

Applying Test-driven Development to Evaluating Student Projects

Cuong Huy Tran, Dragos Truscan, Tanwir Ahmad

Department of Information Technologies, Åbo Akademi University, Finland.

Abstract

Grading software projects submitted by students can become a heavy and

time-consuming task, which for many students, can result in delayed feedback

provided to them. Additionally, one would like to allow students to evaluate

themselves early their projects before submitting the final version for

grading.

This paper presents a solution that improves the grading process of student

projects not only for lecturers, but also for students. In our approach, we

adopt a test-driven development methodology to provide a clear benchmark

of the course project implementation. Our approach allows students to self-

evaluate their progress at any moment, while lecturers can use it to automate

the grading process. GitHub Classroom is used as a supporting tool to allow

students to retrieve and implement their projects from the same initial

skeleton project including the tests, and lecturers to retrieve the student

projects and evaluate them automatically.

The results show that test-driven development is a viable solution to be

applied in an academic environment to improve the grading process. This

study also shows that courses in Information Technology area could use our

approach to increase learning and teaching efficiency.

Keywords: Test-Driven Development; GitHub Classroom; automated testing;

self-evaluation.

6th International Conference on Higher Education Advances (HEAd’20)
Universitat Politècnica de València, València, 2020

DOI: http://dx.doi.org/10.4995/HEAd20.2020.11218

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València 1155

Applying Test-driven Development to Evaluating Student Projects

1. Introduction

Grading assignments and course projects have always been an intensive process in higher

education. Manual evaluation and grading do not provide the necessary scalability needed

for courses with many students. As a concrete example, we refer to one of the courses on

the master’s level at Åbo Akademi University in Finland, called Development of Web

Applications and Web Services (DEWAS). In this course, the students must implement

individually a web application, which can contain between 1500 and 2000 lines of code

depending on the coding practices and completeness of the implementation.

Evaluating a project in this course is done not only by downloading, building the project,

starting the application and navigating through it, but also by inspecting the source code for

checking how different features were implemented. On average, grading a project can take

around 20 minutes. The course has a variable number of students each year, ranging

between 50 and 100, which can result in a high workload for evaluating all projects and

providing feedback by the teaching personnel. In addition, we would like that students are

able to evaluate their own projects throughout the course, so that they can get an estimate of

how many of the project requirements have been implemented and also the corresponding

grade for the project.

Our approach applies Test-driven Development (TDD) (Ashbacher, 2003) in building an

automatic grading process. TDD is a process in which requirements are turned into test

cases, then the code is written to fulfill the tests. This process is usually applied to make

sure that every implementation code written meets the requirements. A test case basically

executes the system under test (or parts of it) with a sequence of inputs and it checks that

the outputs provided by the system corresponds to the output specified by the specification

of the system.

Basically, the teachers create a skeleton project with the initial settings and structure,

including a set of tests and store it into a software version control system (Chacon &

Straub, 2014). The students can download this project to their computers and start working

on it. The set of tests should fully reflect the requirements in the assignment specification.

Since the project implementation is empty, these tests will fail in the beginning. Students

are required to implement the project in order to pass the tests. By continuously evaluating

their implementation against the tests, students can track their progress and evaluate their

corresponding grade before submitting the final version of the project for grading. After the

deadline, lecturers will automatically download and grade all projects at once.

1156

Cuong Huy Tran, Dragos Truscan, Tanwir Ahmad

To provide tool support for the above approach, we used GitHub Classroom1 online version

control system, which is one of the tools provided by the GitHub initiative for education.

GitHub Classroom provides a means to distribute material, give student feedback, and

collect assignments.

2. Related work

Automatic grading of assignments is not a novel topic, many researchers have already

addressed this topic in the past with similar approaches. Pilla (2017) utilized GitHub and

Travis CI, a continuous integration (CI) service that integrates with GitHub, to build an

automatic testing environment for students. Although the work was conducted on some

simple C-code assignments, the preliminary results showed great potential. Comparably,

Cai and Tsai (2019) applied a similar solution to an Android application development

course with improved security.

However, neither of them used a starter repository in their solution. Our approach is also

different from theirs because we follow TDD to create a starter repository. Students can

download the repository and start working immediately. We do not use any continuous

integration (CI) service; instead, we have implemented our approach to automatically

download student projects, grade them and generate a detailed course-level report. From

our experience, a continuous integration does not provide a global view on all students’

repositories, and it requires students to commit code frequently to be relevant. With our

approach, we can retrieve student projects any time we want and have all the information of

those projects in the report. The approach also allows teachers to update the starter

repository and even student repositories.

