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Abstract: Based on the conditions ab2 = 0 and bπ(ab) ∈ A d, we derive that (ab)n, (ba)n, and ab + ba
are all generalized Drazin invertible in a Banach algebra A , where n ∈ N and a and b are elements of
A . By using these results, some results on the symmetry representations for the generalized Drazin
inverse of ab + ba are given. We also consider that additive properties for the generalized Drazin
inverse of the sum a + b.

Keywords: generalized Drazin inverse; Banach algebra; representation

MSC: 46H05; 47A05; 15A09

1. Introduction

Let A be a complex unital Banach algebra with unit 1. The sets of all invertible elements and
quasinilpotent elements of A are denoted by A −1 and A qnil, respectively, where A −1 := {a ∈ A :
∃ x ∈ A : ax = xa = 1} and A qnil := {a ∈ A : lim

n→+∞
‖an‖1/n = 0}. Let a ∈ A and, if there is a

element b ∈ A such that

bab = b, ab = ba, and a(1− ab) is quasinilpotent, (1)

then b is the generalized Drazin inverse of a, denoted by ad, and it is unique. The set of generalized
Drazin-invertible elements is denoted by A d = {a ∈ A : ∃ ad}. In particular, if a(1− ab) = 0 (or
aba = a), then b is called the group inverse of a. Note that aad is an idempotent element and let
aπ = 1− aad. It was given, in [1] (Lemma 2.4), that ad exists if and only if there is an idempotent
q ∈ A , such that aq = qa, aq is quasinilpotent, and a + q is invertible.

The generalized inverse in a matrix or operator theory is very useful in scientific calculation and
in various engineering technologies [2–4]. It is well known that the Drazin inverse has been applied in
a few fields, such as statistics and probability [5], ordinary differential equations [6], Markov chains [7],
operator matrices [8], neural network models [9,10], and the references therein. In [11], a study of
the Drazin inverse for bounded linear operators in a Banach space X is given, when 0 is an isolated
spectral point of the operator. In [12], some additive results on the Drazin inverse, under the condition
ab = 0, are obtained. However, as in [12,13], this condition was not enough to derive a formula for the
generalized Drazin inverse for a + b. In [14], authors investigated how to express the Drazin inverse
of sums, differences, and products of two matrices P and Q, under the conditions P3Q = QP and
Q3P = PQ. The representations of the Drazin inverse for (P + Q), such that PQP = 0 and PQ2 = 0, is
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given in [15]. The generalized inverses in C∗-algebras has been investigated in [16] and a symmetry of
the generalized Drazin inverse in a C∗-algebra has been considered in [17].

Some additive properties of the generalized Drazin inverse in a Banach algebra were investigated
in [18]. Recently, the expression for the generalized Drazin inverse of the sum a + b on Banach algebra
has been studied, such as in the representations of the generalized Drazin inverse for a + b in a
Banach algebra, obtained in [19]; some new additive results for the generalized Drazin inverse in
a Banach algebra, given in [20]; and additive results on the generalized Drazin inverse of a sum of
two elements in a Banach algebra are derived in [21] and the references therein. In this paper, we
consider the representations of the generalized Drazin inverse of the sum of two elements in a Banach
algebra. By using the assumed conditions ab2 = 0 and bπ(ab) ∈ A d, it is implied that (ab)n, (ba)n,
and ab + ba ∈ A d, and a symmetry representation for the generalized Drazin inverse of ab + ba is
obtained, where n ∈ N and a, b ∈ A d. We also consider the additive properties for the generalized
Drazin inverse of the sum a + b.

In Section 2, some notation is introduced and lemmas are given. In Section 3, a symmetric
representation of the generalized Drazin inverse for ab + ba in a Banach algebra is derived. The
additive properties of the generalized Drazin inverse of a + b are investigated in Section 4.

2. Preliminaries

Let B be a subalgebra of the unital algebra A . For an element b ∈ B−1, the inverse of b in B is
denoted by [b−1]B . As in [19], it is given that B−1 6⊂ A −1. Let P = {p1, p2, . . . , pn} be a total system of
idempotents in A if p2

i = pi, for all i, pi pj = 0 if i 6= j, and p1 + · · ·+ pn = 1, as in [22]. If a ∈ A d, then

a =

[
a1 0
0 a2

]
P

, ad =

[
[a1
−1]pA p 0

0 0

]
P

, aπ =

[
0 0
0 1− p

]
P

, (2)

where p = aad, P = {p, 1 − p}, a1 ∈ [pA p]−1, and a2 ∈ [(1 − p)A (1 − p)]qnil. If a has the
representation given as in (2), then ad = [a1

−1]pA p = ad1 .
The following lemmas are required in what follows.

