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Abstract

PageRank can be understood as the stationary distribution of a Markov chain
that occurs in a two-layer network with the same set of nodes in both layers: the
physical layer and the teleportation layer. In this paper we present some bounds
for the extension of this two-layer approach to Multiplex networks, establishing
sharp estimates for this Multiplex PageRank and locating the possible values
of the personalized PageRank for each node of a network. Several examples are
shown to compare the values obtained for both algorithms, the classic and the
two-layer PageRank.
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1. Introduction

The impressive growth of information available on the web highlights the
need for effective web search engines capable to rank pages on the web by as-
signing authoritative weights to each page. Classic PageRank [18] constitutes a
theoretical approach which provides a precise and quantitative measure of the
relevance of a webpage giving a direct answer to this need, but it is remarkable
that many efforts have been done to improve and modify the performance of web
search. New tools, concepts and algorithms have progressively emerged with the
advances and new developments of complex networks theory, including the idea
of biasing the PageRank vector by using a personalization vector [4, 11, 18].
The development of this science is providing radical new ways of understanding
many different mechanisms and processes from physical, social, engineering and
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biological sciences [2, 3, 15]. As a result, a new area is growing up around the
concept of Multiplex and multilayer networks [3, 5, 6, 15, 20, 21, 22]. These new
paradigms take into account the fact that the interrelations between nodes are
heterogeneous [3, 5, 6, 15, 22] and, as a consequence, some structural and dynam-
ical properties and developments emerge from the distinction between different
kinds of links. The introduction of the new models of Multilayer and Multiplex
networks requires a revision of all the structural techniques and tools previously
developed for (classic) complex network (also called monoplex network in this
new language), and therefore the centrality measures must be revisited from this
new point of view [12, 20, 21, 8]. Roughly speaking, we can say that a Multiplex
network is a network formed by several layers (graphs) with the same nodes but
different topology inside of each layer. As we have explained, the main idea is
that the nodes can interact in different ways and therefore it is needed to con-
sider different layers of interactions. For example, we can imagine the behavior
of some people on the social networks WhatsApp, FaceBook and Linkedin to
realize that their connections in each one of this networks are radically different.
The importance of the study of Multiplex networks is also enhanced by the fact
that some authors agree that some key traits of complex systems remain invis-
ible when a multilayer network is considered as if it was a single (monoplex)
network [7]. Is thus of big interest to develop analytical tools -similar to those
existing in monoplex networks- to analyze the properties of Multiplex networks.
Therefore, the centrality measures must be revisited from this new point of view
[12, 20, 21] and, in particular, in the new framework represented by Multiplex
networks, the PageRank centrality must be rethought. There are some different
extensions of the PageRank for Multiplex networks [3, 12, 19, 21]. In [19] a
proposal for Multiplex PageRank based on an original approach to the classic
PageRank algorithm was introduced together with some theoretical properties
of this new centrality measure, and also, an example of application based on
the Madrid Metro system in order to illustrate the similarities and differences
with the usual concept of PageRank. The key point of this approach is that we
can associate two layers to each real layer of the Multiplex and by using this
approach it is possible to define a PageRank-like model to the whole Multiplex.

With all this in mind, it is important to highlight that one of the theoretical
questions related to Personalized PageRank is to what extend one can use the
personalization vector to modify the PageRank vector. In [10] this question
was tackled giving some estimates and an analytical characterization of all the
possible values of the personalized PageRank for any node. In this paper we
present some localization results for the two-layer approach PageRank and the
Multiplex PageRank introduced in [19], establishing sharp estimates for the
Multiplex PageRank in terms of personalization vector and providing a clear
and specific answer to what extent the use of the personalization vector can
modify the PageRank vector.

The structure of the paper is as follows. In section 2 the basic definitions
and results used in the rest of the paper are presented. In addition, a simplified
mathematical formalism is included in order to extend the model for Multi-
plex networks with any number of layers. Section 3 is devoted to prove the
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main results of the paper specifically for the PageRank’s two-layer approach,
by locating the possible values of the personalized PageRank for each node of a
network and by illustrating the results with several examples. Finally, section
4 presents a localization theorem for the Multiplex general case. In this final
section several examples are presented in order to illustrate the proved results.

