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1 Abstract

Electric vehicles powered with batteries are already playing a significant role

in the transport and distribution of goods. Their characteristics differ respect

to petrol vehicles, such as cruising range, recharging time, energy regeneration

when braking. . .

This is why new models have been proposed to adapt the requirements of this

type of vehicles.

The model considered is similar and an adaptation of the Vehicle Routing

Problem with Pickup and Delivery (VRPPD) of G. Desaulniers, J. Desrosiers,

A. Erdmann, M. M. Solomon and F. Soumis. Nevertheless, these authors did

not consider electric vehicles and their constraints, but consider time windows,

which are not required to solve the studied problem. As the complexity of

the problem was high, they present different ways ideas in order to reduce the

search space. They suggest to use clustering algorithms proposed by F. Cullen,

J. Jarvis and D. Ratfliff to group nodes and simplify the problem. Some meta-

heuristics are also proposed by this aspect will be discuss in a following chapter

and deeper as a future approaches to keep developing the work done in this

thesis.

The original VRP considers a set of identical vehicles, based at a central depot.

R. Baldacci, M. Battarra and D. Vigo proposed a model of an heterogeneous

fleet of vehicles, similar to the one proposed, as different types of vehicles with

different capacities and autonomy of batteries are allowed.

Schneider, Stenger and Goeke made the Electric VRPTW with Recharging Sta-

tions adapting the Green VRP to Electric Vehiles (EV) and adding the time

windows constraints. The model proposed will be really similar to this one but

removing time windows, which simplifies the problem. The recharging prob-

lem complicates the problem as the recharging time depends on the battery

level. They also proposed some meta-heuristics to solve the problem that will

be exposed later. Crevier, Cordeau and Laporte, and Tarantilis, Zachariadis

and Kiranoudis have presented approaches where depot can be visited between

customers to restock in order to satisfy demand and capacity constraints. Nev-

ertheless, for the studied problem, as the depot is far away from the deliveries

zone, restock will be assumed as two different tours and then modelled in two

independent orders, which will also simplify the problem formulation. They also

consider multi depot, topic that will be discuss in the future approaches section
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and its convenience studied. G. Hiermann, J.Puchinger, S.Ropke and R.F.Hartl

at their work, propsed a formulation where a heterogeneous electric fleet routing

problem is modelled and solved. They also propose meta-heuristics to solve the

problem for large instances. The proposed model of this thesis will be similar

to the previous one, but once again without considering time windows.

Finally, the work done by A. Felipe, M.T. Ortuño, G.Righini and G.A.Tirado

will be also considered as they proposed a VRP with electric vehicles and al-

lowing partial recharges and several recharge technologies. They also propose

heuristics to solve the problem. For the studied case, two types (more can be

added) of recharging are allowed, electricity coming from the photovoltaic pan-

els and the one coming from the Italian electric network. Furthermore, partial

recharging is allowed as vehicle can just charge electricity to complete the de-

liveries and return to depot, always satisfying the minimum level of battery.
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2 Introduction

ZEDL (Zero Emissions Distribution Logistics) project aim is ‘to implement a

new logistic model with zero CO2 emissions, with perspectives of economic sav-

ing, in the ‘Zone a Traffico Limitato (ZTL) di ROMA’ with an integrated use of

renewable energies source and innovative technologies and warehouses equipped

with photovoltaic panels and recharging stations to supply electric vehicles’.

The projects objective is to deliver from 200 to 1000 orders per day in the

ZTL, with warehouses located between 10-15 Km far from the city centre. At

this moment the warehouse is located in the North-East of Rome.

The objective is to have a fleet of 20 electric vehicles (so far just 4 are per-

forming deliveries). These electric vehicles have a capacity of 2,5 T and an

autonomy at dull load of 140 Km. Their recharging time is 7-8h.

The company was using to plan the routes of deliveries an algorithm that did

not give the optimal route. The purpose of this work has been to create a model,

that taking into account a list of nodes to visit, the load of deliveries required

to serve and the level of battery of the vehicles, was able to give better results

than the previous model.