Lemma 1 ([19]). Let P = {p, 1− p} be a total system of idempotents in A , and let a, b ∈ A have the
following representation

a =

[
x 0
z y

]
P

, b =

[
x t
0 y

]
P

.

Then there exist (zn)∞
n=0 ⊂ (1− p)A p and (tn)∞

n=0 ⊂ pA (1− p), such that

an =

[
xn 0
zn yn

]
P

, bn =

[
xn tn

0 yn

]
P

, ∀ n ∈ N.

Lemma 2 ([22]). Let a, b ∈ A be generalized Drazin invertible and ab = 0. Then, a + b is generalized Drazin
invertible and

(a + b)d = bπ
∞

∑
n=0

bn(ad)n+1 +
∞

∑
n=0

(bd)n+1anaπ .

Lemma 3 ([22]). Let x, y ∈ A , p be an idempotent of A , and let x and y have the representation

x =

[
a 0
c b

]
{p,1−p}

, y =

[
b c
0 a

]
{1−p,p}

. (3)
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(i) If a ∈ [pA p]d and b ∈ [(1− p)A (1− p)]d, then x, y ∈ A d and

xd =

[
ad 0
u bd

]
{p,1−p}

, yd =

[
bd u
0 ad

]
{1−p,p}

, (4)

where

u =
∞

∑
n=0

(bd)n+2canaπ +
∞

∑
n=0

bπbnc(ad)n+2 − bdcad. (5)

(ii) If x ∈ A d and a ∈ [pA p]d, then b ∈ [(1− p)A (1− p)]d, and xd and yd are given by (4) and (5).

Lemma 4 ([11]). Let a ∈ A d. Then [(a)n]d = [ad]n, for all n = 1, 2, · · · .

Lemma 5 ([11]). If a, b ∈ A d and ab = ba = 0. Then, (a + b)d also exists and (a + b)d = ad + bd.

Lemma 6 ([23]). Let a, b ∈ A d. Then (ab)n+1 is generalized Drazin invertible, for some n ∈ N, if and only if
ab is generalized Drazin invertible.

Lemma 7 ([23]). Let a, b ∈ A d and (ab)n+1 be generalized Drazin invertible for some n ∈ N. Then, (ba)n is
generalized Drazin invertible and [(ba)n]d = b[(ab)n+1]da.

3. The Symmetric Representation for the Generalized Drazin Inverse of ab + ba

Let a, b ∈ A d. A symmetric expression of (ab + ba)d is given, by using ab, ba, (ab)d, and (ba)d,
with the following assumed conditions

ab2 = 0, bπ(ab) ∈ A d. (6)

Theorem 1. Let a, b ∈ A d satisfy (6). Then, (ab)n, (ba)n, ab+ ba ∈ A d (n = 1, 2, · · · ), and a representation
of (ab + ba)d is given as

(ab + ba)d = (ba)π
∞

∑
n=1

(ba)n−1[(ab)n]d +
∞

∑
n=1

[(ba)n]d(ab)n−1(ab)π . (7)

Proof. Let b =

[
b1 0
0 b2

]
P

, where P = {bbd, bπ}, b1 is invertible in the subalgebra bbdA bbd, and

b2 is quasinilpotent. Let us write a =

[
a11 a12

a21 a22

]
P

. From ab2 = 0, we have

a11 = 0, a21 = 0, a12b2
2 = 0, and a22b2

2 = 0. (8)

Thus, we have ab =

[
0 a12b2

0 a22b2

]
. By Lemma 3, we obtain that ab ∈ A d if and only if a22b2 is

generalized Drazin invertible. Thus, (bπab)d exists. By using Cline’s formula, it proves that (ab)d also
is. Therefore, we obtain (ab)n, (ba)n ∈ A d by using Lemma 6 and 7. Since ab2 = 0, by Lemma 2 we
can prove that ab + ba is generalized Drazin invertible and that (7) holds. If n = 1, then (ab + ba)d =

(ba)π(ab)d + (ba)d(ab)π . By using mathematical induction, we derive that the representation can be
given, as in (7).

