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Abstract

In this work we introduce new rational-polynomial Hermite matrix expan-
sions which allows us to obtain a new accurate and efficient method for
computing the matrix cosine. This method is compared with other state-of-
the-art methods for computing the matrix cosine, including a method based
on Padé approximants, showing a far superior efficiency, and higher accu-
racy. The algorithm implemented on the basis of this method can also be
executed either in one or two NVIDIA GPUs, which demonstrates its great
computational capacity.

Keywords: matrix cosine, scaling and squaring method, Hermite series,
backward error, parallel implementation, GPUs, CUDA.

1. Introduction and Notation

The computation of matrix trigonometric functions has received remark-
able attention in the last decades due to its usefulness in the solution of
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petitividad and European Regional Development Fund (ERDF) grants TIN2014-59294-P,
and TIN2017-89314-P.



systems of second order linear differential equations. Several state-of-the-art
algorithms have been provided for computing these matrix functions, see for
instance [1, 2, 3, 4, 5, 6, 7] and the references therein.

Matrix polynomials are a very active area of research [8, 9, 10, 11], be-
coming more and more relevant in the last decades. Orthogonal matrix
polynomials and, in particular, Hermite matrix polynomials, introduced and
studied in [12, 13], have received considerable attention for its application in
the solution of matrix differential equations [14]. Series of Hermite matrix
polynomials have been studied for its application in the approximation of
different matrix functions: exponential matrix [15], matrix cosine [6, 16, 17],
and the hyperbolic matrix sine and cosine [18, 19].

In the scalar case, Hermite polynomials Hn(x) are widely used in quan-
tum mechanics, mathematical physics, nucleon physics and quantum optics.
Recently, new formulas for series of Hermite polynomials∑

n≥0

H2n+l(x)

n!
tn, with l = 1, 2, 3, . . . ,

have been obtained in [20], having been these formulas applied, e.g. in the
theory of quantum optics. The generalization of this class of formulas for
Hermite matrix polynomials Hn(x,A) can be found in [21].

Hermite matrix polynomial Hn(x,A) has the following generating func-
tion [12]:

ext
√

2A = et
2
∑
n≥0

Hn (x,A)

n!
tn,

from which the following expressions are derived:

cos
(
xt
√

2A
)

= e−t
2
∑
n≥0

(−1)nH2n(x,A)

(2n)!
t2n

sin
(
xt
√

2A
)

= e−t
2
∑
n≥0

(−1)nH2n+1(x,A)

(2n+ 1)!
t2n+1

 , x ∈ R, |t| <∞.

(1)
for the matrix sine and cosine.

In this paper we derive a functional form for the new Hermite matrix
polynomial series as:∑

n≥0

(−1)nH2n+1(x,A)

(2n)!
t2n := A(x, t;A), (2)
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and ∑
n≥0

(−1)nH2n+3(x,A)

(2n+ 1)!
t2n+1 := B(x, t;A), (3)

which are generalizations of formulas (1). We will use formulas (2) and (3)
to obtain a new rational expansion in Hermite matrix polynomials of the
matrix cosine.

The organization of this paper is as follows: In Section 2 we present a
proof of formulas (2) and (3). Section 3 deals with new rational-polynomial
Hermite matrix expansions for the matrix cosine. The proposed algorithm
and its MATLAB implementation are both presented in Section 4. The
implementation of the accelerated algorithm is described in Section 5 being
the numerical results presented in Section 6. Finally, the conclusions are
given in Section 7.

Throughout this paper, we denote by Cr×r the set of all the complex
square matrices of size r. With Θ and I we denote the zero and the identity
matrices in Cr×r, respectively. If A ∈ Cr×r, we denote by σ(A) the set of all
the eigenvalues of A. For a real number x, bxc denotes the lowest integer not
less than x and dxe denotes the highest integer not exceeding x.

If f(z) and g(z) are holomorphic functions in an open set Ω of the complex
plane, and if σ(A) ⊂ Ω, we denote by f(A) and g(A) the image by the
Riesz-Dunford functional calculus of the functions f(z) and g(z), respectively,
acting on matrix A. Also, f(A)g(A) = g(A)f(A) [22, p. 558]. We say that
matrix A is positive stable if Re(z) > 0 for every eigenvalue z ∈ σ(A). In this
case, let us denote

√
A = A1/2 = exp

(
1
2

log (A)
)

the image of function z1/2 =
exp

(
1
2

log (z)
)

by the Riesz-Dunford functional calculus acting on matrix A,
where log (z) denotes the principal branch of the complex logarithm.