2. Notation and some preliminary definitions

We recall some notation from [10] and [19]. Vectors of Rn×1 will be denoted
by column matrices and we will use the superscript T to indicate matrix trans-
position. The vector of Rn×1 with all its components equal to 1 will be denoted
by e. That is, e = (1, · · · , 1)T .

Let G = (N , E) be a directed graph where N = {1, 2, . . . , n} and n ∈ N. The
pair (i, j) belongs to the set E if and only if there exists a link connecting node
i to node j. The adjacency matrix of G is an n× n-matrix

A = (aij) where aij =

{
1, if (i, j) is a link of G
0, otherwise.

A link (i, j) is said to be an outlink for node i and an inlink for node j. We
denote kout(i) the outdegree of node i, i.e., the number of outlinks of a node i.
Notice that kout(i) =

∑
k aik. The graph G = (N , E) may have dangling nodes,

which are nodes i ∈ N with zero outdegree. Dangling nodes are characterized
by a vector d ∈ R

n×1 with components di defined by

di =

{
1, if i is a dangling node of G
0, otherwise.

Let PA = (pij) ∈ R
n×n be the row stochastic matrix associated to G defined

in the following way:

• if i is a dangling node, pij = 0 for all j = 1, . . . , n,

• otherwise, pij =
aij

kout(i)
=

aij∑
k aik

.

Note that each coefficient pij can be considered as the probability of jumping
from the node i to the node j.

We recall that one of the features of the personalized PageRank algorithm
is that some extra probability of jumping is given to any node. This extra or
teleportation probability is assigned by using a personalization vector v, which is
a probability distribution vector. If, in addition, the graph has dangling nodes
then the algorithm needs to assign an additional probability of jumping to these
dangling nodes; this is done by introducing a probability distribution vector u.
With these ingredients, plus a teleportation parameter α, we have everything
to build a primitive and stochastic matrix, called Google matrix, that we denote
by G.

Formally, G = G(α,u,v), with α ∈ (0, 1), is defined as

G = α(PA + duT ) + (1− α)evT ∈ R
n×n (2.1)
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Note that G is row-stochastic, i.e., Ge = e. Recall that v ∈ R
n×1, with

v > 0 and vT e = 1. Analogously, u ∈ R
n×1 such that u > 0 and uTe = 1.

The PageRank vector π = π(α,u,v) is the unique positive eigenvector of
GT associated to eigenvalue 1 such that πT e = 1, i.e., π > 0, πT e = 1 and
πTG = πT (see [18]). Since we focus our interest in v we also refer to π as the
personalized PageRank vector.

Note also that from (2.1) we easily have

πT = απT (PA + duT ) + (1− α)vT . (2.2)

We will write πT
A when needed.

If we consider the row stochastic matrix MA associated to A defined as
follows

MA =

(
αPA (1− α)In
αIn (1− α)evT

)
∈ R

2n×2n (2.3)

we can give the following definition (see [19]):

Definition 2.4. π̂M ∈ R
2n×1 is the unique vector that satisfies

(i) π̂T
M = π̂T

M MA with π̂T
Me = 1

(ii) π̂T
M = [πT

u πT
d ] with πu, πd ∈ R

n×1 and πT
u e = α, πT

d e = 1− α.

Definition 2.5. Given an adjacency matrix A we define the two-layer approach
PageRank of A and denote it by π̂A as the vector π̂A = πu + πd ∈ R

n×1.

Now, given a Multiplex composed of k layers A1, A2, . . ., Ak with the same
number of nodes n, there are a wide range of forms to define a PageRank
associated to the Multiplex. Our key idea is based upon the following: we
consider each real layer as a two-layer for a random walker: the real layer Ai

and a teleportation layer evT
i . We allow teleportation between teleportation

layers of different real layers Ai. This is the sense of the following definition.

Definition 2.6. ([19]) Given a Multiplex networkM = (N , E ,S), with layers
S = {�1, . . . , �k} whose adjacency matrices are A1, . . . , Ak ∈ R

n×n respectively
and we fix some personalized vectors v1, . . . ,vk ∈ R

n×1, we can define a new
block matrix by associating to each layer �i a two-layer Multiplex as follows

MA =
1

k

⎛
⎜⎜⎜⎝

M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k

...
...

