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Abstract

This work generalises the line-integral Lyapunov function in (Rhee & Won,
2006) for stability analysis of continuous-time nonlinear models expressed as
fuzzy systems. The referred result applied only to Takagi-Sugeno represen-
tations, and required memberships to be a tensor-product of functions of a
single state; these are generalised here so that membership arguments can be
arbitrary polynomials of the state variables; in this way, systems for which
earlier results cannot be applied are now covered. Both the modelling and
the integral terms appearing in the Lyapunov functions are generalised to
a fuzzy polynomial case. Illustrative examples show the advantage of the
proposed method against previous literature, even in the TS case.

Keywords: Line-Integral Lyapunov Function, Fuzzy Polynomial Models,
Sum of Squares, Stability Analysis, Nonlinear Systems

1. Introduction

Stability analysis of nonlinear systems has benefited in the last twenty
years from a representation as a combination of linear models, denoted as
Takagi-Sugeno (TS) [1] or quasi-LPV [2] representations. Obtaining such
models via the sector nonlinearity approach [3] allows to exactly rewrite a
nonlinear system as a convex sum of linear models within a compact set
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of the state space (modeling region), the nonlinearities being captured in
so-called membership functions (MFs) which are in general state-dependent
and hold the convex sum property [4]. Later on, in [5, 6], via the Taylor-
series approach, the sector nonlinearity idea was extended to polynomial
fuzzy models: this representation expresses non-polynomial nonlinearities as
an equivalent convex sum of polynomial consequents, blended together by
MFs.

When a TS model is available, stability analysis and controller design are
usually performed via the direct Lyapunov method, which usually leads to
conditions in the form of linear matrix inequalities (LMIs) [4]. LMI condi-
tions are highly appreciated as their feasibility can be decided via convex
optimization techniques [7]. Different classes of Lyapunov functions have
been used to overcome the conservatism of the common quadratic one, first
proposed in [8]: piecewise [9, 10], fuzzy (also unspecifically known as “non-
quadratic”) [11, 12], and fuzzy line-integral (LI) [13]. Other recent proposals,
intentionally left out of this quest, are based on polyhedron manipulations
and set-invariance considerations [14]; these proposals avoid the need of fix-
ing a structure of a Lyapunov function and, importantly, are asymptotically
exact (under some conditions) for the TS case; however, they cannot be
extended to the fuzzy-polynomial setup below.

In [15, 16], the quadratic LMI/TS framework was extended to the sum-of-
squares (SOS) approach [17, 18], which use polynomial Lyapunov functions
for stability analysis of nonlinear systems in fuzzy-polynomial form, posing
SOS conditions which are actually reducible to LMIs. Later on, a fuzzy
polynomial Lyapunov function was employed to generalize results for fuzzy
polynomial models [19]. In that work, the time-derivative of the MFs is a
priori bounded by polynomials of the state, thus obtaining a fuzzy poly-
nomial model of the time derivative of the MFs. As a last option on these
issues, [20] presented a piecewise Lyapunov function defined by the minimum
or maximum of polynomials.

The widely-cited work [13] proposed an interesting fuzzy line-integral Lya-
punov function, presenting LMI stability conditions which are global and
avoided the time derivative of the MFs. The goal of this paper is generalis-
ing the fuzzy LI approach in the above-referred work to the polynomial case,
incorporating, too, the additional refinements outlined in our preliminary
conference paper [21]: it turns out that path independency conditions for
line integrals are automatically verified if the integral can be expressed as a
sum of single-variable terms. Let us, next, discuss in detail the motivation
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behind our proposal.
In [13], a Lyapunov function with integral terms was pursued. However,

since such Lyapunov function depended on necessary path-independence con-
ditions, the approach was only applicable to a specific class of TS models
where the MFs are a tensor-product expression [22] of at most n nonlinear
components where each of them depends exactly on one state variable. For
this class of models, only the “diagonal” terms of the Lyapunov function
were actually using fuzzy summations and, moreover, if the MFs depend on
multiple variables and cannot be factorised, e.g., wi(x1 + x2) 6= α(x1)β(x2),
the approach in [13] cannot be directly applied.

In order to generalize the class of TS model on where the LI approach can
be applied, the LF in [13] is expressed as a sum of single-variable integrals,
as above mentioned. Resorting to such parametrisation, path-independence
conditions are automatically fulfilled. This was the idea behind a preliminary
result presented in [21], introducing a larger class of path-independent line-
integral Lyapunov functions whenever the MFs depended on an arbitrary set
of linear functions of the system states. Other refinements on the work of [13]
can be found in [23, 24]; they exploit a relaxation from a determinant formula
which applies only to second-order TS systems, but do not correspond to the
point of view hereby adopted (pursuing results applicable to higher-order
systems).

Motivated by the ideas above, this paper presents a Polynomial Lyapunov
function including integral terms, for the stability analysis of a class of non-
linear models so the results in [13, 21] are a particular case. The results in
this manuscript apply to nonlinear systems that can be expressed in terms of
single-variable non-polynomial nonlinearities with a polynomial argument.