In this paper, we use consistent matrix norms, in particular ‖A‖2 is the
2-norm. In tests we use the 1-norm of a matrix A ∈ Cr×r defined by ‖A‖1 =

sup
x6=0

‖Ax‖1

‖x‖1

, where ‖·‖1 denotes the vector 1-norm defined as ‖y‖1 = |y1| +

· · ·+ |yr|, y ∈ Cr, see [23, Chapter 2]. For a positive stable matrix A ∈ Cr×r

the nth Hermite matrix polynomial is defined in [12] by:

Hn(x,A) = n!

bn
2
c∑

k=0

(−1)k
(√

2A
)n−2k

k!(n− 2k)!
xn−2k, (4)
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which satisfies the three-term matrix recurrence:

Hm(x,A) = x
√

2AHm−1(x,A)− 2(m− 1)Hm−2(x,A) , m ≥ 1,

H−1(x,A) = Θ , H0(x,A) = I .

 (5)

The following upper bound of Hermite matrix polynomials was demon-
strated in [24]:

‖H2n(x,A)‖2 ≤ gn(x) , n ≥ 1

‖H2n+1(x,A)‖2 ≤ |x|

∥∥∥∥∥
(
A

2

)− 1
2

∥∥∥∥∥
2

2gn(x)

n+ 1
, n ≥ 0

 (6)

where function gn(x) is defined as

gn(x) =
(2n+ 1)!22n

n!
exp

(
5

2
‖A‖2 x

2

)
, n ≥ 0. (7)

2. A proof of the new formulas (2) and (3)

We calculate the exact value of the series of matrices A(x, t;A) and
B(x, t;A) defined by (2) and (3). Firstly, we prove that both matrix series
are convergent. Taking into account (6) one gets that∥∥∥∥(−1)nH2n+1(x,A)

(2n)!
t2n
∥∥∥∥ ≤ |x|

∥∥∥∥∥
(
A

2

)− 1
2

∥∥∥∥∥
2

2gn(x)

(n+ 1)(2n)!
|t|2n.

Using (7) we get that
∑
n≥0

gn(x)

(n+ 1)(2n)!
|t|2n is convergent for |t| < ∞ so

the matrix series A(x, t;A) defined by (2) is convergent in any compact real
interval. Analogously and taking into account (6) again, we have

∥∥∥∥(−1)nH2n+3(x,A)

(2n+ 1)!
t2n+1

∥∥∥∥ ≤ |x|

∥∥∥∥∥
(
A

2

)− 1
2

∥∥∥∥∥
2

2gn+1(x)

(n+ 2)(2n+ 1)!
|t|2n+1.

Using (7) again we have that
∑
n≥0

gn+1(x)

(n+ 2)(2n+ 1)!
|t|2n+1 is convergent for

|t| < ∞ so the matrix series B(x, t;A) defined by (3) is convergent in any
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compact real interval. Using now (2), (5) and the fact that H1(x,A) =
√

2Ax,
we can write:

A(x, t;A) =
(
x
√

2A
)∑
n≥0

(−1)nH2n(x,A)

(2n)!
t2n − 4

∑
n≥1

(−1)nnH2n−1(x,A)

(2n)!
t2n

= H1(x,A)et
2

cos
(
xt
√

2A
)
− 2t

∑
n≥1

(−1)nH2n−1(x,A)

(2n− 1)!
t2n−1

= H1(x,A)et
2

cos
(
xt
√

2A
)
− 2t

∑
n≥0

(−1)n+1H2n+1(x,A)

(2n+ 1)!
t2n+1

= H1(x,A)et
2

cos
(
xt
√

2A
)

+ 2tet
2

sin
(
xt
√

2A
)
. (8)

Working similarly we can write:

B(x, t;A) = x
√

2A
∑
n≥0

(−1)nH2n+2(x,A)

(2n+ 1)!
t2n+1 − 2

∑
n≥0

(−1)n(2n+ 2)H2n+1(x,A)

(2n+ 1)!
t2n+1

= x
√

2A

(
x
√

2A
∑
n≥0

(−1)nH2n+1(x,A)

(2n+ 1)!
t2n+1 − 2

∑
n≥0

(−1)n(2n+ 1)H2n(x,A)

(2n+ 1)!
t2n+1

)

− 2

(∑
n≥0

(−1)n(2n+ 1)H2n+1(x,A)

(2n+ 1)!
t2n+1 +

∑
n≥0

(−1)nH2n+1(x,A)

(2n+ 1)!
t2n+1

)

= x
√

2A

(
x
√

2Aet
2

sin
(
xt
√

2A
)
− 2t

∑
n≥0

(−1)nH2n(x,A)

(2n)!
t2n

)

− 2

(∑
n≥0

(−1)nH2n+1(x,A)

(2n)!
t2n+1 + et

2

sin
(
xt
√

2A
))

=
(
2x2A− 2I

)
et

2

sin
(
xt
√

2A
)
− 2xt

√
2Aet

2

cos
(
xt
√

2A
)

− 2
∑
n≥0

(−1)nH2n+1(x,A)

(2n)!
t2n+1

= et
2
[(

2x2A−2I
)

sin
(
xt
√

2A
)
−2xt

√
2A cos

(
xt
√

2A
)]
−2tA(x, t;A).

