, ) — MCr(T, 1), k=1,...,K. (2.35)

g=1

In this notation, the removal cross-section (¥,4) is introduced. It is defined as

G
Srg =g+ Y By g=1...,G.

g'=1
9'#g

In a matrix form, this equation can be also expressed as

N,

0P .

VIS L2+ 8 = (1-)TP+ D NXGC,
p=1 (2.36)

de
d—::ﬁkfﬂ@—Aﬁek, k=1,.... K,

where the neutron flux is

=B t)= (D By --- Dg)',
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2.4 The neutron diffusion equation

and the matrix operators are defined as

—V(D1V) + Zn1 0 0
o 0 ~V(DaV) + 2
: ’ . 0
0 cee 0 —V(DGV) + 3.
0 Y01 e —Ysa1
S — —Ys12 0 :
: ' —Xs6,6-1
—Yae o —Xse-1,6 0
lejljlzfl X€V22f2 s XIfVszG 1/1)1 0 s 0
F— XgV12f1 Xgl/ngg - XgVGEfG -1 0 1/1)2
: : : KR .0
X%Vlzfl X%VQZ](‘Q cee ngngg 0 cee 0 1/1)@
T
XZ = (X;l’l XZ’Z ce XZ’K) N :‘Fl = (Vlzfl 7/22]02 s I/szg) .
(2.37)

In neutron diffusion computations, it is usual to utilize the two energy groups
approximation, where the energy is divided into a fast group (¢ = 1), corre-
sponding to the neutrons whose energy is above 0.625 MeV, and a thermal group
(g = 2), corresponding to the neutrons whose energy is smaller than the previous
ones (Stacey, 1969). Moreover, it is supposed that there is not up-scattering,
i.e. X591 = 0 and there is not neutron production in the thermal group, i.e.
x5 = 0= Xx¢,, k. As a consequence of these assumptions and using X = x? = x4
for this case yields to

od K
y1Z= b +8P=(1- P d 2.

o TLeH8=(1- BT+ kEZIAkXCk : (2.38)
aC, d
ﬁ :Bk (sz]_ VEfQ)@—Aka, k: 1,...,K, (239)
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where
[ =V (DY) 4 B + Sz 0 L (L0
L= . . L vi=( v ),
0 —V - (DsV) + Sao 0 &

8_(—§(])312 8)’ SF_<V20ﬂ VX(J)ﬁ)’ (p_(z;)’ X_<(1))'

Diffusion theory provides a valid description of the neutron flux when three main
assumptions are satisfied: the absorption is much less likely than scattering, the
neutron distribution is spatially linear and the scattering is isotropic. The first
condition is satisfied for most of the moderating and structural materials found
in a nuclear reactor but not for the fuel and control elements. The second one is
satisfied a few mean free paths away from the boundary of large homogeneous
media with relatively uniform source distributions. The third condition is satisfied
for scattering from heavy atomic mass nuclei (Stacey, 2018).

However, a realistic nuclear reactor is composed of thousands of elements, many
of them highly absorbent. Thus, diffusion theory is not strictly valid. Never-
theless, diffusion theory is widely used in nuclear reactor analysis and makes
accurate predictions. To do that, the many small elements in one large region are
substituted by a homogenized mixture with effective averaged cross sections and
diffusion coefficients, taking a computational model for which diffusion theory is
valid Stacey, 2018. At pin level, neutron diffusion theory is not valid. The strat-
egy to study these problems is using a more accurate transport approximations
where the diffusion theory would be expected to fail.

2.4.1 Boundary conditions for the neutron diffusion equation
The conditions considered at boundary of the reactor domain I' =: 9V for the
neutron diffusion equation are:

¢ Albedo boundary conditions, that are of the form

= 1 11— Bal N
nvVae,(ro,t — P (79,t) =0 el. 2.40
n g(T()? ) + Dg 21+ Bal g(T(), ) ) To ( )

where 77 is an outgoing normal vector to the boundary, 3, is the albedo fac-
tor. This value going from 3, = 0, leading to vacuum boundary conditions,
to Ba1 = 1, giving zero-current boundary conditions.
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2.5 Spatial modes associated with the neutron diffusion equation

¢ Vacuum boundary conditions can be written as

. 1
i DyVy(7o,1) = 5®(701), T ET. (2.41)

e Zero-current boundary conditions are expressed as

i D;V®, (7, t) =0,  7el. (2.42)

e Zero-flux boundary conditions are assumed if the flux on the boundary
is exactly fixed to zero. This simply is written as

O,(fo,t) =0, Fpel.

2.5 Spatial modes associated with the neutron diffusion equa-
tion

Analogously to the multigroup neutron transport equation in Section 2.3, the
multigroup neutron diffusion equation (Equation (2.36)) can be transformed
into several eigenvalue problems by forcing the criticality of the system.

The A-modes problem is obtained by dividing the fission nuclear cross sections
by a positive number, A, as

1

\ Fp. (2.43)

(£ +8)dp,

If, now, the fission and scattering terms of Equation (2.36) are divided by v > 0
to obtain the steady-state equations, the y-modes problem is
1
Lo) = —(F - 88, (2.44)
Tm

Finally, it is considered again the neutron diffusion equation (2.36) with the
delayed neutron precursors in steady state, i.e.

0= BpT16 — \{Cp, k=1,..., K. (2.45)

And it is supposed that the neutron flux admits a factorization

O(7,t) = e (7), (2.46)
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to obtain the intermediate a-modes problem associated with the neutron diffusion
equation

(F—L—8)¢2 = a,V 1o2. (2.47)

Other type of a-modes such as the prompt or the total a-modes can be studied
(Verda et al., 2010). In this thesis, the simple term a-modes is used to call to
the intermediate a-modes.

2.56.1 The adjoint spatial problems

Associated with each spatial problem, one can formulate an adjoint problem
(Henry, 1975). In the case of the A-modes problem, we define the adjoint problem
as

1
(7 + 8N = =71, (2.48)
!
where £T, 8" and F1 are the transpose operators of £, 8 and F, respectively.

The A-modes, ¢),, and the adjoint A\-modes, qbz\’T, satisfy the biorthogonality
relation

(61, Feh) = /V(¢?’*>T:F¢2@ AV = Sin(dnl, Fn), Vim=1,....q (249)

where V' is the volume defined by the reactor core, d;,, is the Kronecker’s delta
and ¢ the total number of modes.

Likewise, we define the adjoint problem for the y-modes as

1
Ligpt = G shey . (2.50)

In this case, the adjoint v-modes, q&?’T, satisfy the biorthogonality condition

(0], (F = 8)7,) = (o1 (F = 8)d0)0im, Yim=1,...,q. (2.51)

Lastly, for the a-modes, we introduce the adjoint problem

(F1 — £t =8N = av Lo (2.52)

Note that, the symmetry of the V! operator implies that V=5 = V=1, In that
case, the adjoint a-modes ng?"T, satisfy the biorthogonality condition

(ST Ve0) = (Ol VY B om, Vim=1,....q. (2.53)
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2.5.2 Relation between the spatial modes

The definition of the adjoint A-modes problem can establish a relation between
the A-modes and the -modes. For that purpose, the y-modes problem (Equation
(2.44)) are multiplied by the adjoint A-mode, ¢\ and it is integrated over the
domain. It yields
1
('3 £6h) = (@m's —(F = 8)¢nn), (2.54)

m

or equivalently, by the symmetry of £,

LA d1) = (BN j(&f —8)61)- (2.55)

Taking the reordering of Equation (2.48),
1
Loyt = T —sia, (2.56)
the Equation (2.55) is equivalent to

ST 6 = (oM (F - S)on) + (M Sen). (257)

L
m ’Ym
Simplifying and isolating \,, from Equation (2.57) gives

1 _1 _ LY (onl.Sen)
o (1 %) (o] Fom) (2:58)

Likewise, the relation between the a-modes and the A\-modes is given in (Verda
et al., 2010)

1\ (o', Ten)

Oy = (1 - M) iy (2.59)

2.6 The Simplified Spherical harmonic equations (SPy)

The accuracy of the diffusion theory to describe the neutron distribution inside
of reactor core is restricted to some situations. If the system presents a strong
material and/or flux gradients, if the neutron streaming is significant or if neutron
scattering has a strongly anisotropic component, the diffusion approximation is
not accurate. These cases generally occur if there are complex fuel assemblies or
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if an pin level calculation is carried out. For these reasons, more accurate approx-
imations of the neutron transport equation to improve the results of diffusion
theory are used by means of the simplified spherical harmonic equations. In this
thesis, we simply study the solution of the A-modes problem associated with the
SPx equations. The derivation presented follows the Gelbard method (Gelbard,
1960) where the one-dimensional Py equations are extended to multidimensional
geometries substituting the one-dimensional derivatives by a multidimensional
gradient. Because of that, only Py equations for a slab geometry are presented.
More details about the multidimensional Py equations and their convergence
can be found in (Hébert, 2006).

2.6.1 The Py equations

The A-modes problem associated with the one-dimensional multigroup neutron
transport equation can be written as

d G
(Ma + Etg(l’))w;‘(ajhu) - Z /2599/ (mhuO)w;\' (a:,u’)d,u’
1

1

A7), s @) / Wy (,p)d,
-1

2

I
|
Ma
>

with g =1,...,G, z € [0, L] and vacuum boundary conditions

The coefficient p is equal to u = cos(f) where 6 is the angle between the
direction of the incident neutron velocity and the x axis. Likewise, it is defined
the coefficient g = cos(fp) where 6y denotes the angle between the incident
neutrons and the scattered neutrons. Finally, u;, denotes the set of directions
cosines that are incident at a given boundary, i.e., at z =0, 0 < p;, < 1 and at
x:Lt? _1§Mm<0

The Py approximation assumes that the angular dependence of the angular
neutron flux and the scattering cross-section can be expanded in terms of N 41
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2.6 The Simplified Spherical harmonic equations (SPn)

Legendre polynomials (N odd), P,(u), as

9 ) = Z%HW( ) Pu () (2.60)
n=0

S p0) = 3 2 S () P (1) (261)
n=0

where ¢y is the n-th angular moment of the neutron flux of energy group g
and X7  is the n-th scattering cross sections moment. The expansions (2.60)
and (2.61) are substituted into equation (2.60) and the orthogonality relations
for these polynomials are taken into account, to obtain the Py equations (Capilla
et al., 2005),

+ Z (Ztg Sy ) v = Z Xgvy Ly by
g=1

g’—l
G (2.62)

d " n—1 n+l n+1 n n
dx<2n+1¢9 +2n+1¢ >+Z 6992759 Esgg)¢ =0,
g'=1

for n=1,...,.N, g¢g=1,...,G.

In this formulation, the expansion order for the angular flux, IV, is considered to
be larger than the order of anisotropic scattering, L. Moreover, the components
of the scattering are assumed to be equal to zero for moments higher than
L, but they have been maintained for simplicity in the formulation. The Py
equations (2.62) are composed of N + 1 equations with N + 2 unknowns. This
fact can be solved by imposing that the derivative of the highest order moment
to zero %QﬁN +1 = (. This assignment is the most common and straightforward
one, but in some time dependent computations, can be problematic. Thus other
assignments have also been studied in the literature (Hauck and McClarren,
2010).

In matrix form, the system of equations (2.62) can be expressed as (Hamilton
and Evans, 2015)

do! 1

—f + 20" = 1F¢",
d n n—|—1 n+1> (2.63)
— Tt = =1,...,N
dx(2n+1 tomg1? )TE =0 m=1l.,
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Chapter 2. The neutron transport equation

where,
Y S PR —Xe
s _ Yo Y — Xy . —Ya
- . . .. . ’
_ZZGI _Z?GZ ce EtG - Z?GG
X11/12f1 Xlllngg . XIVGEfG
X2V12f1 XQVQZfQ .. XQI/GZfG
F = . . . . )
X(;Vlzﬂ Xgl/ngg . XGI/szG

o = (o1.08,....08) -

Therefore, if the equations related to the odd moments of the flux are substituted
into equation (2.63) one have

d n—2 n
o+ 1)(2n — 1) do ((n = 1)¢" + n¢")

d n (2n-1)7!
=t

(n+ DS d
(2n+1)(2n + 3) dx

(n+1)¢" + (n+2)¢p"*?) ) +3X"" = %Fqﬁ”éno ,

n=0,2,...,N—1.

(2.64)
For instance, the set of P3 equations are

d (1. 4-1d 2 0.0_ 1o0

N e — =—-F

& (GENT L @ v 2)) £ 2060 = (S,
d /2 -1d 3 -1d
—— =Y — (¢° +20%) + — (=3 32) 3202 = 0. 2.65
5 ()7L (@200 4 (=) Da6) 4 2R (265)
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2.6 The Simplified Spherical harmonic equations (SPn)

On the other hand, the set of P5 equations are

_% (;(El)—ld (¢0 +2¢2)> +20¢0 _ %ngo,
~ 4 (2(2 ' (¢0+2¢) (23) ! d (3¢ +4¢ )) +32¢% =0,

4.4
99( )~ + 3% =0.

(2.66)

The Equation (2.64) defines an eigenvalue problem associated with a linear
system of (N + 1)/2 elliptic, second-order equations. This problem can be
transformed into a problem composed of a set of M = (N + 1)/2 diffusion-like
equations if the following linear change of variables is considered

= (2m — 1) $*™ 72 + 2m ¢*™, m=1,2,...,M—1, (2.67)
M — (2M —1)¢*M~2, (2.68)

where U™ contains the group dependent diffusive pseudo-moments

U™ = (uf", uyt, ..., uf)’. (2.69)
The system obtained would have the following form

d (_d 1
- (Dde> +AU = {FU. (2.70)

As an example, in the case of the P3 equations, the change of variables is
U''=¢° +2¢%, U?*=3¢?, (2.71)
such that -
U= (Ul, U 2)
In the system (2.70), the effective diffusion matrix, D, the absorption matrix, A,
and the fission matrix, IF, are given by
2

L=y 0 (m) sym. (1)
D= (d 0 %(23) Z c;VE Fij = c;; F, (2.72)
=1
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Chapter 2. The neutron transport equation

and the coefficients matrix, ¢™),

1 -2 0 0
(1)_< 3 (2) = 2.73
¢ 2 4>’ c ( >’ (2.73)
-3 9 0%

For the P5 equations, the change of variables is
U1:¢0+2¢2, U2:3¢2+4¢4, U3:5¢47 (274)

and the elements of the system (2.70) are given by

3
U=U" U U3, A= > Cl(;n)zm’ Fy; = cVF,

J

m=1
%(21),1 0 0 (2.75)
D= 0 Lz3y™ 0 :
-1
0 0 L (%)
where the coefficients matrix, ¢™ are, in this case,
2 8
" 1 -3 1 " 0 0 0 " 0 0 0
1) _ 2 4 16 2) _ 5 4 3) _
c -3 5 —&#l> ¢“=10 5 -5, V=00 0
8 16 64 4 16 9
15 1 2% 0 =5 = 00 5
(2.76)

2.6.2 Boundary Conditions in one-dimensional Py

In this thesis, two types of boundary conditions are considered: vacuum boundary
conditions and reflective boundary conditions.

e For vacuum boundary conditions, we will employ the Marshak condi-

tions (Stacey, 2018). The generalized Marshak boundary condition, for a
boundary position xg, is

/Pn(u)z/J;‘(xo,,u)d,uzo, g=1,2,...,G, n=1,3,...,N. (2.77)

Hin
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2.6 The Simplified Spherical harmonic equations (SPn)

Expanding 1/)5\(:%, w) in terms of Legendre polynomials and using Equation
(2.60) yields to

/P 3 S 2L () ) = 0.
g=12,...,G, n=13,...,N. (2.78)
If we reconsider the P3 equations, the Marshak boundary conditions are
28+ 2 =g,
_%(bo + g¢2 = —¢, (2.79)
If now, we use the Equation (2.63), to remove the odd moments from the

previous Equation, and the change of variables proposed in Equation (2.71);
the vacuum boundary conditions can be applied by imposing

d
- ﬁ]D)d—U(a:o) =BU(zo), (2.80)
x
where 7 is the normal direction of the boundary (equal to 1 or —1 in 1D)

and the matrix B is the result of the Kronecker product of matrix b by an
G x @G identity matrix as

11
B=b®Ig, = ( 2 78> . (2.81)

For the P35 equations, the Marshak conditions are given by

Lo, 959 3 4 4
§¢+§¢—*¢— ¢,

S8+ 2F - gt = g,
0 25 81 4 s
168~ 1%~ 1?' = 9"

In the same way that for the P3 equations, one can impose vacuum condi-
tions (2.80), but in this case the matrix B is given by

1 1 L

2 8 16

— — 1 7 41
B=b® I(GXG) , b = -3 o —a51 | - (282)

141 407

16 384 1920
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Chapter 2. The neutron transport equation

32

¢ On the other hand, reflective boundary conditions can be used. The

only conditions that make physical sense in this case is setting all the odd
moments to zero

¢ (x0) =0, ¢g=1,2,...,G, n=1,3,...,N. (2.83)

Using the Equations (2.63), to isolate the odd-moments, and then, the
change of variables (2.68), yields to reflective boundary conditions

d
d—u;”(ato):(), g=1,2,...,G, m=1,2,..., (N+1)/2. (2.84)
x

For the P3 equations, the conditions
pp(0) =0, ¢} (w0) =0, g=12,...,G. (2.85)
are imposed by setting

d . d ,
@Ug(xo) =0, @Ug(ﬂfo) =0, g=12,...,G. (2.86)

In the P5 equations, the reflective conditions
Gp(r0) =0, ¢3(w0) =0, ¢(xo) =0 g=1,2,....,G.  (2.87)

are introduced in the system by

d d d ,
aug(x()) = 07 aug(‘r()) = 07 ?U (‘TO) = 07 g= 17 27 s 7G'
(2.88)

Note that both vacuum and reflective boundary condition treatments
contain asymmetric components when N is even. Thus, only odd sets of Py
equations are considered. Moreover, it must be noted that for each group
the Py system of equations (2.70) is symmetric because the coefficients
c¢™) and B are symmetric.



2.6 The Simplified Spherical harmonic equations (SPn)

2.6.3 Simplified spherical harmonics equations (SPy)

As mentioned before, for multidimensional problems, the SPy approximation
is obtained substituting the x derivative operator of the one-dimensional Py
equations (2.64) by the corresponding two-dimensional or three-dimensional
gradient operator as

6( n(zn 1) ((n_1)¢n 2_|_n¢n)

2n+1)(2n—1)
(n+1)(z=mt)~!
(2n+1)(2n + 3)

v
v (n+1)¢" + (n +2)¢"?) ) + 3R = qus“ano,

n=0,2...,N—1.
(2.89)

This approximation may seen ad-hoc, but in (Brantley and Larsen, 2000) a
variational analysis of the SPyN equations is provided. The authors showed that
these equations are high-order asymptotic solutions of the neutron transport
equation when diffusion theory is the leading-order approximation as it is usual
in full reactor simulations. However, the SPx approximation does not converge
to the transport solution when N — oo.

The resulting system of the SPyN equations is a set of elliptic, diffusion-like
second order differential equations. In this way, these equations can be easily
implemented using numerical methods suited for the diffusion equation without
major changes.

Note that the SP; approximation is equivalent to the neutron diffusion equation.
As other examples of SPyN equations, the set of SP3 equations has the form

_6 <;(21)16 ((bO + 2¢2)) + 20¢0 — %F(bo’

v <125( 17 (60 4 2¢7) + (23) V3¢2) + 3242 =0, (2.90)
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and the set of the SP5 equations

= (1l «1\-1a (.0 2 0_1 0
T (579 (0 +26) ) + B = 1F.

-1

((El) V(6" +2¢°) + 335(23) v (307 +4¢4)) + 326" =0,
— 4 _ 5 1=
-V (63(23) V (3¢ + 4¢%) + ®(25) V (5¢* + 6@6)) + 340" =0.

(2.91)

Applying the same change of variables than in Equation (2.68) leads in both
cases to a system of the form

S o 1
-V (DVU) + AU = SFU, (2.92)
where the matrix operators D, A and F are defined, for the SP3 case in Equa-
tions (2.72) and for the SP5 equations in the expression (2.75).

2.6.4 Boundary Conditions in SPy equations

Likewise as in the previous section, boundary conditions for SPy equations
are given by substituting the x derivative operator by the gradient operator in
equations (2.80) and (2.84).

o Marshak conditions (2.77) are applied to the SPy equations by using the
same procedure that was used from the Py equations to the SPy boundary
approximation

:I:%%n V.

Under these considerations and taking into account the change of variables,
the SPy Marshak boundary conditions can imposed as

— @] =BU(ro), (2.93)

where matrix B is given in Equation (2.81) and Equation (2.82) for the
SP3 or SP3 case, respectively. The vector 7 is the normal direction to the
boundary. The current J = (jl, ... ,j(N+1)/2), it is related to the flux by
Fick’s Law ~

Jm = —DVU™. (2.94)
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2.6 The Simplified Spherical harmonic equations (SPn)
o From the Py boundary conditions for reflecting surfaces (Equation (2.84)),
reflective boundary conditions for SPy are imposed as

Val'(r) =0, g=12,...,G, m=12,...(N+1)/2. (2.95)

This implies that 7i - J = 0 on the boundaries.
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CHAPTER

FINITE ELEMENT DISCRETIZATION

The time dependent and the steady-state neutron transport approximations are
differential equations that need to be spatially discretized. Different methods
have been proposed to discretize the spatial modes problems associated with the
neutron diffusion equation or other approximations for the neutron transport
equation.

Classically, finite difference methods (FDM) (Hébert, 2009) are used to make
homogenized assembly level computations with structured meshes where the
derivatives are substituted by finite differences approximations. This is a simple
tool, but it requires a discretization with a large amount of nodes in the meshes
to obtain accurate results.

More sophisticated integration methods are the nodal methods. This method-
ology integrates over large homogenized regions known as nodes to obtain a
balance with average surface currents and fluxes as unknowns. Some of them
are: the Analytical Nodal Method (ANM) developed in (Smith, 1979), the Nodal
Expansion Method (NEM) studied in (Finnemann, 1975; Singh et al., 2014);
and the Nodal Collocation Method (NCM) developed in (Hébert, 1987). The
NCM has been studied for some modal problems in (Verdi et al., 1994; Verdu
et al., 2010) and for the spherical harmonics equations in (Capilla et al., 2008).
The main drawback of this type of discretization is that it can be only applied
in structured meshes.
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Chapter 3. Finite element discretization

On the other hand, one can consider finite volume methods (FVM) to integrate
this type of approximations for any kind of spatial discretization (Theler, 2013;
Bernal Garcia, 2018). This numerical method transforms the partial differential
equations representing conservation laws over differential volumes into discrete
algebraic equations over finite cells or elements.

Finite element methods (FEM) have also been designed for different types
of geometry to study the neutron diffusion equation. Structured meshes are
used for reactors with rectangular geometry, such as PWR and BWR reactors
(Vidal-Ferrandiz et al., 2014) and with hexagonal geometries for VVER reactors
(Hebert, 2008; Gonzalez-Pintor et al., 2009). Unstructured grid schemes have
been developed to solve the diffusion problem in non standard geometries (Theler,
2013). They also have been efficiently used to compute the solution of the SPy
equations (Hamilton and Evans, 2015).

Other of the main advantages of the finite element method is the adaptivity. A
code with h-adaptable meshes has been proposed to obtain the static configura-
tion of a nuclear reactor core (Turcksin et al., 2010). A FEM code (FEMFFUSION)
with a hp-adaptable finite element method has been implemented for the solution
of the A-modes problem for the neutron diffusion equation (Vidal-Ferrandiz et al.,
2014). In this last work, the refinement of meshes and the increase of the poly-
nomial degree of the FEM is analyzed showing that increasing the polynomial
degree is a better strategy than reducing the size of the mesh when homogenized
assemblies are considered.

In this thesis, a continuous Galerkin finite element method is implemented. It
has been analyzed for the solution of the A, v and a-modes problem associated
with the neutron diffusion equation and the A-modes problem associated with
the SPy equations. The finite element method has been implemented by using
the open source finite elements library deal.II (Bangerth et al., 2007) and the
open nuclear code FEMFFUSION (Vidal-Ferrandiz, A. and Ginestar, D. and Verdd,
G.) presented in (Vidal Ferrandiz, 2018). The library permits an implementation
independent of the dimension of the and to manage different cell sizes, level of
meshes and types of finite elements.

This chapter presents and studies the finite element discretization method for
steady-state problems. Moreover, the spatial modes associated with the neutron
diffusion equation are compared. Section 3.1 describes the type of elements
used in the discretizations. Section 3.2 applies the finite element method to
the two energy groups A-modes problem. This Section includes the boundary
conditions and the normalization used. Section 3.3 extends the application of
the FEM to the simplified harmonics equations. Finally, Section 3.4 presents
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3.1 Fundamental concepts of finite element discretization

some numerical results in several benchmark problems. This chapter rewrites
some results presented in (Carreno et al., 2017b; Vidal-Ferrandiz et al., 2019).

3.1 Fundamental concepts of finite element discretization

Before we start with the spatial discretization of the equations, a briefly descrip-
tion of the elements that we have used in FEM is presented. First of all, the
domain of the whole reactor is divided into a set of elements (or subdomains)
where each element has a simple geometry and it is composed of only one material.
These discrete elements are called cells and the set of all them is called mesh.
The mesh defined for FEM can be structured (identified by regular connectivity)
or unstructured (identified by irregular connectivity).

Nuclear reactor cores are constituted typically of 150-700 fuel assemblies. The
geometry of the reactor assemblies and their configuration depends on the type
of reactors. Figure 3.1 shows the reactor core geometries and assemblies for PWR
and VVER reactors. Each fuel assembly is itself constituted by typically less than
300 fuel rods containing fissile nuclei (pin). Usually, diffusion computations are
done such that each fuel assembly is homogenized as one cell with one material
type (homogenized assembly level). Due to their geometry, PWR and BWR are
homogenized by using parallelepipeds and VVER by using hexagonal prisms.
In systems homogenized at pin level, where the fuel rods and the moderator
are homogenized with different materials, SPx approximations are used, since
diffusion calculations do not provide accurate results. Circular pin cells are
discretized with non-regular polygons as we will present in numerical results.

The cells in the finite element method must be mapped to the same reference cell.
For quadrangular cells, we use the reference cell [0, 1]¢, where d is the dimension
of the problem. Thus, an affine transformation between the both coordinates
systems is required to transform each physical element (or cell) in the system
(z, y) to the reference element (£, n). Figure 3.2 displays an example of this
mapping for a two-dimensional cell.

In two-dimensional case, the change of variables that relates physical coordinates
(z,y), with the coordinates of the reference domain (§,7) is given by

z(§,n) =1 =8 =)z + &1 —n)xs +n(1 — §)xs + Enay, (3.1)
y(E&n) =1 =)A=y +£0 =n)y2 +n(1 = E)ys + Enya . (3.2)

The affine map allows to establish the change of variables by means of the
Jacobian of the transformation |J¥|. It is necessary to compute the integrals
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that define the matrix elements in the FEM. This relation is given by

o Oy
dedy = |55 55| dédn = |I¥|dgdn . (3.3)
on  On

(¢) VVER core (d) VVER fuel assembly

Figure 3.1: PWR and VVER-type reactors. Sources: www.nuclear-power.net/nuclear-power-
plant /nuclear-fuel /, www.dreamstime.com
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(X3, ¥3)

y A (X4, y4) ’7“
. 4 3
Affine (0,1) 1)
Transformation
—)
(X1, ¥1) (%2, ¥2)
(0,0) (1,0) E',
> >
X 1 2

Figure 3.2: Affine transformation between the physical element and the reference element.

3.1.1 Lagrange finite elements

Lagrange finite elements are chosen (Zienkiewicz et al., 1977) for the discretization.
These elements have their nodes distributed based on Gauss-Lobatto support
points. Their shape functions are defined with Lagrange polynomials for every
dimension. These basis functions are determined by the Kronecker delta function
such that they are equal to one at the corresponding nodal point and zero at
the other nodes. They satisfy all inter-element continuity conditions. Lagrange
polynomials (or one-dimensional elements) can be expressed as

p+1
Ni(€) =1P(¢) = H§ 5’“ (3.4)
k:;éz

where p is the degree of polynomial of the expansion which characterizes the
finite element method, and &; is the position of every node in the element.
Multidimensional expansions of these elements are obtained by tensor product
of one-dimensional elements. Thus, the two-dimensional elements are given by

Nij(&n) =1L (©E®M) - (3.5)

Figure 3.3 shows some examples of one-dimensional Lagrange elements. Figure
3.4 displays a two-dimensional Lagrange element. The number of nodes in each
cell (known as the degrees of freedom) is determined by the order p. The degrees
of freedom of the problem (Ngyos) are computed by multiplying the number of
nodes per cell by the number of cells and removing the repeated nodes in the
interface between cells.

Lastly, Gauss-Legendre quadrature is used (Golub and Welsch, 1969) to compute
the integrals of the weak formulation in each cell. The degree of the quadrature
is selected with p + 1 quadrature points (in each space direction) in order to
ensure an exact integration of polynomial shape functions.
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G Na(€)

X i) =0 -
No(§) =€

RN

1“-/\[1(5) N2 (€) N3(€)
N (§) =(1-28)(1 =€)
No(€) =48(1 =€)

: e N A I T )

Figure 3.3: Example of unidimensional shape functions used: linear and quadratic.

o =

(5 (i)
< E

Figure 3.4: A shape function for a 2D Lagrangian element, (i =1, j = 2, p = 4).