. . .
...

Mk,1 Mk,2 · · · Mk,k

⎞
⎟⎟⎟⎠ ∈ R

2kn×2kn, (2.7)

where if 1 ≤ i ≤ k

Mi,i =

(
αPAi (1− α)In
kαIn (1− α)evT

i

)
∈ R

2n×2n (2.8)
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corresponds to the connections between the physical layer and the teleportation
layer of each �i, while if 1 ≤ i �= j ≤ k

Mi,j =

(
In 0
0 (1− α)evT

j

)
∈ R

2n×2n (2.9)

corresponds to the cross connections between the physical layer and the tele-
portation layer of �i and �j . From MA another block matrix can be defined by
reordering the blocks in such a way that all the physical layers appear first and
later all the teleportation layers come together as follows

Mk =
1

k

(
B1,1 B1,2

B2,1 B2,2

)
∈ R

2kn×2kn, (2.10)

where

B1,1 = PA =

⎛
⎜⎜⎜⎝

αPA1 In · · · In
In αPA2 · · · In
...

...
. . .

...
In In · · · αPAk

⎞
⎟⎟⎟⎠ , (2.11)

B2,2 = (1− α)

⎛
⎜⎝

evT
1 · · · evT

k
...

. . .
...

evT
1 · · · evT

k

⎞
⎟⎠ , (2.12)

B1,2 = (1 − α)Ikn ∈ R
kn×kn, B2,1 = kαIkn ∈ R

kn×kn. (2.13)

Note that all the spectral properties of Mk are essentially the same as the cor-
responding MA since they are the same matrices after some block-permutation.

Definition 2.14. ([19]) Let Mk be given by Definition 2.6. π̂M ∈ R
2kn×1 is the

unique vector that satisfies

(i) π̂T
M = π̂T

M Mk with π̂T
Me = k,

(ii) π̂T
M = [πT

u1 πT
u2 . . . πT

uk πT
d1 πT

d2 . . . πT
dk] with πui, πdi ∈ R

n×1

∀i = 1, 2, . . . k, and:
πT
uie = γ

πT
die = 1− γ

for all i = 1, 2, . . . , k,

with γ = kα
1+α(k−1) .

The above result allows us to consider the PageRank associated to a Multi-
plex in the following form:

Definition 2.15. Given a Multiplex composed of k layers A1, A2, . . ., Ak with
the same number of nodes n, we define the PageRank of the Multiplex and
denote it by π̂k as the unique vector

π̂k =
1

k
(πu1 + πu2 + · · ·+ πuk + πd1 + πd2 + · · ·+ πdk) ∈ R

n×1.

Note that π̂T
k e = 1.
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3. Localization of the two-layer approach PageRank

It is shown in [10] that the i-th component of the classic PageRank, denoted
as PR(i), is located in an open interval that depends on the matrix

X = (1− α)Y −1 where Y = In − α(PA + duT ). (3.1)

In more detail, it holds the following result:

Theorem 3.2 ([10]). Given a graph G with dangling nodes indicated by some
vector d, a fixed damping factor α ∈ (0, 1) and fixed dangling nodes distribution
u, for each node i ∈ N

PR(i) ∈ (min
j

xji, xii).

Therefore, it is natural to ask if there is a similar relationship applied to the
two-layer approach PageRank, π̂T

A given by Definition 2.5. Note that, roughly
speaking, the two basic ingredients used in the proof of Theorem 3.2 were (i) an
analytical well known formula that relates the PageRank with the personaliza-
tion vector [4] and some localization results based on properties of M -matrices
[10].

From here throughout the paper we assume that d = 0, but similar results
can be obtained easily when d �= 0, by replacing PA by PA + duT .

The first goal is to give an analytical formula that relates the Multiplex
PageRank with the personalization vector, but let us give some tools about
Neumann series that will be useful later.