Taking into account (8) one gets

B(x, t;A) =
(
2x2A− 2I − 4t2I

)
et

2

sin
(
xt
√

2A
)
− 4xt

√
2Aet

2

cos
(
xt
√

2A
)
.
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By using (4), we have that H1(x,A) =
√

2Ax,H2(x,A) = 2x2A − 2I so
we can rewrite the last expression of B(x, t;A) in the following form:

B(x, t;A) := et
2
[(
H2(x,A)− 4t2I

)
sin
(
xt
√

2A
)
− 4tH1(x,A) cos

(
xt
√

2A
)]
.

Summarizing, we establish the following result:

Lemma 2.1. Let A ∈ Cr×r be a positive stable matrix, x ∈ R, |t| < +∞,
then∑

n≥0

(−1)nH2n+1(x,A)

(2n)!
t2n = et

2
[
H1(x,A) cos

(
xt
√

2A
)

+2t sin
(
xt
√

2A
)]
,

∑
n≥0

(−1)nH2n+3(x,A)

(2n+ 1)!
t2n+1 = et

2
[(
H2(x,A)−4t2I

)
sin
(
xt
√

2A
)
−4tH1(x,A) cos

(
xt
√

2A
)]
.

(9)

Consequently, the following corollary follows:

Corollary 2.1. Let {Hn(x)}n≥0 be the sequence of Hermite polynomials,
then∑

n≥0

(−1)nH2n+1(x)

(2n)!
t2n = et

2
[H1(x) cos (2xt)+2t sin (2xt)] ,

∑
n≥0

(−1)nH2n+3(x)

(2n+ 1)!
t2n+1 = et

2
[(H2(x)−4t2) sin (2xt)−4tH1(x) cos (2xt)] ,

for x ∈ R, |t| < +∞.

Proof. The proof is a consequence of Lemma 2.1 since the Hermite matrix
polynomial Hn(x,A) coincides with the Hermite polynomial Hn(x) taking
r = 1 and A = 2.

3. On new rational-polynomial Hermite matrix expansions for the
matrix cosine

Let A ∈ Cr×r be a positive stable matrix, then the matrix polynomial

H1(x,A) =
√

2Ax is invertible if x 6= 0. Substituting sin
(
xt
√

2A
)

, given

6



in (1), into the first expression of (9) we obtain a new rational expression for
the matrix cosine in terms of Hermite matrix polynomials:

cos
(
xt
√

2A
)

= e−t
2

(∑
n≥0

(−1)nH2n+1(x,A)

(2n)!

(
1− 2t2

2n+ 1

)
t2n

)
[H1(x,A)]−1 ,

x ∈ R ∼ {0} , |t| < +∞.
(10)

Similarly, replacing cos
(
xt
√

2A
)

, given by (1), into the second expression

of (9), the expression obtained is reduced to that given in (1). On the other

hand, replacing the expression of sin
(
xt
√

2A
)

given in (1) into the second

expression of (9), we obtain another new rational expression for the matrix
cosine in terms of Hermite matrix polynomials:

cos
(
xt
√

2A
)

=
−e−t2

4

[∑
n≥0

(−1)nH2n+3(x,A)

(2n+ 1)!
t2n

−
(
H2(x,A)− 4t2I

)
?

(∑
n≥0

(−1)nH2n+1(x,A)

(2n+ 1)!
t2n

)]
[H1(x,A)]−1 ,

x ∈ R ∼ {0} , |t| < +∞. (11)

Comparing (10) with (11), we observe that there exists always one matrix
product more when we evaluate (11)—the matrix product remarked by sym-
bol “?”. Due to the importance of reducing the number of matrix products,
we will focus mainly on the expansion (10).

Replacing matrix A by A2/2 in (10), we can avoid the square roots of
matrices. In addition, if x 6= 0 (4), it follows that[
H1

(
x,

1

2
A2

)]−1

H2n+1

(
x,

1

2
A2

)
= (Ax)−1H2n+1

(
x,

1

2
A2

)
= (2n+ 1)!

n∑
k=0

(−1)kx2(n−k)A2(n−k)

k!(2(n− k) + 1)!