3.2 Spatial discretization for the modes problems associated
with neutron diffusion equation

Let us consider the A-modes problem for the neutron diffusion equation in the
approximation of two energy groups to explain the finite element discretization
method. A similar process is applied to obtain the algebraic problems associated
with other approximations of the neutron transport equations. This equation
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can be expressed as

~VDIV)+Zu +%a 0 1 :1<u2f1 u2f2> (aﬁ%)
Y12 ~V(DV)+Zee) \#3) AL 0 0 J\g3)"
(3.6)

The weak formulation of this equation is obtained by pre-multiplying by a test
function, ¢ = (gpl, cpg), and integrating over the domain, V, that defines the
reactor core as

CF(D,9) + B + o 0 o
_ Y dv
/(801 902) < . —V(DQV) + Za?) (qj)é\

\%4

S () (@) o7

v

Then, by taking u (ﬁ . ﬁv) = V- (qu) — (Vu) . (Vv), one can rewrite
Equation (3.7) as

/ v¢1D1V¢1dV / <,01D1ng51 dV +/ 80 al + 2512) ¢1dv

—l-/ V(pQDQV(deV / ¢2D2V¢2 dV—‘r/ gngaQ(deV

- [ esmotav =5 ([ ewepatav + [ pwsesiav). @9
\4 v \4

Now, we remove the second order derivatives by the Gauss Divergence theorem,
that says, under some assumptions that normally are satisfied in reactor domains,
that [, V- FdV = Jr FdS, where I = 9V is the boundary of V. The expression
obtained is

/V Vo1 D1V dV — /F o1 D1VrdS + /V 01 (Za1 + De12) o7dV
+/ §¢2D26¢§dv—/¢2D26¢§d§+/ 02X q2pydV
1% T Vv

1
_ / 0o Y1007 dV = 3 < / o1y rdV + / gpluzﬁgbgdv) . (3.9)
Vv Vv 174
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The last step is dividing the reactor domain V into cells or subdomains V, such
that V' = Uc=1,.n. Ve where it is assumed that the nuclear cross sections remain
constant due to a previous spatial homogenization strategy. The cross sections
for each cell ¢ are denoted by the superscript ¢. Similarly, I'. is defined as the
corresponding subdomain surface which is part of the boundary I'. Therefore,
Equation (3.9) is expressed as

Nc
> (Dj /V ViVérdV — DS /F k e1VrdS + (25, + 3¢ ) /V ©1¢7dV

c=1
+ D / VaVepdV — D / p2V3dS +5¢, / P2y dV
‘/(i Fk VC

1 Qe ,
¢ A _ c A c A
- Z512 /Vc (p2¢1dv> - chzl (Vzﬂ /Vc @1¢1dV+V2f2 /Vc (PI(Z)QdV) .
(3.10)

Note that there are several surface integrals over the boundaries, I'., that may
depend on the boundary conditions. They will be studied in Section 3.2.1. To
solve the integrals over the subdomains, V., the function qﬁ;\ is approximated
through an usual trial solution as sum of shape functions, N,, multiplied by the

unknown expansion coefficients, ¢gq,

Ndots

¢y~ > Nudga (3.11)
a=0

For test functions, continuous Galerkin approximation (Zienkiewicz et al., 1977)
is used. In that sense, the test space is the same that the space defined by the
basis of shape functions, that is A.

Using these expressions in Equation (3.10) and removing redundant coefficients
to obtain continuous solutions, yields to an algebraic eigenvalue problem

AN = AB N, (3.12)

A (Fi1 Fio r»_ (Lin O N 5
A — ( 0 O ) ) B — <5121 LQQ) ) (ZS - ('“%\ ) (313)

where
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and the matrices elements (a,b) are given by

Ne

Livay = > DS / VN.VN,dV — DS / N.VNAS + (22, +5,) / NNV
<=l Ly Ve
N¢ ., R . .

Loy = Y D; [ VNYMAV = D [ NoVAGAS + 55, [ NGV
=l Iy Ve

N¢
Sor(ar) = Y —5, /NaNde7 (3.14)
c=1 V.

c=1

N¢
Py = v, [ NNV,
Ve

NC
F12(ab) = Zl/z;z //\/’a/\/'de.
c=1 V.

These integrals only are different from zero if shape functions N; and N collide
inside the same cell. Therefore, sparse matrices are obtained. The Galerkin
approximation also guarantees that the block matrices obtained are symmetric.
Moreover, it can be proved the block matrices are also positive definite because
the cross sections coefficients are always positive.

A similar process for the spatial discretization of the rest of modes problems
leads to other block generalized eigenvalue problems. From the approximation
of two energy groups associated with y-modes problem, it is obtained

A =1B¢, (3.15)

where
Fyy F12> <L11 0 ) - o
AT = , BY = , T=1%], 3.16
<—521 0 0 Lo ¢ bq (3.16)
and the block matrices are defined in Equation (3.14).

The a-modes discretization gives the algebraic eigenvalue problem

A% = A4BY¢~, (3.17)
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where
.1 Vi 0 ) (Lu + Fi F12)
= — AOL = 11 Ba =
T ( 0 [Viy/)’ —So1 Lag)’
- (3.18)
ﬁga = (2(11), V] =viM, (V]2 = v2 M,
2

and the rest of block matrices are defined in Equation (3.14). The matrix M,
referred to as the mass matrix, is defined as

Ne
My = / NNV (3.19)

c=1 V.

That is different to the identity matrix because the basis of Legendre polynomials
is not orthonormal.

In the following, as an abuse of the notation, we denote the algebraic fluxes ¢*, b7,
¢> with the same expressions as the continuous fluxes ¢*, ¢7, ¢*, respectively, by
removing the tildes from the original notation. The superindex ¢ is also removed
from the cross-section notation.

3.2.1 Boundary conditions

The boundary conditions considered for the neutron diffusion equation are albedo,
vacuum, zero-current and zero-flux boundary conditions.

The albedo boundary conditions are of the form,

1 1<1—,6a1

AV (7o) + —=
(7o) Dy 2 \1+ fa

>¢>§(Fo)=0, mel, d=X\va, (320

where 77 is a outgoing normal vector to the boundary, B, is the albedo factor
going from 0, leading to vacuum boundary conditions, to 1, giving zero-current
boundary conditions.

Albedo boundary conditions are treated in a weak form by pre-multiplying the
condition by the test function and integrating over the surface of the domain as

= a 11— Bal
—_ 4 — —
D, /F pg VoS = 512t

/Ftpggbgdg. (3.21)
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3.2 Spatial discretization for the modes problems associated with neutron diffusion equation

Henceforth, the integrals related to the boundaries that appear in equation (3.14)
are substituted by,

Ne . LN Bal ~
-D / N,VN, S =) = 2 / N NS, =1,2, 3.22
; 7 Jr, ’ ;21+5a1 r, ’ g (3:22)

where N, is the number of faces belonging to the reactor boundary.

If zero-current boundary conditions are considered, the surface integral terms
are equal to zero and the finite element formulation takes into account these
conditions without restrictions in the nodes as

/ N,V NGdS = 0. (3.23)
e

Zero-current boundary conditions also keeps symmetry in the neutron diffusion
equation.

Zero-flux boundary conditions are assumed if the nodal values on the boundary
are exactly fixed to zero. Thus, their associated shape functions do not appear
in problem (3.12).

3.2.2 Normalization

The fluxes (eigenvectors) are not well determined by solving the eigenvalue
problem and it is necessary to establish a normalization criterion. For that, we
define the neutron power.

The thermal power is proportional to the neutron power generated by the reactor
if it is assumed that every fission generates a constant average amount of energy,
k. The neutron power is defined as a weighted sum of neutron fluxes

G
P =" kSl ¢ (3.24)

g=1

The absolute value is introduced in this definition to extend the neutron power
to subcritical modes where the fluxes have positive and negative values.

One of the most used criteria is to force that the integral over the reactor domain
of the neutron power must be equal to the total volume of the reactor, V;. That
can be written as

1 1 &
— [ Poav = = /2 MV =1. 2
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In the normalization process, several considerations are taken into account. If
values for ¥, are not available it is common to use v¥¢, in equation (3.25)
instead to recover the energy in terms on the flux. This approximation considers
that v is constant for all the materials in the core and all energy groups. The
energy per fission x is not considered in the normalization because it is considered
a global constant.

3.3 Spatial discretization for the SPy equations

The SPy approximation is nothing more than a set of diffusion-like equations
whose solutions are unknown flux moments (Equations (2.90)). Because of that,
a similar process as the one used in the finite element discretization for the
spatial modes problems of the neutron diffusion equation (Section 3.2), can be
developed without major changes. Likewise, an algebraic generalized eigenvalue
problem is obtained from applying a continuous Galerkin finite element method
to equation (2.92).

To simplify the notation, only one group of energy is considered in the following
formulas. The discretized SPN equations can be written as a generalized algebraic
eigenvalue problem of the form

SU = \TU. (3.26)
For instance, the matrices obtained for the discretized SP3 equations are
Soo 501> <T00 T01) 2 <ﬂ1>
S= , T= , U=1{2], 3.27
<Slo S11 Tio Tu a? (3.27)

For the SP5 equations, we have

Soo So1 So2 Too To1 Toz 3 a
S= 1S Si1 Si2|, T=|Tiw Ti1 Ti2|, U=[a*]. (3.28)
S20 S21 S22 Too To1 T2z w?
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1

In the previous expressions, @', %2 and %* are the algebraic vectors representing
1

u!, u? and u? and the matrix blocks elements are defined as

Nc
(Ton)ay = D Din / VN,VN, dV — Dy, / VNN AV + Ay, / NNV,
c=1 Vc Fc Vc
Ne
(Tan )y = A / NNV, for n' £,
c=1 Ve

Nc
(Sun)os = D Fur | NaidV:
c=1 Ve

where the matrices D,,,,, A,y and F,,,, were previously defined in Chapter 2.2
(Section 2.6). The Lagrange polynomial N, is the shape function associated with
the a-th degree of freedom defined in Section 3.1.1.

In the SPy case, the solution fluxes are normalized by forcing

1 G
1=— / by g dv, 3.29
V;fgz:ﬂ v fg|¢0| ( )

where ¢ is the scalar flux.

In the following, as for the spatial modes fluxes, we denote the algebraic fluxes ¢,
@ with the same expression as the continuous fluxes 1, u, by removing the tilde.

3.4 Numerical results

This section is divided in two parts. First, the performance of the finite element
method described above is studied to determine the A, the v and the a-modes
associated with the neutron diffusion equation. Moreover, the differences between
the different spatial modes problems are analyzed. In this part three different
tridimensional benchmark problems have been considered for different purposes:
an homogeneous reactor, the Langenbuch reactor, and the NEACRP reactor.
In the second part, the finite element method is studied for the SPy equations
for the C5G7 benchmark. This part includes the analysis of different types of
meshes, refinement sizes and degree of polynomials in the finite element method.

The solution of the eigenvalue problems are computed with the solvers that will
be presented in Chapter 4.

The code to compute the different spatial modes has been implemented in C++
language. The numerical results are executed in a computer with an Intel®
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Core™ i7-4790 @3.60GHzx8 processor with 32Gb of RAM running Ubuntu
GNU/Linux 16.04.

3.4.1 Homogeneous reactor

A 3D prismatic reactor with homogeneous material is considered because it
can be solved analytically for every type of eigenvalue problem. The analytical
solution for this benchmark is defined in Appendix B.1. The mesh considered for
the discretization of the reactor is composed of 36 cells of size 50 x 50 cm? per 6
planes of height 75 cm, having a total of 216 cells. The material cross sections
for the prismatic reactor are displayed in Table B.1.

First, we validate the results obtained with the code against the analytical
solution. For that, we need to choose several type of errors. The Eigenvalue error
in pcm is defined as

O — OF
g, =10% x |M’m (3.30)
where ¢, is the m-th computed eigenvalue (0,, = A, Yim, ) and 0, is the
analytical eigenvalue.

Table 3.1 shows the first two A, v and « analytical and numerical modes com-
puted with different finite element degrees. This Table shows the convergence of
the finite element method and that good approximations are obtained with poly-
nomial degree in the finite element method, p, equal to 2 or larger. Furthermore,
it is observed that for the same degree of polynomial, the error in eigenvalues is
lower for A and y-modes than for a-modes. Several relative errors related to the
eigenfunctions are analyzed but the values obtained are negligible.

3.4.2 Langenbuch reactor

The Langenbuch benchmark (Langenbuch et al., 1977) in steady state is chosen
to compare the different modes in a benchmark with several materials. It has 1170
different assemblies including 545 cells modelling the reflector. The geometry
and the definition of the 5 different materials and their cross sections at ¢ = 0.0
s are defined in Appendix B.3.

The 5 first modes are displayed in Table 3.2. This Table shows that the reactor
is critical, since we have forced to start in critical state. Note that, the first
a-mode is not equal to zero, since for the calculation of these modes we have
imposed that the reactor was not exactly critical. If not, computational errors are
obtained. Moreover, the second and the third eigenvalues are degenerated due to
the spatial symmetry of the reactor (Tommasi et al., 2016). If one compares the
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8.4 Numerical results

Table 3.1: Modes and errors for the homogeneous reactor.

First eigenvalue Second eigenvalue
p &1 es(pem) 02 es(pcm)
A-modes
1 1.003649 37.27 0.993831 140.29
2 1.004022 0.12 0.995208 1.98
3 1.004023 0.02 0.995227 0.01
Anal. solut.: 1.004024 0.995227
~-modes
1 1.003619  134.92 0.993831 348.44
2 1.002266 0.07 0.997295 1.10
3 1.002267 0.02 0.997306 0.01
Anal. solut.: 1.002266 0.997306
a-modes
1 160.6970 9313 -271.5494 29248
2 177.1258 41 -210.9691 410
3 177.1995 0.06 -210.1068 3.1
Anal. solut.: 177.1995 -210.1002

spectrum of the different kind of modes, this is more clustered in the y-modes
computation.

Table 3.2: Eigenvalues in Langenbuch reactor at critical state.

Modes 1st 2nd 3rd 4th 5th

A-modes  1.000000 0.968020 0.968020 0.951963 0.937756
~v-modes  1.000000 0.981841 0.981841 0.972668 0.964403
c-modes  -0.00026 -867.189 -867.189 -1277.52 -1710.17

Figure 3.5 represents the thermal flux in the middle plane to compare the
spatial distribution of the modes. The distributions corresponding to the first
eigenvalues, that represent the flux of the reactor in steady-state are identical
for the three kind of modes. The second and third modes (degenerated between
them) present large differences in the spatial shapes in comparison with the
other kind of modes. The next modes represented are not significantly different.
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Figure 3.5: Radial distribution of thermal flux for the Langenbuch reactor.

52



8.4 Numerical results

3.4.3 NEACRP reactor

A critical configuration of the NEACRP (case Al) benchmark (Finnemann and
Galati, 1991) is chosen to compare the different modes in a more realistic case.
It is composed of 3978 different assemblies. The definition of the benchmark can
be found in Appendix B.4. Some subcritical configurations are also defined by
dividing the fission cross sections of the different materials by 1.1 (Perturbation
I) and by 1.2 (Perturbation II).

Table 3.3 displays the results for the first four eigenvalues for the three configura-
tions of reactor considered. It is observed that the reactor without perturbations
is quasi-critical since the dominant A and ~ are near 1, and « is near to 0. In the
Perturbation I and II, the reactor is subcritical with keg = 0.90 and kg = 0.83,
respectively.

Table 3.3: Eigenvalues at initial state of NEACRP reactor.

Eigenvalues
T. modes 1st 2nd 3th=4th
Critical State
A-modes 1.0002 0.9886 0.9854
~y-modes 1.0001 0.9937 0.9919
a-modes 7.6341 -442.32 -573.62
Perturbation I
A-modes 0.9093 0.8907 0.8958
~y-modes 0.9490 0.9429 0.9412
a-modes -3462.14 -3861.18 -4006.92
Perturbation II
A-modes 0.8335 0.8238 0.8212
~y-modes 0.9048 0.8990 0.8974
a-modes -6252.36 -6610.89 -6754.83

Figure 3.6 shows the radial and axial profiles for the fast flux associated with
the first three modes in the for critical configuration of the reactor. The radial
profiles of fast flux functions are approximately equal for the first and second
eigenvalues, observing small differences for the third one. In the last row of
the Figure, only the axial profiles associated with the first three A-modes are
shown because the axial profile obtained for the v and a-modes are very close
to these ones. Furthermore, it is deduced that the fast flux for the first modes
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is positive and has radial and axial symmetry, whereas the second modes are
antisymmetric in axial profiles and symmetric in the radial ones. The third
modes are antisymmetric in the radial and the axial profiles.

The power average profiles (axial and radial) are used to compare the modes
between them in the three configurations of the reactor. The axial profiles are
computed as

oz S o, Bale (P + Zplé(d] dy de
v Ly Enlél + Eplél) dV ’

where V;, L, and L, are the total volume, the width and the depth of the reactor
core, respectively. The functions &;, ¢ = 1,2 are the corresponding fast and
thermal fluxes for the different kind of modes. The radial profiles are computed
in a similar way. These profiles are shown in Figure 3.7. For critical configuration,
there are no differences between the profiles of the modes. In the same way,
there are no differences between the profiles of A and ~-modes in Perturbation I
and Perturbation II. However, when the reactor becomes more subcritical the a-
modes power shape changes with respect to its shape in the critical configuration
and the other modes shapes in the radial profile.

Pix(z) =

Spectral index

To demonstrate the variation in the neutron energy spectrum, the spectral index
I is studied. This index is defined as the ratio of the fluxes integrated in the
core volume (Ronen et al., 1976),

& v
Jo& dV’

where &1, &, are the fast and thermal fluxes of A, @ and ~y-modes.

I (3.31)

16 configurations of NEACRP benchmark have been considered to study the
spectral index behavior of the A, v and a-modes. These configurations are
obtained modifying the position of central control rod, since in the case Al
of NEACRP benchmark, the central control rod is moved. In Figure 3.8, the
differences between the spectral indexes (I) and the spectral index when the
reactor is in critical configuration (I.) are represented in each configuration as
a function of the A-eigenvalue. Figure 3.8(a), also shows that near criticality
these differences in each mode are nearly equal and increasing. However, from
A = 1.001 these functions are separated as A increases and when A = 1.003
they become decreasing functions. Moreover, in Figure 3.8(b), we observe that
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Figure 3.6: Radial and axial fast flux profiles for NEACRP in critical configuration.
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Figure 3.7: Average power profiles for the two configurations of NEACRP reactor.

functions are similar when the first A-eigenvalue is close to 1. For the second
mode, a relative maximum is observed for Ao = 1. So, the spectral indexes for A,
~v and a-modes have the same behavior.
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Figure 3.8: Spectral indexes in NEACRP reactor.

56



8.4 Numerical results

3.4.4 2D CbhG7 benchmark

First, the performance of the FEM for the SPx equations is studied by the
two dimensional version of the C5G7 fuel assembly benchmark introduced by
the Nuclear Energy Agency (NEA) in (Lewis et al., 2001). The characteristics
of this benchmark are that it uses 7 energy groups and the cross-sections are
given at homogenized pin level. The benchmark has been analyzed with several
deterministic codes and a very precise solution was obtained as reference using
the Monte Carlo method. The description of this benchmark can be found in
Appendix B.5.

Figure 3.9 shows the proposed meshes used to discretize the pin cell by depending
on the radial refinement parameter r,.. All meshes maintain the area of the fuel
region (in grey color) to provide a more accurate model of the problem.

(a) =0 ®)rr=1 () rr =2

Figure 3.9: Meshes considered for the pin structure.

Tables 3.4 and 3.5 show the results for the fundamental eigenvalue and its
corresponding eigenvector associated with diffusion theory (SP;) and the SPj
equations, respectively. These results are computed for different meshes by
depending on the finite element polynomial degree p and the mesh refinement
parameter, r.. Errors in the eigenvalue are given by Equation (3.30) where
Aref = 1.186550 is the reference eigenvalue given by the benchmark authors.
To assess the eigenvector, the following collective per cent error measures were
selected: average pin power per cent error (AVG) and mean relative pin power
per cent error (MRE) of the pin power per cent error distribution (Smith et al.,
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2003),
1 &
AVG = — 3 e, 3.32
N 2 e (3.52)
NC . .
MRE = 2= 1P (3.33)
=1 b

where N, is the number of fuel pin cells and e; is the calculated per cent error
for the i-th pin neutron power, P;. It can be seen that the results are spatially
converged for r, = 1 and p = 2. Furthermore, it is observed that the SPj
equations improve the accuracy of the results with respect to the SP; mainly
for the eigenvector.

Table 3.4: Accuracy results for SP;.

Number Number Eigenvalue AVG MRE

" P 4f Cells of DoFs A1 en, (%) (%)
0 1 11849 83664 1.18511 144  2.26 1.88
0 2 11849 333207 1.18512 143 2.65 2.02
0 3 11849 748636 1.18511 144  2.26 1.88
1 1 28 900 203735 1.18381 274  1.52 1.25
1 2 28 900 812063 1.18335 320 1.43 1.21
1 3 28900 1824991 1.18330 325 1.42 1.21
2 1 78 608 553119 1.18373 282 1.46 1.24
2 2 78 608 2206743 1.18326 329 1.42 1.21
2 3 78608 4960879 1.18325 330 1.42 1.21

Table 3.5: Accuracy results for SPs.

Number Number Eigenvalue AVG MRE
P of Cells of DoFs A AN (%) (%)

11849 167328 1.18540 115 1.69 1.46
11849 666414 1.18375 280 0.85 0.74

28900 407470 1.18357 298 0.86 0.72
28900 1624126 1.18261 394  0.72 0.65
78 608 1106238 1.18347 308 0.81 0.72

=

N R = OO
— NN
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Figure 3.10 shows the spatial distribution of four power harmonic modes, defined
as

G
P = Sg08m - (3.34)
g=1

Note that, they are not exactly the first four modes because, we have considered

a quarter of the reactor for the computation. The first distribution coincides
with the spatial distribution of the reactor in steady-state.

Power_eig1 Power_eig2
E 1.5e+00 E 1.4e+00
—;1.1e+00 =6.8¢-01
7.3e-01 0.06+00
3.6e-01 -6.8e-01
0.0e+00 -1.4e+00
(a) Power A1 (b) Power A2
Power_eig3 Power_eig4
E1.3e+00 E1.4e+00
—6.7e-01 75001
0.06+00 “1.0001
-6.7e-01 -5.5e-01
-1.3e+00 -1.2e+00

(c) Power A3 (d) Power A\g

Figure 3.10: Distribution of neutron power for the C5G7 reactor.
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3.4.5 3D CbhG7 benchmark

The 3D-C5G7 problem (Smith et al., 2003) has been solved to test the finite
element methodology in a challenging three dimensional problem. The mesh has
264 992 finite element cells and 2 343 865 degrees of freedom. This problem has
the same radial configuration as the two dimensional version (Appendix B.5);
then, the discretization used in this direction has been r, =1 (Figure 3.9). The
axial discretization is done by extruding the two dimensional mesh by axial
plane (Figure B.7). The discretizations considered in the axial direction are
represented in Figure 3.11. The configuration of the finite element method to
compute the solution for this case has been p = 2. In this case, the number of
eigenvalues requested is 1.

(a) ra =0 () 1o =1

(¢) ra =2 (d) ra =3
Figure 3.11: Discretization considered axially.
Table 3.6 displays the accuracy results for the first eigenvalue and its corre-

sponding eigenvector for SP; and the SP3 equations for different axial refinement
parameters, 7,. One can see that it is necessary r, = 2 to get spatially convergent

60



8.4 Numerical results

results. Thus, the pin power error is less than 1% and about 400 pcm in the keg
for the SP3 equations.

Finally, one can compare these problem sizes with the bidimensional version
of this reactor (with ., = 1 and p = 2) by means of the number of degree of
freedoms (Dofs) for the SP3 approximation (Table 3.5). It is noted that the
size of the problem is multiplied from more than 10 times, for r, = 0, to more
than 75 times, for r, = 3. This implies for the 3D benchmark large expenses of
computational resources in terms of computational time and memory.

Table 3.6: Accuracy results for 3D-C5G7 benchmark.

Number Number Eigenvalue AVG MRE

Eq: Ta T P ofcells  of DoFs A1 AN (%) (%)
0O 1 2 132496 8964375 1.14010 298 4.26 3.35

Sp 1 1 2 264992 16407055 1.13876 432 1.98 1.60
Lo 1 2 529984 31292415 1.13819 489 1.42 1.19

3 1 2 1059968 61063135 1.13813 495 1.41 1.17

0o 1 2 132496 17928750 1.14067 241 4.40 3.01

gp 1 1 2 264 992 32814110 1.13936 372 1.93 1.54
5.2 1 2 529984 62584830 1.13880 428 0.98 0.84

3 1 2 1059968 122126270 1.13870 438 0.87 0.77
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CHAPTER

EIGENVALUE COMPUTATION METHODS

The spatial discretization of the different steady-state problems associated with
the approximations of the neutron transport equation gives a generalized eigen-
value problem. The largest eigenvalue shows the criticality of the system and its
associated eigenfunction the neutron distribution in steady-state. The computa-
tion of the next eigenvalues has interest, for example, to develop modal methods
(Chapter 5) or to study BWR instabilities (Miré et al., 2000).

Calculation of the dominant mode has traditionally used the classical power
iteration method which, although robust, converges slowly for dominance ratios
near one, as occurs in some practical nuclear reactor problems. Henceforth,
acceleration techniques have been needed to improve the convergence of the
power iteration method. Some simple improvements in diffusion theory are, for
instance, Chebyshev iteration (Hageman and Young, 2012) and Wielandt shift
(Sutton, 1988).

Other alternative methods have been also studied to solve this kind of reactor
problems in an attempt to improve upon the performance of accelerated power
iteration methods. For instance, the inverse power method for the computation
of one eigenvalue (Allen and Berry, 2002). When a set of dominant modes have
to be computed, other methods have been used, such as the subspace iteration
method (Verdu et al., 1994; Vidal et al., 1998; Warsa et al., 2004), the classical
Arnoldi method, the Implicit Restarted Arnoldi method (IRAM) (Warsa et al.,
2004; Verdu et al., 1999) or, more recently, the Krylov-Schur method (Vidal-
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Ferrandiz et al., 2014; Bernal et al., 2017). The application of these methods
requires to transform the generalized problem

Ax = Bz,

into an ordinary eigenvalue problem or to apply a shift and invert technique.
In both cases, it is necessary to solve numerous linear systems associated with
large matrices and, consequently, the time of convergence of the methods can be
slow. One solution of this problem is using the Jacobi-Davidson method, (Verda
et al., 2005), that also makes use of a shift and invert strategy, but it does not
need to solve as many linear systems as the previous ones.

Other methods to solve eigenvalue problems associated with nonsymmetric
matrices are the gradient type methods, that do not require solving linear
systems involving the full operator. However, if there are clustered or degenerate
eigenvalues, these methods may have problems to find all the eigenvalues. In
practical situations of reactor analysis, the dominance ratio corresponding to
the dominant eigenvalues is often near unity, resulting in a slow convergence.
In such cases, block methods with several initial approximated eigenvalues and
eigenvectors are an alternative since their convergence behaviour depends only
on the separation of the group of target eigenvalues from the rest of the spectrum.
One of these methods is the Generalized Davidson that has been successfully
used for the computation of the modes in other approximations of the neutron
transport equation such as the multigroup SPy equations (Hamilton and Evans,
2015). Other method, is the inverse-free Krylov subspace method introduced
by Golub for symmetric and definite matrices in (Golub and Ye, 2002) and
with a block implementation in (Quillen and Ye, 2010). This method improves
the traditional steepest descent method by expanding the search direction to a
Krylov subspace with the advantage of better approximation properties offered
by Krylov subspaces. In this thesis, the performance of the block inverse-free
Krylov subspace method is analyzed for the steady-state problems associated
with the neutron transport approximations that are not always symmetric.

On the other hand, Newton’s methods have been shown very efficient in the
computation of eigenvalues in neutron diffusion theory. For instance, the modified
block Newton method (Losche et al., 1998) has been considered to solve an
ordinary A-modes problem associated with the original generalized problem,
(Gonzélez-Pintor et al., 2011). In this thesis, several generalizations of this
method are proposed and analyzed. All of these methods are very sensitive to
the initial guess and good approximations are needed to initialize them. In this
context, hybrid methods have been developed using slow convergence methods
to initiate Newton’s methods. As an example, the use of Jacobian-Free Newton-

64



4.1 Eigenvalue problem solvers

Krylov methods has been studied using traditional methods as preconditioners
(Gill and Azmy, 2009; Knoll et al., 2011; Gill and Azmy, 2011) such as the IRAM
(Gill and Azmy, 2009; Mahadevan and Ragusa, 2008). In this thesis, a hybrid
method has been proposed that combines a block inverse-free preconditioned
Arnoldi method (BIFPAM) with a generalization of the modified block Newton
method.