In the next pages that model will be presented and explained. Furthermore

several cases of study will be simulated in order to prove the convenience of

using the proposed model. Some changes in the parameters will be also made

in order to see how the model behaves and finally, some topics will be presented

as future approaches to be considered and developed by the reader.
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3 Model

3.1 Sets

• I set of nodes

• A set of arcs

• K set of vehicles

• P set of orders

• T set of recharging technologies

3.2 Parameters

• ci,j distance between nodes i, j

• bi,j battery consumption between nodes i, j

• ck maximum battery capacity for vehicle k

• cri,t recharging cost at node i with technology t

• sk node source for vehicle k

• tknode target for vehicle k

• rti,k,t recharging time for vehicle k at node i with technology t

• H time that the driver can drive without stopping

• F fixed cost per stop
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3.3 Variables

• xi,j,k =


1 if arc i, j is traveled by k

0 otherwise

• yp,k =


1 if order p is loaded to vehicle k

0 otherwise

• ai,k : arrival time for vehicle k at node i.

• zk : number of stops required by vehicle k.

• Li,j,k : load of vehicle k when traveling arc i, j.

• cai,k : level of battery of vehicle k when arriving at node i.

• cli,k : level of battery of vehicle k when leaving at node i.

• cci,k,t : amount of battery charged by vehicle k at node i with technology

t.

3.4 Objective Function

min
∑

i,j∈A,k∈K
ci,jxi,j,k + F

∑
k∈K

zk +
∑

i∈I,k∈K,t∈T
cci,k,tcri,t+

∑
i∈I,k∈K

−cli,k
M
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3.5 Constraints

1.
∑
k∈K

yp,k = 1 ∀ p ∈ P

2.
∑

j∈δ+(s(k))

xs(k),j,k = 1 ∀ k ∈ K

3.
∑

j∈δ−(t(k))
xi,t(k),k = 1 ∀ k ∈ K

4.
∑

j∈δ−(i)
xj,i,k =

∑
j∈δ+(i)

xi,j,k ∀ k ∈ K, i ∈ N\{s(k), t(k)}

5. ai,k + rti,k,t − aj,k ≤ (1− xi,j,k)M ∀(i, j) ∈ A, k ∈ K, t ∈ T

6. al(p),k ≤ am(p),k +M(1− yp,k) ∀p ∈ P, k ∈ K, t ∈ T

7. zk ≥ at,k
H − 1 ∀k ∈ K

8.
∑

j∈δ+(l(p))

xl(p),j,k ≥ yp,k ∀p ∈ P, k ∈ K

9.
∑

j∈δ−(m(p))

xi,m(p),k ≥ yp,k ∀p ∈ P, k ∈ K

10.
Li,j,k

Ck
≤ xi,j,k ∀(i, j) ∈ A, k ∈ K
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11.
∑

i∈δ−(i)
Li′,i,k ≥

∑
p∈P :m(p)=i

dpyp,k ∀i ∈ N, k ∈ K

12. cls(k),k = ck ∀k ∈ K

13. ckxi,j,k + bi,jxi,j,k + caj,k − cli,k ≤ ck ∀(i, j) ∈ A, k ∈ K

14.
∑
t∈T

cci,k,t + cai,k − cli,k = 0 ∀i ∈ N, k ∈ K

15. xi,j,k ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K;

yp,k ∈ {0, 1} ∀p ∈ P, k ∈ K;

ai,k ≥ 0 ∀i ∈ I, k ∈ K;

zk ≥ 0 ∀k ∈ K;

Li,j,k ≥ 0 ∀(i, j) ∈ A, k ∈ K;

ck ≥ cai.k ≥ 0, 3ck ∀i ∈ I, k ∈ K;

ck ≥ cli.k ≥ 0, 3ck ∀i ∈ I, k ∈ K;

cci.k,t ≥ 0 ∀i ∈ I, k ∈ K, t ∈ T
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3.6 Model explanation

This model has been based on a multi-commodity and vehicle routing based

model for long haul shipment.

Nevertheless, it has been adapted to the last mile delivery and some electric

constraints have been added in order to adapt the previous model to the re-

quirements of this thesis.

Furthermore, it will shown that the scope of the model is wider than the re-

quired for the problem and it is able to make some calculations that are not

required at this point, but they will be explained in the following chapters as

future scenarios may need to consider them.

The objective function is divided into four terms. The first is related to the

traveled distance. The second term, takes into account a fixed cost that is re-

lated to the number of stops. The third term takes into account how much

battery is recharged at every node and the cost of it. The fourth and last term

considers the level of battery.

It could seem that different magnitudes are being minimized (distance, mone-

tary cost and battery level), but in the end, all of them depend on the distance,

so it is important be careful and to write properly the units of some parameters

in order to have coherence.