The paper is organized as follows: section 2 presents the classical sec-
tor nonlinearity approach to obtain TS models, previous results about the
line-integral Lyapunov approach, and a review on the standard polynomial
fuzzy framework; section 3 develops the main result, where a new Polyno-
mial+Integral Lyapunov function is built; section 4 gives some examples to
illustrate the effectiveness of the proposed approach; finally, discussion, con-
cluding remarks and ideas for future work are given in sections 5 and 6.
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2. Preliminaries and problem statement

2.1. Takagi-Sugeno models

Consider a nonlinear system:

ẋ(t) = h(x(t)), (1)

with x ∈ Rn being the state vector, and x = 0 being an equilibrium point,
i.e., h(0) = 0. Let us assume that h(·) can be expressed in the form:

ẋ(t) = h̃(η(x), x), (2)

where h̃(·) is linear in x(t) and multiaffine in η(x) ∈ Rq, where

η(x) = [η1(x) η2(x) · · · ηq(x)]T

is a set of continuous functions which collects all nonlinearities present in
h(·) in (1). Then, the above model can be written as [25]:

ẋ(t) = f̃(η(x))x(t), (3)

with f̃(·) : Rq 7→ Rn being a multiaffine function in its arguments.
A well-established procedure for convex rewriting of such nonlinear sys-

tems within a compact set Ω ⊃ {0} of the state space, called the sector
nonlinearity methodology [3], is available. Let us outline the main ideas of
it in order to introduce notation which will be used in later developments in
the paper.

Since, by continuity and compactness, the components of vector η(x) are

bounded in Ω, assume ηj(x) ∈
[
η
j
, ηj

]
, j ∈ {1, 2, . . . , q} in Ω. By defining

the following weighting functions (WFs):

wj0(x) :=
ηj − ηj(x)

ηj − ηj
, wj1(x) = 1− wj0(x), j ∈ {1, 2, . . . , q}, (4)

each nonlinearity is written as ηj(x) = wj0(x)η
j

+ wj1(x)ηj, with 0 ≤ wji ≤ 1,

wj0 +wj1 = 1. On the sequel, dependence of wji on the state x will be omitted
for notational brevity if clear from the context.

As f̃ is multiaffine, straightforward manipulations lead to a TS model
with q nested convex sums:

ẋ(t) = Awx(t), (5)
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Aw :=
1∑

i1=0

1∑
i2=0

· · ·
1∑

iq=0

w1
i1
w2
i2
· · ·wqiqA(i1,i2,...,iq), (6)

A(i1,i2,...,iq) = f̃(η(x))|w1
i1

=w2
i2

=···=wq
iq

=1,

with A(i1,i2,...,iq) ∈ Rn×n, ij ∈ {0, 1}, j ∈ {1, 2, . . . , q}. This sort of nota-
tion for TS models corresponds to the tensor-product modelling approach
[22, 26]. The reader is referred to these works for further details on the
above fuzzy modelling steps, which routinely appear in systems with several
nonlinearities.

Example 1. Consider the following nonlinear system:

ẋ =

[
−a− b(1 + cos ρ2) + 0.2 cos ρ3 −3 + cos ρ3 − 5 sin ρ1

−0.5a+ 0.2b(1 + cos ρ3) −4.6 + cos ρ3 + sin ρ1

] [
x1

x2

]
where η1(x) := sin(ρ1(x)) with ρ1(x) := x2, η2(x) := cos(ρ2(x)) with ρ2(x) :=
2x2

2 − x1x2, and η3(x) := cos(ρ3(x)) with ρ3(x) := x2 − 4x2
1. If we indepen-

dently model sin(ρ1), cos(ρ2), and cos(ρ3) in the previous system via stan-
dard sector nonlinearity, we get the following tensor-product TS model with
23 vertices:

ẋ=
1∑

i1=0

1∑
i2=0

1∑
i3=0

w1
i1

(ρ1)w2
i2

(ρ2)w3
i3

(ρ3)A(i1,i2,i3)x, (7)

with

A000 =

[
−a− 0.2 1
−0.5a −6.6

]
, A001 =

[
0.2− a 3

0.4b− 0.5a −4.6

]
, A010 =

[
−a− 2b− 0.2 1
−0.5a −6.6

]
,

A011 =

[
0.2− 2b− a 3
0.4b− 0.5a −4.6

]
, A100 =

[
−a− 0.2 −9
−0.5a −4.6

]
, A101 =

[
0.2.a −7

0.4b− 0.5a −2.6

]
,

A110 =

[
−a− 2b− 0.2 −9
−0.5a −4.6

]
, A111 =

[
0.2− 2b− a −7
0.4b− 0.5a −2.6

]
,

and WFs w1
0(ρ1) = 0.5(1 − sin(ρ1)), w1

1(ρ1) = 1 − w1
0(ρ1), w2

0(ρ2) = 0.5(1 −
cos(ρ2)), w2

1(ρ2) = 1−w2
0(ρ2), w3

0(ρ3) = 0.5(1−cos(ρ3)), w3
1(ρ3) = 1−w3

0(ρ3).

In order to get a more compact notation, the multi-index shorthand nota-
tion from, for instance, [27, 28], will be used with a := (a1, a2, . . . , aq) , aj ∈
{0 ∪ N}, and b := (b1, b2, . . . , bq) , bj ∈ {0 ∪ N}, q-dimensional multi-indices
(q-tuples):

wa
0 :=

(
w1

0

)a1 (w2
0

)a2 · · · (wq0)aq , wb
1 :=

(
w1

1

)b1 (w2
1

)b2 · · · (wq1)bq .
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Then, the nested convex sum Aw in (6) can be equivalently rewritten as:

Aw =
∑
j+i=1

wj
0w

i
1Ai, (8)

with j + i := (j1 + i1, j2 + i2, . . . , jq + iq, ) being the element-wise sum of q-
tuples, and 1 := (1, 1, . . . , 1). For instance, in the above example q = 3.