This Chapter exposes different strategies to solve the algebraic eigenvalue prob-
lems obtained in the Chapter 3. Section 4.1 collects and describes a selection
of the most commonly used eigensolvers for neutron computations. Moreover,
this Section presents the block inverse-free preconditioned Arnoldi method
(BIFPAM), two generalizations of the modified Newton method and a hybrid
eigenvalue solver which is based on the two previous methods. Then, several
methodologies to improve the implementation of the code are studied. Iterative
methods improve their convergence if a suitable initial guess is given. For this
purpose, Section 4.2 studies several initialization techniques. Another point that
accompanies the solver is the preconditioner used. Thus, several preconditioners
are exposed in Section 4.3. Section 4.4 briefly outlines the matrix-free strategy
used as an optimization of the code because this avoids the assembly of the
matrices involved in the problem. To finish this Chapter, some numerical results
are presented to test and to compare all strategies for the SPyn equations in the
C5G7 benchmark reactor. This chapter rewrites and synthesizes the methods
and results presented in (Carrefio et al., 2017a; Carreno et al., 2017b; Carreno
et al., 2018a; Carrefio et al., 2018b; Carrefio et al., 2019¢; Vidal-Ferrandiz et al.,
2019; Carreno et al., 2019a; Carrenio et al., 2019b).

4.1 Eigenvalue problem solvers

In this section, several well-known eigenvalue solvers are described. A scheme of
them can be found in the Figure 4.1. Even thought, this list is not intended to be
exhaustive, as several other eigenvalue solvers appear in the neutron transport
computations or in general, in mathematics literature. Furthermore, although
in this thesis only the solution for the diffusion equations and SPy equations
are computed, the block structure of the problem is the same for other angular
approximations of the neutron transport equation, such as the Sy equations and
Px equations (even if the linear operators themselves are different). Therefore,
the following methodology is equally applicable to other approximations.

Thus, it is supposed that we have a generalized partial eigenvalue problem of
the form

AX = BXA, (4.1)
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where the matrices A € RNdots X Naots and B € RNdofs X Ndots have a, block structure
with blocks symmetric and positive definite and they come from the spatial
discretization using a FEM. The matrix A € R?%? is a diagonal matrix whose
elements are the first ¢ dominant eigenvalues (largest in magnitude) (¢ <€ Ngofs)
and X € RNdofs X4 hag the corresponding ¢ eigenvectors in its columns.

We assume that the eigenvalues an their corresponding eigenvectors are real,
even though this is proved only under restrictive conditions (e.g. monoenergetic
transport). This theoretical assumption is nevertheless supported by numerical
evidence on benchmark problems (Carney et al., 2014).

In some cases, we refer to the ordinary (or standard) eigenvalue problem associ-
ated with the generalized problem to

CX = XA, where C = B'A. (4.2)

To use the ordinary eigenvalue problem, the matrix B~! is not constructed
explicitly, but it is multiplied by vectors solving linear systems.

One special case is the A-modes problem associated with the neutron diffusion
equation in the two energy groups approximation, without considering up-
scattering and one eigenvalue

Ly O oa _ 1 /Fy o}
Z] = 3 - (4.3)
Sor Lao) \¢3) A\ 0 0 )\
For that case, it is very common to reduce the generalized problem to the ordinary
eigenvalue problem
L' (Fiy — Fia L3y So1) 7 = Ay, (4.4)

and then the thermal group is computed as

¢3 = —Lagy Sa167 . (4.5)

In this thesis, we only use the previous consideration when the Krylov-Schur
method is applied, because this method is only available in the library SLEPc
(Hernandez et al., 2005) for ordinary eigenvalue problems.
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Eigenvalue
solvers
Block
Power iteration Krylov-Schur methods
(PIM) (KSM)

Block inverse-
free precondi-
tioned Arnoldi
(BIFPAM)

Generalized

Davidson
(GDM)

Generalizations
of the modified
block Newton

Generalized
Rayleigh-Ritz
(MGBNM)

Biorthogonalization
(MBNM-GBO)

Figure 4.1: Scheme for the eigenvalue solvers.

4.1.1 The power iteration method

One of the oldest techniques for solving eigenvalue problems is the so-called

power iteration method (PIM). Given the generalized eigenvalue problem for
one eigenvalue

Ax = 0Bz,
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the classical power iteration method needs previously to transform it into an
ordinary eigenvalue problem as

Cz = éx, where C = B™1A.

This method consists simply on generating the sequence of vectors for the
ordinary eigenvalue problem (4.2), C'2(®) where 2(9) is some nonzero initial
vector. It can be proved that this sequence of vectors, normalized appropriately
and under reasonable conditions, converges to the dominant eigenvector (Saad,
2003). The normalization most commonly used is to ensure that the largest
component of the current iterate is equal to one. This yields to the Algorithm 1.

Algorithm 1 Power Iteration Method (PIM)

Input: Matrices A and B, initial approximation z(©).
Output: Largest eigenvalue §; and its corresponding eigenvector x.

1: Compute 5

2: while res,>tol and i < maxits do

3: Compute () = 1/60-DB~1 A (-1
i Obtain 60 = 50 Bat9| /| BaD)|

5: end while

The proof of the convergence for this method shows that the convergence factor
of the method is given by (Saad, 2003)

PPIM — @
|01]

It is a common situation in reactor problems that the dominant eigenvalues
02 and &7 are very close one from the other. As a result, convergence may be
extremely slow.

The eigenvalue can be also estimated by using the Rayleigh quotient

5@ — 5G-1) (Az), Bz)

where (,) is a discrete inner product, leading to the Rayleigh quotient method,
that in some cases has a faster convergence.

The previous algorithm, for the special case of the A-modes problem in the
approximation of two energy groups (4.3), can found as a fission source iteration
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scheme (Stacey, 2018). From the notation of Equation (4.3), the iteration process
can be described as:

* Approximate fl(i_l) = F11¢1\’(i_1) + F12¢§’(i_1)-
» Solve ansi’(i) =1/A6D) 1(1'—1)‘

» Compute s = ~Sy 7.

¢ Solve Losgy™ = s,

o Compute A\ = F(jy\y(i)/([/ + S)qs)\,(i).

Note that this iteration is equivalent to the Algorithm 1 (except in the estimation
of the largest eigenvalue) when one block Gauss-Seidel iteration (Algorithm 8)
is applied to solve the linear systems where the matrix B is

L1 O
B = . 4.
(521 L22> (4.6)

The power iteration algorithm is designed to obtain the largest eigenvalue. To
estimate the rest of eigenvalues to apply a deflation technique is needed. This
procedure consists of applying a rank one modification to the original matrix
to displace the eigenvalue d; of the matrix spectrum, while keeping all other
eigenvalues unchanged. The rank one modification is chosen so that the eigenvalue
02 becomes the one with largest modulus and therefore, the power iteration can
be applied to the new matrix to estimate the pair (02, z2). Traditional deflation
techniques are the Wielandt deflation and the Schur Wielandt deflation (Saad,
2003). In this thesis, the power iteration method is only used to compute the
dominant eigenvalue because other works related to diffusion theory have shown
that it is not a very efficient method to compute more than one eigenvalue
(Bernal et al., 2017)

4.1.2 Subspace expansion methods

The power iteration method or some expansion as the shifted PIM are fixed-point
methods, i.e., the next estimate of the solution depends only on the estimate
immediately preceding it. As alternative to fixed-point iteration methods are
subspace eigenvalue solvers in which information from several vectors is used to
generate the next approximate solution. The vast majority of subspace solvers
are built on two basic principles: extracting an approximating of the solution
from a given subspace and adding a new vector to the current subspace.
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In the solution extraction phase, given the generalized partial eigenvalue problem
AX = BXA,
or the associated ordinary eigenvalue problem
CX = XA, where C=B'A,

one can estimate the desired eigenvectors from a linear combination of the
subspace basis vectors Z as X = ZU, where U is an orthonormal matrix. The
process is almost invariably achieved through a Rayleigh-Ritz procedure by
solving the projected eigenvalue problem

AZU =BZUAN < ZTAZU = Z"BZUA
X X

or for an ordinary eigenvalue problem

CZU = ZU A < Z'CZU = UA,
XY

where Z contains a set of typically orthonormal basis vectors for the current
subspace. For an appropriate selection of Z, the eigenvalues of the projected
problem will closely approximate the eigenvalues of the original system, and the
vectors ZU will approximate the corresponding eigenvectors X. The approximate
eigenvalues and eigenvectors obtained from the Rayleigh-Ritz procedure are
generally referred to as Ritz values and Ritz vectors, respectively. All eigensolvers
used in this thesis use the Rayleigh-Ritz procedure to extract an approximate
solution from the subspace. The generalized Rayleigh-Ritz method can be
summarized in Algorithm 2.

Algorithm 2 Generalized Rayleigh-Ritz

Input: Matrices A and B, initial approximation of the invariant subspace Z.
Output: Dominant eigenvalue §; and its approximated eigenvector x;.

1: Form projection A, = ZTAZ, B, = Z"BZ

2: Compute dominant eigenpair (d1,u;) of A,u = JB,u

3: Compute x1 = Zu,

The method of subspace expansion is what distinguishes the majority of subspace
eigensolvers.
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4.1.3 The Krylov-Schur method

Power iteration method works with two vectors. This corresponds to a Krylov
subspace of dimension one. If now, the power iteration is applied to g vectors
simultaneously, the result would be that the ¢ vectors would all converge to the
dominant eigenvector. If the vectors were orthonormalized at every iteration they
would instead converge to the ¢ eigenvectors that correspond to the ¢ largest
eigenvalues. This approach is called subspace iteration. This method operates
on only the most recently computed vectors ignoring the information provided
from the previous iterations.

Another typical subspace expansion method is the Arnoldi method (Saad,
2003), for ordinary eigenvalue problems

Cz = 0z, where C=DB'A, (4.7

that constructs a Krylov subspace from the vector sequence generated by power
iteration of matrix C satisfying a Galerkin orthogonality condition. The Galerkin
condition is satisfied through the Arnoldi decomposition of order dj

CZu, = Zay Ha, + i1 k26 11€0,. (4.8)

where zg, 41 is the result of orthonormalizing C'z4, with respect to previous
columns and Hy, is an upper Hessenberg matrix. That leads to a relatively
small projected (upper Hessenberg) matrix from which the approximate eigen-
values and eigenvectors can be calculated easily. The efficiency of this methods
improves when the dimension of the Krylov subspace dj increases as well as
the computational cost. The method can incorporate a restarting technique to
avoid to have a high number of vectors obtaining the implicit restarted Arnoldi
method, IRAM, (more details in (Lehoucq, 2001)) .

An improvement of Arnoldi method is the Krylov-Schur method proposed by
Stewart in (Stewart, 2002) for ordinary eigenvalue problems. The Krylov-Schur
method is defined by generalizing the Arnoldi decomposition (4.8) to obtain a
so-called Krylov decomposition of order k,

CZy, = Za,La, + 2dy+10g, 11, (4.9)

in which matrix Lg, is not restricted to be upper Hessenberg and bg, 11 is an
arbitrary vector.

Krylov decompositions are invariant under (orthogonal) similarity transforma-
tions, so that

CZq,Q = deQ(QTLde) + de+1b§k+1Q7
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with QTQ = I, is also a Krylov decomposition. In particular, one can choose
Q in such way that Sy, = QT L4, Q is in a (real) Schur form, that is, upper
quasi-triangular with the eigenvalues in the 1 x 1 or 2 x 2 diagonal blocks. This
particular class of relation, called Krylov-Schur decomposition, can be written
in block form as

. . /S S o
C(Zy Zy) = (21 Z») ( 61 S;z) + Zkt1 (bf bg) :

and has the nice feature that it can be truncated, resulting in a smaller Krylov-
Schur decomposition, 3 ~ ~
CZy = 21511 + de+1b{a

that can be extended again to order dy.

Subspaces expansion methods based on Krylov subspaces are widely used to
compute several eigenvalues of ordinary eigenvalue problems. For generalized
eigenvalue problems (4.1), linear systems are required to be solved in each
iteration to solve the corresponding ordinary eigenvalue problem (4.2). This
increases the computational cost, but also large errors in the convergence process
can be obtained if the matrix B is ill-conditioned.

To solve the ordinary eigenvalue problems with the Krylov-Schur method, the
implementation provided by the library SLEPc (Hernandez et al., 2005) has
been used. There are other implementations of the Krylov-Schur method that
allow a treatment of the eigenvalues in block (Baker et al., 2009), but we have
not studied them.

4.1.4 The generalized Davidson method

Davidson type methods may present better performance in generalized eigen-
problems
Ax = éBux.

These methods are expansions of the classical Davidson method (Davidson, 1975).
The basic idea behind subspace expansion in the Davidson method is, given an
approximate eigenvalue, § () in the iteration i, and the corresponding eigenvector
2@ one should seek a correction, t® such that the eigenvalue correction equation
given by

A(x(i) + t(i)) = 60B2W + @)

is satisfied. Reordering the terms of this equation yields to

(A=69B)Y = —(A—69B)z® = —()
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where 7 is the residual of the eigenvalue problem. This equation implies that
a linear system with the matrix (A — 6% B) must be solved at each iteration.
A wide variety of developments in the subspace expansion have been studied.
Morgan and Scott in (Morgan and Scott, 1986) introduces the first expansion:
the Generalized Davidson Method (GDM) that applies a preconditioner, P, of
the matrix (A — 6®)B) to the residual to improve the approximation in the
direction of the desired eigenvector as

Pt® = @)

The main advantage of this method is that no linear system is needed to be solved
involving the full problem operator; only the application of a preconditioner to
approximate the solution of a linear system is required. However, it may occur
that the iterated vector is almost collinear to the approximated eigenvector,
leading to the stagnation of the method.

Other Davidson methods, although there will not be considered in this thesis, are
the Jacobi-Davidson method (Sleijpen et al., 1996) or the Olsen method
(Olsen et al., 1990). The most popular is the Jacobi-Davidson whose correction
is given by

(I —2DzOTY(A = OB — 2@z T = ()

where the projection operator (I — 2®z(®T) prevents the stagnation of the
method. Even if, these methods were developed for symmetric eigenvalue problem,
later work extended the theory to nonsymmetric matrices.

In this thesis, the block implementation of the library SLEPc is used to compute
the eigenvalues of a generalized eigenvalue problem with the generalized Davidson
method.

4.1.5 The block inverse-free preconditioned Arnoldi method

Other possibility to avoid solving linear systems for generalized eigenvalue prob-
lems is the block inverse-free preconditioned Arnoldi method (BIFPAM) where
the subspace expansion is obtained from a Krylov subspace corresponding to
residual matrices, A — 9,,B. The BIFPAM was originally presented for A and B
symmetric matrices and B positive definite (see (Golub and Ye, 2002)). Nev-
ertheless, this thesis shows that this methodology works efficiently to compute
the modes associated with some reactor problems, where matrices A and B are
not symmetric. The performance of this method was studied for the neutron
diffusion equation in (Carrefio et al., 2018a; Carrefo et al., 2018b; Carrefo et al.,
2019a) and for SPy equations in (Vidal-Ferrandiz et al., 2019).
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We start with the problem for one eigenvalue

Axr = dBuz,
the aim is maximizing the Rayleigh quotient
' Az
ox) = —=— 4.10
() = s, (410)

where z is on a certain subspace and it is assumed that =" Bz never vanishes.

Following the steepest descent method and starting from an initial approximation
(6, 2(0)) leads to that the approximate eigenvector 2zt in the i-th iteration
can be chosen from the span{z®, r®} where

) _ (A—56DB)z®
2@ TBp@) 7
is the gradient of §(z) evaluated in 2, and () is the approximation of the

eigenvalue in the i-th iteration.

This can also be considered as the Rayleigh-Ritz quotient method on the subspace
Ki(A—69B,29) .= span{z®, (4 — 69 B)z)}.

A way to extend this approach is finding a new (Y from the dj-order Krylov
subspace

Kéi) (A—69B,20) := span{z¥, (A — 69 B)2D ... (A -9 B)%z(},
and then using the Rayleigh-Ritz projection method exposed in Algorithm 2.

The matrix Z is a basis of K (gi)(A — 6WRB,2®™). The dominant eigenvalue is

obtained from the first Ritz value as 60! = §; and its eigenvector is obtained
from thelﬁrst Ritz vector (1) = Zuy. Arnoldi method is used to construct the
basis K éi).

This method can be dealt as an iteration with a block of vectors that allows
computing several eigenvalues simultaneously (Quillen and Ye, 2010). If we are
interested on computing ¢ eigenvalues of problem (4.1),

AX = BXA, (4.11)

we can accelerate the convergence by using the subspace }CSZ with

= () &4

dkm

(A= 8B.28)),
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where 5,(,? denotes the m-th eigenvalue computed in the i-th iteration and :L'%)
its associated eigenvector.

That means that, one may construct a basis for this subspace, Z, by the union
of the ¢ bases, Z,, for 1 < m < ¢, of the m Krylov subspaces Kc(lg’m, 1<m<yq.
Then, the original generalized eigenvalue problem (4.1) is projected onto the

basis Z, and it is solved for the first ¢ dominant eigenvalues to obtain the new
eigenvalues and corresponding eigenvectors.

The rate of convergence of this method improves as the dimension of subspace, dy,
increases. However, the computational cost is also increased considerably. In this
way, alternatively the method is accelerated with an equivalent transformation
of the original problem by means of a preconditioner.

Golub in (Golub and Ye, 2002) proved that the rate of convergence of the block
inverse-free Arnoldi method depends on the spectral distribution of R = A —§B,
where ¢ is the desired eigenvalue. Thus, the idea of preconditioning is to construct
an equivalent problem so that when we apply the block inverse-free Arnoldi
method to the new problem, the new matrix associated to the equivalent problem,
R, has a better spectral distribution.

With an approximate eigenpair (6,(,?, x%)), one consider for some matrices L&?,

Ug) the transformed eigenvalue problem
(LD AUD 1z = (L BUD e o A, 8 = 6B,,,%, (4.12)

which has the same eigenvalues as the original problem. The relation between
the eigenvector of the original eigenvalue problem, z,,;, and the corresponding
approximate eigenvector for the transformed problem 4.12, Z,, ;, is o QPN
This transformation is called preconditioning. The rate of convergence after
applying one step of the inverse-free Arnoldi method to the problem ((4.12))

will be determined by the eigenvalues of

RO = 40 — 6O B0 — [01-1(4 — 60 gy, (4.13)

Different preconditioning transformations can be constructed by using for in-
stance, different factorizations of the matrix A — 5%)B in order to obtain a
favorable distribution of the eigenvalues of matrix RY.

The preconditioned iteration of the block inverse-free Arnoldi method (BIFPAM)
can be implemented implicitly, i.e., without explicitly forming the transformed
(1)

problem R\). Due to the relation between the eigenvector of the transformed
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problem and the original problem, obtaining a basis of K fli)’m requires only to

construct a basis for the subspace U,(,?7_1K (g?m, where

7

di,m

—span{U) ), RQUaS), (R0, . (R Uaid),

mo

or equivalently of the subspace

K

dk,m

=UWDTRY | =span{UD L2 U0 LD RO,
U= LD ROY20 g @)=l L1 (RO

m m m

It is observed that (L%) 7(,3))*1 is only needed to premultiply the vectors when
the subspace is built. In order words, we only need a method to multiply a

preconditioner of the matrix Rffl) by a vector that does not necessarily come from

the factorization of a matrix. It can be an approximate solution of the linear

system that involves the matrix Rff;). Moreover, in practice, we use constants

LY = Lgl) and UW = Ul(l) obtained from a preconditioner for A — (551)3, where
551) is a first approximation of the first eigenvalue. The strategy to precondition

the BIFPAM is using the preconditioners designed for linear systems that will
be described in Section 4.3.

The block inverse-free preconditioned Arnoldi method (BIFPAM) is summarized
in Algorithm 3.

4.1.6 The modified block generalized Newton method

Other methods different to the subspace type methods are Newton’s methods. In
particular, the modified block Newton method is studied. This type of Newton
method is proposed in (Losche et al., 1998) for ordinary eigenvalue problems.
In this thesis, it will be extended for generalized eigenvalue problems in two
different ways. These generalizations were published in (Carreno et al., 2017b).

From the generalized Rayleigh-Ritz (MBNM-GRR or MGBNM)
Given the generalized eigenvalue problem

AX = BXA, (4.14)
it is assumed that the eigenvectors can be factorized as

X =278, (4.15)
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Algorithm 3 BIFPAM

Input: Matrices A and B, initial approximation X©) = [x§°>, ... ,x,go)].

Output: Diagonal matrix of eigenvalues A and matrix X with the eigenvectors
as its columns.

1: Compute 5% = (xsg)’TAxgg))/(azgg)’TBx,(g)), 1<m<gq
2: while res,>tol and i < mawits do

3. Obtain the basis Z\Y of K (A—6¥B,21)),1<m<q » ArNoLDI

dyym
4 Construct 20 .= 2 . Z\]
5 Form projection Ay, = ZOTAZW, By = 20 TBZ0
6: Compute ¢ dominant eigenpairs (5,(,é+1), Um) of Ay, U = By UA
7: Compute :zrg,ifl) = ZUm, 1 <m <q

8: end while

where ZTZ = I,. In this way, the problem (4.14) can be rewritten as
AX = BXA = AZS = BZSA = AZ = BZSAS™' = AZ = BZK. (4.16)

This problem is undetermined since the eigenvectors are defined up to a constant.
To determine the problem, the biorthogonality condition WTZ = 1, is introduced,
where W is a fixed matrix of rank ¢. Thus, Newton’s method is used to solve
the following problem

F(Z,\) := ( Ang_ZB_ZIi{ ) = ( 8 ) : (4.17)

A new iterated solution arises as,
Z0D = 70 Az KD = O _ ARK®) (4.18)
where AZ® and AK® are solutions of the system

{ AAZD — BAZOK® — BZOAK® = Az — Bz K@)

WTAZO =wTz0 -1, (4.19)

which is obtained by substituting (4.18) into (4.17) and removing second order
terms.

The system (4.19) is coupled, since the matrix K is not necessarily diagonal. To
decouple the system, the Modified block-Newton method applies two previous
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steps. The first step consists of an orthogonalization to the matrix Z( using the
modified Gram-Schmidt Orthogonalization. Once Z® is an orthonormal matrix,
ie, Z @ 76 = 1, as a second step, a Rayleigh-Ritz procedure for generalized
eigenvalue problems is applied (Algorithm 2), which consists of obtaining the
eigenvectors S and their corresponding eigenvalues A that satisfy

Z0" AzD 80 — 70" Bz GO, (4.20)

Defining Z() := ZW SO we have, from (4.20), that AW is a diagonal matrix
whose elements, d,, are the Ritz values and Z() are the approximated Ritz
eigenvectors, satisfying the equation

7O (AZD — BZOAD) = 0. (4.21)

At each iteration, the matrix W in Equation (4.19) is chosen as the previous
approximation for the invariant subspace, that is, W = Z®). From the definition
of K® on Equation (4.16), the system (4.19) is decoupled into the ¢ linear
systems

A-BsS) BZO\ [ Az Azl) — Bzl sl)
< Z(i)Tm 0 A5 = 5 OZ ,m=1,...,q, (4.22)

where AzY is the i-th column of AZ®). Vectors Z(+D) are updated according

to Equation (4.18) and the eigenvalues 5% are obtained from the Ritz values
of (4.20). To solve the previous linear systems the GMRES solver is used,
preconditioned with the ILU factorization. Furthermore, a dynamic procedure is
used to set the tolerance in each linear system.

The modified generalized block Newton method can be summarized in Algo-
rithm 4.

From biorthogonalization process (MBNM-GBO)

Given the generalized eigenvalue problem (4.14), as in the previous method, the
eigenvectors are expressed as

X =278, (4.23)

but now vectors Z are chosen to satisfy HXBZ = I, for some H € RNdotsx4,
Now, the problem (4.14) is rewritten as

AZ = BZK. (4.24)
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Algorithm 4 MGBNM

Input: Initial approximation U = [uy, ..., uq] for the eigenvectors.

Output: Diagonal matrix of eigenvalues A and matrix X with the eigenvectors
as its columns.

1: Compute the Ritz approximations A, X > RAYLEIGH-RITZ GEN.

2: while res,>tol and i < maxits do

3: Compute AZ = [Az,..., Az > CORREC. NEWTON (EQ.(4.22))
4: Z=X-AZ

5: Orthonormalize(Z) > MODIFIED GRAM-SCHMIDT
6: Compute the Ritz approximations (A, X) > RAYLEIGH-RITZ GEN.

7. end while

The problem is determined, in this case, by imposing the biorthogonality condition
WTBZ = 1,, where W is a fixed matrix of rank ¢. Thus it is defined the problem

F(Z,A) :(fVZT];ZB_ZIIi):(g) (4.25)

From Newton’s method, a new iterated solution arises as
Z0D = 20 _Az0O gD = g0 _AK®) (4.26)

where AZ® and AK® are solutions of the system

{ AAZD — BAZOK® — BZOAKW = Az — BZO K@) (4.27)

WTBAZ®W =wTBZO — 1,

To decouple system (4.27), this generalization of the modified block Newton
method applies two previous steps. The first step is to apply to matrix Z(
an algorithm, based on a biorthogonalization process (Adrover et al., 2005), to
obtain Z® and H® such that H®" BZ(®) = I,, (see Algorithm 5), where H©)
is initiated as Z(.

Once Z@W and H® have been obtained, as a second step, a Rayleigh-Ritz
procedure is applied, which consists of obtaining the eigenvectors S and their
corresponding eigenvalues A that satisfy

AZWSE = Bz WA (4.28)
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Algorithm 5 Biorthogonalization process
Input: ﬁ, Z
Output: H = [Hy,...,H,|, Z =[Z1,...,Z,] such that H'BZ =1
. H=H
VA
3: for m=1 to q do
4: H, =H,/(H!BZ,)
5: hb=H'B
6: bz = BZ,,
7: for j=m+1 to q do

8: Zj = Zj — (thJ)Zm
9: H]:H]—(H]sz)Hm
10: end for

11: end for

Making use of the relation of matrix Z®) and H®, the following equation is
obtained

HO"Az0 50 = gOAG, (4.29)
which is a small generalized eigenvalue problem.
Defining Z) := Z(®) S0 it is satisfied that
HD'(AZ0 — BZOADY) = 0. (4.30)

At each iteration, the matrix W is chosen as W = H®, then the system (4.27)
is decoupled into the ¢ linear systems

A—BsY Bz [ AZD A2 _ B0 sl
< H(i)TBm 0 A5 = 0 ,m=1,...,q. (4.31)

As in the previous method, only the eigenvectors are updated with Azi(z) and the
eigenvalues are obtained from the solution of the small problem (4.29). To solve
the previous linear systems, also the GMRES solver is used, preconditioned with
the ILU factorization; and a dynamic procedure is used to set the tolerance.
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4.1.7 Block hybrid eigenvalue solver

Numerical results show that the BIFPAM with a ‘good’ preconditioner converges
efficiently. However, the method for very accurate approximations exhibits a
slower convergence history or the convergence rate decreases after a certain
number of iterations. One the other hand, we know that theoretically the MGBNM
converges quadratically. However, it needs a suitable initial guess, otherwise in
the first iterations has a slow convergence. Thus, it is proposed to use a hybrid
scheme combining both methods. This hybrid scheme is based on using the
BIFPAM in the first iterations until a given tolerance of res = 1072 is reached,
and then the MGBNM is applied. This cut off value for the tolerance is reactor
dependent and it has been chosen by observing the convergence history of the
methods. The implementation of this block hybrid method can be summarized in
the Algorithm 6. This method for the neutron diffusion equation was presented
in (Carreno et al., 2018a).

Algorithm 6 Block hybrid method (BIFPAM-MGBNM)
Input: Initial X(©
Output: Approximated eigenvalues A and eigenvectors X
1: Initialize X with X(©
2. while res > 1072 do
3 Solve AX = BXA to obtain XBIFPAM > BIFPAM
4: end while
5: Initialize X with X (©) = XBIFPAM
6: while res > tol do

7: Solve AX = BXA to obtain XMGBNM > MGBNM
X — XMGBNM

9: end while

4.1.8 Numerical results for the computation of the spatial modes

This section compares the computation of the A-modes, yv-modes and a-modes
with the Krylov-Schur method in two benchmarks: a homogeneous reactor and
the NEACRP reactor. Then, a strategy to compute efficiently the v-modes and
a-modes is analyzed for the NEACRP reactor. It is composed of two steps: first
an approximation of the A-modes is obtained with the Krylov-Schur method and
then, one generalization of the modified Block Newton method is applied. The
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approximation of the A-modes are taken as initial guess for the Newton’s method.
The two generalizations of the modified block Newton method are tested.

All iterative methods need a stopping criterion to establish when it has a
sufficiently accurate approximation. For this purpose, two type of residual errors
are defined.

Given the generalized eigenvalue problem
Ay =6,B b, m=1,...,q,

where ¢ is the total number of eigenvalues computed, A° and B® are the matrices
associated with the d-modes problem (§ = \, 7, «), d,, the m-th eigenvalue and
¢m its corresponding eigenvector, the residual error in the generalized eigenvalue
problem is defined as

1B ¢ — 6 A’ P |2

res, — max . 4.32
s PR P (4.32)

On the order hand, the residual error considered for the ordinary eigenvalue
problems associated is defined as

- (B L Ay, — ol
res, = Imax '
m=1,...,q H¢mH2

(4.33)

Homogeneous reactor

This homogeneous reactor tests the Krylov-Schur method to compute the different
types of modes. It is presented in Appendix B.1 and their modes are described
in Chapter 3 (Section 3.4.1). The algebraic problem for each type of mode is the
one obtained from the spatial discretization using a polynomial degree equal to
p = 3 in the finite element method. The number of eigenvalues computed has
been 4. As Krylov-Schur method works with the ordinary eigenvalue problems,
the stopping criterion has been res, < 10~%. The method to solve the linear
systems has been GMRES, with ILU(0) preconditioner and a Cuthill-McKee
reordering to reduce the bandwidth of the matrices. The dimension of the Krylov
subspace has been set to 19.