= H̃2n+1

(
x,

1

2
A2

)
, (12)

so the right side of (12) is still defined in case matrix A is singular. In this
way, we can re-write the relation (10) in terms of the matrix polynomial

H̃2n+1

(
x,

1

2
A2

)
and, taking x = λ, λ 6= 0, and t = 1/λ, we obtain
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cos (A) = e−
1
λ2

∑
n≥0

(−1)nH̃2n+1

(
λ, 1

2
A2
)

(2n)!λ2n

(
1− 2

(2n+ 1)λ2

)
. (13)

Note that expansion (13) is really a polynomial series in matrix A. Trun-
cating the given series (13) until order m, we obtain the approximation
Cm (λ,A) ≈ cos (A) defined by

Cm (λ,A) = e−
1
λ2

m∑
n=0

(−1)nH̃2n+1

(
λ, 1

2
A2
)

(2n)!λ2n

(
1− 2

(2n+ 1)λ2

)
, 0 < λ < +∞,

for any matrix A ∈ Cr×r.
Working analogously to the proof of equation (3.3) of [19], we have∥∥∥∥H̃2n+1

(
x,

1

2
A2

)∥∥∥∥
2

≤ (2n+ 1)!
e sinh

(
|x| ‖A2‖1/2

2

)
|x| ‖A2‖1/2

2

, x 6= 0, (14)

so we can obtain the following expression for the approximation error:

‖cos (A)− Cm (λ,A)‖2 ≤ e−
1
λ2

∑
n≥m+1

∥∥∥H̃2n+1

(
λ, 1

2
A2
)∥∥∥

2

(2n)!λ2n

∣∣∣∣1− 2

(2n+ 1)λ2

∣∣∣∣
(15)

≤
e1− 1

λ2 sinh
(
λ ‖A2‖1/2

2

)
λ ‖A2‖1/2

2

∑
n≥m+1

2n+ 1

λ2n

∣∣∣∣1− 2

(2n+ 1)λ2

∣∣∣∣ .
Taking λ >

√
2 it follows that

2

(2n+ 1)λ2
< 1, and one gets

∑
n≥m+1

2n+ 1

λ2n

∣∣∣∣1− 2

(2n+ 1)λ2

∣∣∣∣ < ∑
n≥m+1

2n+ 1

λ2n
=

2 + (2m+ 3)(λ2 − 1)

λ2m (λ2 − 1)2 .

Thus, from (15) we finally obtain:

‖cos (A)− Cm (λ,A)‖2 ≤
e1− 1

λ2 sinh
(
λ
∥∥A2

∥∥1/2

2

) (
2 + (2m+ 3)(λ2 − 1)

)
‖A2‖1/2

2 λ2m+1 (λ2 − 1)2
.

(16)
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Table 1: Values of zm and λm

m 2 4 6 9 12 16

zm 2.0612 · 10−5 8.1180 · 10−3 1.2996 · 10−1 1.3290 · 10−1 5.2620 1.7686 · 101

λm 1518.9764 118.9737 35.9520 17.9304 10.9977 8.3117

From expression (16) we can derive the optimal pair of values (λm; zm)
such that

zm = max

{
z =

∥∥A2
∥∥

2
;
e1− 1

λ2 sinh
(
λz1/2

) (
2 + (2m+ 3)(λ2 − 1)

)
z1/2λ2m+1 (λ2 − 1)2 ≤ u

}
,

(17)
where u is the unit roundoff in IEEE double precision arithmetic (u = 2−53).
For each m, the optimal values of zm and λm have been obtained with a
MATLAB script. This script iterates through two nested loops varying z
and λ in increments of order 10−6. Of those pairs (λ, z) that satisfy (17),
we take the one that maximizes zm. The values of zm and λm obtained for
m ∈ {2, 4, 6, 9, 12, 16} are given in Table 1.

4. The proposed MATLAB implementations

The matrix cosine of a matrix A ∈ Cn×n be computed with the expression

Pm(B) =
m∑
i=0

piB
i, (18)

where B = A2, and pi is the coefficient polynomial of the Hermite expres-
sion (3). Since Hermite and Taylor series are accurate only near the origin,
the algorithms that use these approximations must reduce the norm of ma-
trix B by scaling the matrix. Then, once the cosine of the scaled matrix has
been computed, the approximation of cos(A) is recovered by means of the
double angle formula

cos(2X) = 2 cos2(X)− I. (19)

Algorithm 1 shows a general algorithm for computing the matrix cosine
based on Hermite approximation. By using the fact that sin(A) = cos(A −
π
2
I), Algorithm 1 also can be easily used to compute the matrix sine.

9



Algorithm 1 Given a matrix A ∈ Cn×n, this algorithm computes C =
cos(A) by Hermite series.