Well-known conditions for quadratic stability, with Lyapunov function
V (x) = xTPx, of the above model are [4]:

P > 0, PAi + ATi P ≤ 0.

However, these conditions are known to be conservative. Other options,
called non-quadratic LF, have appeared in literature (see, for instance, [29,
30, 11]), in which the LF is in the form:

V (x) = xTPwx = xT

( ∑
j+i=1

wj
0w

i
1Pi

)
x. (9)

However, as V̇ (x) depends on Ṗw, time-derivative bounds on the WFs are
needed [30, 31] or, via chain-rule argumentations, bounds on the partial
derivatives of them [32, 33]. In some cases, a cancellation-based controller
design approach can be crafted to avoid the WF derivative bounds [28] in
the resulting closed-loop expressions.

2.2. Line-integral fuzzy Lyapunov Functions in prior literature

Consider the particular case of a model (2) with ηj(x) depending only on
xj(t) and q ≤ n. Then, from (4), each wjk(·) only depends on xj. On the
sequel, given f : Rn 7→ Rh notation ∇f denotes the Jacobian matrix of size
h× n.

In the work [13], based on line-integral considerations, the following line-
integral fuzzy Lyapunov function was proposed:

V (x) =

∫
Γ(0,x)

f(ψ) dψ (10)

where Γ(0, x) was any one-dimensional path betwen 0 and x, ψ ∈ Rn is a
dummy vector for the integral argument, and dψ ∈ Rn is an infinitesimal
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displacement vector along the path, and f(ψ) was given by:

f(ψ) = ψTP +



∑
j1+i1=1

(w1
0)j1(w1

1)i1s1
i1
ψ1∑

j2+i2=1

(w2
0)j2(w2

1)i2s2
i2
ψ2

...∑
jn+in=1

(wn0 )jn(wn1 )insninψn



T

(11)

being P a constant, symmetrical matrix with null diagonal in the said refer-
ence.

Expression (10) was proved path-independent (proving that ∂fi/∂ψj =
pij = pji = ∂fj/∂ψi), so the integral is identical for any Γ. Choosing the
particular path formed by the 1-dimensional segments going from (0, . . . , 0)
to (x1, 0, . . . , 0), then to (x1, x2, 0, . . . ), then to (x1, x2, x3, 0, . . . ) and so on
until (x1, . . . , xn) is reached1, the integral (10) results in the actual explicit
expression:

V (x)=xTPx+
n∑
k=1

∫ xk

0

∑
jk+ik=1

(
wk0(ψ)

)jk (wk1(ψ)
)ik skikψ dψ, (12)

where ψ ∈ R is now a one-dimensional dummy variable and P is a ma-
trix (without loss of generality, with null diagonal). Conversely, its gradient
∇V (x) is f(x) being f(·) defined in (11). Such a fact can be proven from
path-independence considerations, as originally done in [13], or, alternatively,
by explicitly carrying out the straightforward differentiation of (12).

Then, a reformulation of the main result of [13], adapted to our notation,
is the following theorem:

Theorem 1. The system (5) with wkj (xk(t)), k ∈ {1, 2, . . . , n} is asymptoti-
cally stable if the following conditions hold:

xTPx+
n∑
k=1

(skjk − ε)x
2
k ≥ 0 (13)

−
∑

k0+k1=2

wk0
0 wk1

1

∑
i+j=k1, i≤1, j≤1

xT
(
P̄jAi + ATi P̄j + εI

)
x ≥ 0. (14)

where P̄j = P + diag (s1j1 , s2j2 , ..., snjn) and ε is a small positive constant.

1or, evidently, any other path, if desired.
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The reader is referred to the cited references for further details and proofs
of the above-presented results. Trivially, by removing xT and x and using
Polya relaxations [22], the above scalar inequalities get converted into stan-
dard LMIs:

P̄k − εI ≥ 0 ∀k ≤ 1 (15)∑
i+j=k, i≤1, j≤1

P̄jAi + ATi P̄j + εI ≤ 0 ∀k ≤ 2. (16)

2.3. Polynomial fuzzy models

Consider now a more general case where h̃ in (2) is a polynomial in
nonlinearities η, say, of degree ck in ηk for k = 1, . . . q. Then, the model
can be expressed as the multi-dimensional TS one below where memberships
have degree greater than 1 in the summations:

ẋ(t) =
∑
j+i=c

nc
iw

j
0w

i
1Aix(t), (17)

being c := (c1, c2, . . . , cq) a degree vector where ck, k = {1, 2, . . . , q} is
the degree each nonlinearity η has in the polynomial h̃ in (2), and nc

i :=∏q
k=1

ck!
ik!(ck−ik)!

. The combinatorial number nc
i is the number of similar terms

sharing a specific combination wj
0w

i
1, which allows writing

∑
j+i=c

nc
iw

j
0w

i
1 = 1,

a property that proves to be useful in the quest for less conservative condi-
tions derived from convex sums [34]. Note that the previously-considered
tensor-product TS case in (2) is the particular case of c = (1, . . . , 1).