Computational data related to Krylov-Schur method are displayed in Table 4.1.
First, it is observed that more iterations are needed by the Krylov-Schur method
to reach the tolerance for v-modes than for the other modes. This is because the

82



4.1 Eigenvalue problem solvers

spectrum of these modes is more clustered. For instance, the dominance ratio in
this reactor is v1 /72 = 1.004973 in comparison with A;/A\y = 1.008839 for the
A-modes and a; /g = 0.843404 for the a-modes. The number of iterations for
the Krylov-Schur method is larger as this ratio is closer to 1.

However, if the mean number of the iterations to solve the linear systems with
GMRES method is compared, the lowest value is obtained for the v-modes. This
is because the matrix B is symmetric (see Equation (3.16)). In this comparison,
the mean number of iterations needed for the a-modes is much larger when
compared with the other modes. The reason is that the matrix B%, that comes
from the discretization of —(£ + 8) 4+ &, is ill-conditioned. In fact, the condition
number of each one of B°, cond(B°), is estimated. This value for the matrix
corresponding to the a-modes problem is two orders of magnitude larger than
the one for matrices corresponding to the other modes. This can be explained
because the desired a-modes are close to 0. Thus, it is very expensive to converge
the solution of linear systems associated with B®. Moreover, the residual error
obtained for the generalized problem for the a-modes is very high (res, ~ 1072
in comparison with the error in the associated ordinary eigenvalue problem, that
is res, ~ 107%. In this way, to compute a solution of a-modes with a residual
eITor res, ~ 1075, we will need to request approximately a tolerance in the
corresponding ordinary eigenvalue problem of res, ~ 10~!2, These characteristics
of the modes imply that the A-modes are the cheapest modes to compute.

Table 4.1: Data of eigenvalue problem for homogeneous reactor solved with the Krylov-Schur
method.

Type of Its. Mean its. cond(B°’) &1/62 res, CPU
Modes Krylov GMRES Time(s)
A-modes 13 6.99 2.59e+02  1.009 3.75e-07 3.1
~v-modes 23 4.00 2.13e+02  1.005 4.17e-06 12.8
a-modes 3 30.48 5.71le+05 0.843 6.85e-02 15.3
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NEACRP reactor

NEACRP reactor (Appendix B.4) is a more realistic tridimensional benchmark
reactor to compare the computation of the different types of spatial modes. The
dominant modes for this reactor are displayed and represented in Section 3.4.3.

First, the Krylov-Schur method is applied to solve the ordinary eigenvalue
problems associated with the spatial modes (Equations (4.2) for the v and
a-modes and (4.4) for the A-modes). The Krylov subspace dimension is set to
21. The stopping criterion is res, = 10~® for the A and the y-modes problems,
and res, = 107!2 for the a-modes. This distinction is done to obtain good
approximations (with residual errors less than res, = 107°) in the generalized
eigenvalue problem (see more details in the previous Section 4.1.8). The number
of eigenvalues computed has been 4.

Table 4.2 displays the data obtained with the Krylov-Schur method for the
computation of the dominant modes in three configurations of reactor: a critical
state and two subcritical states (Perturbation I and Perturbation II). The
computational times show that the computation of the A-modes is much quicker
than the one for the other modes for similar residual errors. One reason is that
the ordinary A-modes problem has half-size (see Equation (4.4)). The other
reasons are due to the characteristics of the rest of the spatial modes. High times
for the computation of y-modes are due to the high number of iterations needed
to converge the Krylov method since the spectrum of eigenvalues is clustered,
as it has been already discussed for the homogeneous reactor. In the case of
a-modes, different reasons justify this behaviour depending on the configuration
of the reactor. For the critical configuration, the mean number of iterations of
GMRES method is very high since the matrix B is ill-conditioned, but the
number of iterations of the Krylov method is low since the eigenvalues are
relatively spaced. When the reactor is more subcritical the matrix B* becomes
better conditioned (since the eigenvalues are away from 0) and this is reflected
in the number of iterations needed by the GMRES method. Nevertheless, the
number of iterations of Krylov method is also increased because the eigenvalues
are more clustered. Consequently, the computational times needed to compute
the a-modes are reduced as the reactor becomes more subcritical, but in any
case, the times remain larger than the times needed to compute the A-modes.
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Table 4.2: Eigenvalues in initial state of NEACRP reactor computed with Krylov-Schur
method.

Type of its. mean its. res, CPU Time
modes Krylov GMRES

Critical State

A-modes 13 14.9 1.5e-7 105 s
~y-modes 22 10.6 6.le-7 661 s
a-modes 3 109.7 2.2e-6 735 s
Perturbation I

A-modes 13 14.9 1.5e-7 106 s
~v-modes 23 10.6 5.0e-7 669 s
a-modes 4 31.9 3.7e-5 438 s
Perturbation II

A-modes 13 14.9 1.5e-7 106 s
~y-modes 23 10.6 5.0e-7 679 s
a-modes 6 24.6 3.6e-5 471 s

As the computational time necessary to obtain the different modes with the
Krylov-Schur method is very different (for o and 7-modes is much larger than
for A-modes) and near of criticality the eigenfunctions are similar, it is proposed
computing a-modes and y-modes by using an alternative methodology that uses
the A-eigenvectors as an initial approximation. The proposition is initializing,
with the solution of the A-modes problem, a block generalized method that avoids
to solve many linear systems. To use the A-modes eigenvectors as initial guess,
a Gram-Schmidt orthogonalization and the generalized Rayleigh-Ritz process
(Algorithm 2) is applied. As block method, we have used the two versions of the
modified generalized block Newton method: MBNM-GRR and MBNM-GBO.
The solution of the linear systems that are needed to be solved with the Newton’s
method are computed with the GMRES method preconditioned with ILU(0).

This strategy is compared with the application of the Krylov-Schur method.
Many settings have been taken by using the Krylov-Schur method modifying the
required tolerance in the ordinary eigenvalue problem (res,), computing the resid-
ual errors for the generalized eigenvalue problem (res,;) and the computational
time necessary to converge the problem. For the block Newton methods, we
obtain, in each iteration, the computational time needed for the convergence and
their residual error, res,. The time needed to compute the A-modes to initiate
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the block methods has been added in CPU time. Converged A-modes have been
used to initialize the MBNM-GRR with a residual error res, = 1074

Figure 4.2 shows the convergence histories. For y-modes, in critical configuration,
the block Newton methods are faster than the Krylov-Schur method. In the
perturbed configurations, the initial errors obtained with the approximations of
A-modes are larger, but the block-Newton methods are more efficient than the
Krylov-Schur method to obtain error lower than res, = 1073. Concerning to the
block Newton methods, the convergence of MBNM-GRR is slightly faster than
the one of MBNM-GBO method. For the a-modes there are more differences. The
results for MBNM-GBO are not included since this method does not converge
for these modes. For the critical configuration, the MBNM-GRR is more efficient
than the Krylov-Schur method. There is a difference of 200 seconds between both
methods to obtain a residual error of res, = 107, In Perturbation I, the speed
of the method is similar. However, for residual errors lower than res, = 107! the
MBNM-GRR computes the solution in less time than Krylov-Schur method. In
Perturbation II, the shape of a-modes is more different from the shape of the
A-modes and this makes that the MBNM-GRR is not as fast as Krylov-Schur
method.
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Figure 4.2: Residual error against CPU time for the NEACRP reactor with Krylov-Schur,
MBNM-GRR and MBNM-GBO methods.
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4.2 Initialization techniques

Iterative methods improve their convergence if a suitable initial guess is given.
For this purpose, this Section studies several initialization techniques to initialize
the block methods with a set of approximate eigenvalues. In particular, it is
proposed the A-modes initialization, several multilevel initializations and a Krylov
initialization.

Let us consider the eigenvalue problem (4.1)
AX = BXA.

By using an iterative method, one typically calculates the successive approxima-
tions to the exact solution, X, of the form

xnew _ G(A,B,X()ld),

where G is some expression involving the old assignment of X. One natural way
to accelerate this process is to get better initial guesses (closer to the solution)
at a computational cost as low as possible.

Before the description of initialization strategies, we must remark that only the
block methods can be initialized with a set of eigenvectors. In the methods that
are presented in the numerical results section, only the Krylov-Schur method is
not a solver of this type and consequently, only the first eigenvector is initialized
with an all-ones vector.

A-modes initialization. This initialization can be used to solve the v and the
a-modes problem as we have shown in Section 4.1.8. Numerical results show
that the computation of A-modes is faster than for the rest of modes. This
property can be used to obtain an initial approximation for the eigenvalue solver.
Moreover, the adjoint A-modes problem can be computed by using this type
of initialization. Usually, the adjoint modes are used together with the direct
modes as we show in Chapter 5 for the modal methods. Thus, one can use the
direct modes as initial guesses for the adjoint modes.

Even though, the solution of the A-modes can be used directly as initial guess, it
is recommended to project these vectors over the generalized eigenvalue problem
with a Rayleigh-Ritz procedure (Algorithm 2) and then, apply the Gram-Schmidt
orthogonalization.

Multilevel initialization. Several block multilevel techniques are proposed to
obtain good initial approximations of several eigenvectors: multilevel-mesh,
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multilevel-fem, multilevel-spn. All strategies follow the same scheme that is
represented in Figure 4.3. First, a small problem, related with the original prob-
lem in some way, is defined. Then, this small problem is solved for the largest ¢
eigenvalues with an eigenvalue solver that is not too dependent on the initial
guess. In the next step, the obtained solution is projected (or prolonged) onto
the original problem. Finally, these vectors are used to initialize some block
method.

. . Original
Original g
Problem
Problem .
Solution
Block
Eigenvalue
Solver
Restriction
of the
problem
Prolongation
of the
solution
A

( Simplified
Problem
L Solution

Simplified )
Problem J Eigenvalue
solver

Figure 4.3: Scheme for the multilevel initialization.

A complete description of the multilevel concepts can be found, for instance, in
(McCormick, 1987; Sampath and Biros, 2010; Hackbusch, 2013). However, some
basic concepts on multilevel techniques are reviewed.

The first technique is based on two meshes (multilevel-mesh). The fine mesh,
which is the final mesh considered to solve the problem. It comes from the spatial
discretization of the problem. And then, a coarse mesh, with less number of
cells, constructed by coarsening the fine mesh. This is used to obtain an initial
approximation for the problem. This multilevel method will strongly depend on
the geometry of the underlying meshes. The application of this strategy for the
neutron diffusion equation was published in (Carreno et al., 2017a).
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Let us consider the original algebraic partial eigenvalue problem
ATXT = BIXTA, (4.34)

where Af and Bf are the matrices that arise from the discretization of a given
domain V by using the fine mesh V/. From this mesh a coarser mesh, V¢, is
constructed and a new eigenvalue problem

A°X® = BeX°AC, (4.35)

is considered, where A and B¢ are the matrices associated with the spatial
discretization using the mesh V¢. This algebraic problem has a smaller dimension
than the initial one. To assembly matrices A¢ and B¢, besides the coarsening of
the initial spatial discretization, the cross sections must be homogenized. In each
coarse cell the value of each cross section ¥4 is computed as a volume average,

1 Qe
Ya=—) Vil 4.36
=3 ; i s s (4.36)
where the coarse cell d is equal to the union of fine cells dy, ..., N, i.e. d = Uf\;cldi.

34, is the value of the cross section in cell d;. Vj is the volume of the coarse cell
d and Vy, the volume of the cell d;. Figure 4.4 displays an example of fine mesh
and coarse mesh for a two-dimensional benchmark. Each colour represents one
different homogenized material.

(a) Fine mesh (b) Coarse mesh

Figure 4.4: Example of meshes for the multilevel-mesh initialization.
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To use the eigenvectors X¢ as an initial guess for the problem associated with
the finer grid V7, we need to define a prolongation operator, P, that interpolates
vectors defined on the coarse mesh onto the fine mesh. For that, the solution
at the nodes of the coarse problem is interpolated in the nodes of the FEM
associated with the original problem. It is performed by setting the same values
when both nodes are in the same position, and considering an interpolation for
the nodes that appear in the fine mesh but not in the coarse mesh. In the other
way, one can define the restriction operator, R.

The second initialization has a similar performance. For structured meshes, given
an initial mesh, it is not really difficult to define a coarse mesh from it. However,
there are some cases where the problem implies to use other type of meshes and
this task can become complicated. As solution, the simplified problem can be
defined by considering a lower degree of the polynomial in the finite element
method than the original degree of polynomial (multilevel-fem). The same mesh
is considered, but the simplified problem associated has smaller number of nodes.
Note that this initialization only makes sense when the problem is solved with a
degree of polynomials higher than 1 in the finite element method. The definition
of this simplified problem avoids redefining the cross-sections in each cell.

As the previous case, a prolongation operator must be defined to use the so-
lution of the simplified problem as initial guess for the original problem. This
interpolation is the same as the presented for two meshes, where the nodes of
the finite element method with a low polynomial degree are interpolated over
the nodes in the original problem.

Finally, a multilevel initialization is proposed based on the different approxima-
tions of the neutron transport equation (multilevel-spn). This type is used to
obtain the solution of the SPy equations where N > 1. The idea behind of this

process is using the solutions U, ..., UMHD/2 of the SPy approximation to
initialize the vectors U',...,UN+1/2 of the SPy approximation where N > M
as

U1=U1, ifqg<(M+1)/2

Ur=0, ifg>(M+1)/2.
Krylov subspace initialization. That estimates the ¢ initial vectors using the
Krylov subspace generated by the matrix B~! A acting on an initial vector (we use
an all-ones vector). The Arnoldi method has been used to obtain this subspace.
The dimension of the subspace depends on the number of required vectors q.
Before using that initialization, the resulting system of vectors is orthonormalized
by using the modified Gram-Schmidt process. Then, the Rayleigh-Ritz algorithm
for the generalized eigenvalue problem is applied.
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4.2.1 Numerical results for the initialization techniques

The initialization strategies are studied for several block methods in the com-
putation of 4 A-modes associated with the neutron diffusion equation for the
NEACRP reactor. In particular, the multilevel-mesh, the Krylov and a Random
initialization are compared.

In the multilevel initialization, the Krylov-Schur method with the GMRES
method and the ILU(0) preconditioner has been used to compute the solution in
the simplified problems, since this solver without initialization converges faster
than the rest, for this type of problems. The tolerance for the simplified problem
has been res, < 1073. Figure 4.5(a) shows the fine mesh used for the spatial
discretization to solve the problem and Figure 4.5(a) represents the coarse mesh
used to apply the multilevel-mesh initialization. In Krylov initialization, the
dimension of Krylov subspace has been dp = 10. The Random initialization
generates the ¢ vectors using random numbers on the interval [—1, 1] and then,
the Gram-Schmidt orthogonalization and the generalized Rayleigh-Ritz process
are applied.
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(a) Fine mesh (n. cells = 3978) (b) Coarse mesh (n. cells =1308)

Figure 4.5: Meshes for NEACRP reactor.
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Figure 4.6 shows the convergence histories for the BIFPAM and the MBGNM
with the different initializations. In the multilevel-mesh times, the CPU time
to assemble and solve the eigenvalue problem in the coarse mesh, that is 21s,
has been included. In the CPU times obtained with the Krylov initialization,
the time to compute the subspace (18s) has been added. Both graphics reflect
that the multilevel-mesh initialization, although it takes more time to obtain
the initial guess than the other initializations, is a better strategy to initialize
the block methods. Moreover, for the Newton’s method, it is difficult to obtain
a convergent performance without a ‘good’ initialization.
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Figure 4.6: Convergence histories for the BIFPAM and the MGBNM using different initial-
izations for the computation of the A-modes of the NEACRP problem.

4.3 Preconditioned strategies for linear systems

In general terms, preconditioning is simply transforming the original problem
into one which has the same solution, but which is easier to be solved with an
iterative solver (Saad, 2003).

The application of one of the eigenvalue solvers proposed in this thesis requires
either solving linear systems, in the case of Krylov-Schur method (KSM) and
the modified generalized block Newton method (MGBNM); or to use directly
a preconditioner, in the generalized Davidson method (GDM) and the block
inverse-free preconditioned Arnoldi method (BIFPAM). Usually, the solutions of
the linear systems are obtained with the GMRES method (Saad and Schultz,
1986), but the application of a preconditioner is mandatory to improve the
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condition number of the matrices, and then, the convergence rate of the GMRES
method.

In the BIFPAM, preconditioners for linear systems are applied as one strategy
to improve the spectral distribution of matrices. In the GDM, the preconditioner
to solve the linear systems is used as an approximation of the matrix because
the preconditioners have smaller bandwidth than the original matrices.

The classical preconditioning of matrices derived from FEM discretization are
based on an incomplete matrix factorization, such as the ILU decomposition
or the ICC decomposition (Saad, 2003). Nevertheless, the computation of such
factorizations demands to store the sparse matrices in memory, in addition
to the computed preconditioners, which results in large requirements of mem-
ory resources. These memory requirements can be lowered by different fill-ins
or threshold criteria for the preconditioner, although the minimum memory
requirement remains large if a good preconditioner wants to be used.

On the other hand, one can use the Jacobi, the Gauss-Seidel or the SOR method
as preconditioners. Although they are efficient, its implementation implies to
access to matrix elements and it can be computationally very expensive. However,
in this thesis, a block version of the Gauss-Seidel (Saad, 2003), used mainly in
parallel computations, has been implemented to develop a block preconditioner
for the matrices related to the neutron transport approximations.

Another technique, to precondition the solution of linear systems, is the polyno-
mial preconditioning. This preconditioner, for a linear system with the matrix
A, is any polynomial P = P,(A) normalized to P(0) = 1 such that minimizes
|I — P~tA|. For instance, Chebyshev polynomials minimizes this problem when
the infinity norm is chosen (Saad, 2003). They are very common because they
present better performance in parallel computations than, for example, the block
Gauss-Seidel (Adams et al., 2003).

Recently, the multilevel methods are becoming increasingly popular. Different
coarse levels are obtained either from a linear finite element discretization on
the original grid (Kronbichler and Wall, 2018) or as the multigrid methods by
combining simple iterative schemes on a hierarchy of coarser meshes (Bastian
et al., 2019) or with several levels of energy groups (Cornejo et al., 2019). The
smoother proposed in (Kronbichler and Wall, 2018) has been the Chebyshev
smoother and in the work (Bastian et al., 2019), the authors used block smoothers
such as the block Jacobi, the block Gauss-Seidel and the block SOR.
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In this Section, classical block preconditioners for linear systems are briefly
reviewed and more sophisticated strategies to reduce the computational memory
resources based on multilevel preconditioners are proposed.

4.3.1 Block preconditioners

These preconditioners are very common in parallel computation, but they also
are a part of multilevel methods such as the one described in (Bastian et al.,
2012). They are designed for preconditioning block systems of the form

By - Blnb Y1 X1

Bnbl e Bnbnb ynb :cnb

where ny is the number of blocks. In our case, they are interesting due to the
block structure of the matrices that are obtained from the discretization of the
multigroup neutron diffusion equation and SPy equations. Two classical block
methods are:

Block Jacobi (BJACOBI). This is applied with one iteration of the traditional
Jacobi method for solving linear systems where the elements are substituted
by the blocks of the matrix. Algorithm 7 exposes an outline of a possible
implementation. Note that, the division of the diagonal elements in traditional
method is substituted by the multiplication of the inverse of the diagonal block
matrix. This inverse, in some cases, will be substituted directly by a preconditioner
of the block matrix and, in other cases, a linear system is solved.

Algorithm 7 Block Jacobi preconditioner

Input: Matrix B and vector = = [x1;...; Tpp)-
Output: Vector y = [y1;...; Ynb)-
1: Make y°9 =z

2: for i =1 to nb do

3: Compute
np
yi = B! (IL’z -3 Bijy;Id)
i=1
4: end for 7

Block Gauss-Seidel (BGS). Following a similar strategy as the previous case
leads to the block Gauss-Seidel preconditioner. This method typically converges
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faster than the Block Jacobi method, so the preconditioner is better. From
the storage point of view, Gauss-Seidel is more economical because the new
approximation can be overwritten over the same vector. The implementation
can be observed in Algorithm 8

Algorithm 8 Block Gauss-Seidel preconditioner

Input: Matrix B and vector & = [x1;...;Zpp).
Output: Vector y = [y1;...; Ynb)-
1: Make y°d =z

2: for i =1 to nb do

3: Compute
i—1 nb
yi = By ' (zi =Y Biyy; — Y Byy)?)
4: end for 7=t g

4.3.2 Multilevel preconditioners

The multilevel preconditioners are based on the classical V-cycle multigrid method
with two meshes (the original mesh and a coarser mesh) known in many works
as geometric multigrid preconditioner (GMG). This strategy is characterized by
the method used to smoother the solution and by the definition of simplified
problem. The smoothing is done with a Gauss-Seidel iterative method, similar
to the strategy developed in (Knyazev and Neymeyr, 2003) when we have access
to the matrix elements. In other cases, such as in parallel computations or in
matrix-free implementations, Chebyshev polynomial smoothers are used. Now,
depending on the definition of the simplified problem, we will distinguish several
preconditioners.

Geometric Multigrid Preconditioner (GMG). In this case, as the original multi-
grid method, the simplified problem is obtained from the discretization of the
problem but with a coarser mesh. If the multilevel-mesh initialization is used
to estimate an initial guess for the method, this preconditioner can be imple-
mented without extra cost by using the matrices and operators that have already
been defined previously. By using the notation introduced in Section 4.2 in
the multilevel-mesh initialization, the application of this preconditioner can be
summarized in the Algorithm 9. In our implementation, the number of iterations
for the smoother, its;, is set to its; = 3. The application of this preconditioner
for the neutron diffusion equation was published in (Carrefio et al., 2018a).
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Algorithm 9 Geometric multigrid preconditioner (GMG)

Input: Vector z, matrix B and matrix in the coarse mesh B..
Output: Vector y = P~'x con P preconditioner of B.

1: Pre-smooth with its, iterations of Gauss-Seidel on By = x
(Initialize the iterative method with y = 0)

2: Restrict the residual r = By — = to the coarse mesh by r. = R(r)

3: Solve B.e, =7,

4: Prolongate e, by e = P(e.)

5: Correct y=y +e

6: Post-smooth with its, iterations of Gauss-Seidel on By = x

(Initialize the iterative method with y)

Muiltilevel preconditioner from FEM and SPN (MLFE or MLSPN). In a sim-
ilar way as it is done for the multilevel initialization technique, one can use
the algorithm of the geometric multigrid preconditioner, but in this case the
simplified problem is not related to the original problem by coarsening the
original mesh. In this way, one can define a multilevel preconditioner with several
degrees in the polynomial of the FEM (MLFE), with several SPN approxima-
tions (MLSPN) or with a combination of both (MLFE-SPN). The matrices, the
restriction and prolongation operators are the same that are ones defined for
multilevel-fem and multilevel-spn (Section 4.2).

4.3.3 Block preconditioner for the MGBNM

Alternative to the preconditioners defined previously, a special preconditioner is
studied for the modified generalized block Newton method to solve the linear
systems. The matrix that appears in the linear systems arising in this method
has a special block structure, with one diagonal block equal to zero, which
makes it unfeasible to apply the above preconditioning methods. Thus, several
different strategies for preconditioning this type of matrices are proposed. This
methodology was published in (Carrefio et al., 2019b).

The first choice for a preconditioner is assembling the matrix involved in the

system
A—-6.,B BZ
S = )
zZT 0
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and then, constructing the full preconditioner associated with the matrix. The
ILU(0) preconditioner is used since S is a non-symmetric matrix. Nevertheless,
there are no significant differences if the preconditioner obtained for the matrix
associated with the first eigenvalue is used for all eigenvalues in the same iteration
because in the matrix S only changes the value of 9,, and usually, the eigenvalues
in reactor problems are clustered. This preconditioner is denoted by P.

To devise an alternative preconditioner without the necessity of assembling the
matrix S, we write the explicit inverse of A, by using its block structure,

R_I(I — Cl(CQTCl)_lC;) R‘lCl(CQTCl)
5= ,
(C3C)~Cy —(C3Cy)7!

where
R=A-6,B, C,=BZ, C;=Z"R"

We desire a preconditioner for S by suitably approximating S~!. Let us call
Pg a preconditioner for R, where 6, := ;. For instance, Pr = (LU)™!, where
L, U are the incomplete L and U factors of R. Thus, we can define, after setting
CJ = ZT Pg, the preconditioner of S as

R PR(I — Cl(C’;Cl)‘lCQT) PrCy (C;CH)
Pr =
(efeiyes] —(C3C)7!

The previous preconditioner does not need to assemble the entire matrix S, but it
needs to assemble the matrix R to build its ILU(0) preconditioner. Therefore, the
next alternative that we propose is using a preconditioner of —B instead of the
R = A—§,B. This preconditioner works well because in the discretization process,
the B matrix comes from the discretization of the differential matrix that has the
gradient operators and the diffusion terms. In addition, in nuclear calculations,
01 is near 1.0. Thus, we can build a preconditioner of —B instead of the matrix
R. We denote by Py to the preconditioner Pr where the preconditioner of —B
is used to precondition the block R.
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4.3.4 Numerical results for the block methods and preconditioner strate-
gies

The NEACRP reactor (Appendix B.4) is chosen to study the performance of
the block methods and the efficiency of different preconditioners to compute the
A-modes associated with the neutron diffusion equation. First, the performance
of the BIFPAM method is studied. Then, the block preconditioners for the
MGBNM are analyzed. Finally, the hybrid method results are shown and all
eigenvalue solvers are compared.

Residual errors have been, for all methods, res, < 1075, The initial guess has
been obtained from multilevel-mesh initialization. Figure 4.5(a) shows the fine
mesh considered to solve the problem and Figure 4.5(b) shows the coarse mesh
to define the simplified problem. They have 3978 and 1308 cells, respectively.
For cubic polynomials in the FEM, the problem associated with the fine mesh
has 230120 degrees of freedom and the one associated with the coarse mesh has
78 440 degrees of freedom. The number of eigenvalues computed has been 4.

Numerical results compare the BIFPAM by using the ILU(0) and GMG precon-
ditioners and without preconditioning, for dimensions of the Krylov subspace
dr = 4 and dp = 8. The GMG preconditioner is constructed with the same
mesh as the multilevel-mesh initialization. Figure 4.7 displays the convergence
histories for the configurations considered. It is observed that the preconditioner
improves the rates of convergence and attenuates the oscillations produced in
the convergence histories. Between the different preconditioners used, the Figure
shows that the ILU preconditioner (with dj = 8) and the GMG preconditioner
(with dy = 4) reach the tolerance almost at the same time. However, note that
the GMG preconditioner works efficiently even when the dimension of the Krylov
subspace is d = 4, which implies to use less computational memory. This is
because when we apply the GMG preconditioner, there are not big differences
in the number of iterations and it is expensive to apply. Thus, better results in
terms of CPU time are obtained with a low Krylov subspace. In opposite, the
ILU preconditioner is a cheaper preconditioner, but the number of iterations
to reach the convergence differs greatly between two Krylov subspaces with
different dimensions. The use of these preconditioners with the other values
considered for the dimension (dj) is less efficient.

On the other hand, one can consider the MGBNM to solve the eigenvalue problem.
The performance of the block preconditioners for the MGBNM described in
Section 4.3.3 is tested. First, we show the convergence history of the MGBNM
to obtain the solution of the eigenvalue problem. Figure 4.8 shows the number of
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Figure 4.7: Residual errors against CPU time (s) of the BIFPAM with different configurations
for the NEACRP problem.

iterations against the residual error for the NEACRP reactor. It is observed that
the MGBNM only needs 4 iterations to reach a minor residual error than 1076.

The most relevant data to compare the preconditioners considered in this work are
exposed in Table 4.3. This includes the average number of iterations that GMRES
method needs to reach the residual error, the time for assembling the matrices
and building the preconditioners (Setup time (s)) and the computational memory.
The first row shows the data of applying directly the ILU(0) preconditioner of
S. Even though the number of iterations is not very high, the time spent to
assemble the matrix and to construct the preconditioner increases the total CPU
time considerably. It is necessary to build in each iteration a new preconditioner
for S because of the columns related to the block Z change considerably in each
updating. The second row displays these data related to Pg that uses the ILU
preconditioner for approximating the inverse of R = A — A\ B. In this case, only
it is necessary to assemble once the matrix R = A — A\ B in the first iteration.
The number of iterations of the GMRES preconditioned with P is larger than
in the previous case, but the total CPU time of using this block preconditioner
has been reduced in 26s in comparison with the full preconditioner P. The
third row represents the data related to PR, but in this case, we have used the
geometric multigrid (GMG) preconditioner to approximate the inverse of R. The
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Figure 4.8: Convergence history of the MGBNM for the NEACRP reactor.

results show that in spite of the total number of iterations and the setup time
are much lower for the GMG, the total computational time is much higher. This
is due to the application of the GMG preconditioner is more expensive than the
application of the ILU preconditioner. The next results are obtained by using the
block preconditioner, but approximating the R~! by the ILU(0) preconditioner
of —B (Pg).