1: Select adequate values of mk ∈ {2, 4, 6, 9, 12, 16} and s ∈ N ∪ {0} .
Phase I

2: B = 4−sA2

3: C = Pmk(B) . Phase II: Compute Hermite approximation (18)
4: for i = 1 : s do . Phase III: Recovering cos(A)
5: C = 2C2 − I
6: end for

In Phase I of Algorithm 1, the suitable values of m and s are calculated so
that the Hermite of the scaled matrix is computed accurately and efficiently.
Phase II consists of computing the approximations (3) (or (18)). The Hermite
matrix polynomial approximation (18) can be computed with optimal cost
by the Paterson-Stockmeyer’s method [25] choosing m from the set

M = {2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, . . . } ,

where the elements of M are denoted as m1,m2,m3, . . . The algorithm com-
putes first the powers Bi, 2 ≤ i ≤ q not computed in the previous phase,
being q =

⌈√
mk

⌉
or q = b√mkc an integer divisor of mk, for k ≥ 1, both

values giving the same cost in terms of matrix products. Therefore, equa-
tion (18) can be computed efficiently as

Pmk(B) =

(((pmkB
q + pmk−1B

q−1 + pmk−2B
q−2 + · · ·+ pmk−q+1B + pmk−qI)Bq

+ pmk−q−1B
q−1 + pmk−q−2B

q−2 + · · ·+ pmk−2q+1B + pmk−2qI)Bq

+ pmk−2q−1B
q−1 + pmk−2q−2B

q−2 + · · ·+ pmk−3q+1B + pmk−3qI)Bq

. . .

+ pq−1B
q−1 + pq−2B

q−2 + · · ·+ p1B + p0I.

Taking into account Table 4.1 from [26] and that B = A2, the computa-
tional cost in terms of matrix products of (18) is Πmk = k+ 1 (see Table 3).

Finally, in Phase III, the approximation of cos(A) is recovered by using
the double angle formula (19).
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Table 2: Values m̄k, m̃k, and fmax.

m1 = 2 m2 = 4 m3 = 6 m4 = 9 m5 = 12 m6 = 16

m̄k 1 2 3 5 7 11
m̃k 1 2 4 10 13 17

fmk (max) 0 0 1.9 · 10−17 6.0 · 10−19 1.4 · 10−26 1.3 · 10−35

The computation of the scaling factor s and the order of Hermite approx-
imation mk (Phase II) is based on the error analysis that we present below.
The following theorem is used in the study:

Theorem 1 ([27]). Let hl(x) =
∑
i≥l
pix

i be a power series with radius of

convergence w, h̃l(x) =
∑
i≥l
|pi|xi, B ∈ Cn×n with ρ(B) < w, l ∈ N and t ∈ N

with 1 6 t 6 l. If t0 is the multiple of t such that l 6 t0 6 l + t− 1 and

βt = max{d1/j
j : j = t, l, l + 1, . . . , t0 − 1, t0 + 1, t0 + 2, . . . , l + t− 1},

where dj is an upper bound for ||Bj||, dj > ||Bj||, then

||hl(B)|| 6 h̃l (βt) .

If cos(A) is calculated from the Taylor series, then the absolute forward
error of the Hermite approximation (18) of cos(A), denoted by Ef , can be
computed as

Ef = ‖cos(A)− Pmk(B)‖ =

∥∥∥∥∥∑
i>m̄k

fmk,iB
i

∥∥∥∥∥ ,
where the values of m̄k, for each mk ∈ {2, 4, 6, 9, 12, 16}, are those appearing
in Table 2. We have empirically verified that by ignoring the coefficients
whose absolute difference is lower than u, the results of efficiency are far
superior to the state-of-the-art Padé and Taylor algorithms [4, 5], with also
an excellent accuracy. Hence, we have applied the following approximation:

Ef = ‖cos(A)− Pmk(B)‖ ∼=

∥∥∥∥∥∑
i>m̃k

fmk,iB
i

∥∥∥∥∥ ,
where the values m̃k given in Table 2 are the first values that are accounted
for. Values fmk(max) in Table 2 correspond to the maximum absolute val-
ues of the coefficients that have been neglected for each order. For each
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Table 3: Products Πmk
and values Θmk

corresponding to mk.

m1 = 2 m2 = 4 m3 = 6 m4 = 9 m5 = 12 m6 = 16

Πmk 2 3 4 5 6 7
Θmk 3.7247 · 10−5 1.1723 · 10−2 1.7002 · 10−1 1.6237 6.1627 2.0113 · 101

polynomial order, the values fmk(max) shown in Table 2 correspond to the
maximum absolute values of the coefficients that have been discarded.

If we define fm̃k(x) =
∑
i>m̃k

fmk,ix
i and f̃m̃k(x) =

∑
i≥m̃k
|fmk,i|xi, when

Theorem 1 is applied we have

Ef = ‖fm̃k(B)‖ 6 f̃m̃k(βt),

for every t, 1 ≤ t ≤ m̃k. Let Θmk be

Θmk = max

{
θ > 0 : f̃m̃k(θ) =

∑
i>m̃k

|fmk,i| θi 6 u

}
, (20)

where u = 2−53 is the unit roundoff in double precision floating-point arith-
metic. Using MATLAB (R2017b) Symbolic Math Toolbox with 200 series
terms and a zero finder, we obtained the values Θmk that verify (20). These
values (Table 3) have similar magnitude to the values of Θmk of Table 2 of [6].

