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ABSTRACT 17 

Cocoa shell must be removed from the cocoa bean before or after the roasting process. In 18 

the case of a low efficient peeling process or the intentional addition of cocoa shell to 19 

cocoa products (i.e. cocoa powders) to increase the economic benefit, quality of the final 20 

product could be unpleasantly affected. In this scenario, the Codex Alimentarius on cocoa 21 

and chocolate has established that cocoa cake must not contain more than 5% of cocoa 22 

shell and germ (based on fat-free dry matter). Traditional analysis of cocoa shell is very 23 

laborious. Thus, the aim of this work is to develop a methodology based on near infrared 24 

(NIR) spectroscopy and multivariate analysis for the fast detection of cocoa shell in cocoa 25 

powders. For this aim, binary mixtures of cocoa powder and cocoa shell containing 26 

increasing proportions of cocoa shell (up to ca. 40% w/w based on fat-free dried matter) 27 

have been prepared. After acquiring NIR spectra (1100-2500 nm) of pure samples (cocoa 28 

powder and cocoa shell) and mixtures, qualitative and quantitative analysis were done. 29 

The qualitative analysis was performed by using principal component analysis (PCA) and 30 

partial least squares discriminant analysis (PLS-DA), finding that the model was able to 31 

correctly classify all samples containing less than 5% of cocoa shell. The quantitative 32 

analysis was performed by using a partial least squares (PLS) regression. The best PLS 33 

model was the one constructed using extended multiple signal correction plus orthogonal 34 

signal correction pre-treatment using the 6 main wavelengths selected according to the 35 

Variable Importance in Projection (VIP) scores. Determination coefficient of prediction 36 

and root mean square error of prediction values of 0.967 and 2.43, respectively, confirmed 37 

the goodness of the model. According to these results it is possible to conclude that NIR 38 

technology in combination with multivariate analysis is a good and fast tool to determine 39 

if a cocoa powder contains a cocoa shell content out of Codex Alimentarius 40 

specifications. 41 
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1. Introduction 49 

 50 

Cocoa powder is a cocoa bean (Theobroma cacao) derivative largely consumed around 51 

the world due to its capacity to give color, flavor and eating pleasure to a myriad of food 52 

preparations (Dico et al., 2018).  53 

The obtaining of cocoa powder from cocoa beans follows different steps. First of all, 54 

beans must be peeled, starting with the peeling of the bean before or after a roasting 55 

process. During the same peeling, cocoa cotyledon must be separated from cocoa shell 56 

(12-20% of the cocoa seed), yielding fragments of cotyledon, called nibs (Okiyama, 57 

Navarro, & Rodrigues, 2017). During the shelling step, shell should be perfectly 58 

separated, removing large parts of shells and leaving nib particles practically unbroken 59 

(Beckett, 2009). The performance of this procedure is very relevant since the presence of 60 

cocoa shell in cocoa beans derivatives (cocoa liquor, cocoa powder or chocolate) 61 

adversely affects the final product quality (Mendes & Lima, 2007). Concretely, it can 62 

have an influence in some characteristics of the final product such as the flavor or taste; 63 

it can also be responsible of off-flavors. Additionally, fiber content in cocoa shell is really 64 

high. Thus, it can be a problem for the grinding process, causing equipment abrasion in 65 

some cases. Bearing this in mind it is not surprising that shell content in cocoa powders 66 

is a quality parameter to be controlled. Concretely, the Codex Alimentarius establishes a 67 

maximum amount of 5% of cocoa shells in cocoa cake (based on fat-free dry matter) 68 

(Codex Alimentarius, 2016).  69 

Analysis of cocoa shell in cocoa products might be done following the AOAC 968.10 70 

or the 970.23 methods (Codex Alimentarius, 2016). The first method, called spiral vessel 71 

count consists of counting the spiral vessels in a defatted, grinded and digested sample 72 

with the help of a microscope adjusted to mold counting (field of view 1.382 mm at 100x) 73 
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(AOAC, 1984). The second method, called stone cell count, consists of microscope 74 

assisted counting the stone cells present in the samples after a really laborious preparation 75 