Theorem 3.3 ([16]). Given a complex n × n matrix X, then the following
statements are equivalent:

(i) The Neumann Series In +X +X2 + · · · converges,
(ii) ρ(X) < 1, where ρ(X) is the spectral radius of the matrix X,

(iii) lim
k→∞

Xk = 0,

(iv) In −X is nonsingular and

(In −X)−1 =

∞∑
k=0

Xk.

Remark 3.4. All the results presented later can be also derived from the origi-
nal result of C.Neumann [17] about Neumann Series that shows that if (X, ‖ ·‖)
is a Banach space and T : X −→ X is a bounded linear operator with ‖T ‖ < 1
(‖T ‖ is the norm induced by the norm in X), then I − T is nonsingular and

(I − T )−1 =

∞∑
k=0

T k,
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where I is the identity operator in X , since if we take an n×n matrix X = (xij)
and we consider (X, ‖ · ‖) = (Rn×1, ‖ · ‖∞), then it is easy to check that the
induced norm of X is

‖X‖ = max
1≤i≤n

⎛
⎝ n∑

j=1

|xij |
⎞
⎠ ,

and therefore if X is row-stochastic then In − sX is nonsingular for every 0 ≤
s < 1 and

(In − sX)−1 =

∞∑
k=0

skXk.

By using this tool, we can obtain the following analytical formula that relates
the Multiplex PageRank with the personalization vector, which is similar to the
well known expression obtained in [4]:

Theorem 3.5. Given a graph G = G(α,v), α ∈ (0, 1), with personalization
vector v, the unique 1-eigenvector π̂T

M = [πT
u , π

T
d ] with π̂T

Me = 1 associated to
the matrix MA of 2.3 depends on the personalization vector vT in the following
way

πT
u = α(1− α)2vTZ−1,

πT
d = (1− α)2vTY Z−1,

where Y = In − αPA and Z = β(In − α
βPA) for β = 1− α(1− α).

Proof. From Definition of π̂M (see Definition 2.4) we have that

π̂T
M = [πT

u πT
d ] =[πT

u πT
d ]

(
αPA (1− α)In
αIn (1− α)evT

)
.

From the first n equations in the previous expression we get that

πT
u (In − αPA) = απT

d .

Note that, since PA is row-stochastic, then ρ(PA) = 1 (see, for example [16])
and therefore ρ(αPA) = α < 1, which makes that Y = In−αPA is nonsingular,
by using Theorem 3.3. Hence, πT

u can be obtained from the last expression as

πT
u = απT

d Y
−1. (3.6)

By substituting in the last n equations concerning πT
d , and recalling Defini-

tion 2.4, it is easy to check that

πT
d = α(1− α)πT

d Y
−1 + (1− α)2vT ,

and by multiplying by Y on both sides

πT
d Y = α(1− α)πT

d + (1− α)2vTY,
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which leads us get that

πT
d (Y − α(1− α)In) = (1− α)2vTY.

If we denote by Z = Y − α(1 − α)In = β(In − α
βPA) for β = 1 − α(1 − α),

then 3/4 < β < 1 and ρ(αβPA) =
α
β < 1 since 0 < α < 1. Therefore, by using

Theorem 3.3, we get that In − α
βPA is nonsingular and hence also Z, so

πT
d = (1− α)2vTY Z−1.

Finally, by substituting the last formula in (3.6) we find

πT
u = α(1 − α)2vTY Z−1Y −1 = α(1− α)2vTZ−1, (3.7)

since Y Z−1 = Z−1Y . Note that the commutability between Y and Z−1 comes
from the fact Y Z = ZY jointly with the nonsigularity of Z, that leads to
Y = ZY Z−1 and thus Z−1Y = Y Z−1.

We focus now on the problem of finding the interval in which each component
of π̂T

A moves. In order to do so, let us recall that π̂T
A = πT

u + πT
d , and take the

matrix
B = (1− α)2(Y Z−1 + αZ−1) = (1− α)2(Y + αIn)Z

−1, (3.8)

where Y and Z were defined in Theorem 3.5.

Theorem 3.9. Given a graph G with a fixed damping factor α ∈ (0, 1), for
each node i ∈ N , the i-th component of the PageRank vector π̂A belongs to the
interval

(min
j

bji, bii),

for the matrix B = (1− α)2(Y Z−1 + αZ−1) defined above.
Moreover, every b with minj bji < b < bii can be achieved as the PageRank

of node i for a certain personalization vector v.