The optimal values mk and s of Algorithm 1 (Phase I) are obtained from
the values of βt of Theorem 1 and from the values Θmk of Table 3. A complete
study of this question was developed by the authors in [5, Subsection 2.3],
and it is reproduced below. Let be

β
(m̃k)

min = min
16t6m̃k

{βt} ,

if there exists a value mk ≤ 16 such that β
(m̃k)
min ≤ Θmk , then the forward

error Ef is lower than u. In this case, we choose the lower order mk such

that β
(m̃k)
min ≤ Θmk and the scaling factor is s = 0. Otherwise, we choose the

Hermite approximation of order 12 or 16 providing the lower cost, with

s = max

{
0,

⌈
1

2
log

(
β

(m̃k)
min

Θmk)

)⌉}
, mk = 12 or 16.
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The following approximation is used for computing β
(m̃k)
min (see (16) from [28]):

β
(m̃k)
min ≈ max

{
d

1/m̃k
m̃k

, d
1/(m̃k+1)
m̃k+1

}
being dm̃k and dm̃k+1 bounds of

∥∥Bm̃k
∥∥ and

∥∥Bm̃k+1
∥∥, respectively. The

bounds dl, l = m̃k, m̃k+1 can be computed using products of norms of matrix
powers previously computed. This algorithm is analogous to Algorithm 2
from [5]. For example, for mk = 6 the powers B2 and B3 must be computed,

hence β
(3)
min (m̃k = 3) can be computed as

β
(3)
min = max

{∥∥B3
∥∥1/3

,min
{∥∥B3

∥∥ ‖B‖ , ∥∥B2
∥∥2
}1/4

}
.

A MATLAB implementation of Algorithm 1, called cosmtayher, has been
developed, using the values Θmk of Table 3 to obtain the approximation
degree mk and the scaling factor s of matrix B, and using the Hermite
matrix polynomial approximation obtained from the values λmk of Table 1.

5. The implementation of the parallel algorithms

In addition, we have implemented an “accelerated ” version of cosmtayher.
This version uses NVIDIA GPUs (Graphics Processing Units) to accelerate
the computations. The MATLAB version of cosmtayher is modified in such a
way that the most time consuming operations are replaced by calls to a func-
tion which launches these operations to the GPU. The operations replaced
are mainly those based on matrix products, e.g. the computation of poly-
nomial factors and the evaluation of the polynomial carried out in Phase II
of Algorithm 1, or the double angle formula computation (Phase III). This
function, implemented and presented in [29], uses MATLAB C++ mex files
and CUDA, a parallel computing platform and programming model devel-
oped by NVIDIA to implement general purpose applications for NVIDIA
GPUs. Through a mex file we implemented a single function that is called at
different points of the MATLAB script. At each point, a given operation to
be executed by the mex function is selected according to a string argument.
With this strategy we get persistence of data among different calls to the
mex function and provide, in turn, easiness to the developer of the MATLAB
function. There exist two mex files, to use one or two GPUs, respectively.
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6. Numerical experiments

In this section, we compare the new MATLAB function developed in this
paper, cosmtayher, with other two functions:

• cosm. Code based on the Padé rational approximation for the matrix
cosine [4]. The MATLAB function cosm has an argument which allows
us to compute cos(A) by means of just Padé approximants, or also
using the real Schur and the complex Schur decompositions. In these
tests we did not use the Schur decomposition since, as it was shown in
the tests presented in [5], using the Schur decomposition in cosmtay

provides higher efficiency than the Padé method with the Schur de-
composition [4] and with similar accuracy. The MATLAB code can be
found in: http://github.com/sdrelton/cosm_sinm.

• cosmtay. Code based on Taylor series to compute the matrix cosine [5].
This MATLAB function has an argument which allows to choose be-
tween two different methods to compute bounds of norms of matrix
powers. One method uses norm estimation of matrix powers while the
other one does not. For this function, we have used the same method
as that used for cosmtayher. The MATLAB code can be found in:
http://personales.upv.es/jorsasma/software/cosmtay.m

• cosmtayher. The new code presented in this contribution to compute
the matrix cosine that is based on formula (3), available at http://

personales.upv.es/jorsasma/software/cosmtayher.m.