If all preconditioners for the MGBNM are compared between them, the number of
iterations increases when worse approximations of the inverse of R are considered,
but the setup time that needs each preconditioner becomes smaller. Moreover, the
maximum CPU memory is also reduced significantly. The total CPU times show
that the block preconditioner (P), in all its versions, improves the times obtained
of applying directly the ILU preconditioner of S. Between the possibilities for
obtaining a preconditioner of R, there are no big differences in the computational
times but there is an important saving up in the computational memory. The
best results are obtained by the Pg if the computational memory consumption

is taken into account.

Figure 4.9 compares the convergence histories of the MGBNM with the ILU
preconditioner for .S and the BIFPAM with the ILU and GMG preconditioner.
It is deduced that the desired tolerance is reached quicker with the MGBNM.
However, we would like to highlight that the convergence behaviour of BIFPAM-
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Table 4.3: Data obtained of using different preconditioners for the MGBNM in the NEACRP
reactor.

Precond. Mean Its. Setup Total CPU Max. CPU

GMRES Time time memory
pILu 18.1 48.0 s 96.8 s 2062 Mb
Ppitv 21.5 6.6 s 70.0 s 1418 Mb
PrCGMG 12.2 258 151.3 s 1118 Mb
Ppltu 24.5 4.4s 732 s 787 Mb

ILU is very similar to the one of BIFPAM-GMG and when the residual becomes
smaller the convergence of the Newton method becomes faster.

10 2 T T
—O— BIFPAM-ILU (d,=8)
—O— BIFPAM-GMG (d,=8)
MGBNM
1]
o N
o
107 \ 1
10 -8 1 1 1 1 1
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CPU time (s)

Figure 4.9: Convergence history for the fourth dominant eigenvalues of the NEACRP
problem using the MGBNM and the BIFPAM.

Thus, it is proposed to initialize the algorithm with the BIFPAM method until
res, = 1072 and then, the MGBNM is applied. The BIFPAM has been set with
the ILU preconditioner and dimension of the Krylov subspace m = 8. Figure
4.10 compares the hybrid scheme with the MGBNM and the BIFPAM with ILU
preconditioner. It is showed that the hybrid algorithm is an efficient scheme to
compute several eigenvalues of the NEACRP problem.
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Figure 4.10: Convergence history of the BIFPAM with ILU preconditioner, the MGBNM
and the hybrid method.

4.4 Matrix-free implementation

The computation of eigenvalues by using the previous algorithms evaluate
the discrete operators through matrix-vector products. This makes that these
operations take up the most time-consuming component in the code. On the
other hand, one of the main inconvenient in the finite element method is the
quantity of memory used to store the matrix elements, in spite of they are saved in
a sparse way. This waste increases considerably as more accurate approximations
of the neutron transport equations are used.

As alternative to assemble and save the matrices, matrix-free techniques are
developed where the matrix-vector multiplications are computed on the fly in
a cell-based interface. Instead of assembling a global sparse matrix, matrix-
free strategy stores the unit cell shape function, the enumeration of degrees of
freedom, and the map that transforms the unit cell to the real cell. Recently,
cell-based strategies without explicit matrix storage have been considered for
GPU programming (Komatitsch et al., 2010).

For instance, we can consider that a finite element Galerkin approximation that
leads to the block matrix A takes a vector u as input and computes the integrals
of the operator multiplied by trial functions, and the output vector is v. The
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operation can be expressed as a sum of N, cell-based operations,

Nc
v=Au=>» M!AYMu, (4.37)

c=1

where M, denotes the matrix that defines the location of cell-related degrees of
freedom in the global vector and A¢ denotes the submatrix of A on cell N.. This
sum is optimized through sum-factorization. Details about the implementation
are explained in (Kronbichler and Kormann, 2012). This strategy does not only
minimizes the memory used by the matrix elements, but it also can improve
matrix-vector multiplication runtimes for higher orders of FEM, as we show in
the numerical results.

The main difficulty of the matrix-free implementation is to obtain efficient
algebraic solvers that only use matrix-vector multiplications. The eigenvalue
solvers are based on matrix-vector multiplications, but classical preconditioners
need to access to the matrix elements. Different strategies of preconditioning are
used according to the implementation of the matrices involved in the problem.

In this thesis, three matrix storage schemes are used. The first one, allocated
all the block matrices in CRS format (Saad, 2003). For this implementation,
one can use any type of preconditioner. The second one stores only the diagonal
block matrices of B in a sparse way to permit the computation of an incomplete
LU factorization of these blocks. The rest of the blocks are implemented with
the matrix-free operator (non-diagonal). This type of implementation is justified
because the block preconditioners only need to apply a preconditioner or to
solve a system related to the diagonal block matrices. For this case, a block
preconditioner is used such as the block Gauss-Seidel where each inverse of the
diagonal block is substituted either by the ILU(0) preconditioner (BGS-ILU) or
by solving linear systems with the conjugate gradient and the ILU preconditioner
(BGS-CG-ILU). Finally, all block matrices can be implemented with the matrix-
free technique in the full matriz-free scheme. In this last case, one can choose
a block preconditioner where their inverse diagonal blocks are solved with the
conjugate gradient method preconditioned with a multilevel preconditioner. The
multilevel-fem preconditioner has to be smoother with a Chebyshev polynomial
that it does not need to access to the matrix elements. This preconditioner is
called BGS-CG-MLFE. The matrix-free performance for the multigroup neutron
diffusion equation was published in (Carreno et al., 2019a) and for the SPy
equations in (Vidal-Ferrandiz et al., 2019).
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4.4.1 Numerical results for the matrix-free performance

In this Section, the matrix-free performance for the different block eigenvalue
solvers are tested and compared for the solution of the A-modes associated with
the neutron diffusion equation. As the problems obtained from the discretization
of the neutron diffusion approximation are not excessively large, only the CSR
and the non-diagonal allocation are compared in the NEACRP reactor and more
realistic reactor: the Ringhals reactor.

NEACRP reactor

In this part, the NEACRP reactor (Appendix B.4) is used to test the matrix-free
implementation. In particular, the non-diagonal matrix-free implementation is
compared against the CSR allocation. Note that, the algorithms of the methods
are not changed, but different preconditioners must be considered. Polynomials
of degree 3 is used in the FEM.

For the BIFPAM, alternative to use the ILU or the GMG preconditioner in
the BIFPAM of the matrix R = A — A\ B, one can consider the preconditioner
of —B. Thus, one avoids to assemble the matrix A. As it is explained for the
block preconditioner of the MGBNM, this approximation works because the B
has the discretization of the gradient operators. Thus, the block Gauss-Seidel
preconditioner (BGS) is considered to the matrix B and the diagonal blocks,
(B11)~! and (Bgz)~! are approximated by their ILU preconditioners. In this way,
one can use the non-diagonal matrix-free strategy. Table 4.4 shows the reduction
of the memory for allocating the matrices with the matrix-free implementation,
but also the reduction of the CPU times because the matrix-vector multiplications
is also accelerated.

Table 4.4: Data of the matrix-free performance for the block inverse-free preconditioned
Arnoldi method in the NEACRP reactor.

Allocation Precond. dx  N. its. Matrix CPU Time
CPU Mem.

CSR ILU 8 15 825 Mb 91 s

CSR GMG 4 11 825 Mb 108 s

Non-diagonal BGS 8 11 330 Mb 48 s

For the MGBNM, one can also use the block Gauss-Seidel to precondition the
matrix B instead of the ILU preconditioner. Table 4.5 shows the timings and
the memory spent in the matrix allocation by using the matrix-free technique or
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without using this strategy. The results show that not only the matrix memory
consumption and the time to assemble are reduced but also the time spent to
compute the matrix-vector products. That implies that the matrix-free strategy
reduces the total CPU time by about 30%.

Table 4.5: Data obtained of using different matrix implementations for the MGBNM in the
NEACRP reactor.

Allocation Precond. Matrix CPU Setup Total

Memory CPU Time CPU Time
CSR ILU 787 Mb 4s 73 s
CSR BGS 687 Mb 1s 74 s
Non-diagonal BGS 319 Mb 1s 52 s

Finally, the non-diagonal matrix-free and CSR implementation is compared for
all eigenvalue solvers described in this thesis. The preconditioner used for all
block eigenvalue solvers has been the block Gauss-Seidel with ILU preconditioner
in their diagonal blocks. In the Krylov-Schur method (KSM), the preconditioners
for the GMRES method has been simply the ILU factorization. The initialization
for the block methods has been the multilevel-mesh initialization.

Table 4.6 displays the computational times needed by the code to compute several
sets of eigenvalues. The non-diagonal implementation, in addition to reducing
the CPU memory, it also decreases the CPU times, especially for the methods
that apply more matrix-vector products. In the matrix-free implementation,
the best results are obtained for the hybrid method. Even though, for a small
number of eigenvalues, the BIFPAM is also very efficient.

Table 4.6: Computational times (s) obtained for the NEACRP reactor using the KSM
method, the GDM, the BIFPAM, the MGBNM and the Hybrid method for different set of
eigenvalues q.

Allocation q PIM KSM GDM BIFPAM MGBNM Hybrid

CSR 1 241 29 32 30 66 27
Non-diagonal 1 146 32 26 20 43 20
CSR 4 - 64 107 99 119 82
Non-diagonal 4 - 72 92 o7 80 23
CSR 6 - 93 166 245 125 118
Non-diagonal 6 - 106 135 131 82 78
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Ringhals reactor

A critical configuration of Ringhals reactor is considered for a realistic application
of the block methods and the matrix-free implementation for the A-modes problem
associated with the neutron diffusion equation. Particularly, we have chosen the
C9 point of the Ringhals I stability benchmark, which corresponds to a point
of operation that degenerated in an out-of-phase oscillation (Lefvert, 1996). Its
geometry, with 19656 cells, is represented in Figure 4.11. The finite element
degree considered have been 3 to obtain a total number of 1106 180 degrees of
freedom.

Figure 4.11: Mesh for Ringhals reactor

The BIFPAM method has been used to compute 4 eigenvalues. The tolerance in
the generalized eigenvalue problem has been res;, < 107%. The preconditioner has
been the block Gauss-Seidel where the diagonal blocks are substituted by the ILU
preconditioner. Two types of matrix implementations are compared: the CSR and
the non-diagonal strategy. Moreover, some values of the dimension of the Krylov
subspace dy, are tested. Table 4.7 shows the most relevant data. In the comparison
of the dimensions, it is observed that using a high number of vectors improves
the convergence of the BIFPAM. Between the matrix implementations, the
Table shows that the non-diagonal implementation improves the computational
efficiency of the method.

Now, the performance of the MGBNM is tested for several block preconditioners
and matrix allocations to compute 4 eigenvalues and with res, < 107%. Table
4.8 collects the average number of iterations for the GMRES method for each
iteration of MGBNM, the time to assemble the matrices and build the precondi-
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Table 4.7: Data of the matrix-free performance for the block inverse-free preconditioned
Arnoldi method in the Ringhals reactor.

Allocation dxy N. its. Matrix CPU CPU Time
Memory

CSR 4 26 4.5 Gb 1465 s

CSR 8 21 4.5 Gb 700 s

Non-diagonal 4 26 1.8 Gb 845 s

Non-diagonal 8 21 1.8 Gb 418 s

tioners, the total time of the MGBNM to reach the tolerance and the maximum
computational memory requested to assemble the matrices. This Table deduces
similar conclusions as the ones obtained for the NEACRP reactor. The number
of iterations is not reduced when block preconditioners are used, but the total
CPU time and the maximum memory decrease considerably. For the Ringhals
reactor, the most efficient option, in terms of computational memory, is also to
apply the block preconditioner PpBCSTLU with the non-diagonal matrix imple-
mentation. As the size of this reactor is much larger, the differences between the
preconditioners for computational memory are much higher.

Table 4.8: Data obtained of using different preconditioners for the Ringhals reactor.

Precond. Allocation Its. CPU Setup Total

GMRES memory Time CPU time
pILU CSR 71.5 12.5 Gb 155 s 693 s
PglLlU CSR 81.0 9.3 Gb 39 s 562 s
Pgltv CSR 85.2 6.2 Gb 36 s 591 s
PgBGSILU - OgR 88.2 5.5 Gb 26 s 625 s
pBBGS‘ILU Non-diagonal 88.2 3.7 Gb 8s 523 s

Finally, Figure 4.12 compares all eigenvalue solvers with the non-diagonal matrix
implementation to compute one eigenvalue. The BIFPAM and the generalized
Davidson method (GDM) have been implemented with the BGS-ILU precondi-
tioner and the MBGNM with the PpBGSILU preconditioner. The multilevel-mesh
initialization is set for these block methods. In the CPU time, the time to
assemble the matrices and to construct the preconditioners are included. The
results show that the hybrid and the MGBNM are the most efficient methodd
in terms of the computational time to compute one A-mode.
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Figure 4.13 shows the convergence histories for the BIFPAM, the MGBNM and
the Hybrid method. One can check, in this case, that the rate of convergence of
MGBNM is higher for low residuals in comparison with the BIFPAM. However,
the hybridization of BIFPAM-MGBNM (hybrid method) gives a more efficient
solver than applying each one separately. The Krylov-Schur method and the
Generalized Davidson method are not included because they use a deflation
technique and the global residual error is not computed by SLEPc in each
iteration. However, using both methods with a tolerance of res;, < 107¢ leads
to computational times of 575 s for the Krylov-Schur method and 866 s for
the Generalized-Davidson method. Both values are higher than the CPU time
obtained with the hybrid method.

10°
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Figure 4.12: Convergence histories for the block eigenvalue solvers in the computation of 1
eigenvalue for the Ringhals reactor.
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Figure 4.13: Convergence histories for the block eigenvalue solvers in the computation of 4
eigenvalue for the Ringhals reactor.

4.5 Numerical results to compute the \-modes associated
with the SPy equations

This Section analyzes the methodology proposed to compute the A-modes as-
sociated with the SPy equations in the C5G7 benchmark (Appendix B.5). In
particular, it is considered two versions of the two-dimensional case and the
three-dimensional case. The finite element discretization is studied in Chapter 3
(Section 3.4.4) for several values of finite element degrees and meshes. In the
two-dimensional and three-dimensional case, one obtains an eigenvalue problem
with the block structure

AH A17 1 BH 0 0 0 0 0 0 T
A21 A27 i) B21 BQQ 0 0 0 0 0 i)
Az A7 | | 23 B3y Bz, Bsz 0 0 0 0 x3
An Az | |2a| =A| B Bao Bas By Bsys 0 0 T4
0 0 Ts 0 0 0 B54 B55 B56 0 Ty
0 0 T 0 0 0 0 BG5 Bﬁ(j BG7 Te
0 0 T 0 0 0 0 0 B76 B77 T
(4.38)

The calculations compare the different eigenvalue solvers described in this thesis:
the power iteration (PIM), the Krylov-Schur (KSM), the Generalized Davidson
(GDM), the block inverse-free preconditioned Arnoldi method (BIFPAM), the
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modified generalized block Newton method (MGBNM) and the Hybrid method.
The problems are solved with a tolerance of res, < 10~7. Note that, the size of the
problem increases considerably with respect to the two energy groups diffusion
approximation. For that reason, the matrices are not full allocated explicitly and
non-diagonal matrix implementation is used. Thus, the preconditioner for the
eigenvalue solvers has been the block Gauss-Seidel preconditioner (BGS) where
the inverse of each diagonal block is approximated by solving linear systems with
the conjugate gradient method preconditioned with the ILU(0) factorization and
residual tolerance of 1075, It is denoted as BGS-CG-ILU preconditioner.

4.5.1 2D-CbhG7 reactor

In the following computations, r, = 1 (Figure 4.14) and p = 2 has chosen to
obtain an eigenvalue problem of the form (4.38) where each block has a size
of 116 009 degrees of freedom for the SP; approximation and 232018 degrees
of freedom for the SP3 approximations. The type of discretization in the pin
structure and the degree of the polynomial in the FEM has been discussed in
Section 3.4.4.

Figure 4.14: Mesh r, = 1 considered for the pin structure.

To check the efficiency of the multilevel initialization the BIFPAM method is
used. Table 4.9 displays the residual error and the performance of the BIFPAM
solver for different initialization strategies: Random, that generates the initial
vectors by using random numbers on the interval [—1, 1], the Krylov subspace, the
multilevel-fem and the multilevel-spn initialization . The multilevel-mesh has not
been considered in this case due to type of mesh used in the spatial discretization.
Note that for SP; and SP3, the multilevel-fem with p = 1 is considered, but the
multilevel-spn initialization only has sense for the computation of SP3 equations.
The simplified initialization problems are solved with the Generalized Davidson
method until a tolerance of 1074
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The results conclude that the proposed multilevel-fem-spn initialization (SPq,
p = 1) minimizes the initialization error taking only 6 seconds. It must be
noted that the multilevel SPj3 initialization does not improve the initialization
error of the multilevel SP; initialization to solve the SP3 problem. Then, it
does not worth the computational overhead. Furthermore, the Krylov Subspace
initialization takes more CPU time than the SP;, p = 1 initialization and it gets
one order of magnitude less accuracy. Random initialization does not spend any
CPU time to obtain the initial guess but this initialization has a large error.

Table 4.9: Performance results of different initialization procedures to compute 1 eigenvalue
with BIFPAM solver by using 7 = 1 and p = 2.

Eq. Init. Init. Error Init. Time CPU Time
Sp Random 5.04 0s 596 s
U Krylov Subspace 2.0e-2 7s ols
Multilevel (SP1, p=1) 2.1e-3 6s 25s
Random 5.06 0s 104 s

SP3  Krylov Subspace 2.3e-2 24 s 102 s
Multilevel (SP1, p = 1) 2.5e-3 6 s 65 s
Multilevel (SP3, p =1) 2.6e-3 11s 71s

Tables 4.10 and 4.11 show the performance of the different eigenvalue solvers
for SP; and SP3 problems to obtain a res; < 1077. The initial guess is obtained
from the multilevel-fem-spn initialization with SP; and p = 1. Note that the SP;
problem uses about 1200 Mb of RAM and the SP3 case uses about 2500 Mb.
The 6 seconds of initialization are included in the CPU times in Tables. The
numerical results show that the proposed BIFPAM method with the multilevel-
fem-spn initialization is more efficient than the other methods studied for one
eigenvalue calculations, even though this problem is advantageous to the power
iteration method as § = 0.763. These Tables also show that the proposed
multilevel initialization is also convenient for the rest of methods. Note that for
the computation of the A-modes associated with the SPx equations the hybrid
method does not improve the results of BIFPAM. This is because the rate of
convergence for the MGBNM (for low residuals) is not higher that this value for
the BIFPAM, contrary to the two energy group diffusion case. Even though, the
hybrid method with initialization does improve the results of the Krylov-Schur
method, the Generalized Davidson and the power iteration method.

Figure 4.15 shows the residual norm, resy(k), at the k-th iteration for the first
eigenvalue. Figure 4.16 also shows the convergence history of res, (k) for the SP3
problem. In these Figures it can be noted that the proposed initialization reduces
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Table 4.10: Performance results for different eigenvalue solvers for SP; problem with r, =1
and p = 2.

Solver Method Init n eigs. CPU Time its
Power Iteration No 1 163s 44
Power Iteration Yes 1 8 s 20
Krylov-Schur No 1 1646 s 16
Generalized Davidson  No 1 70s 14
Generalized Davidson  Yes 1 46 s 8
BIFPAM No 1 56 s 5
BIFPAM Yes 1 25 s 3
MGBNM Yes 1 40 s 4
Hybrid No 1 123 s 4
Hybrid Yes 1 39 s 2
Krylov-Schur No 4 1955 s 19
BIFPAM Yes 4 179 s 4
Generalized Davidson  Yes 4 220s 42
MGBNM Yes 4 210 s 3
Hybrid Yes 4 185 s 2

the starting residual norm, and for some cases, it changes the convergence ratio
of the methods.

As alternative, one can implement the matrices with a full matriz-free implemen-
tation where any matrix is allocated in memory. The BIFPAM method is used
to make this comparison. However, different preconditioners must be considered
instead of the ILU preconditioner for preconditioning the conjugate gradient in
the diagonal blocks of the BGS preconditioner (BGS-CG-ILU). In this thesis,
a multilevel with the finite element method preconditioner is proposed where
the smoother is a Chebyshev polynomial. This is known as BGS-CG-MLFE
preconditioner. The performance for the SP; equations is analyzed. Similar
conclusions are obtained with the SP3 equations. The simplified problem for the
multilevel-fem initialization and preconditioner is obtained considering p = 1.
The number of eigenvalues computed has been 4 with a residual error in the
generalized eigenvalue problem less than 10~7. The degree in the FEM has been
set equal to p = 2 and p = 3 to compare the conclusions.

Table 4.12 shows that the CSR strategy is outperformed by the rest of the
methodologies in terms of memory consumption. We can observe that the BGS-
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Table 4.11: Performance results for different eigenvalue solvers for SP3 problem with r, =1
and p = 2.

Solver Method Init n eigs. CPU Time its
Power Iteration No 1 286 s 52
Power Iteration Yes 1 166 s 26
Krylov-Schur No 1 2729 s 16
Generalized Davidson  No 1 155s 17
Generalized Davidson  Yes 1 105s 12
BIFPAM No 1 104 s 5
BIFPAM Yes 1 65 s 3
MGBNM Yes 1 109 s 3
Hybrid No 1 243 s 4
Hybrid Yes 1 86 s 2
Krylov-Schur No 4 4749 s 28
BIFPAM Yes 4 330 s 4
Generalized Davidson  Yes 4 408 s 49
MGBNM Yes 4 502 s 3
Hybrid Yes 4 393 s 2

CG-ILU preconditioner solves the SP; problem in the fastest way but this
implementation does not allow to reduce the computational memory. If the full
matriz-free type is considered the computational memory is greatly reduced,
but the computational time is increased, for instance with p = 2, by a factor
of 4 respect to BGS-CG-ILU. However, when the degree of the polynomial is
higher, the differences between the Setup times increase and the matrix-vector
multiplication performance improves. Consequently, the differences are not as
higher.
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Figure 4.15: Convergence histories for the first eigenvalue for SP; problem with r, =1 and

p=2

Table 4.12: Computational results for the 2D-C5G7 reactor with r = 1, p = 2 to solve the

SP;.

Precond. Allocation Matrix Setup Total
Memory CPU time CPU time

p=2

BGS-CG-ILU Non-Diagonal 206 Mb 2s 184 s

BGS-CG-MLFE  Non-Diagonal 206 Mb 1.5s 544 s

BGS-CG-MLFE  Full Matriz-Free 37 Mb 1s 664 s

BGS-CG-MLFE CSR 2557 Mb 8s 573 s

p=3

BGS-CG-ILU Non-Diagonal 660 Mb 7s 696 s

BGS-CG-MLFE  Non-Diagonal 660 Mb 5s 1971 s

BGS-CG-MLFE  Full Matriz-Free 55 Mb 2s 1696 s

BGS-CG-MLFE CSR 8522 Mb 23 s 2451 s
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Figure 4.16: Convergence histories for the first eigenvalue for SP3 problem with r, = 1 and
p=2.
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4.5.2 Modified 2D C5G7 reactor

To solve a more interesting problem from the computational point of view, the
2D C5G7 problem has been modified to increase the dominance ratio from
0 ~ 0.76 to 6 ~ 0.95. The modification has been achieved by increasing the pin
size from 1.26 cm to 2.0 cm while maintaining the fuel radius.

Tables 4.13 and 4.14 show the performance of the different eigenvalue solvers
for SP; and SP3 problems with . = 1 and p = 2 for this benchmark. Again,
numerical results show that the proposed BIFPAM method with initialization is
more efficient than the other methods studied for one eigenvalue calculations.
Compared to the previous benchmark, in this case, the CPU times for the hybrid
method and MGBNM are very close to the BIFPAM results. Moreover, some
more iterations are needed to solve the problem for the Power Iteration, the
Krylov-Schur, the Generalized Davidson and BIFPAM methods. This tendency
is stronger in the power iteration method where the computational times and
the number of iterations are approximately duplicated due to the dominance
factor closer to 1.0. Figures 4.17 and 4.18 show the residual norm, for the first
eigenvalue in the SP; and SP3 problems with p =2 and r, = 1.

Table 4.13: Performance results for different eigenvalue solvers for SP; problem with r. =1
and p = 2 for the modified 2D-C5G7.

Solver Method Init n eigs. CPU Time its
Power Iteration No 1 235s 119
Power Iteration Yes 1 156 s 72
Krylov-Schur No 1 1174s 24
Generalized Davidson  No 1 57s 22
Generalized Davidson  Yes 1 40 s 14
BIFPAM No 1 52's 8
BIFPAM Yes 1 36 s 5
MGBNM Yes 1 37 s 3
Hybrid No 1 68 s 4
Hybrid Yes 1 38 s 2
Krylov-Schur No 4 1805s 37
Generalized Davidson  Yes 4 156 s 59
BIFPAM Yes 4 124 s 5
MGBNM Yes 4 150 s 3
Hybrid Yes 4 150 s 2

117



Chapter 4. Eigenvalue computation methods

Table 4.14: Performance results for different eigenvalue solvers for SP3 problem with r,. =1
and p = 2 for the modified 2D-C5G?7.

Solver Method Init n eigs. CPU Time (s) its
Power Iteration No 1 434 s 115
Power Iteration Yes 1 241 s 59
Krylov-Schur No 1 2153 s 24
Generalized Davidson No 1 126 s 25
Generalized Davidson  Yes 1 95 s 18
BIFPAM No 1 167 s 8
BIFPAM Yes 1 80 s 5
MGBNM Yes 1 119 s 3
Hybrid No 1 163 s 4
Hybrid Yes 1 124 s 2
Krylov-Schur No 4 3331s 37
Generalized Davidson  Yes 4 341s 63
BIFPAM Yes 4 310 s 6
MGBNM Yes 4 436 s 3
Hybrid Yes 4 359 s 2
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RE ~v—GDM - Init
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Figure 4.17: Convergence histories for the first eigenvalue for SP; problem with r, = 1 and
p = 2 for the modified 2D-C5G7.
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Figure 4.18: Convergence histories for the first eigenvalue for SP3 problem with r, = 1 and
p = 2 for the modified 2D-C5G?7.
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4.5.3 3D-ChG7 reactor

The tridimensional case of the 3D-C5G7 reactor (Lewis et al., 2001) is chosen to
test the block methods in a computationally challenging problem. In this case,
due to the high computational memory requirements, that the resolution of this
problem implies, the performance has been tested in the Rigel Cluster from UPV
(Rigel Cluster Description). It is composed of 72 nodes where each node includes
two Intel Xeon E5-2450 processors and 64 Gb DDR3 RAM. Nodes are linked by
two 10 GB Ethernet interfaces. The cluster runs a CentOS 6 operating system.

Tables 4.15 and 4.16 show the performance of the different eigenvalue solvers for
SP; and SP3 problems with r, =1, . = 1 and p = 2 for this benchmark. Thus,
the mesh used has 264 992 finite element cells and 16 407 055 degrees of freedom
for SP; equations and 32814110 degrees of freedom for SP3 equations. First
of all, it must be noted that the computational time has been increased from
a few minutes for the two-dimensional version to several hours for the three-
dimensional case. Again, numerical results show that the proposed BIFPAM
method with initialization is more efficient than the other methods studied for
one eigenvalue calculations. Figures 4.19 and 4.20 show the historic residual
norm, for the first eigenvalue in the SP; and SPj3 problems.

Table 4.15: Performance results for different eigenvalue solvers for SP1 problem with r, = 1,
rr, = 1 and p = 2 for the 3D-C5G7.

Solver Method Init n eigs. CPU Time its
Power Iteration No 1 500 min 52
Power Iteration Yes 1 288 min 27
Generalized Davidson No 1 203 min 17
Generalized Davidson  Yes 1 143 min 12
BIFPAM No 1 139 min 5
BIFPAM Yes 1 90 min 3
MGBNM Yes 1 119 min 4
Hybrid No 1 185 min 4
Hybrid Yes 1 112 min 3

Now, as in the two-dimensional case, the Full Matriz-free implementation is
tested for two cases for the solution of the SP; equations. Similar conclusions are
obtained for the SP3 equations. First, the mesh with . = 0 and r, = 0 is used
for p = 2, that gives a number of degrees of freedom equal to 2998 863. Then,
the degree of the polynomial p is increased to p = 3, to obtain 9732 268 degrees
of freedom. In this case, the CSR strategy has not been computed due to its
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Table 4.16: Performance results for different eigenvalue solvers for SP3 problem with r, = 1,
rr = 1 and p = 2 for the 3D-C5G7.

Solver Method Init n eigs. CPU Time its
Power Iteration No 1 764 min 60
Power Iteration Yes 1 513 min 34
Generalized Davidson No 1 602 min 24
Generalized Davidson  Yes 1 486 min 13
BIFPAM No 1 226 min 5
BIFPAM Yes 1 184 min 4
MGBNM Yes 1 257 min 4
Hybrid No 1 311 min 4
Hybrid Yes 1 219 min 3

high memory demands. The same pattern of results described for the 2D-C5G7
can be observed in this Table for p = 2. However, for the 3D case, the reduction
of the memory is considerable and the differences in the CPU times are reduced
significantly. One reason is that, the time to allocate the matrices and construct
the preconditioner increases. Actually, for p = 3, these differences make that the
BGS-CG-MLFE preconditioner with the full matriz-free allocation gives lower
CPU times than the BCG-CG-ILU preconditioner.