3. Approach

Figure 1 illustrates the general workflow of our proposed approach. Before the course

starts, the teachers specify the project requirements that are directly related to the topics of

the course. The system to be implemented has several use cases, for instance, the user

should be able to sign up, sign in, sign out, create items, delete items, etc. Use cases can

have different levels of complexity and can provide a certain number of points that

contribute to the final grade. Each use case is broken into have several functional

requirements, for instance the restrictions on the username or the password of the user

account. One test will be created for each requirement and added to the test suite.

1
 https://classroom.github.com/

1157

Applying Test-driven Development to Evaluating Student Projects

In order to implement the tests before the system is implemented, we need to fix the

interface of the system and clearly specify it in a document. During the implementation of

the project, the students will implement the behavior behind the specified interface. When

the application programming interface (API) is defined and specified and the tests are

created, they are both included in a skeleton project which will be delivered to students via

GitHub.

GitHub Classroom is an online tool that allows teachers to create assignment repositories.

An invitation link is provided to the students. By accessing this link, each student will

trigger the automatic creation of a private repository to which both the student and the

teacher have access. If a starter code is provided in the initial assignment repository, it will

be copied to which of the newly created student repositories. When students download

(clone) their assignment repository to the to their computer, they receive a copy of the

started code, including the tests, and they can start the implementation of their projects.

Figure 1. Workflow of the automatic grading process

During the implementation, students have the possibility to run the tests periodically to

check what requirements they have implemented successfully and how many points they

1158

Cuong Huy Tran, Dragos Truscan, Tanwir Ahmad

currently have. The tests can be used as a self-evaluation tool to check which use cases

have passed and which have failed. When they consider their implementation corresponds

to the expected grade or before the deadline, students submit their projects by uploading

(pushing) the code to the GitHub Classroom repository.

After the final deadline of the project, teachers will automatically retrieve (pull) all

repositories, run all the tests for each of them, and create an overview report including the

grades for all the students. Manual inspection of the code can still take place if the teacher

considered necessary.

4. Example

For this concrete course, we use the Django framework (Holovaty & Kaplan-Moss, 2009)

to develop web applications. Django is based on the Python programming and follows the

principles of the model-view-controller (MVC) design pattern, which in Django is referred

to as model-view-template (MVT). This pattern allows the separation of the user interface

(template) from the business logic (view) and from the data (model) stored in the system.

The structure of a Django project follows the same pattern. A project can be structured into

several applications (Figure 2-left) each with its own folder. There are several mandatory

files inside a project folder, however we will only discuss the relevant ones for this paper.

Figure 2. Structure of a Django project.

At the top level of the project (Figure 2-middle), the url.py file specifies the interface of the

web application as a list of links and what functionality of the application to invoke in order

to provide a response to the client (browser). For example, in the code below, whenever a

browser will send an HTTP request to an address https:/myserver.com/signup/ the Django

framework will map the request to a function called signout_view() which implements the

business logic of the sign out feature of the application.

1159

Applying Test-driven Development to Evaluating Student Projects

urlpatterns =[

 ….

 path('signout/', user.views.signout, name='signup_view'),

]

The implementation of the signup_view() function is located in one of the views.py files of

the Django project folders (Figure 2-right). This function, similarly, to all the other business

logic functions in the project, have an empty body in the project skeleton which should be

completed by the students. After being implemented, the function will return a HTML page

that will be sent back to the browser to be displayed.

A corresponding test for this function is shown below. The test verifies requirements

REQ1.1 (lines 2-3) by sending a HTTP POST request to the signup/ URL (line 9) and

providing a set of parameters via the context variable defined at lines 4-8. The test expects

(line 10) that the application will return a HTTP response message with status code 302, in

which case the test will be marked as PASS otherwise as FAIL. When the test is successful

(PASS), line 12 will be executed and the number of points scored by the entire project will

be increased.

1

2
3

4

5
6

7

8
9

10

11
12

def test_sign_up_with_valid_data(self):

 #REQ1.1 Sign up with valid username, password and password confirmation,
 # should return status code 302

 context = {

 "username": "testUser3",
 "password": "!@ComplicatedPassword123",

 "email": "user1@mail.com"

 }
 response = self.client.post("signup/", context)

 self.assertEqual(response.status_code, 302)

 # calculate points
 self.__class__.number_of_passed_tests += 1

With this approach, students can check the tests frequently to check their progression. After

each run, a report will show what tests have failed or passed and how many points a student

has currently earned. Students can go to each test case and test method to inspect the test

failure in more detail. Figures 3 and Figure 4 show examples of failed and respectively

passed test when using PyCharm IDE2, a recommended IDE in the course. After each run

the students can visualize the number of points received by the project.