6.1. Sequential tests

In this sequential tests we used MATLAB (R2017b) runing on an Apple
Macintosh iMac 27” (iMac retina 5K 27” late 2015) with a quadcore INTEL
i7-6700K 4Ghz processor and 16 Gb of RAM. The following tests were made
using different matrices:

• Test 1: 100 diagonalizable 128×128 real matrices with 1-norms varying
from 2.32 to 220.04. These matrices have the form A = V TDV , where
D is diagonal with real and complex eigenvalues, and V is an orthogonal
matrix obtained as V = H/

√
128, where H is the Hadamard matrix. A

Hadamard matrix of order n is a matrix of 1’s and -1’s whose columns
are orthogonal, i.e. HTH = nI. These matrices can be obtained by
using the MATLAB function hadamard.
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• Test 2: 100 non diagonalizable 128× 128 real matrices whose 1-norms
vary from 6.5 to 249.5. These matrices have the form A = V TJV ,
where J is a Jordan matrix with real and complex eigenvalues. The
eigenvalues have an algebraic multiplicity that varies between 1 and 3.
Matrix V is orthogonal and has been obtained as V = H/

√
128, where

H is a Hadamard matrix.

• Test 3: Sixteen matrices with dimensions lower than or equal to 128
from the Eigtool MATLAB package [30], forty three matrices from the
matrix function literature with dimensions lower than or equal to 128,
and 128× 128 real matrices generated with the function matrix of the
Matrix Computation Toolbox [31].

The “exact” matrix cosine was computed as cos(A) = V T cos(D)V , for
matrices of Test 1, and cos(A) = V T cos(J)V , for matrices of Test 2 (see [26,
pp. 10]), by using the MATLAB’s Symbolic Math Toolbox with 256 decimal
digit arithmetic in all the computations. For the other matrices we fol-
lowed [7, Sec. 4.1], i.e. we used MATLAB symbolic versions of a scaled Padé
rational approximation from [4] and a scaled Taylor Paterson-Stockmeyer ap-
proximation [5, pp. 67], both with 4096 decimal digit arithmetic and several
orders m and/or scaling parameters s higher than the ones used by cosm and
cosmtay, respectively, and checking that their relative difference was small
enough. Similar results were obtained by using the method proposed in [32].
The algorithm accuracy was tested by computing the relative error

E =
‖ cos(A)− Ỹ ‖1

‖cos(A)‖1

,

where Ỹ is the computed solution and cos(A) is the exact solution.
We show the accuracy and computational cost of cosm, cosmtay, and

cosmtayher, for the three tests.
Table 4 shows the computational cost of each routine cast in terms of

number of matrix products (M(routine)). The rest of the operations are
considered negligible compared to matrix products, specially for big enough
matrices. Since the computational cost of solving a linear system AX = B,
A,B ∈ Rn×n, which appears in the code based on Padé approximations, is
8n3/3 flops and the cost of a matrix product AB is 2n3 [26, Table C.1, pp.
336], we assume that solving AX = B is equivalent to perform 4/3 matrix
products.
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Table 4: Matrix products for the three tests using the three MATLAB functions.

M(cosmtayher) M(cosmtay) M(cosm)
Test 1 671 948 1129
Test 2 681 964 1146
Test 3 399 558 675

Table 5: Relative error comparison between cosmtayher vs cosm (row 1) and cosmtayher

vs cosmtay (row 2) for the three tests.

Test 1 Test 2 Test 3
E(cosmtayher)<E(cosm) 92% 81% 77.97%

E(cosmtayher)<E(cosmtay) 53% 65% 69.49%

Table 5 shows a comparison of relative errors of the three functions.
The table shows the percentage of matrices in which the relative error of
cosmtayher is lower than the relative error cosm and cosmtay, respectively.

Moreover, we plotted in Figures 1, 2 and 3 the normwise relative errors
(a), the Performance Profiles (b), and the ratio of relative errors (c) to show
if these ratios are significant:

E(cosmtayher)/E(cosmtay), E(cosmtayher)/E(cosm),

and the ratios of matrix products (d):

M(cosmtayher)/M(cosmtay), M(cosmtayher)/M(cosm),

for the three tests. In the performance profile, the α coordinate varies be-
tween 1 and 5 in steps equal to 0.1, and the p coordinate is the probability
that the considered algorithm has a relative error lower than or equal to α-
times the smallest error over all methods. The ratios of relative errors are
presented in decreasing order with respect to E(cosmtayher)/E(cosmtay)
and E(cosmtayher)/E(cosm). The solid lines in figures 1a, 2a and 3a is the
function kcosu, where kcos is the condition number of matrix cosine function
[26, Chapter 3] and u = 2−53 is the unit roundoff in the double precision
floating-point arithmetic. Our conclusions are:
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Figure 1: Experimental results for Test 1.