Proof. Theorem 3.5 shows that π̂T
A = vT (1− α)2(Y Z1 − αY ) = vTB and since

vT is a positive vector such that vT e = 1, then each of the i-components of
π̂A is a convex combination of the i-column of the matrix B. Note that if we
use Lemma 2.3 in [10], then we get that B is diagonal dominant by columns, so
the values of (π̂A)i belong to the interval (minj bji, bii), i = 1, . . . , n (see, for
example [1, 13]).

Without loss of generality suppose that i = 1. The first component of
π̂A equals

∑
j vjbj1. In particular, if we admitted the canonical basis vector

eT1 = (1, 0, . . . , 0) as a personalization vector, (π̂A)1 = b11. Similarly, if the
minimum of the first column of B is in position bj11 and we admitted the
canonical basis vector eTj1 = (0, . . . , 1, . . . , 0) the j1-th component of π̂A would
be bj11, i.e., the extreme values of the open interval

(min
j

bj1, b11)
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Figure 1: A directed graph with three nodes.

would be achieved.
Now we define

v1ε =

⎛
⎜⎜⎜⎜⎜⎝

1− ε
ε

n−1
ε

n−1
...
ε

n−1

⎞
⎟⎟⎟⎟⎟⎠ , vj1ε =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε
n−1
...

1− ε
...
ε

n−1

⎞
⎟⎟⎟⎟⎟⎟⎠
← j1 coordinate

for every ε ∈ (0, 1). If we fix v1ε as personalization vector, the limit of the
first component of the PageRank π̂A when ε → 0+ is b11, and if we fix vj1ε as
personalization vector, the limit of the j1-component of the PageRank π̂A when
ε→ 0+ is bj11. Finally, for every λ ∈ (0, 1) if we take vλε = λv1ε+(1−λ)vj1ε > 0
as personalization vector, the first component of π̂A would be λb11+(1−λ)bj11,
which satisfies that the limit when λ → 1 and ε → 0+ of the first component
of π̂A is b11, and the limit when λ→ 0 and ε→ 0+ of the j1-component of π̂A

is bj11, hence for every b with bj11 < b < b11 there exists some ε0, λ0 ∈ (0, 1)
such that the first component of π̂A is b when vλ0ε0 is taken as personalization
vector.

Example 3.10. Let us consider the graph given in Figure 1 and whose the
adjacency matrix is

A =

⎛
⎝ 0 1 0

1 0 1
1 1 0

⎞
⎠

Table 1 shows the values of each component of the classic PageRank (denoted

by PR(i)) and the two-layer approach PageRank (denoted by P̂R(i) ≡ π̂T
Aei)

for different personalization vectors.
Notice that the ranking of the nodes given by both methods are the same, for

each v used. This example was studied in [10] where it is shown that the bounds
for the classic PageRank for each node are the following

PR(1) ∈ (0.2982, 0.4035),

PR(2) ∈ (0.3872, 0.4925),

PR(3) ∈ (0.1779, 0.3146).
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v = e/n vT = (1, 0, 0)

Node PR P̂R PR P̂R
1 0.3333 0.3333 0.4035 0.3596
2 0.4327 0.4401 0.4186 0.4306
3 0.2339 0.2266 0.1779 0.2098

Table 1: Comparison for example 3.10

Figure 2: A directed graph with three nodes and a sink.

Now, by using Theorem 3.9 the bounds for the two-layer approach PageRank
are

P̂R(1) ∈ (0.3202, 0.3596),

P̂R(2) ∈ (0.4251, 0.4645),

P̂R(3) ∈ (0.2098, 0.2548),

since the matrix B = (1− α)2
(
Y Z−1 + αZ−1

)
, with α = 0.85, is

B =

⎛
⎝ 0.3596 0.4306 0.2098

0.3202 0.4645 0.2153
0.3202 0.4251 0.2548

⎞
⎠ .

Notice that these intervals are sharp. For example, for v = (1, 0, 0) node 1 gets
its maximum value and node 3 gets its minimum value (see Table 1). Notice
also that the interval for the two-layer approach results to be included in the
classic interval for each node.