Actually, if h̃ were a polynomial in both η and x, then a so-called fuzzy-
polynomial model2 would have been obtained in the form:

ẋ(t) =
∑
j+i=c

nc
iw

j
0w

i
1Fi(x(t)) := Fw(x(t)), (18)

where Fi(x(t)) are vertex polynomial models [5]. These general fuzzy poly-
nomial models will, thus, be the subject of inquiry in the sequel.

The sum-of-squares (SOS) paradigm is widely used to prove stability of
the above models. Indeed, a polynomial p(x) is SOS (to be denoted by

2As discussed in [5], if h in (1) is of class Cp, a Taylor-series argumentation can prove
the existence of such a fuzzy-polynomial model of degree p.
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p(x) ∈ Σx) if it can be decomposed as ζT (x)Γζ(x) where ζ(x) is a vector
of monomials and the so-called Gram-matrix Γ is a positive semi-definite
matrix, Γ ≥ 0. Obviously, all SOS polynomials are non-negative, although
the converse is not true [35].

Theorem 2 ([5, 36, 18]). The polynomial fuzzy model (18) is asymptotically
stable if a polynomial Lyapunov function V (x) = P (x) can be found verifying

P (x)− ε(x) ∈ Σx, (19)

−∇P (x)Fi(x)− ε(x) ∈ Σx, ∀ i ≤ c, (20)

where ε(x) is a radially unbounded positive polynomial.

For a high-enough degree of P (x) and Fi(x) if the nonlinear system ad-
mits a smooth Lyapunov function, the polynomial approach will eventually
succeed, up to the gap of positive polynomials which are not SOS [35], if
sufficient computational resources were available.

Fuzzy-polynomial Lyapunov functions

In [19], a fuzzy-polynomial LF was proposed Pw(x), improving over The-
orem 2 due to its larger representation capabilities. However, there was the
need of explicitly bounding ∂w

∂x
by, for instance, other polynomials of the

state (the authors proposed carrying out a fuzzy-polynomial model of the
mentioned partial derivatives). This is an extension of the idea of bounding
the value or ẇ in [30] or bounding the gradient of the membership func-
tions in [33]. Notwithstanding, as the goal of this work is enhancing the
integral terms in Lyapunov functions, no further discussion of gradient/time-
derivative bounding will be considered in the sequel (actually, combination
of approaches is possible, see discussion in Section 5).

2.4. Problem statement

The objective of this paper is generalising the LI Lyapunov function pro-
posal in [13, 21] to a class of fuzzy-polynomial models in the form (18).
Specifically, we will assume that the nonlinear model, written as expression
(2), has the particular form:

ẋ(t) = h̃(η1(ρ1(x)), . . . , ηq(ρq(x)), x) (21)

where h̃ is a polynomial in its arguments (η, x), with each ηj : R 7→ R
being a real function of one variable, and being ρj : Rn 7→ R the argument
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to ηj; furthermore, ρj(x) which will be assumed to be a polynomial in the
state. Then, sector-nonlinearity modelling of ηj allows building membership
functions in (18) which depend on ρj(x):

wj0(ρj)=
ηj − ηj(ρj)
ηj − ηj

, wj1(ρj)=1− wj0(ρj), j∈{1, 2, . . . , q}. (22)

Thus, in the case under study, we will consider wji : R 7→ R, having the poly-
nomial ρi as argument, instead of the “generic” dependence wji (x) considered
in the original expression (4). Actually, it can be easily shown that the cases
in [13, 21] are a particular case of the above setup, details left to the reader.
For instance, in [13], condition ρi ≡ xi was needed, as well as q ≤ n. These
assumptions are no longer needed in the present work, as discussed below.

The main goal of this paper is generalising ρi to arbitrary polynomials,
and to also consider the case in which the number of nonlinearities q can
be larger than the system’s order n. Given that polynomials appear, the
generalisation of [13] to the polynomial case (from LMI to SOS) comes as a
side result but, importantly, advantages of the ideas here proposed can be
achieved even in an LMI-only setup, as discussed in our conference paper
[21]. Hence, the LMIs in the cited works will be a particular case of our SOS
approach.

Note that we do not need to model the gradient of the memberships be-
cause of the integral nature of the LF (following the main idea in the seminal
work [13]), thus obtaining simpler conditions than [19] (which require such
gradient model), but more powerful than standard SOS conditions (Theorem
2), due to the incorporation of w(·) in the LI Lyapunov function.

Example 1 (continued). Considering the model in (7), the approach in [13]
cannot be “directly” applied to the above model using all three weighting
functions: Theorem 1 can be applied by considering only fuzziness in the
WFs w1

j (·) in the Lyapunov function (12), because it is the only one which
depends on exactly a single state variable. Thus, Theorem 1 can consider
the following integral form for V (x):

V (x) = xTPx+

∫ x2

0

∑
i+j=1

(
w1

0(ψ)
)i (

w1
1(ψ)

)j
sj1ψ dψ. (23)

The above example motivates the need for extending the Lyapunov func-
tion with further integral terms depending on w2

0, w2
1, w3

0 and w3
1, to be dealt
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with in our proposals in next section. Note that a fuzzy-polynomial model
(18) may be obtained for the model in example 1, if so wished; anyway,
as the goal of this paper is comparing the flexibility of the more general
Lyapunov function proposals, we intentionally restrain ourselves to just the
TS model (7) in the later numerical computations over the nonlinear system
in this example, in order to suitably compare with prior literature; such
further improvements from more general polynomial modelling are left to
the reader.