Table 4.17: Computational results for the 3D-C5G7 with r, = 0, 7. = 0 for the SP; problem.

Precond. Allocation Mat. Setup Total
Memory CPU time CPU time

p=2

BGS-CG-ILU Non-Diagonal 2474 Mb 17 s 832 s

BGS-CG-MLFE  Non-Diagonal 2474 Mb 15 s 852 s

BGS-CG-MLFE  Full Matriz-Free 481 Mb 3s 1014 s

p=3

CG-ILU Non-Diagonal 15041 Mb 104 s 3657 s

BGS-CG-MLFE  Non-Diagonal 15041 Mb 95 s 7236 s

BGS-CG-MLFE  Full Matriz-Free 950 Mb 13 s 3111 s
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Figure 4.19: Convergence histories for the first eigenvalue for SP; problem with r, = 1,
r» =1 and p = 2 for the 3D-C5G?7.
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CHAPTER

MODAL METHODS FOR THE TIME
DEPENDENT NEUTRON DIFFUSION
EQUATION

The solution of time-dependent multigroup neutron diffusion equations approxi-
mates the neutron distribution that describes reactor kinetics. This equation
depends on the position and time. The finite element discretization leads to a
semidiscrete time-dependent ordinary system of differential equations (ODE).
Usually, this problem is a so-called stiff problem in time due, among other things,
to the presence of both prompt and delayed neutrons that lead to time scales of
different orders of magnitude. In consequence, obtaining, efficiently, the solution
of this system will depend heavily on the methodology used.

Several approaches have been studied to integrate this time-dependent equation.
One group of these methods is based on finite differentiation schemes for the time
variable such as the backward differential method or the implicit Euler method
(Stacey, 1969). Other methods are based on the factorization of space and time
dependence of the neutronic flux (factorization methods). These methodologies
express the solution as a product of two functions: one time-dependent function
(amplitude factor) and a second one that describes the spatial distribution
(shape function) and has a slow variation with time. In the point kinetics reactor
approximation, the dominant eigenfunction associated with an auxiliar eigenvalue
problem, corresponding to a static configuration of the core, is taken as the shape
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Chapter 5. Modal methods for the time dependent neutron diffusion equation

function (Akcasuh, 1971). For the quasistatic approximation, this shape function
is updated over time (Henry, 1958; Dulla et al., 2008; Yamamoto et al., 2010).
However, this expansion has limitations when the spatial distribution of the
neutron flux changes along the transient and cannot be described using only one
shape function. This occurs, for instance, in the out-of-phase oscillations observed
in Boiling Water Reactors (BWR) (March-Leuba and Blakeman, 1991; March-
Leuba and Rey, 1993). The generalization of this approach is the modal method
(Stacey, 1969; Mir6 et al., 2002; Lima et al., 2009; Avvakumov et al., 2017a).
It expands the time-dependent flux as a sum of several spatial eigenfunctions
associated with the initial configuration of the reactor. These spatial modes can
be also updated along the transient to reduce the number of shape functions
used in the expansion (Mir6 et al., 2002). However, most of the time-dependent
core simulators do not rely on such approximations that come from factorization
methods (in spite of being, on some occasions, much more efficient in terms of
the CPU time and the computational memory).

Different spectral problems can be associated with the neutron diffusion equation
for different purposes, as it has been shown in the previous Chapters. Conse-
quently, different modal strategies to integrate the time-dependent neutron
equations can be defined. The nodal modal kinetics associated with the A-modes
was studied in detail in (Verdd et al., 1998; Miré et al., 2002) to solve the
time-dependent neutron diffusion equation and to classify instabilities in BWRs.
This methodology has been also applied by using a finite volume method for the
spatial discretization (Bernal Garcia, 2018). Lange et al. also used the subcritical
A-modes to study the BWR stability states (Lange et al., 2014). The a-modes
have been also applied to study reactor instabilities (Verdi and Ginestar, 2014).
More recently, the State Change Modal (SCM) method has been proposed based
also on the calculation of the dominant a-modes (Avvakumov et al., 2018b). In
(Dulla et al., 2018), the authors have developed a fully analytical study of the
spectrum of the neutron diffusion operator to analyze some general properties
of the neutron evolution. In this thesis, different modal schemes with the A, ~
and a-modes are developed to their comparison.

Classically, the implementations of the integration methods for the time-dependent
neutron diffusion equation use small fix time-steps over which there are little
changes in the neutron population, to ensure the stability of the solution. For
differential methods, high order schemes can be proposed to avoid to use small
time-steps (Ginestar et al., 1998). However, obtaining the approximations at
each time-step is also computationally very expensive. Other approach used very
often is the implementation of adaptive time-step controls where the time-step
is computed step by step. Ideally, the control is designed to pick an optimal time
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step size adaptively based on the current state of a transient. In practice, this step
is selected from the solution in the previous steps to satisfy some approximated
error tolerance (Gustafsson et al., 1988; Wanner and Hairer, 1996; Séderlind,
2002). These schemes provide improved computational efficiency because time
is not wasted solving the system to a level of accuracy beyond relevance, but
also to reduce the step size if they detect a numerical instability. Moreover,
adaptive schemes remove the necessity for the user to select time steps before
the simulation has been run. There are common approaches to do this, however
there are no generalized methods that are routinely applied to reactor physics
computations.

Recent works have incorporated an adaptive time-step for the Backward differ-
ential method for different orders (Shim et al., 2011; Avvakumov et al., 2018a;
Boffie and Pounders, 2018; Cai et al., 2019). The quasi-static methodology is
also implemented by selecting an appropriate step size from a given tolerance
(Caron et al., 2017). Step size controllers require an error estimation. The time
selection for the previous works is based on some approximations of the local
truncation error causes by the time discretization since both come from a finite
difference discretization. In the modal approach, different error estimations must
be defined. In this thesis, several error approximations are studied to implement
an adaptive time-step control to update the calculation of the modes.

This Chapter presents the modal methodology to integrate the time-dependent
neutron diffusion equation. Section 5.1 exposes the algebraic time-dependent
equation obtained from the finite element discretization. Section 5.2 briefly
describes the backward differential method to compare with the modal methods.
Section 5.3 exposes the modal methodology for the A, the v and the a-modes.
Section 5.4 presents some numerical results for different transients with different
type of perturbations. The modal method can be updated along time to avoid
to use a high number of modes in the modal expansion. This strategy to update
the modal method is depicted in Section 5.5. Section 5.6 tests the updated
modal method in some transients. Section 5.7 describes the adaptive time-step
control designed for the updated modal methods. Finally, numerical results for
several transient benchmark are shown to study the performance of the adaptive
updated modal method (Section 5.8). This Chapter reviews and rewrites some
results presented in (Carreno et al., 2019¢) together with work that has not yet
been published.
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5.1 Finite element discretization

For a given transient, the flux of neutrons inside of a nuclear reactor core can
be described through the time-dependent neutron diffusion equation in the
approximation of two energy groups, without up-scattering and K groups of
delayed neutron precursors (Stacey, 1969). These equations can be expressed as

K
VI 4 (L+8)0=(1-8)F0+ > X,

k=1 (5.1)
dcy

gzﬁkfﬂ@*)\ﬁck, k=1,...,K,

where,
L= —6 . (Dlﬁ) + Zal + Y19 . O_'
0 =V - (D3V) + 3, ’
0 0
= (% o)
1
-1 _ [V 0 . 1 - @1

(b ) 6 ()

The operator £ is known as leakage operator, the operator 8 is the scattering
operator and JF is the fission term. The vectors ®; and ®, represent the fast
and thermal fluxes of neutrons, respectively. The term Cj, is the concentration of
delayed neutron precursors of the group k. The rest of the coefficients (cross-
sections) are also, in general, position and time-dependent functions.

% %
F_ (V Ofl VOfQ) , ‘rj,rl _ (szl V2f2> ,

The system (5.1) needs to be discretized to obtain an approximated solution.
Applying the finite element method presented for the steady-state neutron
diffusion equation in Chapter 3 yields to the semi-discrete time-dependent
system

dd - . X
[V]_la +(L+8)®=(1-B)FP+> MNXC,
o k=1 (5.2)
Ef:mﬂé—ﬁ@, k=1,...,K,

where L, S, F, Fy, [V] are the matrices obtained from the discretization of
operators £, 8§, F, F1, V respectively. Vectors ® and C}, are the corresponding

126



5.2 Backward differential method

coefficients of ® and Cy in terms of the Lagrange polynomials used in the finite
element method. Henceforth, as an abuse of notation, the algebraic flux is denoted
as ® by removing the tilde from the original notation. The matrix X corresponds

N X = (é) , (5.3)

where [ is the identity matrix.
5.2 Backward differential method

The system of ordinary differential equations (5.2) is, in general, stiff. Then, it
is convenient to use an implicit method for the time discretization. In particular,
the backward differential method (BKM), that is a classical implicit method,
can be used (Ginestar et al., 1998; Vidal-Ferrandiz et al., 2016).

This method starts with the steady-state flux, i.e., from the solution of one spatial
modes problem, ®(0) = ¢7, where the system is in critical state by dividing
previously the fission terms, F, by kefr = A1. An approximated solution, ®"*!,
in the (n 4 1)-th step, with a time-step of h,, = t,,+1 — t,, is obtained by solving
the following system of linear equations

K
T = R 43 Ae N X O (5.4)
k=1

where the matrices are defined as

T+l — Ry L o gntl an—l—l, R" = F[V]_l )
n

and the coefficient a is computed as

K
A1 e Mha )
a=1-08+ kZ:l O (1 e "k >

The matrices L™ !, S"*! and F"*! correspond to the discretized operators at
time t,1.

The neutron precursors equation is discretized in time by using an explicit
scheme as

Gt = Cpe e 4 S (1= e ) (PR 971 (655)
k
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This system of equations is large and sparse and has to be solved for each new
time step, t,.1. In this thesis, the GMRES method has been used to solve the
linear systems preconditioned with the block Gauss-Seidel method (Section 4.3).
The inverse of each diagonal block is approximated by a solving linear system
with the conjugate gradient method with the ILU preconditioner and tol < le—6.
This strategy permits to treat the matrices in the code by using the non-diagonal
matrix-free implementation (Section 4.4) and thus, to avoid the assembly of the
matrices at each time-step.

5.3 Modal method

Alternative to the backward differential method, one can use the modal method to
approximate the time-dependent neutron diffusion equation (5.2). This strategy
assumes that ®(7,¢) admits the following expansion

O(7,t) = Z;rﬂxw¢%0ﬁ7 (5.6)

where ¢ (7) is the unitary eigenvector associated with the m-th dominant
eigenvalue of some static problem

(L+8)6h = 3—Foh (5.7)
Lo}, = —(F - 5)¢7,. (5.8)
(F — 5~ L), = am[V] 62, (5.9)

where the matrices are given by the finite element method discretization (Equa-
tion (3.14)). The amplitude coefficients n?, (t) are only time dependent and they
will change with the kind of spatial mode used (§ = A,~, «). To simplify the
notation, we will write nd, and ¢? instead of n? (t) and ¢?, (7).

For each kind of modes problem, we choose the matrices L, S and F', and we
denote by Lg, Sy and Fjy, as the matrices related to the configuration of the
reactor core at ¢t = (0. We start with this reactor in critical state by dividing the
matrix related to the fission terms, Fpy, by kesr = A1. However, note that if we
force the transient to start the computation with the reactor in critical state, the
dominant a-mode will be equal to zero and the numerical methods have some
convergence problems. Thus, in the case of the a-modes, we divide the fission
cross-section by kers + 1078 obtaining a reactor quasi-critical. In this way, we
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express the matrices L, S and F as
L(t) = Lo+ 0L(t), S(t)=So+S(t), F(t)=Fo+IF(t). (5.10)
If the expansion (5.6) is truncated until a certain number of modes, ¢, and

substituted into the system (5.2), it is obtained

q

[vrlz N ¢5 —i—ZLon &, +Z§Ln5gb5 +ZSon &, +Z§Sn ¢,

m=1 m=1
q
S(=8) Y Rkt + (1) 3 6Pul + 3 MXCL
m=1 m=1 k=1
ax a .
T O ARl + 30 APl g~ MXCl k=K.
m=1 m=1

(5.11)

Hereafter, we particularize the equations obtained for each kind of spatial mode.
Using the dominant A-modes (Equation (3.12)) into the Equation (5.11), we
obtain

q /\
VIt dtmqb —l—Z—an O, +Z§Ln O, +Z§Sn 0,

m=1 m=1 m=1

MQ

=(1-8)>_ Fonpp, +(1—8 ZéFn o +Z/\dXCk,
m=1 m=1 k=1
dxc, I !
= =N BFond e, + S BdFndeh — MXCr, k=1,... K.

m=1

3
.l

(5.12)

Then, Equations (5.12) are multiplied by the adjoint modes ¢2\’T withl=1,...,q
and the biorthogonality condition (2.49) is used to obtain the following system
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of ¢(K + 1) equations

q q
S @ VI g S+ o+ Z AT WA

m=1 dt " m=1
q
= (1 =B+ 1—=B) > ()", 6F ¢ )n), + ZA%(@*T,X@, I=1,....q,
m=1 k=1
d q
7<¢f7*,xck> = Ben} + Z (oM 0F Y, — Ao, XCy), k=1,... K.
- (5.13)

Introducing the notation
A= (@ VIT'6)), ALY, = (6, 0Le),),
ASh, = (6)1,65¢)), AR, = (9" 5F ), (5.14)
o = (&, XCh),

into the system of equations (5.13) and reordering terms yields to the system

q
d
A) 1—— - AL A
— lmdt ( 6 Z ImTm mZ:l Slm m
q
~8) Y AR +2Akcm, I=1,...q

d

@ = Beny + Bkmz:lAFl — ALk k=1,...,K, (5.15)

In matrix form, the system (5.15) can be also expressed as

d
&NA T N, (5.16)

where .
A_ (2 A by by A
N — (nl...nq Cll...cql clK...cqK> , (517)
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and
AN (1= B)T +AFY) — N7 = ALY = ASY) | ATAY AN
™ = Bi(I + AF?) X 0
Br(I +AFY) 0 o0 =ALT
(5.18)

The block [A] denotes the diagonal matrix whose elements are the dominant A

eigenvalues and [ is the identity matrix.

Through an analogous process for the v and a-modes, we obtain similar dif-
ferential systems. For the v-modes, using their corresponding biorthogonality

condition yields to the following matrix system

d
7]_\]7 — T’YN’Y 5.19
dt ? ( )
where .
N7:(n¥---nq7 C’l‘/l...cgl ClK"'CgK) , (5.20)
A (I =[]t = ALY = ASY — BAPY 4 (1= B)AFT) | AS'AY AN
T = Bi(ATY + AFY) L S 0
Bic (AP + AF) 0 oo ALl
(5.21)
and
AT = (0% Fogny), ALY, = (¢, 6L¢7,),
AS], = (¢]"",55¢7,), AF), = (o], 6F ¢y, (5.22)

C7k = <¢77T7 Xck>7

AL = (o VI 6,

The block [v] denotes the diagonal matrix whose elements are the dominant

values of ~.
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Chapter 5. Modal methods for the time dependent neutron diffusion equation

If now, we use the a-modes problem and its associated adjoint problem, we have
the following system

d
7Na — TaNa 2
where .
No‘:(n‘f--‘n;‘“ 0?1"'031 C?K"'ng) , (5.24)
[a] — BAF® — ALY — AS*+ (1 — B)AF* | A .. 2
T = B (AP 4 AF®) 1. 0
B (AP 4 AF®) 0 oo —ALI
(5.25)
and - ; ;
A = (o) Fod), ALY, = (9", 0LeS,),
ASR, = (671,680%), AFg, = (601, 6F¢2,), (5.26)

= (o1, XCy).

The block [a] denotes the diagonal matrix whose elements are the dominant
values of a.

All systems of differential equations need initial conditions to be solved. From
the equations in the steady state, these conditions are

n3(0) =1, n)(0)=0,Ym=2,...,q
s (0)—Bk<¢6’TF¢5> S (0)=0,Vm =2 Vk=1,...,K
1k 1 »4+0%1/> mk ) 7"‘7q7 3ty 9

Y

with ¢¢ and gbf’T the corresponding direct and adjoint eigenvector of the dominant
eigenvalue § = \, v, a.

The system of differential equations obtained for the different spatial modes is
quite smaller than the original system (5.2) when the number of eigenvalues
used in the expansion, ¢, is not too large. These systems are also stiff, so implicit
methods are needed to obtain approximate solutions. In this work, we use a
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5.4 Numerical results for the modal method

backward differentiation formula implemented in the CVODE solver from the
SUNDIALS library (Hindmarsh et al., 2005; Abhyankar et al., 2018). This code
has implemented an adaptive time step and it is initialized with time step of
0t = 107> s. The absolute tolerance in the CVODE has been set equal to 10710,
Moreover, the modal method has been implemented with a full matriz-free
technique (Section 4.4) for the matrices L, S, F' and [V] to avoid their assembly
at each time-step.

5.4 Numerical results for the modal method

In this Section, we present numerical results obtained for several three-dimensional
transients to compare the performance of the different modal methods presented
above. The first benchmark is a theoretical transient that has been used to
validate the code. The second one is a more realistic benchmark, the Langenbuch
reactor (Langenbuch et al., 1977), that has been perturbed with an out-of-phase
local oscillation in the material cross sections. The third transient is a control rod
movement in the Langenbuch reactor. For each transient, the results obtained
with the modal methods have been compared with the ones obtained with a
code that integrates Equation (5.2) by using the backward difference method
(BKM).

All results are computed using a degree of the polynomial equal to 3 in the the
finite element method, since it has been shown in the Chapter 3 that this degree
is enough to obtain accurate results for usual reactor calculations.

The solution of the eigenvalue problems (direct and adjoint) has been computed
with the hybrid method (Section 4.1.7) with a tolerance in the generalized
eigenvalue problem of res, < 107%. For the direct modes computation, the
multilevel-fem initialization with degree equal to 1 and the solution A-modes
problem is used as initial guess for the hybrid method. For the adjoint modes
computation, the solution of the direct modes is used to initialize the solver.

For reactors without spatial symmetry, the eigenvalues solution of problems are
not degenerated and the adjoint eigenvectors computed are biorthogonal, thus we
only need to divide each adjoint vector gbl’\’T, i ’T, f’T by the product <¢Z)"T, Fé),
(67T (F = 8)¢7) and (¢, [V]~1¢%), respectively, to obtain a biorthonormal
basis. For reactors with radial symmetry, it can be proved (see (Tommasi et al.,
2016)) that degenerated eigenvalues (i.e. eigenvalues with multiplicity greater
than 1) can appear, and consequently the adjoint modes computed are not
directly biorthogonal. This problem is solved by using the biorthogonalization
procedure shown in Algorithm 5 (Adrover et al., 2005).
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Chapter 5. Modal methods for the time dependent neutron diffusion equation

In this section, we have computed the relative errors related to the neutron power
that we describe hereafter. Remember that the neutron power (P?) associated
with the d-modes is defined as

P(s(Fa t) = 2f1¢?(7?? t) + EfZQSg(Fa t)?
where § = ), 7, o is the eigenvalue associated with the eigenvector ¢°.
The Local Error (LE) at time ¢ is given by

[P (£) — P**!(#) |1

)
LB =" e,

where P%™(t) is the reference power at time t.

The Mean Power Error (MPE) in the interval [to, ¢y] is defined by

1 N
n=1

The Radial Power Error (RPE) at the middle plane is defined by
RPE’(t) = [P2(t) — P2™(1)],
where PS(t) denotes the power in the middle plane at time .

The modal methodology and the Backward differential method have been im-
plemented in C++ based on the data structures provided by the library Deal.Il
(Bangerth et al., 2007) and PETSc (Abhyankar et al., 2018) . The computer
used for the computations was an Intel® Core™i7-4790 3.60 GHz with 32 Gb of
RAM running on Ubuntu GNU/Linux 16.04 LTS.

5.4.1 Cuboid reactor

This transient is based on a non homogeneous prismatic reactor. It is described
in Appendix B.2. The transient analyzed has been defined from a linear time-
dependent perturbation on the fission cross sections of the material 1 so that the
neutron power increases during 2 seconds and then it decreases. The functions
that define the time evolution of the cross sections are exposed in Appendix B.2.

First, the matrix-free performance of the Backward differential method (BKM)
is studied. The time-step for the BKM has been set to 0.001 s. Table 5.1 shows
the memory resources used by the code to solve the transient by using the BKM
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5.4 Numerical results for the modal method

with the CSR strategy and the non-diagonal strategy. Note that to solve the
linear systems, both algorithms use the GMRES method, but the preconditioner
must be different. For the first case is the ILU preconditioner and for the second
strategy is the block Gauss-Seidel preconditioner. Results show that the non-
diagonal allocation improves the computational efficiency of the code.

Table 5.1: Computational efficiency of the non-diagonal allocation versus the CSR allocation
in the backward differential method for the cuboid reactor.

Allocation Mean its. CPU memory CPU Time

GMRES
CSR 6.60 580 Mb 1605 s
Non-Diagonal 7.60 186 Mb 778 s

In the following, the modal method is analyzed. The five dominant A, v and
a-modes are shown in Table 5.2.

Table 5.2: Five dominant modes for the cuboid reactor.

Mode A-modes ~-modes «-modes

1.000000  1.000000 -0.03801
0.975493  0.984772  -925.650
0.936569  0.960346  -2371.33
0.886212  0.928279  -4195.81
0.842369  0.899897  -5741.37

Ui W N =

To compare the performance of the different modal methods, we have solved this
problem using different number of modes, ¢. In Figure 5.1, the power evolution
obtained for the transient using the A, v and o« modes is represented, together
with the power evolution obtained with the BKM, taken as a reference. This
Figure shows that the obtained approximations improve when the number of
modes used is increased, but this number of modes is not large enough to describe
very accurately the transient. This is due to the fact that the perturbation is
applied only to the material 1 and the modes have difficulties to catch the
very localized character of the response of the system. A high number of modes
would be required to obtain better approximations. However, even if the modal
methods cannot be the best technique to approximate this transient, this is an
interesting challenging problem to test the modal methods. A comparison of
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Chapter 5. Modal methods for the time dependent neutron diffusion equation

the evolution of the power obtained with the different modal methods has been
included (Figure 5.1(d)) by using 3 eigenvalues. In this last graphic, we do not
observe big differences between the kind of modes used in the expansion of the
flux.

A-modes ~-modes

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time (s) Time (s)
(a) A-modes (b) y-modes
a-modes

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time (s) Time (s)
(¢) a-modes (d) A, o, v (3 modes)

Figure 5.1: Evolution of the power of the cuboid transient.

Finally, we compare the computational time (CPU time) to obtain the solution by
using the BKM and the modal kinetics methods with the different spatial modes.
Table 5.3 displays these results for several number of eigenvalues. Moreover, this
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5.4 Numerical results for the modal method

Table includes the Mean Power Error (MPE) (taking the result obtained with the
BKM as a reference) to quantify the error made by the modal approximations,
the CPU time to solve the eigenvalue problem and the number of steps that uses
the CVODE to solve the differential system. First, this Table shows (as it does
Figure 5.1) that the MPE decreases when the number of eigenvalues considered
in the modal kinetics is increased. Nevertheless, the results show that using a
high number of modes is not computationally efficient, since the computational
time also increases when the number of eigenvalues is higher. In comparison
with the BKM, one can observe that using modal methods is much more efficient
than using the BKM (in spite of a high number of eigenvalues is required to
obtain accurate approximations). Between the different spatial modes, there are
not large differences in the errors, but there are differences in the CPU time.
The number of steps in the CVODE to solve the dynamical system associated
with the a-modes is lower. In this small reactor, where the differences in the
CPU times to compute the modes is not very high, the « modal method is the
most efficient option.

Table 5.3: Mean Power Error (MPE) and CPU times of the modal methods to obtain the
relative power of the cuboid reactor.

N. eigs Eig. Prob. Total
q CPU time n. steps MPE CPU time
BKM - - - 778 s
Modal Kinetics ())
g=1 0.3s 508  2.799e-01 1s
q=3 0.7s 1222 8.042e-02 13 s
qg=>5 2s 1939  2.672e-02 58 s
qg=12 10 s 1894  1.692e-02 349 s
Modal Kinetics (7)
=1 0.5s 551  2.775e-01 1s
q=3 2s 1048  7.781e-02 11s
q=>5 3s 1979  2.626e-02 59 s
q=12 12 s 2219 1.793e-02 383 s
Modal Kinetics («)
g=1 2s 566 2.708e-01 3s
=3 2s 829  8.545e-02 10 s
qg=>5 9s 1145  3.139e-02 39 s
qg=12 19 s 1757 3.090e-02 315 s
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5.4.2 Langenbuch-OPP transient. Out-of-phase perturbation

The Langenbuch 3D benchmark reactor (Langenbuch et al., 1977) is chosen to
compare the modal schemes in a more realistic case. Two types of transient
are defined from this reactor. The first transient is obtained by perturbing the
fission cross section by two local sinusoidal perturbations out-of-phase between
them. The second one is a classical movement of control rods. The details of
these perturbations are described in Appendix B.3. Both transients have been
computed without reactivity feedback.

First, the Langenbuch-OPP transient is analyzed. We want to highlight that the
reactor is perturbed locally and this induces local changes in the spatial power
distribution which makes this transient a challenging problem to be solved using
spatial modal methods.

Before to start with the modal method, we have computed the power evolution by
using the Backward Difference method (BKM). The time-step for the BKM has
been set to 0.001 s. Figure 5.2 represents the radial average power distribution at
four relevant times (t = 0.00s,¢t = 0.25s,¢t = 0.50 s and t = 0.75 s). It is observed
that at first the maximum power goes from the center to the perturbation 1
zone then, it comes back to the center and then, it goes to the perturbation 2
zone. This behavior is repeated along the transient.

(a) t =0.00 (b) t =0.25 (c) t =0.50 (d) t=0.75

Figure 5.2: Evolution power of the out-of-phase perturbation in the Langenbuch-OPP
transient.

We have computed the time dependent amplitudes nfn(t) to study the importance
of the different modes during the modal representation of the neutron flux in the
transient. Figures 5.3, 5.4, 5.5 represent the evolution of the amplitudes for the A,
~v and « expansion, respectively. All graphics show that the first coefficient, that
corresponds to the first eigenfunction, is the one that contributes in the increasing
evolution of the power, since the reactor transient starts from a near critical
configuration. This coefficient is equal for all modes since the first eigenfunctions
associated to each mode are very similar. Between the subcritical functions,
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5.4 Numerical results for the modal method

there are meaningful differences. All figures for subcritical harmonics show that
the second and third coefficient are out-of-phase. However, these functions have
different amplitude depending on the kind of mode and the number of mode.
These differences are due to the different shapes that have the 2nd and 3rd
eigenfunctions (Figure 3.5). The n} and ng, for all cases, are slightly oscillating,
but with values close to zero during all the transient. The next coefficients are
not represented since, for all modes, they are close to zero too.

1.07 20 o, 5
1.06 15 ——n;
—-ng
1.05 10 F By
Ny
L L A
1.04 ° 5% L 7 \gd B O |... n5 %
E E
= 1.03 = 0
: e
< 102 < 5r
1.01 -10 ¢
1 5 |
. L L -20 L . L !
0%, 0.5 1 15 2 0 0.5 1 1.5 2
Time (s) Time (s)
(a) 1st Harmonic (b) 2nd, 3rd, 4th, 5th Harmonics

Figure 5.3: Evolution of the amplitudes in the A modal expansion of the Langenbuch-OPP
transient.

Amplitude
Amplitude

0 05 1 15 2 o 05 1 15 o
Time (s) Time (s)

(a) 1st Harmonic (b) 2nd, 3rd, 4th, 5th Harmonics

Figure 5.4: Evolution of the amplitudes in the v modal expansion of the Langenbuch-OPP
transient.
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Amplitude
h A b M A o 4N e soo

0 0.5 1 1.5 2 0 0.5 1 1.5 2
Time (s) Time (s)

(a) 1st Harmonic (b) 2nd, 3rd, 4th, 5th Harmonics

Figure 5.5: Evolution of the amplitudes in the a modal expansion of the Langenbuch-OPP
transient.

Figure 5.6 shows the relative power computed with the BKM, and the relative
powers computed by using the A modal expansion for ¢ = 3, ¢ = 6, ¢ = 10 and
g = 20. A similar behaviour is obtained for the v and a-modes. In this Figure, we
can observe that this type of transient needs to be described with a large number
of modes because the perturbations are local. This fact is also observed in the
evolution of the amplitudes where these values from ¢ = 3 are close to zero,
and we need a lot of eigenfunctions to obtain accurate approximations for the
flux distribution. Figure 5.7 displays a comparison between the relative power
computed with six A, v and a-modes. In this graphic, we cannot appreciate
a large difference between the kind of mode used to compute the total power.
Figure 5.8 shows the local error (LE(t)) along the time for 6 eigenvalues. The
local errors follow the same distribution as the relative power. The differences
between the types modes are higher in the relative maximums of the total power,
when the 03, of the perturbations P; and P» have their relative maximums.
These differences increase when the time is larger.
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Figure 5.6: Evolution of the relative power computed with the BKM and the A modal
method of the Langenbuch-OPP transient.
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Figure 5.7: Evolution of the relative power computed with the BKM and the modal method
with 6 modes for the Langenbuch-OPP transient.
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Figure 5.8: Evolution of the local error (LE(t)) along the time in the computation of 6
modes for the Langenbuch-OPP transient.