Regarding to the constraints, (1) ensures that every order p is assigned to a

certain vehicle k. (2) ensures that all used vehicles leave source node and (3)

that all arrive to the depot node. Constraint (4) is a continuity constraint,

which says that all the vehicles arriving to a certain node, have to leave this

node (it does not apply to depot and target as they have to be considered in a

different way as previously has been explained).

Constraint (5) is related with arriving times. It the arcs (i,j) is traveled, time

at j has to be equal or higher than time at i plus the recharging time spent

at this node. Constraint (6) ensures that time at the delivery node is equal or

higher than at the origin node. (7) is related with the number of stops needed.

(8) ensures that a vehicle leaves the origin node from an order and (9) that a

vehicle arrives to a delivery node for any order. (10) is a capacity constraint,

which says that the load in a vehicle cannot exceed the maximum capacity and

(11) guarantees that the demand of a certain delivery node is satisfied with the
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load of the vehicle that does the delivery.

The following constraints are related with the electric considerations. (12) en-

sures that the vehicle leaves the source node fully charged. (13) ensures a

continuity in the battery of the vehicle. (14) ensures that battery when arriving

to a node plus battery charged at this node is equal to the battery when leaving.

Finally (15) shows the nature of variables.

Our case of study does not require to consider the number of stops of the driver.

In the long haul shipment drivers must to do a stop every certain time, in order

to allow them to rest.

As we do not need to use this parameter we can remove its contribution to the

objective function making the cost of the stop (F ) equal to 0. We can also make

the number of stops (zk) equal to zero giving to the parameter (H ) a big vale

M.

This model could be applied to countries where the legislation dictates than

stops every a certain period of time is mandatory, just modifying these param-

eters.

Furthermore, the problem has been simulated just allowing recharging at the

depot node. But the model is ready to allow recharging at every node of the

network if possible. This approach would be explained in a following chapter,

as a future developing topic.

The last term of the objective function has as objective to show the real battery

level (the constraints make continuity in the battery possible). As its contribu-

tion on the objective function is desired to be as low as possible, it is divided

by a big term so it does not affect to the final value but makes this continuity

possible.

In order to make the total distance more precise, a summation of the overall

path will be done, as well as the total battery consumption (even if it is depen-

dent on the distance traveled).

Finally, has been observed than in real deliveries, sometimes capacity of the

vehicle was exceed. This model does not allow to surpass the capacity, but

an approach where surplus of load would be possible and penalized could be

considered.
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4 Distances

A set of 2625 nodes, with their longitude and latitude, representing all the

different locations where goods can be delivered has been given.

In order to calculate the distance between them, different approaches have been

considered.

Due to the big amount of data available, it was not possible to calculate all the

combinations between nodes. There are different ways to calculate the amount

of combinations:

N(x) = x2

Nevertheless, this formula considers the distance between a node and itself,

which does not make sense for the proposed problem, so there is some waste of

computational time to make these calculus.

The following formula does not take into account the previous combination.

N(x) = x2x− (x− 1)

Furthermore, it does not consider combinations between source node and target

node, as they are same location. The algorithm has also been programmed to

calculate also combinations where source and target are different.

For the studied scenario the amount of possible combinations would be:

N(2625) = 26252 − 2625− 2624 = 6.885.376

As the program also calculates battery consumption for each distance, the

amount of calculus is 13.770.752.

Orders are much smaller, between 10 and 20 visited nodes. This would mean:

N(20) = 202 − 20− 19 = 361

As it can be observed, it does not make sense to work with such a big networks

because computational time is being wasted and just 0, 00524% of the combi-

nations would be used.
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Once the problem dimensions have been defined, it is time to consider dif-

ferent ways to approach the distance problem.

In the first place, Euclidean distance was considered.

Being points P1(x1, y1) and P2(x1, y2), distance between them is given by the

formula:

d12 =
√

(x1 − x2)2 + (y1 − y2)2

This distance is not really accurate for points in cities, as the path followed by

the vehicle is not a straight line. This is why a new approach was considered.

Taxicab metric (also known as Manhattan distance) calculates the sum of the

absolute difference of Cartesian coordinates between two points. Being points

P1(x1, y1) and P2(x1, y2), distance between them is given by the formula:

d12 = |x1 − x2|+ |y1 − y2|

This distance is higher than Euclidean distance and most of the times is more

accurate. In the next picture a comparison between both approaches is shown.