3. Main Result

Let us first consider a generic integral expression, motivated by (12), in
the form:

V̄ (µ, λ) := P (µ, λ) +

q∑
k=1

∫ λk

0

π[k]
w (µ, ψ) dψ (24)

where λ ∈ Rq, µ ∈ Rs, for some s to be later specified, are symbolic arguments
(which will be later on replaced by state-dependent expressions), P (µ, λ) is an
arbitrary polynomial function (depending on some decision variables), ψ ∈ R
is a uni-dimensional dummy integral variable, and π

[k]
w (µ, ψ) : Rs+1 7→ R are

given by the fuzzy summations

π[k]
w (µ, ψ) =

∑
sk+lk=dk

ndklk (wk0(ψ))sk(wk1(ψ))lksklk(µ, ψ) (25)

where dk is a Polya complexity parameter [34], ndklk is a combinatorial number

ndklk =
dk!

lk!(dk − lk)!
, and sklk(µ, ψ) is a polynomial parameterised, too, with

some decision variables. As before, the Polya complexity parameters will be
arranged into a “Polya degree vector”, to be denoted as d := (d1, . . . , dq) ∈
Nq.

In order to be used as a Lyapunov function, the gradient of V̄ needs to
be computed. Instead of line-integral argumentations, we will use explicit
differentiation, as justified earlier on. Thus, the components of the gradient
of V̄ are given by:

∂V̄

∂µi
=
∂P

∂µi
(µ, λ) +

q∑
k=1

∫ λk

0

∂π
[k]
w

∂µi
(µ, ψ) dψ (26)
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and
∂V̄

∂λk
=
∂P

∂λk
(µ, λ) + π[k]

w (µ, λk) (27)

The above structure (24) will be used to build Lyapunov functions in
Section 3.1, once relevant positiveness conditions formulated below do hold.

Theorem 3. If P (µ, λ) ∈ Σµ,λ and sklk(µ, ψ)ψ ∈ Σµ,ψ, for all 0 ≤ lk ≤ dk, then
V̄ (µ, λ) ≥ 0.

Proof. Condition sklk(µ, ψ)ψ ∈ Σµ,ψ implies that sklk has the same sign as ψ.

As π
[k]
w is a sum of sklk multiplied by positive coefficients, we can assert that

π
[k]
w (µ, ψ)ψ ≥ 0 and, for any τ > 0, we have π

[k]
w (µ, ψ)ψ/τ ≥ 0. Hence,∫ λk

0

π[k]
w (µ, ψ) dψ = lim

h→0+

∫ 1

h

π[k]
w (µ, τλk)λk dτ ≥ 0

where the rightmost integral comes from the change ψ = τλk, hence τ
should range from zero to 1, and the last inequality comes from the fact
that π

[k]
w (µ, τλk)λk = π

[k]
w (µ, ψ)ψ/τ ≥ 0. Note that the limit in the above

expression exists from continuity of π
[k]
w . Therefore, V̄ is expressed as the

sum of two non-negative quantities if conditions in the theorem statement
hold.

The above theorem can be made less conservative, introducing some ad-
ditional decision variables (non-fuzzy polynomials sk) which “link” the non-
integral and integral parts, as follows:

Theorem 4. If there exist polynomials sk(µ, ψ), for k ∈ {1, 2, . . . , q}, such
that (

sklk(µ, ψ)− sk(µ, ψ)
)
ψ ∈ Σµ,ψ (28)

and

V1(µ, λ) := P (µ, λ) +

q∑
k=1

∫ λk

0

sk(µ, ψ) dψ ∈ Σµ,λ (29)

then V̄ (µ, λ) ≥ 0 for all µ, λ.

Proof. We can express:

V̄ (µ, λ) = V1(µ, λ) + V2(µ, λ) (30)

12



where V1 is the polynomial defined in (29) and

V2(µ, λ) :=

q∑
k=1

∫ λk

0

(
π[k]
w (ψ)− sk(µ, ψ)

)
dψ (31)

and Theorem 3 can now be applied changing the original V̄ (·) by V1(·), and
changing sklk in the referred theorem for sklk − sk, as stated in (28).

Next section will apply the above results to building Lyapunov functions.
In order to avoid integral terms in the gradient of V , the restriction sklk(µ, ψ)
being only dependent on ψ will be enforced in the sequel, i.e., we will only
consider sklk(ψ).

3.1. Stability

Consider now a Lyapunov function, using the structure (24), defined as:

V (x) := V̄ (Ex, ρ(x)) = P (Ex, ρ(x)) +

q∑
k=1

∫ ρk

0

π[k]
w (ψ) dψ (32)

where Ex selects only the components of the state which do not explicitly
appear in ρ(x) (thus, avoiding repeated arguments): for instance, in the
original setting in [13], E would be zero as ρ(x) ≡ x; in the 2nd-order system
in Example 1, we would set E := (1 0), so Ex = x1 because ρ1(x) = x2.