Remark 1. Note that the expression given in Theorem 1 is symmetric.
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Theorem 2. Let a, b ∈ A d satisfy (6) and a2 = 0. Then ab + ba ∈ A d and [(ab + ba)d]n = [(ab)d]n +

[(ba)d]n, for all n = 1, 2, · · · .

Proof. Let a, b be written as in the proof of Theorem 1, and, by ab2 = 0, we derive ab =

[
0 a12b2

0 a22b2

]
and ab, ba, (ab)n, (ba)n ∈ A d. Since ab2 = 0 and a2 = 0, we have

(ab)n(ba)n = (ba)n(ab)n = 0, (ab + ba)n = (ab)n + (ba)n, (9)

for all n = 1, 2, · · · . By Lemma 4, Lemma 5, and the first equality of (9), we derive

[(ab + ba)d]n = [(ab + ba)n]d = [(ab)n + (ba)n]d = [(ab)n]d + [(ba)n]d = [(ab)d]n + [(ba)d]n.

At the end of Section 3, let A be a C∗-algebra, as in [17]. Then, a simple application of the
generalized Drazin inverse in a C∗-algebra can be given, as follows.

Theorem 3. Let a, b ∈ A be group invertible. If (6) is satisfied, then (ab + ba)† exists.

Proof. By using Theorem 1, we derive that ab + ba is group invertible. As pointed out in [16], ab + ba
is generalized invertible. Thus, (ab + ba)† exists.

Theorem 4. Let a, b ∈ A d. If (6) is satisfied, then (ab + ba)d is self-adjoint in a C∗-algebra.

Proof. Note that ab + ba is self-adjoint in a C∗-algebra. By Theorem 1 and using [17] (Theorem 3.2),
we obtain that (ab + ba)d is self-adjoint in a C∗-algebra.

4. The Representation for the Generalized Drazin Inverse of a + b

In this section, we consider some results on the expression of (a + b)d, by using a, b, ad, and bd,
where a, b ∈ A d.

Lemma 8. Let a, b ∈ A d satisfy ab2 = 0. Then, (a + b)d exists if and only if bπ(a + b) ∈ A d.

Proof. Similarly, we rewrite a, b as in the proof of Theorem 1. Since ab2 = 0, we derive

a + b =

[
b1 a12

0 b2 + a22

]
P

. (10)

By Lemma 3, note that (a + b)d exists if and only if (a22 + b2)
d exists; that is, (a + b)d exists if and only

if bπ(a + b) is generalized Drazin invertible.

Theorem 5. Let a, b ∈ A d satisfy the conditions of Theorem 2. Then

(a + b)d =
∞

∑
n=0

(bd)2n+1
[
bd(ab)π(ab)na + (ab)π(ab)n

]
−

∞

∑
n=0

bπb2n
{
[(ab)d]n+1a + b[(ab)d]n+1

}
.

Proof. By Lemma 8, it also leads to (10). By Lemma 3, we can prove that (a + b)d exists if and only
if (a22 + b2)

d exists; that is, (a + b)d exists if and only if bπ(a + b) is generalized Drazin invertible.
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If bπab ∈ A d, then (a22b2)
d exists. By Cline’s formula, we have that (b2a22)

d exists. As in the proof of
Theorem 1, by Lemma 6 and 7, we also obtain that (ab)n, (ba)n ∈ A d, for all n = 1, 2, · · · .

By a2 = 0, we get
a12a22 = 0 and a2

22 = 0. (11)

By (8) and (11), we have (b2a22)(a22b2) = 0, (a22b2)(b2a22) = 0. Using Lemma 5, and by Cline’s
formula, we derive

(a22b2 + b2a22)
d = (a22b2)

d + (b2a22)
d. (12)

By induction, let [(a22b2)
d + (b2a22)

d]n = [(a22b2)
d]n + [(b2a22)

d]n for all n ≥ 1. Therefore, we can
prove that

[(a22b2 + b2a22)
d][(a22b2)

d + (b2a22)
d]n = [(a22b2)

d]n+1 + [(b2a22)
d]n+1.