Figure 1: Manhattan distance

Green line corresponds to Euclidean distance, which is the shorter. Blue,

red and yellow are different ways to connect both points with the same length.

15



Even if taxicab metric approach seems to be correct, a deeper study on the

networks has shown that there was a big gap between distances given by the

formula and real path done by trucks.

The reason behind that difference is that the warehouse from which deliveries

are done is quite far from the city. So it does not make sense to consider Man-

hattan distance as it increases a lot the real distance.

Using Euclidean distance until the city borderline and then the taxicab metric

inside the city would be a more accurate way to calculate the distance, but the

problem would be to define properly where this borderline is exactly location.

A last approach has been used and it is considered the most accurate of all

of them.

Haversine formula determines the distance in a sphere between two points given

their longitude and latitude.

d = 2r ∗ arcsin

√
sin2

φ2 − φ1
2

+ cos(φ1)cos(φ2)sin2
λ2 − λ1

2

where:

- φ1, φ2 are latitude of points 1 and 2,

- λ1, λ2 are latitude of points 1 and 2.

Is used in navigation but it is also useful to measure the distance between

points that are far from each other. Similar to Euclidean distance as it gives

a straight line between two points, this one also takes into account the sphere

shape so gives better results. Moreover, the problem of accuracy for distance in

the city centre still happening. This is why a more exhaustive and last study

has been done.

Fifty pairs of nodes have been studied in order to compare their Haversine

distance with the real driven distance. For determining the driven distance, a

website that uses Google Maps database, has been used to make the comparison.

From the study several deductions are made. This fifty pairs can be divided

in two main groups. 24 of them have the warehouse (depot node) in the pair

and 26 of them are just a connection between nodes randomly selected from the

2625 locations.
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This division is important because a factor that multiplies the Haversine dis-

tance is going to be calculated and it is going to be different for each one of

these groups.

For the first group (the ones that have depot node) and studying the rela-

tion between the divisions of the real distance by Haversine distance an index

is obtained. This index has a range between [1,384 – 2,099], with an average of

1,6855. To know if that index can be accepted as good, standard deviation of

the set is calculated. The result is 0,22, which is a good value.

For the second group, same procedure is done. Now the range is wider [1,227 –

6,398] with average of 3,087. Standard deviation is much higher 1,6514.

This cannot be accepted as good so a deeper study of these pairs of nodes has

to be done. The reason behind these big differences is that certain nodes that

are in the city centre of Rome, the area where most of the touristic monuments

are located, give a bigger index than the rest of the nodes. This is because in

the city centre driven distances are much bigger than Haversine distance.

So a third group of nodes has been identified and will be treated in a different

way. These nodes (will be called in advance city centre nodes) belong to areas

located in neighbourhood with postal codes between 00184 and 00189.

Removing from the first set (the one with depot node) these city centre nodes

and making all the calculations again, a new range is determined [1,479 – 1,823]

with average 1,633. The standard deviation is now 0,1154. This is again con-

sidered as good and will be the factor that multiplies the Haversine distance for

pairs that contain depot node.

For the second set (nodes that do not belong to post codes between 00184

and 00189), same procedure is done, and a new range is determined [1,716 –

3,531] as well as a new average of 2,424. The standard deviation of this set is

now 0,628, which is considered as good.

Finally, for the set of nodes belonging to the city centre areas, the range is

wide [1,227 – 6,398] and the average 3,751, with a standard deviation of 2,081.

It is true that it could seem a really bad idea to accept this average as the index

multiplying Haversine distance for those nodes. Nevertheless, as in the city cen-

tre distances are much smaller that pairs belonging to other sets, that value is

going to be accepted, as the maximum error in the distance is 4km (next error

is just 2km).
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The purpose of all of these calculations is to give a starting point to simu-

late the model and finding the optimal route (or a close one to the optimal).

Once deliveries are performed and real distances are known and recorded by

the GPS located in each vehicle, they will replace the approximate distances

calculated with the approach explained.
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5 Cases of application

5.1 Introduction

Several orders done by the drivers have been simulated in order to show how an

improvement in the route could be achieved.

In this section results will be shown and explained to prove the convenience

of using this algorithm. In all of them is possible to observe a change in the

sequence of visited nodes that produces the reduction of the total distances as

a consequence of this new path.