Using positiveness results in Theorem 4 and adding derivative-related
decrescence conditions allows to state the main result below:

Theorem 5. Consider a polynomial fuzzy model (18), with degree vector c,
with the membership function structure wkj (ρk(x)), arising from (21) and
(22). Consider, too, a given degree vector d = (d1, d2, . . . , dq), see (25), and
the Lyapunov function structure (32) and an arbitrary radially unbounded
polynomial ε(x), such that ε(0) = 0 and ε(x) > 0 elsewhere. Then, the
origin x(t) = 0 of such system is asymptotically stable if there exist polyno-
mial functions P (Ex, ρ(x)), sklk(ψ), and sk(ψ), such that the following SOS

13



conditions hold for all 0 ≤ lk ≤ dk, 0 ≤ bj ≤ ej, j, k ∈ {1, 2, . . . , q}:

(sklk(ψ)− sk(ψ))ψ ∈ Σψ (33)

P (Ex, ρ(x)) +

q∑
k=1

∫ ρk

0

sk(ψ) dψ − ε(x) ∈ Σx (34)

−
∑

lj+ij=bj

nd
l n

c
i

(
∇P (Ex, ρ(x))

[
E ∇ρ

]
Fi(x)+

(
q∑

k=1

sklk(ρk)∇ρk

)
Fi(x)

)
−ε(x)∈Σx,

(35)

where e = (c1 + d1, c2 + d2, . . . , cq + dq).

Proof. Conditions (33) and (34) are the translation3 to the current notation
of conditions (28) and (29). Thus, application of Theorem 4 ensures that
V (x) in (32) fulfills V (x) ≥ ε(x).

Now, the derivative of the Lyapunov function can be expressed as:

˙̄V (µ, λ) =

(
∂V̄

∂µ

∂µ

∂x
+
∂V̄

∂λ

∂λ

∂x

)
· ẋ(t)

so, with the choice of arguments to V̄ (·) being µ := Ex and λ := ρ(x), we
have that the time derivative above (corresponding to the time derivative of
(32)) becomes:

V̇ (x) = ∇P (Ex, ρ(x))
[
E ∇ρ

]
ẋ(t)

+ [π[1]
w (ρ1(x)) · · · π[q]

w (ρq(x))]∇ρ(x) ẋ(t) ≤ 0.

Replacing ẋ(t) by its model (18), and π
[k]
w by its definition (25), we get:∑

j+i=c

nc
iw

j
0w

i
1∇P (Ex, ρ(x))[E ∇ρ]Fi(x)

+

q∑
k=1

∑
sk+lk=dk

(wk0(ρk))
s(wk1(ρk))

lndkl s
k
lk

(ρk)∇ρk
∑
j+i=c

nc
iw

j
0w

i
1Fi(x) ≤ 0,

3Actually, note that (29) poses SOS conditions on two variables (µ, λ) so applicability
of Theorem 4 would hold even if the explicit relationship between these variables were
unknown. However, as ρi are known polynomials in (32), substitution of these polynomials
by their explicit expressions renders an easier SOS problem only in variables x in (34).
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which is equivalent to the homogeneous summation of degree vector e :=
(c1 + d1, c2 + d2, . . . , cq + dq) below:

∑
a+b=e

wa
0w

b
1

∑
lj+ij=bj

nd
l n

c
i

(
∇P (Ex, ρ(x))[E ∇ρ]Fi

+

(
q∑

k=1

sklk(ρk)∇ρk

)
Fi(x)

)
+ ε(x) ≤ 0,

Carrying out fuzzy-summation manipulations as to isolate each of the sum-
mation coefficients, we get the sufficient condition (35), which guarantees
V̇ (x) < 0, thus concluding the proof.

Note that Polya relaxations of the fuzzy summations (35) may be car-
ried out to further reduce conservatism, but details on them are omitted for
brevity.

In the particular case where ρk(x) is an arbitrary linear function of the
state x(t), i.e., ρk(x) = lk1x1(t) + lk2x2(t) + · · · + lknxn(t) = L[k]x(t), ∀k ∈
{1, 2, . . . , q}, if the Lyapunov function is also chosen to be quadratic, then
Theorem 5 reduces to the stability conditions in [21, Thm. 4], as stated next:

Corollary 1. The origin x(t) = 0 of the TS model (17) with the membership
function structure wkj (ρk(x)) and ρk(x) being an arbitrary linear function

of the state x(t), i.e., ρk(x) = lk1x1(t) + lk2x2(t) + · · · + lknxn(t) = L[k]x(t),
∀k ∈ {1, 2, . . . , q}, is asymptotically stable if the following conditions hold:

xTPx+

q∑
k=1

skjkx
T
(
L[k]
)T
L[k]x(t)− εxTx ≥ 0,∀jk∈{0, 1} (36)

−
∑

k0+k1=2

wk0
0 wk1

1

∑
i+j=k1, i≤1, j≤1

xT
(
P̄jAi + ATi P̄j + εI

)
x ≥ 0, (37)

where P̄j = P + diag
(
s1
j1
, s2
j2
, ..., snjn

)
, being P = P T ∈ Rn×n with null diago-

nal, and ε is a small positive constant. Obviously the above quadratic SOS
conditions can be, trivially, considered to be an LMI4.