Since (a22b2 + b2a22)b2
2 = 0 and b2 are quasinilpotent, by Lemma 5 and (12), we obtain

[(a22 + b2)
2]d = (a22b2 + b2a22 + b2

2)
d

=
∞

∑
n=0

b2n
2 [(a22b2 + b2a22)

d]n+1

=
∞

∑
n=0

b2n
2

[
(a22b2)

d + (b2a22)
d
]n+1

. (13)

Then, bπ(a + b) ∈ A d implies that (a22 + b2)
d exists and (a22 + b2)

d = [(a22 + b2)
2]d(a22 + b2). Finally,

by (13), and (b2a22)
d = b2

[
(a22b2)

d
]2

a22, we obtain

(a22 + b2)
d =

[
(a22 + b2)

d
]2

(a22 + b2)

=
∞

∑
n=0

b2n
2

{[
(a22b2)

d
]n+1

+

(
b2

[
(a22b2)

d
]2

a22

)n+1
}
(a22 + b2)

=
∞

∑
n=0

b2n
2

[
(a22b2)

d
]n+1

a22 +
∞

∑
n=0

b2n
2

[
b2

(
(a22b2)

d
)2

a22

]n+1
b2

=
∞

∑
n=0

b2n
2

{[
(a22b2)

d
]n+1

a22 + b2

[
(a22b2)

d
]n+1

}
(14)

and

(a22 + b2)
π = (a22b2)

π −
∞

∑
n=0

b2n+1
2

{[
(a22b2)

d
]n+1

a22 + b2

[
(a22b2)

d
]n+1

}
. (15)

By Lemma 3, we get that a + b ∈ A d and

(a + b)d =

[
b−11 u

0 (a22 + b2)
d

]
P

, (16)

and

u =
∞

∑
n=0

(b−11 )n+2a12(b2 + a22)
n(a22 + b2)

π − (a22 + b2)
da12b−1

1 . (17)
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Evidently, we have
[
b−11

]
P

= bd and

bdba =

[
b−11 b1 0

0 0

]
P

[
0 a12

0 a22

]
P

=

[
0 a12

0 0

]
P

= a12.

One easily has (by induction and by using (8) and (11)) that, if n ≥ 1, then

a12(a22 + b2)
n =

{
a12(b2a22)

n/2 if n is even,
a12(b2a22)

(n−1)/2b2 if n is odd.
(18)

By Lemma 1, we obtain that, for any n ≥ 1,

bπ(ba)n =

[
0 0
0 bπ

]
P

[
0 xn

0 (b2a22)
n

]
P

=

[
0 0
0 (b2a22)

n

]
P

= (b2a22)
n,

where (xn)∞
n=0 is a sequence in A . Furthermore, one has b2 = bπb = bbπ and abπ = a(1− bbd) =

a(1− b2(bd)2) = a. Hence, if n ≥ 1 is even, then

a12(a22 + b2)
n = a12(b2a22)

n/2 = bdbabπ(ba)n/2 = bdba(ba)n/2 = bd(ba)(n+2)/2,

and if n ≥ 1 is odd, then

a12(a22 + b2)
n = a12(b2a22)

(n−1)/2b2 = bdbabπ(ba)(n−1)/2bπb = bd(ba)(n+1)/2b.

From (15), we have

a12(a22 + b2)
π = a12(1− b2(a22b2)

da22),

a22(a22 + b2)
π = (a22b2)

πa22,

a12b2(a22 + b2)
π = a12b2(a22b2)

π ,

a22b2(a22 + b2)
π = a22b2(a22b2)

π .

Thus, by using the obvious equality (ba)kb = b(ab)k, and by (14)–(16) and (18), we have

(a + b)d = bd1 + u = [b1]
−1
P +

∞

∑
n=0

(
[
b−11

]
P
)n+2a12(b2 + a22)

n(a22 + b2)
π

−(a22 + b2)
da12b−1

1 + (a22 + b2)
d

=
∞

∑
n=0

(bd)2n+2bπ(ab)na +
∞

∑
n=0

(bd)2n+1bπ(ab)n

−
∞

∑
n=0

bπb2n
{
[(ab)d]n+1a + b[(ab)d]n+1

}

=
∞

∑
n=0

(bd)2n+1
[
bd(ab)π(ab)na + (ab)π(ab)n

]
−

∞

∑
n=0

bπb2n
{
[(ab)d]n+1a + b[(ab)d]n+1

}
.