The first four cases will focus on proving the benefit of using this algorithm

instead of using the one that the company had previously.

The next two cases will analyze how the order consolidation affects to distance

reduction and computational time.

To continue, the following two cases will simulate again two of the previous

scenarios with real distances. Will be possible now that a change in the sequence

is produced, but always, the result given by this model is better than the one

given by the previous algorithm.

The next case will modify the location of the warehouse to see how the model

behaves.

Finally, the last case will show a relation between nodes and computational

time.
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5.2 Case 1

The next deliver correspond to the order identified with code ’18064’ done by

vehicle MODEC3 on 3/4/18.

Driver’s path Simulated Path

77 77

2 1

8 7

6 5

4 3

5 4

1 6

3 8

7 2

77 77

Table 1: Case 1: visited nodes sequence

Driver 57,82 Km

Simulation 52,98 Km

Table 2: Case 1: distances

As it can be observed, route done by the simulation is shorter that path

followed by the driver. Actually, it has improved an 8,385%.

Furthermore, the computational time used to solve this instance has been 0,36s

for 8 orders.
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5.3 Case 2

The next deliver correspond to the order identified with code ’18068’ done by

vehicle MODEC2 on 3/4/18.

Driver’s path Simulated Path

77 77

9 13

10 15

11 12

14 16

16 10

13 11

15 14

12 9

77 77

Table 3: Case 2: visited nodes sequence

Driver 49,36 Km

Simulation 47,89 Km

Table 4: Case 2: distances

In this instance, the improvement achieved is lower than the previous in-

stances, but still being a reduction of the total distance, 2,99%.

The computational time spent is 0,16s for 8 orders.
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5.4 Case 3

The next deliver correspond to the order identified with code ’18304’ done by

vehicle MODEC3 on 4/4/18.

Driver’s path Simulated Path

77 77

37 37

28 28

40 39

39 40

34 27

31 33

38 31

30 38

29 30

35 36

20 32

25 24

17 23

21 18

22 22

18 21

23 17

19 19

26 26

24 29

36 25

32 35

33 20

27 34

77 77

Table 5: Case 3: visited nodes sequence
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Driver 66,85 Km

Simulation 61,48 Km

Table 6: Case 3: distances

There is also an improvement in this instance. Now the improvement has

been 8,024%.

Nevertheless, as the number of orders has increased, the computational time

has also increased. It has been 3s. Compare to the previous cases is almost

10 times bigger, while the number of orders is just 3 times bigger. This gives

an idea about how big computational time could be for bigger instances, where

meta-heuristics could be required to solve the problem. But this point will be

explained deeper in following sections.
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5.5 Case 4

The next deliver correspond to the order identified with code ’18305’ done by

vehicle MODEC6 on 4/4/18.

Driver’s path Simulated Path

77 77

42 55

6 49

50 41

48 57

43 45

46 47

52 54

44 53

51 56

56 51

53 52

54 44

47 48

45 46

57 43

41 50

55 6

49 42

77 77

Table 7: Case 4: visited nodes sequence

Driver 57,8 Km

Simulation 56,29 Km

Table 8: Case 4: distances

The improvement for this instance is 2,6%.

The computational time to simulate this instance of 18 orders was 0,45s.

24



5.6 Case 5

Studying again the order of case 3, ’18304’, and focusing on the path done by

the simulation, benefits of order consolidation are going to be shown.

The instance had 24 orders. If it is divided into two instances of 12 orders each:

First division

77

37

40

39

28

34

20

35

25

29

30

28

31

77

Second division

77

17

21

22

18

23

19

26

24

36

32

33

27

77

Table 9: Case 5: visited nodes sequence

First division 45,41 Km

Second division 55,36 Km

Table 10: Case 5: distances
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The sum of the two instances gives a total distance of 100,77 Km, while the

consolidated instance was 61,48 Km. This means an increase of 39,99%.

Regarding to computational time, for the first division took 0,36s to complete

the simulation. For the second division, 0,37s. The sum is 0,73s. Compared to

the previous time that was 3,00s, means a reduction of 2,27s which is a 310,95%.

As observed, there is a trade-off between computational time and distance re-

duction due to order consolidation.

Once again, use of meta-heuristics for big instances would be beneficial.
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5.7 Case 6

Finally, to prove the consistence of the argument explained in the previous case,

another order consolidation will be simulated. Now, order ’18305’ will be divided

into two instances of 9 orders each.