Proof. Considering the Lyapunov function candidate (32) with

P (Ex, ρ(x)) = xTPx,

4See conditions (11) and (12) in [21].
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P defined as above with null diagonal, and

π[k]
w (ψ) = 2

∑
sk+lk=1

(
wk0(ψ)

)sk (wk1(ψ)
)lk sklkψ.

Rewriting (32), we get the following function:

V (x) = xTPx+

q∑
k=1

∫ L[k]xk

0

π[k]
w (ψ) dψ. (38)

By Theorem 4, expression (38) is positive if there exists sk such that:

pklkψ
2 − skψ2 ∈ Σψ

xTPx+

q∑
k=1

∫ L[k]xk

0

skψ dψ

= xTPx+

q∑
k=1

skx
T
(
L[k]
)T
L[k]x(t)− εxTx ∈ Σx.

Since P is null diagonal, setting sk = min(sk0, s
k
1), then (36) implies the

previous condition.
The following condition on the time derivative of the Lyapunov function

(38)

V̇ (x) = xT
(
PAw + ATwP

)
x+ 2

q∑
k=1

π[k]
w (x)Awx < 0,

is equivalent to that in (37) as can be seen performing similar steps as those
in proof of Theorem 5.

4. Examples

Example 1 (continued). The motivating example considering the model in
(7) will be now numerically solved with the proposed results, and compared
with alternative prior approaches. In particular, stability of the system (7)
will be studied for different values of constant parameters a ∈ [10, 13] and
b ∈ [50, 60].

First, recall that the results in [13], i.e., Theorem 1 can be applied only
with the Lyapunov function (23), with integral terms only depending on x2,
as previously discussed on page 10.
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60

Figure 1: Feasibility sets for Example 1: (◦) for Theorem 5; (×) for Theorem 1; (+) for
Quadratic Lyapunov function.

However, our proposal in Theorem 5 can consider all three nonlinearities.
If we apply Theorem 5 with ε(x) = 10−4xTx and the following Polynomial
Line-integral Lyapunov function

V (x) =p1x
2
1 + p2x1x2 + p3x

2
2 +

3∑
k=1

∫ ρk

0

(wk0(ψ)s0kψ + wk1(ψ)s1kψ) dψ

where p1, p2, p3, and sjk are decision variables, the obtained feasible set
of solutions is marked with (◦) in Figure 1, within the ranges of a and b
above mentioned. For the sake the comparison, in Figure 1 the feasible set of
solutions obtained if the classical quadratic approach V = xTPx is applied is
marked with a (+); last, (×) points out the feasible set of solutions obtained
if the approach in [13] is applied considering only the WFs w1

j (·) in the
Lyapunov function (23) with, too ε = 10−4. As expected, [13] improves over
the plain quadratic case, but our new approach produces the largest feasible
set of solutions5 due to the two additional integral terms apart from the one
in (23).

5Note that, although this example has detailed the developments for polynomial ar-
guments to ρ, similar improvements occur even if the arguments of ρ were just linear
functions, as discussed earlier in this work (Corollary 1, taken from our conference paper
[21]).
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Example 2. In this example, we will compare our proposal with a “standard”
sum-of-squares approach (recalled here as Theorem 2), i.e., with a polynomial
non-fuzzy Lyapunov function (without integral terms). In order to carry out
such a comparison, we will consider the following nonlinear model:

ẋ1 = x2 (39)

ẋ2 = −2x1 − x2 − 0.5κx1 (1 + sin (ρ1(x))) , (40)

where ρ1(x) = −4x2 − 5x2x1 + x2
1 − 2x2

2 and κ is a non-negative parameter,
so the objective is finding the largest possible κ such that several sets of
SOS conditions (corresponding to different LF proposals) render feasible, to
compare them. Applying the sector nonlinearity approach to sin(ρ1(x)), we
obtained the following TS model:

ẋ=
1∑

i1=0

w1
i1

(ρ1)Ai1x,

where

A0 =

[
0 1
−2 −1

]
, A1 =

[
0 1

−2− κ −1

]
,

and w1
0(ρ1) = 0.5(1− sin(ρ1)), w1

1(ρ1) = 1− w1
0(ρ1).

Note that, as ρ1 is neither a state nor a linear function of the state vari-
ables, integral LF terms from the proposals in [13] or [21] cannot be applied.

Following our approach in this work, if Theorem 5 is applied with d = (1),
ε(x) = 10−4 (x2

1 + x2
2), and the following Polynomial Line-Integral Lyapunov

function, which incorporates degree-4 monomials:

V (x) = p1x
2
1 + p2x1x2 + p3x

2
2 + p4x

3
1 + p5x

2
1x2 + p6x1x

2
2 + p7x

3
2 + p8x

4
1

+p9x
3
1x2 + p10x

2
1x

2
2 + p11x1x

3
2 + p12x

4
2 +

∫ ρ1

0

(w1
0(ψ)s01ψ + w1

1(ψ)s11ψ) dψ

such that (s01ψ − s1ψ)ψ ∈ Σψ, where pi, i ∈ {1, 2, . . . , 12}, s1, s11 and s01

are decision variables, our approach can guarantee stability for κ = 6.5046.
The resulting Lyapunov function for κ = 6.5046 is

V (x)=266.1084x4
1 + 91.8725x3

1x2 + 54.6768x3
1 + 116.435x2

1x
2
2 + 10.7059x2

1x2

+76.9601x2
1 + 11.1967x1x

3
2 − 38.9486x1x

2
2 + 12.3850x1x2 + 5.6442x4

2

−20.2489x3
2 − 3.8261x2

2 +

∫ ρ1

0

(w1
0(ψ)3.2041ψ + w1

1(ψ)1.9146ψ) dψ,
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Figure 2: Lyapunov sets (dashed lines) and some trajectories (solid lines) for Example 2.

with sk = 1.391. In Figure 2 some level sets of V (x) and some system
trajectories are shown for illustration purposes.