However, to study with more detail the errors of the modal methods with respect
to the solution obtained with the BKM, we have computed the Radial Power
Error (RPE), to observe the spatial distribution of the power error and the Mean
Power Error (MPE), to quantify the total power errors between the different
modal expansions used. The RPEs have been represented in Figure 5.9. These
errors have been computed for t = 0.25 s because this is a value where the errors
are higher. It is observed a different distribution of the errors for the different
types of modes. More distributed errors are obtained with the y-modes. However,
in all cases higher errors are placed mainly in the cells that have been perturbed.
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Figure 5.9: Radial Power Error (RPE) of the Langenbuch-OPP transient at ¢t = 0.25 s with
six eigenvalues.

Table 5.4 collects the Mean Power Error (MPE), the number of steps used by the
backward method of CVODE, the CPU time to compute the different eigenvalue
problems and the total CPU time to integrate the neutron diffusion equation
until ¢ = 2.0 s. It has the data for ¢ = 3, ¢ = 6 and ¢ = 10 and for each one of
spatial modes. Moreover, this Table includes the CPU time to solve the transient
problem with the BKM. The results show that less stiff systems are obtained by
using the y-modes, since we need less time steps to reach ¢t = 2.0 s. However,
the modal expansion that computes the solution in less time is the A modal
expansion because the eigenvalue problem associated with the A-modes is the
cheapest problem to solve. Regarding the CPU time obtained with the BKM,
one could observed that this methodology takes much more time to obtain an
approximation for the transient than the modal kinetics with the different spatial
modes.
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Table 5.4: Data of the modal methods to integrate the neutron diffusion equation for the
Langenbuch-OPP transient.

N. eigs Eig. Prob. Total

q CPU time n. steps MPE CPU time
BKM - - - 232 min
A-modes

3 0.8 min 541 1.34e-02 1.5 min
6 1.5 min 608 1.29e-02 4.8 min
10 3.3 min 543 1.26e-02 12.7 min
v-modes

3 1.5 min 435 1.36e-02 2.1 min
6 4.1 min 501 1.30e-02 7.1 min
10 13.8 min 520 1.27e-02 22.5 min
a-modes

3 1.1 min 608 1.46e-02 2.8 min
6 7.2 min 530 1.34e-02 14.2 min
10 43.2 min 621 1.28e-02 59.3 min

5.4.3 Langenbuch-CRM transient. Control rods movement

In this part, the Langenbuch-CRM transient for the Langenbuch reactor is
analyzed. It is defined from a classical movement of the control rods. Details
can found in Appendix B.3.

First, the power evolution by using the Backward Difference method (BKM) is
computed. In this transient, the time-step for the BKM has been set to 0.01s.
Figure 5.10 represents the power distribution in the middle plane at several
relevant times. It is observed the radial symmetry of the movement as opposed
to the previous case.

Figure 5.11 shows the relative power computed with the BKM, and the relative
powers computed by using the A modal expansion for ¢ =1, ¢ =3, ¢ =6 and
g = 15. A similar behaviour is obtained for the v and a-modes. It is deduced
that there are not differences when a small number of modes are used. Regarding
the difference with the BKM, the errors in the global relative power increases
as the time increases. This behaviour is also observed in the evolution of the
local error (Figure 5.12). Figure 5.13 displays a comparison between the relative
power and the local error computed with 6 A, v and a-modes. In this graphic,
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Figure 5.10: Evolution power in the Langenbuch-CRM transient.

we cannot appreciate differences between the kind of mode used to compute the
total power.

To study with more detail the errors of the modal methods with respect to the
solution obtained with the BKM, we have computed the Mean Power Error
(MPE), to quantify the total power errors between the different modal expansions
used. Table 5.5 collects the MPEs, the CPU time to solve the eigenvalue problem,
the number of steps used in the backward method of the CVODE and the total
CPU time to integrate the systems until ¢ = 60.0s. Data are exposed for ¢ = 1,
q = 3 and ¢ = 6 modes. It is observed that similar errors are obtained for the
different types of modes and these errors they hardly decrease when the number
of eigenvalues is increased. The number of iterations in CVODE is lightly smaller
for the a-modes, but their CPU time to obtain these modes is much higher than
the rest of the modes. Consequently, the most efficient modal strategy is to use
the A-modes. In comparison with backward differential method (BKM), one
could observe that the modal method (with any type of mode) takes much less
time to obtain an approximation for the transient.
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Figure 5.11: Evolution of the relative power computed with the BKM and the A modal
method of the Langenbuch-CRM transient.
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Figure 5.12: Evolution of the local error (LE) obtained with the A modal method in the
Langenbuch-CRM transient.
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Figure 5.13: Comparison of the evolution of the relative power and local error with the
different modal methods for the Langenbuch-CRM transient.

Table 5.5: Number of iterations (n. its) and computational time (s) for the computation of
the modal expansion for the Langenbuch-CRM transient.

N. eigs Eig. Prob. Total

q CPU time n. its MPE CPU time
BKM - - - 44640 s
A-modes

1 15s 2614 0.10287 91 s
3 48 s 1345 0.10286 196 s
6 99 s 3492 0.10024 2279 s
v-modes

1 31s 2379 0.10288 100 s
3 93s 1468 0.10286 257 s
6 259 s 3317 0.10026 2594 s
a-modes

1 91s 1530 0.10286 140 s
3 155 s 1440 0.10286 355 s
6 942 s 3237 0.10021 3286 s
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5.5 Updated modal method

In realistic transient computations, the flux of the reactor over time can suffer
extremely spatial variations with respect to the initial flux. Thus, in order
to obtain good approximations by using the modal method, high number of
modes would be needed in the modal expansion. This implies an expensive
computational cost in the calculation. A solution for this challenge was proposed
in (Miré et al., 2002). In this work, a small number of modes are computed but
they are updated from time to time. A diagram to compare the classic modal
method with the updated modal method is shown in Figure 5.14. For the classic
modal method, only one eigenvalue problem is needed to be solved to obtain the
solution at ¢t = t,, whereas for the updated modal method, several eigenvalue
problems are defined to update the modes at each time-step equal to At. This
thesis presents the updated modal method for the A and extends this approach
to the v and a-modes expansions.

t0 ot tn

I::"“:::::::::::::::::::::I
A(SO)(b(S:(SBZSO)d)(S

(a) Classic modal method

to 5t t1 =to + At tho1 =th_2 + At th

|:=,_H::=Iiiiiiliiiiiliiiiil

| | | | |
A?O)¢6 = 6B?O)¢6 A?1)¢5 = 5B€1)¢6 A?n—l)¢6 = 5Bgn—1)¢5

(b) Updated modal method

Figure 5.14: Modal methodology schemes.

As it is explained before, in the updated modal method, the time domain is
divided into several intervals [t;,t; + At] = [¢;,ti4+1]. For instance, in each interval
[ti, ti+1], the neutron diffusion equation can be integrated by using the A\-modes
associated with the problem

) )\im )

3
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5.5 Updated modal method

where L, S* and F* are the matrices associated with the reactor at time ¢; such
that

L(t) = L' + 6L'(t), S(t)=S"+0S'(t), F(t)=F"+5F'(t). (5.28)

Thus, the differential equations that are needed to integrate are of the form

d

— N = TAN 5.29
- , (5:29)
where .
NiA = (nzl)‘ - niA e cz’f‘ A c;’;‘() , (5.30)
Ay (L= B)I = AF") = [\] 7 = ALY = ASYY) [ A - A%
TiA — B1(I 4+ AF™) Y'Y S 0
B (I +.AF“) 0 ,,\1;{1
(5.31)
and . N
A;;n:<d)zl7v ! )\ >’ AL;;VL:«z)zl?&LZd) >
AS = (60, 05700,), AR = (6, 6F 82,,), (5.32)

ClAk = <¢zl , XCr),

where the operators 6L¢, §S and 6 F" also change into the interval [t;, ¢;11]. This
system is the same as the one used in the modal method without updating
where the matrices L?, S, F* and §L*, §S* and JF" are needed to be updated
at each time-step t;. Nevertheless, the initial conditions (at time ¢;) must be
reformulated to ensure the continuity of the solution. These initial conditions
will depend on the solution in the previous interval [t;_1,?;], the eigenvectors
associated with direct modes (¢7,,) and the eigenvectors associated with adjoint

modes ((/)i g M. From the solutlon obtained in the interval [t;_1,%;], we compute
the initial conditions to obtain the solution in the interval [¢;,t;11].
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The initial conditions for n?,, at time #; must be defined to solve the problem
(5.29) in the interval [¢;, tz+1]~ For that purpose, we reconstruct the vector

an lm i—1,m>» (533)

from the variables n} , m(ti), qb;\,Lm obtained from the integration in the interval
[ti-1,ti].

As the function ®(¢) must be continuous on all its domain, one could use the

expansion
q
= § : n; 7m i) Vi, m?

m=1
and obtain the value of ni}(¢;) as
A (Ohom: F'®(t:))
ni,m<i = ’
A )

where ®(t;) is computed from Equation (5.33).

To compute the initial condltlons related to the concentration of the precursor
k at time t;, ¢ (t;) = (qb” , XCh) (L), we use the known ¢ 1 (t;) computed in
the previous 1ntegrat10n on [ti—1,t;]. We assume that

/\T_
zl _Zalm z 1m

mk

One could collapse the Equation (5.5) by the right along the direction of
Fi—lgp) to obtain that

i—1l,m

i—1
al)\m _ <¢zl ’F ¢’L 1m> ] (534)

<¢z 1m7Fl 1¢z 1m>

Thus, the concentration of precursors at time ¢; can be computed as

c;g(t) <¢” L XC) (¢ Zalm P ”,XC’k Zalmcz LA (). (5.35)
m=1

One can repeat the above process to update the modal expansion in each time
interval [t;, t;11], but for this case, the neutron diffusion equation is integrated
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by using the v-modes associated with the problem

. 1 A A
Lig], = —(Fi— 8¢ (5.36)

©,m ] ©,m?
i,m

where L, S* and F' are the matrices associated with the reactor at time ¢;. Now,
the differential equations that are needed to integrate are of the form

d_ . o
— N7 = T*"TN"7 5.37
- , (5.37)
where
i: J— ’i,’Y Yy 7;”7 i#’y 7;”7 T
N Y — (nl ...nq7 Cll ...qu ClK...CqK) , (538)
AT = [y] ™t = ALY — AS™Y = BAFY + (1= B)AF™) | AN - A%
T — Br(ATT + AR “MIe 0
5K(AFW"+ AFHY) I —X‘;{J
(5.39)
and -
Aln’mw = <¢zl aFoﬁb ) ALW <¢zl ,5[/(15 1)
AST = (3,659],), AF = (8111, 6F'¢]), (5.40)
Cz}g = <¢zz , XCk), AZZ = <¢zz ) )

where as before, the operators 6L?, §S° and §F" also change into the interval
[tistiva].

To reconstruct the initial conditions for n%Y at time t;, a process equal to the
A-modes updating is applied but in this case the value of n} is computed as

(@7}, (F' = S1)®(t:))
<¢z m’( - SZ)¢Zm> ’

because of the orthogonality between the adjoint y-modes and the direct y-modes
is satisfied for the inner product associated with the matrix (F* — S*).

o (ti) =
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dent neutron diffusion equation

Likewise, the concentration of precursors at time ¢; can be computed as

q
t) =D ag, i (t),
m=1
where ; 4
5 <¢% (Fl_ Sl 1)¢z 1m>
Im — .
<¢z 1m’<F2 ! Sl 1) i— 1m>

Finally, for the a-modes, it is solved in each time-step [t;,t;+1] the eigenvalue

problem

(F'+ 8" = LS, = qin[V] ™ 0] s (5.41)
For this case, the differential equations are of the form
iNi,a _ Ti,aNi,a (5 42)
dt N ’ ‘
where .
N = (i ompt el e dpedi) (43)
(] — ALY — ASH — AR 4 (1 - B)AF™™ | ] A
e — Bi(AT! + AFD) —A{I 0 . (5.44)
Bre(AF= 4 AFH2) 0 AT
and P ‘
At = <¢zl  F595), ALy, = <¢zl LG,
AS = (071, 85708), AFT = (875, 6Fi ), (5.45)

C’li}ga = <¢zl 7XC/<3>

where as the previous cases, the operators dL¢, 55 and 6 F" also change into the

interval [t;, ;1]
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5.6 Numerical results for the updated modal method

To reconstruct the initial conditions for n’® at time t;, the value of n%® is
computed as

(Soms [V 2(2)

’n’i;za t;) = L )
) (@5t V102,

because of the orthogonality between the adjoint a-modes and the direct a-modes
is satisfied for the inner product associated with the matrix [V ~1].

The concentration of precursors at time ¢; is computed as

q
i— 1a
Clk: Ay © M.k ti),
m=1

where

N i U e
Ay = a,t 11 .
(D52 VO 1)

i—1,m

5.6 Numerical results for the updated modal method

Numerical results in Section 5.4 have shown that the modal methodology without
updating needs a high number of modes to obtain accurate results. In the follow-
ing, the updated modal method is studied using the two transients defined for the
Langenbuch reactor (Appendix B.3): the out-of-phase sinusoidal perturbation
on the fission cross-sections (Langenbuch-OPP transient) and the movement of
the control rods (Langenbuch-CRM transient).

In the case of the updated modal method, the hybrid method, that is used to
compute the solution of the eigenvalue problems at each time-step t;, has been
initialized from the solutions computed in the previous time-step t;_1.

5.6.1 Langenbuch-OPP transient. Out-of-phase perturbation

The evolution of the global power computed with the backward differential
method (BKM) with At = 0.001 s and with the updated modal method with
several fix time-steps At is represented in Figure 5.15. The updated modal
method for the different types of modes is applied with 3 modes. It is observed
that large errors between the BKM and the updated modal method are produced
when the perturbations reach their maximums. However, these differences are
reduced for small time-steps. The behaviour of the modal methods using the
different spatial modes is the same.
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Figure 5.15: Average relative power computed with the updated modal method with 3
modes for the Langenbuch-OPP transient.

We analyze the local error (difference between the power obtained with the BKM
and the modal method) for some settings of the updated modal method. Table 5.6
shows that small time-steps in the updating gives more accurate approximations.
In contrast, the CPU times are also higher. Good approximations are obtained

154



5.6 Numerical results for the updated modal method

with updating time-steps equal to 0.2 s. However, these parameters can change
for other reactor computations. The Table shows more efficient results for the A
modal method. Figure 5.16 represents the local error along the time for the A
modal method for several time-steps. It shows non-uniform errors along the time
and high values for the errors near to the extremes of the power (maximums
and minimums) and before to the modal updating. The same conclusions for
the error are obtained by using the a and v modal expansions.

Table 5.6: Performance of the Updated modal method with fixed time-step.

N. eigs. (¢) At MPE CPU Time

A-modes

3 0.05 s 1.50e-03 45 min
3 0.10 s 3.29e-03 25 min
3 0.20 s 7.41e-03 13 min
3 0.40 s 2.00e-02 6 min
v-modes

3 0.10 s 3.30e-03 30 min
3 0.20 s 7.51e-03 17 min
3 0.40 s 2.03e-02 7 min
a-modes

3 0.10 s 5.56e-03 41 min
3 0.20 s 7.74e-03 24 min
3 0.40 s 2.11e-02 11 min
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Figure 5.16: Evolution of local error in the Langenbuch-OPP transient in the A updated
modal method with the A-modes.

5.6.2 Langenbuch-CRM transient. Control rods movement

In this Section, the updated modal methodology is analyzed for the transient de-
fined from the control rods movement in the Langenbuch reactor (Appendix B.3).
In this transient, only the modal method for the A-modes and the y-modes is
presented because when the reactor is supercritical, it is very difficult to obtain
a convergence in the eigenvalue solvers for the a-modes. The updated modal
method for the A and v-modes is applied with 1 mode because it is enough to
describe this transient.

Figure 5.17 represents the evolution of the power computed with the backward
differential method with At = 0.01 s and with the A modal method with several
fix time-steps. The errors in the global power between the BKM and the updated
modal method are mainly produced at the maximum of the relative power. These
differences are reduced as the time-steps decrease. Same distribution is obtained
with the v-modes expansion. Note that, in this transient the errors are much
smaller than the ones obtained for the Langenbuch-OPP transient.

Table 5.7 displays some relevant data for the updated modal method for the A
and ~-modes to quantify the errors with the BKM and to compare the different
spatial modes expansions. As the graphic has showed, the errors are smaller as
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Figure 5.17: Evolution of the relative power computed with the updated modal method
with 1 A-modes for the Langenbuch-CRM transient.

the time-step is reduced. For the v-modes cases, lightly small errors are obtained,
but the CPU times are higher than for the A modal cases.

Table 5.7: Performance of the updated modal method with fixed time-step in the Langenbuch-
CRM transient.

N. eigs. (q) At MPE CPU Time

A-modes

1 1.0 s 7.59e-04 16 min
1 20s 1.33e-03 10 min
1 5.0s 5.60e-03 4 min
1 10.0s 1.73e-02 2.5 min
y-modes

1 1.0s 7.47e-04 23 min
1 2.0s 1.25e-03 13 min
1 5.0s 5.55e-03 6 min
1 10.0s 1.72e-02 3.5 min

The evolution of the local error obtained with the A updated modal method
with several fix time-steps can be observed in Figure 5.18. The local error in the
power increases along the time until ¢ &~ 40 s and then, it decreases. It can also
observe that the errors decrease just at times in which the A-mode is updated.
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Figure 5.18: Evolution of local error in the Langenbuch-CRM transient with the updated
modal method and one A-mode.

5.7 Adaptive modal method

The updating with a fix time-step (At) implies several limitations. First, one
needs to select a time-step previously that leads to obtaining results with
unpredictable errors. If, one sets the method with a small time-step to ensure
good approximations may not be necessary for some stages of the transient.
Moreover, the computational cost also increases, since most of the time in the
modal computation is spent in the solutions of the eigenvalue problems. On the
other hand, if we use large time-steps, we could obtain not very accurate results.
For these reasons, there is a big interest to implement an adaptive control of
the time-step for the updated modal methods that selects the time-step for the
modes updating according to the transient analyzed. To do so, there are two
fundamental issues that are needed to study:

1. The error estimation due to the modal expansion assumption.

2. A suitable constraint to select the time-step based on the error estimation.

Several approaches are considered in the following subsections.
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5.7 Adaptive modal method

5.7.1 Estimate of the local error of shape

After applying the modal methodology, the error that it is obtained comes
(essentially) from the assumption that the neutronic flux can be described as a
finite linear combination of the spatial modes, since they do not form a complete
basis of the function space. It is reasonable to assume that larger variations in
the flux will imply larger errors in the modal method.

The first error estimate is based on the difference between eigenfunctions. This
approach will be called the modal difference error. One can compute the modes
in the next time-step to predict how the total flux will change. According to the
difference with the previous modes, one can define an error as

i ||¢z 1,m zmHlk

= Imax

Emd d
" m quz 1m”1 "

where k4 is a constant to adjust the accuracy of the approximation. Its value
will depend on the transient analyzed.

The previous estimation requires to compute eigenvalue problems to estimate
the error, that it can be computationally very expensive.

The second approach is based on the residual error that appears when the actual
modes are substituted on the problem in other time step. Larger residual errors
are obtained when the eigenfunctions change more spatially. For that, we define
the modal residual error as

— max HA(SZQSz 1,m 5:;1B57i¢?—1,m”1k
mr — mr
" 1631 m 1 ’

where k,,, is the constant for this type of error.

Finally, we assume that the flux along the time will change depending on
the variation in the cross-sections. For this reason, we define the cross-section
perturbation error as

ZHXSI H(e) = XS'()lh
i—1 k:rsa
IXS™ ()l

c
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where k,, is the accuracy constant, the value of ¢ denotes the cell ¢ of the reactor
and XS, one cross-section type that depends on the perturbation applied to
the transient. This estimation is the cheapest estimation and it is used in other
neutronic codes. Note that same cross-section perturbation error are obtained
when a cross-section is increased or decreased with the same value, but the
response in the relative power is not the same.

5.7.2 Control algorithm for the shape time steps

Once the error estimation is selected, it is necessary to define the control algorithm
to compute the time-step from the error estimation. For that, we have studied
two strategies.

The first one depends on the error in the previous step in a fixed way. It is called
as banded time-step control. If the error is greater than some value max;., the
step-time is divided by 2. On the other hand, if the error is lower than other
value min;., the next step-time is multiplied by 2. For errors between min;. and
maxi., the step-time remains constant. It can be written as

Ati*l k 27 e< minle,
At; = At;_q, minge < € < Matie, (5-46)
Ati_1/2, mazy < €,

where ¢ is some error estimation presented in the previous Section. The values
of min;. and max;. are reactor dependent. In the numerical results cases, the
value of min; has been fix to 1.0 and the value of max;. = 2.0.

The second option to select the time-step is based on the control algorithms
defined for other differential methods implemented for stiff problems (Wanner
and Hairer, 1996). It is called as dynamic time-step control. In particular, we
obtain the step At; as

At; = At;_; min{2.0, max{0.5,/1.0/e}}, (5.47)

where € is some error defined in Section 5.7.1.
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5.8 Numerical results for the adaptive updated modal method

Numerical results in Section 5.6 have shown that the updated modal methodology
with fix time-steps requires to use small time-steps to obtain accurate approx-
imations in some instants of the transients. However, there are also moments
where these small time-step are not necessary. In the following, the performance
of the adaptive updated modal method is studied for the transients defined for
the Langenbuch reactor: the Langenbuch-OPP transient and Langenbuch-CRM
transient. As in the updated modal method, the hybrid method, that is used to
compute the solution of the eigenvalue problems at each time-step t;, has been
initialized from the solutions computed in the previous time-step ¢;_1.

5.8.1 Langenbuch-OPP transient. Out-of-phase perturbation

In this Section, the adaptive updated modal methodology with the A-modes for
the out-of-phase perturbation is studied. The number of modes for the modal
method has been set to 3.

The initial time-step for all strategies has been set to Aty = 0.05 s. The accuracy
coefficients for the errors has been k,,q = 1.0, k,,, = 100 and k., = 1.0. The
cross-section used for the cross-section perturbation error has been the fission
cross-section. Table 5.8 shows the Mean Power Errors and CPU times obtained
by setting the different error estimations and control errors with three A-modes.
One can deduce that the modal difference error (emq) is not very efficient
because it needs to compute the modes to estimate the error and it is very
expensive. Regarding the other error estimations, the cross-section perturbation
error (€m,,) gives lower errors, but in more time than the modal residual error.
If the type of control error is compared, in general, the dynamic control gives
better approximations than the banded control. Figure 5.19 shows the time-steps
obtained for each one of the settings. It can be observed a similar behaviour in the
computation of the time-step for the modal residual error and the cross-section
perturbation error, but for this last error, the time-steps computed are slightly
smaller.

If we compare the local error for the updated modal method with fixed At = 0.1s
and for the adaptive modal method with the modal residual error and dynamic
control time-step, both strategies obtain similar mean power errors (MPE ~
3-1073) but with the adaptive control time-step the results are obtained in less
time. Figure 5.20 displays the evolution of the local error in these two cases.
More distributed errors are obtained by using an adaptive time-step control.
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Table 5.8: Errors and CPU time obtained with the adaptive time-step modal method for
the Langenbuch-OPP transient.

Banded Control Dynamic Control
Type of Error MPE CPU Time MPE CPU Time
Emd 4.14e-03 30min 1.06e-02 38 min
Emr 2.49e-03 21min 2.50e-03 21 min
Eus 1.82e-03 30min 1.28e-03 43 min
0.45 ; ; : 0.45
ol €y -Banded | 0l €y -Dynamic |
—e—¢, -Banded —e—¢, -Dynamic
035 1 e, Banded |7 03¢ ¢,s-Dynamic
03t 1 oaf
025 | 1 025t
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Figure 5.19: Evolution of the At in the adaptive time-step control for the Langenbuch-OPP
transient.

Finally, all types of modal strategies with the A-modes and the BKM are compared
in Table 5.9. All modal methods are set with 3 eigenvalues. The updated modal
method with fixed time-step is set with At = 0.1s. The results of the adaptive
updated modal method are obtained with initial time-step Aty = 0.05 s, modal
residual error and dynamic control time-step. Table shows that the adaptive
updated modal methods gives the most accurate results with a CPU time smaller
than the obtained with the updated modal method with fixed time-step. Modal
methods reduce considerably the CPU time obtained with the BKM.
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Figure 5.20: Comparison of the evolution of the local error with the fixed updated modal
method and the adaptive updated modal method for the Langenbuch-OPP transient.

Table 5.9: Errors and CPU time obtained to integrate the Langenbuch-OPP transient.

Updated Adaptive
BKM Modal Modal Upd. Mod.

MPE 1.34e-02 3.29e-03 2.49e-03
CPU Time 232 min 1.5 min 25 min 21 min

5.8.2 Langenbuch-CRM transient. Control rods movement

The adaptive updated modal methodology is analyzed for the Langenbuch-CRM
transient only for the A-modes. In this reactor, only one mode is used in the
modal expansion.

The initial time-step for all strategies has been set to Aty = 1.0 s. The accuracy
coefficients for the errors has been k,,q = 1.0, k,,,, = 300 and k,; = 1.0. The
cross-section used for the cross-section perturbation error has been the absorption
cross-section because the insertion of control rods in this benchmark only changes
this cross-section.

Table 5.10 shows the Mean Power Errors and CPU times obtained by setting
the different error estimations and control time-steps with one A-mode. As the
previous transient, the modal difference error (€,,4) is not very efficient. Between
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the other error estimations, the cross-section perturbation error (e,5) gives better
results in less time. If the type of control error is compared, there are not relevant
differences between the dynamic control and banded control. Figure 5.21 shows
the time-steps obtained for each one of the settings. It is deduced that the
modal residual error decreases the time-step when the local error is higher, while
the cross-section perturbation error and the modal difference error reduce the
time-step when the perturbation in the cross-section is higher.

Table 5.10: Errors and CPU time obtained with the adaptive time-step modal method for
the Langenbuch-CRM transient.

Banded Control Dynamic Control
Type of Error MPE CPU Time MPE CPU Time
Emd 3.5e-03 10.7 min 9.6e-03 14.6 min
Emr 2.0e-03 8.2 min 1.8e-03 8.9 min
Exs 2.5e-03 6.5 min 1.7e-03 8.3 min
12 T 12
——€g -Banded _._Emd -Dynamic
10 - ——c -Banded | | 10 | _._Emr-Dynamic 1
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8 8
g 61 g6
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Figure 5.21: Evolution of the At in the adaptive time-step control for the Langenbuch-CRM
transient.

If we compare the results obtained with the fixed updated modal method (Ta-
ble 5.7) with the adaptive updated modal method, one can deduce that similar
errors with less CPU time are obtained with the adaptive modal method. Fig-
ure 5.22 displays the local error for the updated modal method with fixed At
and for the adaptive modal method with the modal residual error and dynamic
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control time-step. More distributed errors are obtained by using an adaptive
time-step control in spite of the MPE for the fixed modal method is smaller.
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Figure 5.22: Comparison of the evolution of the local error with the fixed updated modal
method and the adaptive updated modal method for the Langenbuch-CRM transient.

Finally, all types of modal strategies with the A-modes and the BKM are compared
in Table 5.11. All modal methods are set with 1 eigenvalue. The updated modal
method with fixed time-step is set with At = 2.0s. The results of the adaptive
updated modal method are obtained with initial time-step Aty = 1.0 s, modal
residual error and dynamic control time-step. Table shows similar errors between
the updated modal method with fixed and adaptive time-step, but in the last
case in less CPU Time. Modal methods reduce considerably the CPU time
obtained with the BKM.

Table 5.11: Errors and CPU time obtained to integrate the Langenbuch-CRM transient.

Updated Adaptive
BKM Modal Modal Upd. Mod.

MPE 1.0e-01 1.3e-03 1.7e-03
CPU Time 744 min 1.5 min 10 min 8.3 min
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CHAPTER

CONCLUSIONS

The neutron transport equations describes the distribution of the neutron pop-
ulation in a nuclear reactor. A fast and accurate solution is essential for the
design and safe operation of a nuclear reactor and other nuclear systems. As
the solution of this equation is not straightforward, numerical approximations
must be considered. In this thesis, different methodologies have been studied and
implemented to integrate efficiently the multigroup neutron diffusion equation
and the simplified spherical harmonics equation.