Example 3.11. Let us consider now the graph given in Figure 2 and whose the
adjacency matrix is

A =

⎛
⎝ 1 0 0

1 0 0
1 0 0

⎞
⎠
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In [10] it is shown that for this example the bounds for the classic PageRank
are

PR(1) ∈ (0.8500, 1.0000),

PR(2) ∈ (0.0000, 0.1500),

PR(3) ∈ (0.0000, 0.1500).

Now, by using Theorem 3.9 the bounds for the two-layer approach PageRank
are

P̂R(1) ∈ (0.9523, 1.0000),

P̂R(2) ∈ (0.0000, 0.0477),

P̂R(3) ∈ (0.0000, 0.0477),

since the matrix B = (1− α)2
(
Y Z−1 + αZ−1

)
, with α = 0.85, is

B =

⎛
⎝ 1.0000 0.0000 0.0000

0.9523 0.0477 0.0000
0.9523 0.0000 0.0477

⎞
⎠ .

By computing both the classic and the two-layer approach PageRank, by using
v = (1, 0, 0)T , we obtain PR = P̂R = (1, 0, 0)T . Therefore in this limit case the
bounds for the two-layer approach PageRank (and also for the classic PageRank)
are reached. Notice that in this example the upper (lower) limit of the interval
for node 1 (nodes 2,3) is the same in both methods.

4. Bounds for the Multiplex PageRank, general case

In a similar manner as we have done in the previous section, we begin by
recalling that by Definition 2.14 it is hold that there exists a unique vector

π̂T
M = [πT

u1, . . . , π
T
uk, π

T
d1, . . . , π

T
dk] ∈ R

2kn

such that
π̂T
M = π̂T

M Mk (4.1)

with π̂T
Me = k and matrix Mk is given by Definition 2.6.

Let us recall, from equation (2.11), the matrix

PA =

⎛
⎜⎜⎜⎝

αPA1 In · · · In
In αPA2 · · · In
...

...
. . .

...
In In · · · αPAk

⎞
⎟⎟⎟⎠

and define the matrices

Ỹ = Ikn − 1

k
PA, Z̃ = Ỹ − α(1 − α)

k
Ikn =

βk

k
(Ikn − 1

βk
PA)

for βk = k − α(1− α).
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Theorem 4.2. Given a Multiplex composed of k layers defined by adjacency ma-
trices Ai, i = 1, 2, . . . , k, with the same number of nodes n, fixed damping factor
α ∈ (0, 1) and personalization vectors v1,v2, . . . ,vk, the unique 1-eigenvector
π̂T
M = [πT

u1, . . . , π
T
uk, π

T
d1, . . . , π

T
dk] with π̂T

Me = k associated to the matrix Mk

in Definition 2.6 depends on the personalization vectors v1,v2, . . . ,vk in the
following way

[πT
u1, . . . , π

T
uk] =

α(1 − α)2

1 + α(k − 1)
[vT

1 , . . . ,v
T
k ]Z̃

−1

[πT
d1, . . . , π

T
dk] =

α(1 − α)

1 + α(k − 1)
[vT

1 , . . . ,v
T
k ]Ỹ Z̃−1.

Proof. From the first kn equations of (4.1) we have that

[πT
u1, . . . , π

T
uk]Ỹ = α[πT

d1, . . . , π
T
dk]. (4.3)

Note that every row of the non-negative matrix 1
kPA sums α+k−1

k and therefore

ρ(
1

k
PA) =

α+ k − 1

k
< 1,

which makes that Ỹ is nonsingular, simply by using Theorem 3.3. Hence, from
(4.3) we get that

[πT
u1, . . . , π

T
uk] = α[πT

d1, . . . , π
T
dk]Ỹ

−1.