For the sake of comparison, Table 1 presents the maximum value of the
parameter κ keeping conditions in Theorem 5 feasible6 for several degrees
of the classical polynomial LF component P (Ex, ρ1(x)) (left column) and
the integral ones (middle column) with d = (2). Thus, the standard SOS
approach corresponds to the rows where deg(sklk(ψ)) is empty (labelled with
a dash). For instance, a 4th-degree non-integral term plus a degree 1 integral
term achieves better results than a non-integral LF of degree 12. From the
numerical figures in the table, either increasing the non-integral polynomial
degree or that of the integral term seem to improve results, however the
incorporation of integral terms seems very effective with significantly less
decision variables than the high-degree non-integral options, while achieving
better performance.

For information, the used solver in the numerical examples in this paper
was Mosek 7.1 [38], under the programming language YALMIP 20150919
[39], and running on Matlab R2015a with default tolerances.

6The function ε(x) was chosen, following [37], as:ε(x) =
∑n

i=1

∑d
j=1 εijx

2j
i where d is

the degree of P (Ex, ρ(x)) and the ε’s satisfy
∑d

j=1 εij > γ, ∀i ∈ {1, 2, . . . , n} with γ a

positive number (1× 10−4), and εij ≥ 0 for all i and j.
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Table 1: Maximum κ for polynomial line-integral LF with Theorem 5, and standard SOS
Theorem 2.

deg(P (Ex, ρ(x))) deg(sklk(ψ)) κ
Decision

variables in
V (x)

Average Solver
time (s)

2 - 3.8284 3 0.1660
4 - 5.7393 12 0.1740
8 - 6.3981 42 0.1960
12 - 6.6537 88 0.3440
4 1 7.0880 16 0.1840
4 3 7.1018 24 0.1960
8 1 7.2990 46 0.1940
8 3 7.6879 54 0.2160
12 1 8.3010 92 0.4760
12 3 8.9234 100 0.4920

5. Discussion

In this section, once the results and example have been presented, a brief
discussion on the advantages provided and room for further enhancements
will be provided next.

Regarding the chosen nonlinear model for the examples, note that they
have been intentionally written as TS models in order to compare with prior
literature, but other polynomial models for the same nonlinear systems may
be amenable to our proposal (such as the Taylor-series approach [5]), details
left to the reader.

Also, for simplicity, global bounds on the nonlinearities have been consid-
ered (they are trigonometric functions). Nevertheless, the approach would
equally work on compact modelling regions where suitable bounds for x and
ρ would be available. Obviously, the advantages of non-quadratic/fuzzy-
LF-SOS approaches would vanish for very small modelling regions, as the
resulting model would equal the linearisation (in a TS case) or the truncated
Taylor series (in the generic polynomial setup). Nevertheless, comparison of
results with different sizes of modelling region has not been considered of
interest, for brevity.

Apart from the concrete example, in a generic case, our approach has
advantages if the nonlinearities can be expressed as a single-variable real
function composed with a polynomial one; in this case, the polynomial nature
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of the arguments to nonlinearities is duly exploited. It would not apply to,
for instance to ρ(x) = cos(ex1 − arctanx2

2).
Note, too, that further relaxation of the result would be obtained by

combining it with a variety of approaches in fuzzy control literature, which
relax conservatism based on other ideas unrelated to our integral Lyapunov
function proposal:

1. Increasing the degree of the polynomial term of the Lyapunov function
P (·, ·) in (32).

2. Get a less conservative model via increasing the degree of the polyno-
mial consequents, [5].

3. Use a standard “fuzzy”-polynomial Lyapunov function in the non-
integral part of (32) replacing P (Ex, ρ) by P (Ex, ρ,w) with expres-
sions similar to (9), incorporating information on the time-derivatives
or the gradient of the memberships [19].

4. Use other results depending on membership shape. For instance, in
Example 1, based on the actual nonlinearities, we could assert ex-
pressions such as γ(w) := (w1

0)2 − 0.5w2
0w

3
0 − 1 ≤ 0 or/and γ(w) :=

w2
0w

3
0 − ρ2(x)2ρ3(x)2 ≤ 0, a restriction that can be included via a suit-

able Positivstellensatz multiplier R(x, ρ)γ(w) in the SOS conditions
[22, 40].

6. Conclusion

This paper presents a general SOS condition for the stability analysis of
a class of nonlinear models via a polynomial Lyapunov function with integral
terms which has been suitably parameterised. Compared to prior literature,
two improvements are presented: first, the generalisation to a polynomial
case of earlier LMI line-integral results; second, the new approach allows the
line-integral approach to be applied to a larger class of TS models, where
their WFs arguments can be arbitrary sets of polynomial functions of the
system states, instead of only each of the states being the argument to a
single WF considered in [13]. Unfortunately, as in the original reference,
controller design problems cannot be cast as convex optimisation ones.
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