Chapter 3 has presented the high order finite element method to spatially dis-
cretize the steady-state approximations. First, the algebraic expressions have
been obtained for the spatial modes associated with the neutron diffusion equa-
tion. Small numerical errors have been obtained using polynomial degrees larger
or equal to 2 in the finite element method, for each kind of spatial mode. If
the type of modes is compared, several remarks can be deduced. For critical
configurations of reactors, the spatial distribution of the first eigenfunction cor-
responding to the dominant eigenvalue is equal, but the spatial distributions for
the next eigenfunctions are very different. In subcritical configurations, the first
eigenfunctions are not equal. However, while for the A and v-modes, the spatial
distribution does not change very much between them, for the a-modes case,
this difference is more evident. Furthermore, the differences between the spatial
distribution in critical state and the spatial distribution in subcritical states are
higher in a-modes than for the rest of the spatial modes. With respect to the
spectrum of the modes, this is more clustered for the y-modes case.
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Chapter 6. Conclusions

For the SPyx equations, a set of A-modes have been computed with different type
of meshes. The SPy equations have been proven to be a useful approximation to
the neutron transport equation especially for full core nuclear reactor calculations.
Accurate results are obtained with polynomial degrees larger or equal to 2 in
the finite element discretization. The conclusions for two-dimensional and three-
dimensional reactors are the same, but for the three-dimensional case the size of
the problem rises enormously.

Chapter 4 presents and compares different methodologies to solve the generalized
eigenvalue problems obtained from the finite element discretization. First, the
computation of the spatial modes are compared. The a-modes, in critical config-
urations, gives an ill-conditioned matrix, since the eigenvalues are close to zero.
Thus, the CPU time needed to solve any lineal systems with the matrix associated
with these modes is higher than the time for better conditioned matrices that
appear in the other modes. Consequently, computing a-modes with eigensolvers,
that need to solve many lineal systems with this matrix, as the Krylov-Schur
method, is not reasonable. For subcritical configurations, the matrices become
better conditioned, but the computational times remain larger than for the
A-modes. The matrices associated with the v-modes are well-conditioned. Never-
theless, for the same configuration their eigenvalue spectrum is more clustered
than the one obtained for A and a-modes. Thus, in general, the convergence of the
eigensolvers is slower than the convergence of the A and the a-modes. Therefore,
A-modes can be computed faster than the rest of the spatial modes. Near of
reactor criticality, the eigenfunctions associated with the different spatial modes
are similar. Thus, the A-modes can be used as initial guess for the eigensolvers
to compute the v and a-modes. This initialization strategy, together with one of
the two generalizations of the modified block Newton method proposed in this
thesis, has been shown to be more efficient than computing the v and a-modes
directly.

Second, in this Chapter, two block methods to solve the A-modes problem
obtained from the discretization of the neutron diffusion equation have been
studied. Both methods have been defined for generalized eigenvalue problems.
Moreover, a block multilevel technique has been proposed to initialize both
methods that improves the convergence rate of the methods with hardly any
overrun. The first method is the block inverse free preconditioned Arnoldi
method (BIFPAM), where the efficiency of using a preconditioner has been
studied. In particular, the ILU(0) preconditioner and a geometrical multigrid
preconditioner (GMG) have been used obtaining similar computional times for
dimensions in the Krylov subspace of 8 and 4, respectively. The second block
method has been the modified generalized block Newton method. This method
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does not require to solve many linear systems, but these systems need to be
previously preconditioned. Different block preconditioners have been studied
as an alternative to assemble the full matrix and construct a preconditioner in
each iteration. The preconditioners proposed in this work break down the setup
cost at the price of a slight increase of the number of iterations. The result is a
significant reduction of the total CPU time needed to reach the convergence and
the memory occupancy. Moreover, a hybrid scheme is proposed combining these
previous methods that improves the robustness and the computational times.
Numerical tests indicate too that the block hybrid method is more efficient than
other competitive methods as the Krylov-Schur method and the Generalized
Davidson method. Moreover, it is more efficient in the computation of one
eigenvalue that the power iteration method, very used in nuclear computations.

The block structure of the matrices permits different strategies of the allocations
in the matrices as well as to introduce a matrix-free implementation in the code.
A good option for two energy groups diffusion computations is the non-diagonal
strategy that only saves the diagonal blocks of the matrices reducing enormously
the CPU time, removing the time to assemble the full matrices and improving
the velocity of matrix-vector computations for degrees in the FEM higher than
2. The differences increase when the size of the problem is larger. For this type
of implementation the Block Gauss-Seidel is used (instead the ILU(0)). A full
matriz-free allocation for diffusion computations is not efficient because, at the
moment, the matrix-free preconditioners are not competitive for medium size
problems.

To end this Chapter, the eigenvalue solvers are tested to compute the A-modes as-
sociated with the SPy equations for the C5G7 benchmark in the two-dimensional
and three-dimensional version. First, an initialization based on using the solution
of the SPx problem with N = 1 and linear shape functions in FEM (Multilevel-
fem-spn) is proposed. It only takes a small percentage of the total CPU time
to solve the problem and improves considerably the convergence of the block
methods. The number of energy groups in the numerical problems is seven. Thus,
the non-diagonal matrix allocation is used to compare the eigenvalue solvers.
The preconditioner used in the numerical computations has been the Block
Gauss-Seidel. The block inverse-free preconditioner Arnoldi method (BIFPAM)
has been the most efficient option compared with the standard power itera-
tion method, the Krylov-Schur method, the generalized Davidson method, the
modified generalized block Newton method (MGBNM) and the hybrid method.
In this case, the block Gauss-Seidel preconditioner separates the spectrum of
matrices better than for diffusion calculations. Thus, the rate of convergence
of the BIFPAM is higher than for the MGBNM. The computational efficiency
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improves as the problem is higher. Furthermore, the full matriz-free imple-
mentation is used to compute the A-modes associated with the SPyN equations
with the BIFPAM method and the Block Gauss-Seidel preconditioner with the
conjugate gradient and the multilevel-fem-spn preconditioner in their diagonal
blocks. Numerical results show for all cases a huge reduction of the computational
memory in the running. The multilevel-fem-spn preconditioner is not as efficient
as the ILU(0) preconditioner. However, this strategy reduces the CPU times for
three-dimensional problems with cubic polynomials in the FEM.

Chapter 5 presents different modal kinetic methods to integrate the time depen-
dent neutron diffusion equation. In particular, the A, the v and the a-modes
problem to develop this methodology. From the obtained results, we can highlight
the following conclusions. A modal kinetics with more than one eigenvalue is
necessary to describe some types of transient such as the out-of-phase oscillations
or the local perturbations. For symmetric control bars movements, only one
eigenvalue is required in the expansions. However, these modal kinetics give more
accurate results when the number of eigenvalues considered is larger. The largest
differences in the power evolution between the backward differential method
BKM solution and the modal approximations solutions are mainly when the
spatial distribution of the power is more different from the power distribution of
the reactor in steady state. The CPU times obtained with the BKM and the
CPU times obtained with the different modal expansions show that the modal
methodology is a faster strategy to obtain the solution in the time-dependent
problems analyzed. Regarding the different spatial modes used in the modal
expansions, we have not observed meaningful differences between the results in
terms of the total power evolution of the transients studied. However, there are
some differences in the stiffness of the resulting dynamical systems associated
with the modal kinetics for each kind of mode. The differential systems associated
with the a-modes and the y-modes are not as stiff as the systems obtained using
the A-modes. Nevertheless, as the A-modes are cheaper to be computed than the
rest of the modes, the A modal kinetics gives the approximations in less time.

To obtain better approximations without using a high number of modes the
updated modal method is developed where the eigenfunctions have been updated
along the transient. Small steps of time are necessary to ensure good accuracy
in the approximations. There are not high differences between the type of mode
used. The smallest CPU times are also obtained with the A-modes. To avoid
the previous selection of the fixed time-step, an adaptive control time-step has
been proposed. This control is adapted depending on the error in the modal
functions. Different error estimations and type of controls are defined for the
modal methodology. Better results are obtained with an error estimation based
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on the residual error on the generalized eigenvalue problem. With respect to the
type of control, the dynamic control error is adapted more to the local errors.
The results show that the adaptive updated modal method decreases the errors
with the same CPU times than the updated modal method with fixed time-step,
but also it obtains more distributed local errors over the time.

6.1 Future work

As future work of this thesis, the following ideas can be developed.

o In spite of the computation of the @ and y-modes is more expensive than for
the A-modes, they are shown very useful in many neutron applications. In
future, the definition and study of the a and y-modes for the SPy equations
will be proposed.

e For the SPy equations, the block Gauss-Seidel preconditioner to solve the
linear systems in the MGBNM is not as efficient as for diffusion computa-
tions. Thus, future works are being devoted to design alternatives block
preconditioners.

e The matrix-free implementation reduces the CPU memory and for high
degrees of the polynomial in FEM reduces also the CPU times. Other works
have proved that the efficiency of this technique improves with more than
one processor. Thus, the parallelization of the code with GPUs is being
developed. This technique, mainly with the full matrix-free implementation,
requires efficient preconditioners that are not based on the factorization of
the matrices. The implementation of the multilevel-fem-spn preconditioner
will be improved.

e The backward differential method needs to solve many linear systems.
For this reason, the CPU time to obtain an approximate solution for
transients is very high. A future implementation of the code will introduce
a methodology based on low-rank updates of preconditioners for sequences
of linear systems.

¢ The modal methodology has been shown to be an efficient methodology
to integrate the neutron diffusion equation. Future works, we will extend
this study to integrate the SPy equations (or other approximations of the
neutron transport equations) in order to test benchmark problems such as
the time-dependent C5G7-TD.
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Chapter 6. Conclusions

¢ In realistic transient reactors, the neutronic computations are highly de-
pendent on thermal-hydraulic variables. Future works will be devoted for
the coupling of the code developed in this thesis with a thermal-hydraulic
feedback.
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APPENDIX

ANALYTICAL SOLUTIONS FOR 3D
HOMOGENEOUS REACTORS

A.1 Analytical solution for \-modes problem

A 3D prismatic homogeneous reactor is considered. The A-modes problem asso-
ciated to the two energy groups neutron diffusion equation for a tridimensional
domain, V' = [0, L,] x [0, L,] x [0, L.], is defined as

- - 1
— VD1V + (a1 + Es12)01 = X(szﬂh + v fo1ha), (A.1)
— Sa9t1 — VDyVihy + Sagthy = 0, (A.2)

with the boundary conditions

w9(07y7z) = wg(LI7y72) = 07
wg(%ovz) = wg(vayvz) =0, g=12
Yg(x,y,0) = thy(z,y, L:) = 0,

Using the variables separation method leads to decompose the solution as

1/)9(1'7% Z) = Xg(a:)Yg(y)Zg(z), g=12, (AS)
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then, the solutions of thermal group can be obtained imposing that

A’ X, dY, 4>z,
dz2 (CE) = _Bg,mXQ(‘r)v dy2 (y) = 2 Yv?(y) dz2 (Z) = _BipZQ(Z)a
(A.4)
with

X3(0) = Xo(Ln) = Y2(0) = Ya(L2) = Z2(0) = Z3(L3) = 0. (A.5)

These functions have the general form,

Xom(x) = Cysin (Bymz) , m=1,2,...
Y5, (y) = Cysin (By,y) , n=12...
Zop(z) = C,sin (B, ,z), p=1,2,...

where
Bz,m = - By,n = T Bz,p =7 - (A6)

Different values of the integer numbers m, n and p correspond to the different
eigenvalues and the corresponding eigenfunctions of the reactor. The thermal
group eigenfunctions are,

. (mT nm P
o(z,y,z) = ksin < I, ac) sin <L2 > sin (L3 ) , (A.7)
so that
V(2. y, 2) = =By, pt2(2, 9, 2), (A8)
where
2 2 2 2
anp = Bm,m + By,n + Bz,p‘ (Ag)

From (A.2), it is obtained

D2B7277’7n7p + EG’Q
Z312

W (z,y,2) = Yo(z,y, 2). (A.10)

If the Equation (A.10) is replaced in (A.1) and it is simplified, it is derived that
the eigenvalues A are of the form,

I/Efl(Dng%n’p + Eaz) + VEfQEslg

A= .
(D2B72n np + EaQ)(Zal + YMg12 + DlB’?n,n,p)
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A.2 Analytical solution for v-modes problem

To obtain the value of the constant & of the fluxes (Equation (A.7)), the following
normalization condition is imposed,

1
= Vt/v(zfﬂlm + Bpalba|) dV. (A.11)

In this case,

1 DyB2, .+ Sa2
1= )y ks by / dv.
LxLyLZ ( f1 ( 2512 + f2 V|¢2(I7y7z)‘

It can be proved, that

8L, L L,
/ |o(z,y, 2)| AV = k——"— Ym,n,p=1,2,..., (A.12)

to obtain,

PR U Yis12
8 z:fl(IDZ mnp+2a2)+25122f2 .

A.2 Analytical solution for v-modes problem

The y-modes problem for a tridimensional domain, V' = [0, L,] x [0, L,] x [0, L.],
is defined as,

o . 1

— VDV + (Ba1 + Zs12)p1 = ;(szl(bl + v f202), (A.13)
N _ 1

— VDyVy + Ypapo = 52512%7 (A.14)

with the boundary conditions

¢g(0a Y, Z) = ¢g(Lz7y72) =0,
¢9<x7072) = ¢g(x7 Ly’z) =0, g=1,2.
¢9($7y5 0) = (bg(xvya LZ) - 07

The solution of y-modes problem is obtained by using the variables separation
method following an analogous process to the one used for the A-modes problem.
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For this problem we get,

o2(x,y,z) = ksin (nl:mx) sin <7z7ry) sin (Tz) , (A.15)
T Y z
Y(B2, . pD2 + a2)
¢1($,y,2) = ; 7; 1 (]52(33‘,1[/,2), (A]'G)

with m,n,p € N.

The eigenvalue « is a solution of the second degree equation

{Dlen,n,p(Dngm,p + Za2) + (Za1 + Ta2)(D2By, , + ZaQ} 0%

- {szl(DQBzmn,p + ZaQ)] Y= Z5)’12V2f2 =0,

and Bfn’n’p is defined in Subsection A.1. In typical reactors, the two solutions of
this equation are real and they are sorted by largest magnitude. Different values

of m, n, p correspond to different modes and eigenfunctions of the reactor.

To obtain the value of the constant k of the fluxes, the condition of that the
mean power production has to be equal to 1 (Eq. A.11) is imposed to get

P ( 212 ) . (A.17)

8 Zfl’y(DQB?n,n,p + EaZ) + ZSIZEfZ

A.3 Analytical solution for a-modes problem

The a-modes problem for a three-dimensional domain, V' = [0, L,| x [0, L,]
[0, L], is defined as,

V1 (§D1ﬁg01 — (E,ﬂ + 2312)4,01 + I/Eflg01 + VEfQLpg) = apr, (A.18)
2 (Zs12¢01 + VDo Vs — aaa) = aupa, (A.19)

with the boundary conditions

@g(oay’z) = 9057([/1:’97 Z) =0,
909(553072) = Sog(vayaZ) =0, g=12.
909(1‘7:% 0) = (pg(xay7Lz) =0,

192



A.8 Analytical solution for a-modes problem

Using a similar procedure to the one followed for the other modes yields to the
analytical solution of the a-modes problem

wo(x,y, z) = ksin (Tz) sin (Zy) sin (itz) , (A.20)
B2, v9Ds + 19349 +
o1(z,y,2) = P wa(z,y, 2), (A.21)
V22512

where m,n,p € N.

The eigenvalues « are solutions of

a? + [B?nyn’pngg + X0 — v1VE (A.22)
+v1(Ba1 + Xs12) + ”U1D1B?n,n,p]04 (A.23)
+v1D1 B}, . (B, pv2Da 4 v3542) (A.24)
+ 01(Za1 + Ss12) (B, 02 D2 + 12502) (A.25)
— (nivEp (B,,2n7n’p/02D2 + v2842) + V2Xs12v1vE s = 0, (A.26)

and Bfmn’p is defined in Subsection A.1. If typical mrosacroscopic cross sections
are used, the two solutions of this equation are real numbers. Different eigenvalues
are obtained changing the value of m, n and p.

The value of the constant k for these modes (Equation (A.20)) is,

L — ™ V23512
B 8 Zfl(B?n,n,pUQDQ + v2da2 + Oé) + U223122f2 )
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APPENDIX

BENCHMARKS DEFINITIONS

Reactor benchmarks, based on well defined problems with a complete set of input
data and a unique solution, are widely used and accepted means of verifying
the reliability of numerical simulations, i.e. to validate the accuracy, stability
and efficiency of numerical nuclear codes. Problems are often very testing, but
tend to be somewhat simplified, in order to make the analysis manageable to
compare different models. Several realistic benchmarks have been defined in the
literature. For completion purposes the definitions of the benchmarks used in
this thesis are reproduced in here.

B.1 3D Homogeneous reactor

This is a three-dimensional prismatic reactor with a homogeneous material.
The dimensions are 300 cm x 300 cm x 450 cm. The material cross sections are
displayed in Table B.1. The velocities are v; = 2.8:107cm/s and vy = 4.4-10°cm/s.
The number of neutron produced by fission () has been considered constant in
the reactor core and equal to 2.5. The boundary conditions are zero flux at the
boundary.
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Table B.1: Macroscopic cross section values for the homogeneous reactor.

Material g Dgy(cm) Yaglem™) Xy (em™)  Xggg41(cm?)

1 1.5015 9.4003e-03  1.6850e-02 1.0100e-01
2 4.3290e-01 8.2108e-02  6.0600e-03 -

Fuel

B.2 3D Cuboid reactor (Benchmark E)

This transient is based on a non homogeneous prismatic reactor. It is composed
of 72 equal nodes (3 x 3 x 8) of dimension 30 x 30 x 30 cm? whose distribution
is represented in Figure B.1. Table B.2 collects the material cross sections. The
constants associated with the the six groups of precursors are displayed in Table
B.3. The neutron velocities are vi= 10’cm/s and vo= 10°cm/s. The boundary
conditions are zero flux.

The transient analyzed has been defined from a time-dependent perturbation to
the fission cross sections of the material 1 so that the neutron power increases
during 2 seconds and then it decreases. The functions that define the time
evolution of the cross sections are

0.0122
0.01340976(1 + t), 0<t<2,
S (t) = 0.8
ven 0.0122
0.01381876(1 — (t—2)), 2<t<4,
0.0122
0.34239791 (1 + t), 0<t<2,
S (t) = 0.8
vEp 0.0122
0.35284104(1 — (t—2)), 2<t<4,

where v¥ ;1 and vXf; are measured in cm™! and ¢ in seconds.
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Figure B.1: Distribution of the materials for the cuboid reactor.

ﬁ

B.2 3D Cuboid reactor (Benchmark E)
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Table B.2: Material cross section for the cuboid reactor.

Mat. Group D, (cm) X4 (cm™) vEg, (em?) Iy (em™?)  ip (em™)
1 1 1.695310 0.0139530 0.01340976 0.01340976 0.0164444

2 0.409718 0.2614097  0.34239791  0.34239791 -
2 1 1.695310 0.0139954 0.01340976  0.01340976 0.0164444

2 0.409718 0.2614200 0.34239791  0.34239791 -
3 1 1.695310 0.0139523 0.01340976  0.01340976 0.0164444

2 0409718 0.2614095 0.34239791  0.34239791 -

Table B.3: Constants for the neutron precursors for the cuboid reactor.
Group 1 2 3 4 6
By 0.000247 0.0013845 0.001222 0.0026455 0.000832 0.000169
)\g(s‘l) 0.0127 0.0317 0.115 0.311 1.4 3.87
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B.3 Langenbuch benchmark

The Langenbuch transient (Langenbuch et al., 1977) is defined from a three-
dimensional small LWR reactor composed of 77 fuel assemblies and 40 modelling
the reflector as it is shown in Figure B.2. The fast resolution of the reactor makes
it an attractive test. Table B.2 exposes the materials cross-sections. Table B.5
displays the neutron precursors data. The velocities are v; = 1.25 - 107 cm/s
and vy = 2.5 - 10° cm/s. The value of v is assumed constant for all material and
energy group and equal to 2.5. Zero flux boundary values are applied at the
boundary. The assemblies in the spatial discretization have a size of 20 x 20x
20 cm?®. Two types of transient are defined for this type of reactor.

Transient 1. It has been defined by perturbing the fission cross sections of
material 1 represented in the Figure B.3 with striped pattern. We have defined
two types of local sinusoidal perturbations that are out of phase between them.
They are expressed as

Erg(t) = Bpog(t) + 0% 14(t) g=12 (B.1)
The perturbation 1, represented in the Figure B.3 as Py, is given by
6% 4(t) =5-10"*sin(w2rt)  g=1,2,
and the perturbation 2, denoted by P, is given by
68 4(t) =5-10" sin(w2nt +71)  g=1,2,
where w = 1.0 s

Transient 2. It has been initiated by the withdrawal of a bank of four partially
inserted control rods (C1 in Figure B.2) at a rate of 3 cm/s over 0 < ¢ < 26.7 s.
A second bank of control rods (C2 in Figure B.2) is inserted at the same rate
over 7.5 < t < 47.5 s. The transient is followed during 60 s. Figure B.4 represents
the profile at initial state, ¢t = 0.0 s, and the profile at ¢ = 60 s.
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20 cm
R[R[R[R[R|R|R[R|R
R[R[2[2[2[2]2|2[2|R|R] 20em
R[2[2[1[1|l1]1]2]2]R
R[2[1][6]1]1|1[6]1|2]R
R2111H1112R.C1
R21[1[6]1[1 2R
Rl2]1[1]1]1[1]1]1]2]r €2
R[2[1[6]1[1]18]1]2]R
R[2[2[1[1|l1]1]2]2]R
R|R[2[2[2[2|2]2]2|R|R
R|R|R|R|R/R|RR|R

Figure B.2: Distribution of the materials for the Langenbuch reactor.
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Figure B.3: Location of the perturbation areas for the transient 2.
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Table B.4: Cross sections data of the Langenbuch reactor.

Material Group D¢ Sag v3igg Ys12
(cm) (em™) (cm™) (em™)
1 — Fuel 1 1.423913  0.01040206  0.00647769  0.01755550
2 0.356306  0.08766217  0.11273280
2 — Fuel 1 1.425611  0.01099263  0.00750328  0.13780040
2 0.350574  0.09925634  0.01717768
R —Reflector 1 1.634227  0.00266057  0.00000000 0.02759693
2 0.264002  0.049363510  0.00000000
4,6 — Absorbent 1 1.423913  0.01095206  0.00647769  0.11273228
2 0.356306  0.09146217  0.01755550
5 — Reflector + 1 1.634227  0.00321050  0.00000000  0.02759693
Absorbent 2 0.264002  0.05316351  0.00000000

Table B.5: Neutron precursors data of the Langenbuch reactor.

Group (k) 1 2 3 4 5 6
Bk 0.000247 0.0013845 0.001222 0.0026455 0.000832 0.000169
Ad(s1) 0.0127 00317  0.115 0.311 1.4 3.87
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Figure B.4: Langenbuch profiles during the transient 1.
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B.4 NEACRP benchmark

B.4 NEACRP benchmark

A critical configuration of the NEACRP (case A1) benchmark is defined (Finne-
mann and Galati, 1991). The core is composed of 3978 assemblies where each
one measures radially 21.606 cm x 21.606 cm. Axially, the reactor has total
height of 427.3 cm divided into 18 layers, from bottom to top, 30.0 cm, 7.7 cm,
11.0 c¢m, 15.0 c¢m, 30.0 cm (10 layers), 12.8 cm. 12.8 ¢cm, 8.0 cm and 30 cm. The
definition of the radial geometry is shown in Figure B.5 and the axial profile
definition is presented in Figure B.6. The velocities are v; = 2.8 - 107 ¢cm/s and
vy = 4.4-10° cm/s. Zero boundary conditions are imposed.

(a) 3-17th plane (b) 18th plane

Figure B.5: Radial definition of the NEACRP Reactor.

B OBfN B B BB BB
(261474014014 ol1a 047 14l6[2
(2|6 udl7 /4o 140 14 o140 [4]7[1al6]2
(26147 4lofdofdolaolal7ia6]2
(2|6 ual7 /4o 140 14 o140 [4]7[1al6]2
2[6[14l7 4]0 014014 0l4]7 14 6|2
'2]6 4740 40140 fld o4 7 [id6]2
(2|6 udl7 /4o 140 [1d o [14 o [4]7[1al6]2
(26147 4]0 (40 fdolia0lal71al6[2
(2|6 udl7 4o 140 14 o [14/ o [4] 7[1al6]2
2[6 14l 7 4]0 14 014014 9/4]7 1 6|2
'2]6 14 740 [l o140 fia o4 7 [id6]2
(2|6l 7 /4o 14014 o {140 [4]7[1al6]2
(26147 4]0 (4o fd ol oal71al6[2
(2|6 udl7 /4o 140 1d o1 o[4]7[1al6]2
(26147 4lo[d0faolaolal71al6]2
2]6]45]4|5]45]|4|5[4]5(4]5]4]6|2
l2laafa]aa|a]a]afa]a]a]a]2]2]2]2

Figure B.6: Axial definition of the NEACRP reactor.
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Table B.6: Cross sections data of the NEACRP reactor.

Mat. g D Yag vi¥ig Yrg Ysgg+1
(cm) (em™t) (em™t) (em™t) (em™t)

1 1 5.9263e+00 2.6191e-04 0.0000e+00 0.0000e+00 2.7988e-02
2 8.2277e-01 1.9865e-01 0.0000e+00 0.0000e+00 -

2 1 1.1276e+00 1.1878e-03 0.0000e+00 0.0000e+00 2.3161e-02
2 1.6978e-01 1.9865e-01 0.0000e+00 0.0000e+00 -

3 1 1.1276e+00 1.1878e-03 0.0000e+00 0.0000e+00 2.0081e-02
2 1.6978e-01 1.9865e-01 0.0000e+00 0.0000e+00 -

4 1 1.4624e+00 8.4782e-03 5.0150e-03 6.1479¢-14 1.9684¢-02
2 3.9057e-01 6.2649¢-02 8.7684e-02 1.1515e-12 -

5 1 1.4637e+00 8.8239e-03 5.6085e-03 6.9275e-14 1.9435e-02
2 3.9489¢-01  7.0055e-02 1.0421e-01  1.3685e-12 -

6 1  1.4650e+00 9.1498e-03 6.1819¢-03 7.6811e-14 1.9195e-02
2 3.9855e-01 7.6924e-02 1.1951e-01  1.5694e-12 -

7 1 1.4641e+00 9.0882e-03 5.5830e-03 6.8996e-14 1.8525e-02
2 4.0582e-01 7.7758e-02 1.0286e-01  1.3509e-12 -

8 1 1.4641e+00 9.1752e-03 5.5741e-03 6.8913e-14 1.8221e-02
2 4.0950e-01 8.0371e-02 1.0229e-01 1.3433e-12 -

9 1 1.4642e+00 9.2609e-03 5.5649e-03 6.8817e-14 1.7919¢-02
2 4.1317e-01 &.2990e-02 1.0166e-01  1.3351e-12 -

10 1 1.4653e+00 9.4110e-03 6.1564e-03  7.6530e-14 1.8287e-02
2 4.0923e-01  8.4530e-02 1.1804e-01  1.5501e-12 -

11 1 1.4655e+00 9.4969e-03 6.1474e-03  7.6449e-14 1.7985e-02
2 4.1280e-01 8.7097e-02 1.1741e-01  1.5419e-12 -

12 1 5.5576e+00 2.7396e-03 0.0000e+00 0.0000e4+00 2.4796e-02
2 8.7000e-01  3.7064e-02 0.0000e-+00 0.0000e+00 -

13 1 5.6027e4+00 2.4190e-03 0.0000e+00 0.0000e+00 2.5209e-02
2 8.6358e-01 3.3753e-02 0.0000e+00 0.0000e+00 -

14 1 1.4389e¢+00 1.0956e-02 4.9121e-03 6.0265e-14 1.6492e-02
2 4.0090e-01 8.8237e¢-02 8.4861e-02 1.1145e-12 -

15 1 1.4413e+00 1.1579e-02 6.0592e-03 7.5335e-14 1.6053e-02
2 4.0669¢-01  1.0257e-01  1.1622e¢-01  1.5263e-12 -
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B.5 CbG7 benchmark

The configuration of the C5G7 benchmark (Lewis et al., 2001) consists of a
nuclear reactor core with MOX and UO; square fuel assemblies surrounded by a
moderator region. Each fuel assembly is made up of a 17 x 17 square pin level
cells. The side length of each pin cell is 1.26 cm and all fuel pins and guide tubes
have a 0.54 cm of radius. A single moderator composition (water) is given for
use in all of the pin cells and for use in the moderator (reflector) surrounding the
assemblies. For the two-dimensional domain, vacuum boundary conditions are
applied to the right and to the bottom of the geometry while reflected boundary
conditions are applied to the top and left of the geometry.

For the three-dimensional configuration, the Unrodded problem presented in
(Smith et al., 2006) is tested. It is composed of three fuel planes where each fuel
assembly has a height of 14.28 cm in the z direction and an additional water
reflector of 21.42 cm is added axially (Figure B.7). The z boundary conditions
are reflected below and vacuum above.

Vacuum B.C.

Moderator

21.42 cm 21.42 cm

21.42 cm

21.42 cm

U0,

14.28 cm

Reflective B.C.
Vacuum B.C.

U0,

14.28 cm

UO,

14.28 cm

Reflective B.C.

Figure B.7: Axial distribution for the 3D-C5G7 reactor.

The cross sections for each material are provided in (Lewis et al., 2001). A
complete description of the MOX and UQOs fuel assemblies, on the radial planes,
is shown in Figure B.8.
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Figure B.8: Material distribution of the C5G7 reactor.
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