Now, by substituting in the last kn equations of (4.1) concerning [πT
d1, . . . , π

T
dk]

we obtain that

[πT
d1, . . . , π

T
dk] =

α(1− α)

k
[πT

d1, . . . , π
T
dk]Ỹ

−1 +
(1− α)2

1 + α(k − 1)
[vT

1 , . . . ,v
T
k ],

and multiplying by Ỹ on both sides

[πT
d1, . . . , π

T
dk]Ỹ =

α(1− α)

k
[πT

d1, . . . , π
T
dk] +

(1− α)2

1 + α(k − 1)
[vT

1 , . . . ,v
T
k ]Ỹ ,

hence

[πT
d1, . . . , π

T
dk]

(
Ỹ − α(1 − α)

k
Ikn

)
=

(1− α)2

1 + α(k − 1)
[vT

1 , . . . ,v
T
k ]Ỹ .

If we now denote

Z̃ = Ỹ − α(1 − α)

k
Ikn =

(
1− α(1 − α)

k

)(
Ikn − 1

βk
PA

)
,

then it is easy to check that every row of the non-negative matrix 1
βk

PA sums
α+k−1

βk
and therefore

ρ(
1

βk
PA) =

α+ k − 1

βk
< 1,
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since 0 < α < 1. Therefore, Theorem 3.3 shows that Z̃ is nonsingular and then

[πT
d1, . . . , π

T
dk] =

(1 − α)2

1 + α(k − 1)
[vT

1 , . . . ,v
T
k ]Ỹ Z̃−1.

Finally, by substituting on [πT
u1, . . . , π

T
uk] we obtain that

[πT
u1, . . . , π

T
uk] =

α(1 − α)2

1 + α(k − 1)
[vT

1 , . . . ,v
T
k ]Ỹ Z̃−1Ỹ −1

=
α(1 − α)2

1 + α(k − 1)
[vT

1 , . . . ,v
T
k ]Z̃

−1

since Ỹ Z̃−1 = Z̃−1Ỹ . Note that, similarly as in the proof of Theorem 3.5, the
commutability between Ỹ and Z̃−1 comes from the fact Ỹ Z̃ = Z̃Ỹ jointly with
the nonsigularity of Z̃.

Now we turn to the problem of finding the interval in which each compo-
nent of the Multiplex PageRank π̂k moves. To that end, let us recall that the
PageRank vector of the Multiplex is π̂k = 1

k (πu1 + · · ·+ πuk + πd1 + · · ·+ πdk)
and take the matrices

B̃ =
(1 − α)2

k(1 + α(k − 1))
(Ỹ Z̃−1 + αZ̃−1),

and ⎛
⎜⎜⎜⎝

C1

C2

...
Ck

⎞
⎟⎟⎟⎠ = B̃

⎛
⎜⎜⎜⎝

In
In
...
In

⎞
⎟⎟⎟⎠ .

Theorem 4.4. Given a Multiplex composed of k layers defined by adjacency
matrices Ai, i = 1, 2, . . . , k, with the same number of nodes n, fixed damping
factor α ∈ (0, 1) and personalization vectors v1,v2, . . . ,vk, each i-th component
of the PageRank vector π̂k belongs to the interval (c(i), d(i)) where

c(i) = min
j

(C1)ji +min
j

(C2)ji + · · ·+min
j

(Ck)ji

d(i) = (C1)ii + (C2)ii + · · ·+ (Ck)ii

for the matrices C1, . . . , Ck defined above.
Moreover, every b with c(i) < b < d(i) can be achieved as the PageRank of

node i for certain personalization vectors v1,v2, . . . ,vk.

Proof. By using the matrices C1, . . . , Ck defined above, Theorem 4.2 implies
that π̂k = vT

1 C1 + vT
2 C2 + · · ·+ vT

k Ck. Recall that the personalization vectors
are positive vectors such that the sum of their components are one. This implies
that the n components of each vT

i Ci are convex combinations of the elements
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of the columns of the matrix Ci, so each of them lies between the maximum of
each column and the minumum of each column. Therefore, each i-th component
of the PageRank vector π̂k is greater than minj(C1)ji + · · · + minj(Ck)ji and
less than maxj(C1)ji + · · ·+maxj(Ck)ji.

Notice that the matrices C1, . . . , Ck are diagonal dominant by columns as
a direct consequence of Lemma 2.3 in [10], so the maximum of each column is
achieved in the diagonal position, i.e., the maximum of the first column of Ci

lies in (Ci)11, the maximum of the second column of Ci is the element of (Ci)22,
etc.