The proof is completed.
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Theorem 6. Let a, b ∈ A d satisfy (6) and bπa2 = 0. Then,

(a + b)d = bd + u + v,

where

v = −
{

bda(ba)d +
∞

∑
n=0

bdb2n+1
[
((ab)d)n+1 + ((ba)d)n+1

]}
,

u =
∞

∑
n=0

(bd)n+2a(a + b)n +
∞

∑
n=0

(1− bπ)bnavn+2 − bdav.

Proof. Let p = bbd and P = {p, 1− p}. Let a and b have the following representation

b =

[
b1 0
0 b2

]
P

, a =

[
a3 a1

a4 a2

]
P

, (19)

where b1 is invertible in pA p and b2 is quasinilpotent in (1− p)A (1− p). Let us find the expression
of bπa2 in the system of idempotents P :

bπa2 =

[
0 0
0 1− p

]
P

[
0 a1

0 a2

]
P

[
0 a1

0 a2

]
P

=

[
0 0
0 a2

2

]
P

= a2
2.

Thus, a2
2 = 0. On the other hand,

ab2 =

[
0 a1

0 a2

]
P

[
b2

1 0
0 b2

2

]
P

=

[
0 a1b2

2
0 a2b2

2

]
P

.

Therefore, a2b2
2 = 0. By bπab, bπba ∈ A d, we obtain (a2b2), (b2a2) ∈ A d. We can appeal to Theorem 5,

obtaining (recall that b2 is quasinilpotent and bd2 = 0) that

(a2 + b2)
d = −a2(b2a2)

d −
∞

∑
n=0

b2n+1
2

[
((a2b2)

d)n+1 + ((b2a2)
d)n+1

]
.

From Lemma 3 and the representation of a + b in (16), we have

(a + b)d =
[
b−11

]
P

+ (a2 + b2)
d + u

=
[
b−11

]
P

+ u−
{

a2(b2a2)
d +

∞

∑
n=0

b2n+1
2

[
((a2b2)

d)n+1 + ((b2a2)
d)n+1

]}
, (20)

where

u =
∞

∑
n=0

(
[
b−11

]
P
)n+2a1(a2 + b2)

n(a2 + b2)
π

+
∞

∑
n=0

bπ
1 bn

1 a1((a2 + b2)
d)n+2 −

[
b−11

]
P

a1(a2 + b2)
d

=
∞

∑
n=0

(bd1 )
n+2a1(a2 + b2)

n.
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Observe that
[
b−11

]
P

= bd, and

(bd)n+2a(a + b)n =

[
(bd1 )

n+2 0
0 0

]
P

[
0 a1

0 a2

]
P

[
bn

1 xn

0 (a2 + b2)
n

]
P

=

[
0 0
0 (bd1 )

n+2a1(a2 + b2)
n

]
P

= (bd1 )
n+2a1(a2 + b2)

n,

v = bπ(a + b)d = (a2 + b2)
d = −

{
bda(ba)d +

∞

∑
n=0

bdb2n+1
[
((ab)d)n+1 + ((ba)d)n+1

]}
.

Thus, the above expression of u reduces to

u =
∞

∑
n=0

(bd)n+2a(a + b)n +
∞

∑
n=0

(1− bπ)bna(v)n+2 − bdav. (21)

Expressions (20) and (21) finish the proof.

5. Conclusions

In this paper, we have proved that the multiplications (ab)n and (ba)n of elements a, b ∈ A d

in a Banach algebra are both generalized Drazin invertible with the conditions (6). A symmetry
representation of the generalized Drazin inverse for ab + ba has been derived. The expression given in
Theorem 1 is symmetric, as in Remark 1. In the other words, if the result is applied in the computation
of (ab + ba)d, maybe it will improve the corresponding computational effectiveness and reduce its
complexity. The additive properties of (a + b)d have been investigated under the conditions ab2 = 0,
bπab ∈ A d, and a2 = 0. With similar conditions, but a2 = 0 being replaced by bπa2 = 0, we have also
given a resulting expression of (a + b)d.

In fact, as pointed out as in [19], it is still an interesting and open problem to express the
generalized Drazin inverse of a + b as a function of a, b, and their respective generalized Drazin
inverses. In the future, we plan to consider the representations of the generalized Drazin inverse for
a± b by using a, b, and their generalized Drazin inverses, without side conditions.
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