First division

77

42

6

50

43

46

48

44

52

51

77

Second division

77

55

49

41

57

45

47

54

53

56

77

Table 11: Case 6:visited nodes sequence

First division 44,05 Km

Second division 50,29 Km

Table 12: Case 6: distances

The sum of the two instances gives a total distance of 94,34 Km, while the

consolidated instance was 56,29 Km. This means an increase of 67,59%.

Regarding to computational time, for the first division took 0,19s to complete

the simulation. For the second division, 0,18s. The sum is 0,37s. Compared to

the previous time that was 0,72s, means a reduction of 0,35s which is a 51,14%.

As observed, there is a trade-off between computational time and distance re-

duction due to order consolidation.
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5.8 Case 7

Order ’18064’ has been simulated again but now considering real distances.

As it can be observed, the sequence has changed respect to the path done by

the driver. Once again, the result given by the model is better than the one

given by the algorithm previously.

Driver’s path Simulated Path

77 77

2 2

8 8

6 5

4 6

5 1

1 4

3 3

7 7

77 77

Table 13: Case 7: visited nodes sequence

Driver 44,42 Km

Simulation 43,44 Km

Table 14: Case 7: distances

Distance has been reduced, 0,98 Km, which means an improvement of 2,21%.

If we compare the sequence obtained using assumed distances (at case 1) with

real ones, it is possible to observe that the sequence has also changed. This is

because as they were multiplied by a factor, the result of these multiplications

sometimes was higher than real distances and sometimes lower, producing a

different optimal sequence.

Nevertheless, the model, as said before, gives better results no matter if assumed

distances or real distances are being used.
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5.9 Case 8

Order ’18305’ has been also simulated again with real distances. Same conclu-

sions as the previous case can be extracted.

Driver’s path Simulated Path

77 77

42 6

6 48

50 46

48 44

43 52

46 51

52 53

44 56

51 54

56 47

53 45

54 41

47 57

45 55

57 49

41 43

55 50

49 42

77 77

Table 15: Case 8: visited nodes sequence

Driver 40,65 Km

Simulation 39,08 Km

Table 16: Case 8: distances
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The improvement in the total distance has been 1,57 Km, which means a

reduction of 3,85%.

5.10 Conclusions of cases 1-8

The substitution of the previous algorithm by the model explained at this thesis

is justified with an improvement of the total distance travelled by the vehicle

independently of distances used (assumed or real).

Furthermore, benefits of orders consolidation have also been proved, but there

is a trade off between distances reduction an increase of computational time.
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5.11 Case 9

Next case is going to study the modification of the depot distance in order to

study how the model behaves.

The reason of considering an increase of the distance is because is interesting to

see how much the distance increases when increasing the depot distances.

The order selected to complete these simulations is going to be order ’18305’,

using real distances. Depot distance is going to be multiplied by different factor

and them and their distances are shown in the next table.

Sequences are not relevant now as the only objective is to study total distance

increase.

Factor Distances

1 39,08

1,1 41,81

1,2 44,54

1,3 47,28

1,4 50,01

1,5 52,74

1,75 59,56

2 69,39

Table 17: Case 9: Multiplying factor and distances

Figure 2: Distance increased when changing depot distance
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Figure 3: Proportion increased when changing depot distance

These types of scenarios could help the company to consider a relocation. A

further warehouse locations would imply longer distances, higher battery con-

sumption and higher cost. Nevertheless, further distance would mean cheaper

warehouse renting cost, so several studies can be carried out in order to deter-

mine the convenience of the change.
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5.12 case 10

Different orders have been simulated in order to study the relation between

nodes and computational time. Results are shown graphically:

Figure 4: Computational time depending on scenario dimensions

As it can be observed, orders with similar number of nodes produce different

results, even if all of them have similar computational time.

As said before, an increase of the number of nodes produces higher compu-

tational times. Once again, meta-heuristics will be required to solve bigger

instances. The time increases exponentially.

Figure 5: Average time for different scenarios

The equation of the curve can be obtained and forecasts of computational

time can be made.
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6 Future approaches

6.1 Meta-heuristics application

As the studied problem is a modification of the Vehicle Routing Problem (VRP)

and this one is known as a NP-hard problem, it will also be a NP-hard problem.