Without loss of generalization suppose that i = 1. We can argue as in
Theorem 3.9 in order to show that for every b1 with minj(C1)j1 < b1 < (C1)11
there exists an appropriate ṽ1 such that the first component of ṽT

1 C1 equals
b1, i.e., (ṽ

T
1 C1)1 = b1. Similarly, for every b2 with minj(C2)j1 < b2 < (C2)11

there exists an appropriate ṽ2 such that the first component of ṽT
2 C2 equals

b2, i.e., (ṽT
1 C1)1 = b2. . . , and for every bk with minj(Ck)j1 < bk < (Ck)11

there exists an appropriate ṽk with (ṽT
k Ck)1 = bk. Since every b with c(1) <

b < d(1) is a sum of certain b1, b2, . . . , bk for minj(C1)j1 < b1 < (C1)11,
minj(C2)j1 < b2 < (C2)11,. . . , and minj(Ck)j1 < bk < (Ck)11, there exist
appropriate personalization vectors ṽ1,ṽ2, . . . , ṽk such that the first component
of the PageRank of node 1 equals b.

Example 4.5. Let us consider the Multiplex network given by a directed cycle
graph of n = 5 nodes in k = 4 layers, with adjacency matrices

A1 = A2 = A3 = A4 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠

Then it can be shown that, by using v = e/n, it results π̂4 = 0.2e, while the
interval given by Theorem 4.4 is

(0.1885, 0.2156)

for any component of the Multiplex PageRank. When using the personalization
vectors v1 = v2 = v3 = v4 = [1, 0, 0, 0, 0]T , the Multiplex PageRank results to
be:

[0.2156, 0.2039, 0.1986, 0.1935, 0.1885]

and therefore the limits of the interval are reached for node 1 (upper limit) and
node 5 (lower limit).

Example 4.6. Let us consider the case given by a Multiplex network, with
k = 4, and

A1 = A2 = A3 = A4 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠

14



Figure 3: A directed biplex graph with five nodes.

Then it can be shown that, by using v1 = v2 = v3 = v4 = [1, 0, 0, 0, 0]T , it
results π̂4 = [1, 0, 0, 0, 0]T while the bounds given by Theorem 4.4 are

π̂T
4 e1 ∈ (0.9680, 1.0000)

and
π̂T
4 ei ∈ (0.0000, 0.0320) for i = 2, . . . 5.

Therefore, once again, the first component of the Multiplex PageRank achieves
the maximum value indicated by the sharp upper bound and the rest of the nodes
achieve its minimum value.

Example 4.7. Let us consider the biplex network given in Figure 3 and whose
the adjacency matrices are

A1 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
1 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , A2 =

⎛
⎜⎜⎜⎜⎝

0 1 1 0 0
0 1 0 0 0
0 1 0 1 0
0 1 0 0 1
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠ .

By the structure of the layers it is clear that the most central node (as seen
by PageRank) in layer 1 is node 1 and the most central node in layer 2 is node
2. Actually nodes 1 and 2 interchange their roles. Therefore it is expected that
the bounds for the whole biplex be equal for nodes 1 and 2. In fact, by using the
bounds in Theorem 4.4 we confirm this in obtaining the following bounds for the
Multiplex PageRank

π̂T
2 e1 ∈ (0.3636, 0.4103),

π̂T
2 e2 ∈ (0.3636, 0.4103),

π̂T
2 e3 ∈ (0.1246, 0.1615),

π̂T
2 e4 ∈ (0.0615, 0.0984),

π̂T
2 e5 ∈ (0.0308, 0.0676),

and, as a final illustration of the applicability of our result, we show the value
of the Multiplex PageRank for some personalization vectors in Table 2.
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Node v = e/n v = e1 v = e2
1 0.3758 0.4103 0.3636
2 0.3758 0.3636 0.4103
3 0.1349 0.1311 0.1311
4 0.0721 0.0638 0.0638
5 0.0414 0.0311 0.0311

Table 2: Multiplex PageRank for some v. Example 4.7
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interconnected networks under random failures, PNAS, 111 (23) (2013),
8351-8356. doi:10.1073/pnas.1318469111
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