2
 https://www.jetbrains.com/pycharm/

1160

Cuong Huy Tran, Dragos Truscan, Tanwir Ahmad

Figure 3. Example of failed tests.

As mentioned in the previous section, we have implemented a script in Python to support

the grading process by the lecturers. When the project deadline has passed, the teachers will

execute the script, which will run the provided tests on each submitted project and provide

statistics with the use cases passed and how many points have been received by each

project. A generic example is shown in Table 1.

Figure 4. Example of passed tests.

In total, we have implemented 41 tests, covering 12 case studies. Having followed the TDD

approach, where the tests have been provided before the project was implemented allowed

the students to self-evaluate themselves during the implementation with respect to how

many points the project is worth, which functions introduce errors, and what code needs to

be improved. If the students commit their code regularly to repository before the deadline,

teachers could check their progress status and give helpful feedback during the course

rather than only acknowledge the final product.

Table 1. Example of the grading report.

Student Date UC1 UC2 … Total Repo link

Student A 16/01/2020 1 1 … 16 https://github.com/…

Student B 16/01/2020 1 0 … 18 https://github.com/…

Student C 16/01/2020 0 1 … 15 https://github.com/…

1161

Applying Test-driven Development to Evaluating Student Projects

5. Evaluation

To this extent, most of the students provided positive feedback on the approach since it

allowed them to understand and plan their programming tasks better.

The approach also has some limitations. In order to provide the automated tests from the

beginning, we had to clearly specify the interface of the application, for which otherwise

the students would have had complete freedom. Also, some of the features of the

application could be implemented in different ways by the students, but the tests would

impose that a certain way is followed, creating additional constraints.

Another negative aspect was that not all requirements could be translated into automated

tests. For those we had the option of either removing them from the project requirements or

manually inspect them when the project is submitted.

Some effort was spent in the beginning by the lecturers to implement the tests and clearly

specify in the interface, however the benefits in terms of efficiency the new approach

decreased dramatically the time needed to grade the assignments. As such, we were able to

run the automated tests on all 60 projects submitted by students in around 110 minutes on a

Windows 10 laptop featuring an Intel i7-7500U CPU with two cores at 2.90GHz and 16GB

of RAM. This menas less than two minutes per project. Roughly 5 minutes of additional

time was allocated in average to manual code inspection of the requirements that had no

associated tests. Overall, we have observed a reduction of time of more than 65%.

6. Conclusions

In this paper, we presented an approach that uses test-driven development for automatic

grading and evaluation of student projects in a programming course. The results show that

TDD is a viable approach which in combination with automation tools provided by for

instance GitHub Education can make the learning process more efficient. As future work

we plan to evaluate our approach in other courses and also calculate its impact on the

average grade of the students in the course.

Acknowledements

This work has received partial funding from the Electronic Component Systems for

European Leadership Joint Undertaking under grant agreement No 737494. This Joint

Undertaking receives support from the European Union’s Horizon 2020 research and

innovation programme and Sweden, France, Spain, Italy, Finland, the Czech Republic.

1162

Cuong Huy Tran, Dragos Truscan, Tanwir Ahmad

References

Ashbacher, C. (2003). Test-Driven Development: By Example, by Kent Beck. The Journal

of Object Technology, 2(2), 203. doi: 10.5381/jot.2003.2.2.r1.

Cai, Y.-Z., & Tsai, M.-H. (2019). Improving Programming Education Quality with

Automatic Grading System. Lecture Notes in Computer Science Innovative

Technologies and Learning, 207–215. doi: 10.1007/978-3-030-35343-8_22.

Chacon, S., & Straub, B. (2014). Pro Git (2nd ed.). Berkeley, CA: Apress.

Fowler, M., & Foemmel, M. (2006). Continuous integration. Thought-Works) http://www.

thoughtworks. com/Continuous Integration. pdf, 122, 14.

Holovaty, A., & Kaplan-Moss, J. (2009). The definitive guide to Django: Web development

done right. Apress.

Pilla, M. L. (2017). Teaching Computer Architectures through Automatically Corrected

Projects: Preliminary Results.

1163