As explained in previous sections, the increase of the number of orders produces

a huge increase on computational time. This is why for these type of instances

meta-heuristics must be used.

It is not the purpose of this thesis to explain these meta-heuristics but to show

which ones have been used to solve problems with similar characteristics.

Bent and Van Hentenryck at their work ‘A two-stage hybrid for pickup and

delivery’ vehicle routing problems with time windows’ proposed to use Large

Neighbourhood Search (LNS) and Simulated Annealing (SA).

Schenider et Al, at their work ‘The Electric Vehicle Routing Problem with Time

Windows and Recharging Stations’ consider that the best way to solve these

problems is to apply Variable Neighbourhood Search (VNS) with Tabu Search

(TS).

Hiermann et Al at ‘The Electric Fleet Size and Mix Vehicle Routing Problem

With Time Windows and Recharging Stations’ determine that the best way of

obtaining a good solution is Large Neighbourhood Search (LNS) and an embed-

ded local search and labelling procedure for intensification.

As it can be observed, different theories and meta-heuristics are applied to

solve problems with similar.

Investigating the suitability of applying certain meta-heuristics is left as an ap-

proach for future ways of continuing this thesis.
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6.2 Real distances

As explained in previous sections, distances have been calculated in an approx-

imate way, but they do not correspond to real ones.

They are proportional (multiplied by a factor) to the real ones, so their accuracy

could modify the sequence of visited nodes.

Nevertheless, as a consequence of order consolidation, longer deliveries will be

computed and remaining battery and its minimum level could suppose a con-

straint limiting the vehicle range.

For the previous simulated orders, battery level was not a constraint due to

the minimum level was never reach. But it could be a problem in the future.

It is true that the factor considered previously has been determined after an

exhaustive study and most of the distances are longer than real ones.

Most of them, but not all, so it would be possible to have an instance with a

combination of nodes where the simulation gives shorter distance than the real

done by the vehicle.

This problem could happen mainly for orders that have lot of deliveries at the

city center of Rome, where variability of the multiplying factor was higher that

other neighbourhoods of the city.

If for this instance the remaining battery is achieving its minimum, some con-

straints could be violated in real instances but not in the simulation.

Use of off-line maps allow to obtain the real distance. As the objective of

this work was mainly to prove the convenience of using this algorithm and not

to calculate the exact distance, calculation of proper distances is proposed as a

future approach.

The benefits of using these distances will avoid to compute orders feasible just

in the simulation but not in real instances.
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6.3 Recharging stations

So far, the company just allows a recharging station where the warehouse is

located. Nevertheless, the model is prepared and has also been tested (even if

these results have not been showed as they do not give any relevant information

for the purpose of the thesis) allowing recharge at every node.

The convenience of recharging at any node (or some of them in the city center)

allow to simulate longer orders without returning to the main warehouse, which

is far from city center, where most of the orders are delivered.

Once again, benefits of order consolidation would be applied. The convenience

of locating these new recharging stations and studying the trade-off between

order consolidation and recharging time (during this time vehicle could not de-

liver order and its efficiency would be reduce) is also left as a future approach

that could be developed.

6.4 Distance calculation integration

The model has as an input the orders and distances between them. This input

is calculated by another independent model. Considering the integration of this

model (or a similar one that allow the calculation of distances between a com-

bination of given nodes) will allow to reduce the input data just to nodes that

are desired to visit.

This integration has not been performed as it inclusion will suppose an increase

of computational time. For big order, meta-heuristics could be also required

just to calculate distance combinations.

This is why this integration is also left as a future way of developing this thesis.
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6.5 Warehouse relocation convenience

In case 9, warehouse distances has been modified. As exposed briefly before,

this produce an increase in the overall cost as more battery is consumed. Nev-

ertheless, renting decreases with distance to city centre.

There is then a trade off between increased delivery cost and reduction of rent-

ing. Its minimum would be the optimal solution. This work has not considered

this study but leaves it for the reader as a future consideration to develop.

6.6 Warehouse decentralization

Decentralization has positive and negative effects. It is know that a central

warehouse obtains benefits of aggregated demand and risk pooling. Neverthe-

less, there is an increase in transport cost.

Meanwhile, decentralization reduces transport cost but has an increase of stock

cost, as safety stock must be higher.

The model has been programmed in order to allow different depot and target

sources, so a deeper analysis could be carried out in order to determine the

convenience of decentralization.
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