• Figures 1a, 2a, and 3a, which display the normwise relative error, show
that all the implementations have, in general, a similar numerical sta-
bility. Only for two matrices of Test 3 all the functions present certain
numerical instability (see Subfigure 3a). This can be appreciated tak-
ing into account the distance from each matrix normwise relative error
to the cond ∗ u line.

• The functions based on polynomial approximations are more accurate
than the one based on Padé approximants, being the new function
cosmtayher the more accurate one. The performance profile (Fig-
ures 1b, 2b, 3b) shows the graph of cosmtayher above the graphs
of the other two functions, which means that cosmtayher is the most
accurate routine. Table 5 shows that function cosmtayher has a lower
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Figure 2: Experimental results for Test 2

relative error, between 77.97%−92% of the matrices (row 1), than cosm,
which it is between 53%−69.49% of the matrices, and than cosmtay

(row 2). Subfigures 1c, 2c and 3c show the ratio of relative errors.
Subfigures 1c, 2c and 3c show that E(cosmtayher)<0.8 E(cosm) for
approximately 70 of 100 matrices in Test 1, 58 of 100 matrices in Test
2, and 36 of 59 matrices in Test 3. The values in these Subfigures 1c,
2c and 3c show the more accurate method is cosmtayher.

• Table 4 shows that function cosmtayher has a significantly lower com-
putational cost than the other two functions. This can also be verified
at the sight of Subfigures 1d, 2d and 3d, from which we can see that:

– Subfigure 1d (Test 1):
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Figure 3: Experimental results for Test 3.

M(cosmtayher) ∈[0.5M(cosmtay),0.8M(cosmtay)],
M(cosmtayher) ∈[0.38M(cosm),0.67M(cosm)].

– Subfigure 2d (Test 2):
M(cosmtayher) ∈[0.57M(cosmtay),0.8M(cosmtay)],
M(cosmtayher) ∈[0.38M(cosm),0.67M(cosm)].

– Subfigure 3d (Test 3):
M(cosmtayher) ∈[0.5M(cosmtay),0.88M(cosmtay)],
M(cosmtayher) ∈[0.38M(cosm),0.8M(cosm)].

6.2. Results in GPU

Matrix multiplication is a highly optimized operation in different comput-
ing environments. The NVIDIA implementation for its GPUs (included in
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Figure 4: Execution time (sec.) and performance (Tflops) of algorithm cosmtayher on
CPU, 1 GPU, and 2 GPUs for large problem sizes.

the CUBLAS [33] package) takes full advantage of the computational power
of these devices. Therefore, algorithms based on matrix polynomials evalua-
tion and, in turn, based on matrix products, benefit of this.

To analyze the performance of cosmtayher on GPUs we carried out our
experiments on a computer equipped with two processors Intel Xeon CPU
E5-2698 at 2.20 GHz featuring 20 cores each. Attached to the PCI of this
board there are four NVIDIA Tesla P100 SMX2 (Pascal architecture) with
16 GB of memory each. Each one of these GPUs features 56 multiprocessors
with 64 CUDA cores each, resulting in a total of 3584 CUDA cores. All the
GPUs are interconnected through NVIDIA NVLink.

Figure 4 left shows the reduction in execution time when we use GPUs
to accelerate the computations and how the execution time decreases when
increasing the matrix dimension. We should note that the CPU uses all the
40 cores to execute the matrix multiplications. Around 80% of efficient is
achieved when two GPUs are used, i.e. some performance is lost in communi-
cations between the two GPUs when they cooperate to solve the problem. If
we account for the theoretical cost of the algorithm, we can analyze the per-
formance. Figure 4 right shows the performance of the algorithm in Tflops
in the same scenarios, and how this performance steadily increases with the
problem size.
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7. Conclusions

We have proposed in this work an accurate algorithm to compute the
matrix cosine based on new rational-polynomial Hermite matrix expansions,
using an absolute forward error analysis. The algorithm has been compared
with other state-of-the-art MATLAB implementations.

The new MATLAB function cosmtayher presents a higher accuracy in
the majority of tests than the other two functions. The numerical stability
of cosmtayher is similar to the other algorithms.

The numerical experiments also show that, in general, the computational
cost of the new algorithm is significantly lower than the other algorithms
used in the comparison, i.e. cosm and cosmtay. Furthermore, our acceler-
ated implementation for one GPU and our parallel implementation for two
GPUs is useful to work with large scale problems, indeed, we obtain a per-
formance that steadily increases with the problem size. Like our previous
method (cosmtay), the fundamental computational kernel of the method
proposed here is matrix multiplication. This operation is highly optimized
in different computational devices, namely CPUs, GPUs, FPGAs, etc. We
have exploited this fact and our previous experience to demonstrate how we
can benefit from the latest generation of NVIDIA GPUs to accelerate the
computation of the cosine of a matrix.
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