(AOAC, 1984).  76 

Since those methods are really arduous, recent attempts to develop alternative methods 77 

have been done. Researchers from the Nestlé Research Center proposed a gas-liquid 78 

chromatography procedure based on the detection of fatty acid tryptamides (FATs) in the 79 

sample, since FATs are compounds more abundant in cocoa shells than in other parts of 80 

cocoa seed. This work, carried out with only cocoa originating from the Ivory Coast, 81 

demonstrated that it might be an appropriate tool for the determination and prediction of 82 

the shell content in cocoa liquor (Hug, Golay, Giuffrida, Dionisi, & Destaillats, 2006). In 83 

another work, Yang et al. (2015) proposed the employment of polysaccharide fingerprint 84 

established by high performance liquid chromatography followed by principal component 85 

analysis to identified cocoa powders adulterated with cocoa or other plant shells such as 86 

chestnut, longan, peanut, etc. However, only cocoa powders containing cocoa or other 87 

plant shell percentages higher than 15 and 10%, respectively, were detected using this 88 

methodology. Therefore, even when these methodologies (determination of FATs, HPLC 89 

polysaccharide fingerprint, etc.) are more sensible, accurate and faster than the methods 90 

proposed by the Codex Alimentarius, their use as routine techniques for shell content 91 

determination still have certain limitations such as the limit of detection or the fact that 92 

they need sample preparation, require specialized personnel and they are destructive. To 93 

avoid these drawbacks common in traditional chemical analysis techniques, recent 94 

attempts on developing accurate and sensitive analytic techniques based on near infrared 95 

(NIR) spectroscopy have been done. Due to the ability of NIR spectroscopy to provide a 96 

spectrum that acts as a ‘fingerprint’ distinctive of a particular sample, this technology is 97 

now widely used as a successful quality control tool (Lerma-García, Cortés, Talens & 98 
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Barat, 2018). Concretely, in the cocoa sector NIR spectroscopy has been employed for 99 

the prediction of majority (moisture, carbohydrate, fat, protein) or minority functional 100 

compounds (theobromine, catechin, organic acids, etc.) (Veselá, Barros, Synytsya, 101 

Delgadillo, Čopíková, & Coimbra, 2007; Álvarez et al., 2012; Krähmer et al., 2015) as 102 

well as for quality control (discrimination of cocoa beans according to geographical 103 

origin, prediction of cocoa powder adulterations, etc) (Teye, Huang, Dai & Chen, 2013; 104 

Quelal et al., 2018). 105 

In this scenario, the goal of this work is the fast determination of cocoa shell content 106 

in cocoa powders in concentrations higher than the limit established by the Codex 107 

Alimentarius (5%) by means of NIR spectroscopy and a multivariate analysis. 108 

 109 

2. Materials and methods 110 

 111 

2.1. Cocoa powder and shell Samples 112 

 113 

A total of 20 natural cocoa powders and 2 cocoa shells, gently provided by Olam Food 114 

Ingredients (Cheste, Spain) or purchased in the market from different origins (Ghana, 115 

Ivory Coast, Cameroon, Peru and Indonesia) were employed in this study. In order to 116 

predict the presence of cocoa shell in cocoa powders using partial least squares (PLS), 117 

binary mixtures containing cocoa powder and cocoa shell  were prepared. The mixtures 118 

contained percentages of cocoa shells in cocoa powder (based on fat-free dry matter) from 119 

ca. 2.5 to 40%. Percentages higher than 40% were not considered since over this 120 

percentage the presence of cocoa shell is sensory evident. To improve the robustness of 121 

the PLS model, all 20 cocoa powder samples (coming from different origins and obtained 122 

after different processings) were randomly selected to perform a total of 12 binary 123 
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mixtures for each percentage (2.5, 5, 7.5, 10, 20 and 40%), in which both cocoa shell 124 

samples were also considered. Thus, a total of 72 mixtures were obtained. Once all 125 

mixtures were prepared, they were poured in hermetic plastic containers and stored at 126 

20±2 ºC under dark conditions until use. 127 

 128 

2.2. NIR spectra acquisition 129 

The 94 samples (20 cocoa powders, 2 cocoa shells and 72 binary mixtures) were 130 

measured with a spectrophotometer FOSS NIR 5000 (Silver Spring, MD, USA). A 131 

uniform thickness and surface were secured during spectra scanning using a device with 132 

380 mm of diameter and 1cm of thick with a quartz windows which was filled with 5 g 133 

of sample. The spectrophotometer gives the measurements in relative absorbance units 134 

(log 1/R), which could be correlated with chemical constituents (Liu, Sun, & Ouyang, 135 

2010; Martens, Nielsen, & Engelsen, 2003). Each sample was scanned 32 times in a range 136 

comprised between 1100 and 2500 nm at 2 nm intervals (700 points). The samples were 137 

measured twice and no differences between them were found. 138 

 139 

2.3. Statistical analysis 140 

 141 

Spectral data were pre-treated and analysed using qualitative and quantitative models 142 

by means of the chemometric software Unscrambler v10.5 (CAMO Software AS, Oslo, 143 

Norway).  144 

The PCA model was performed using raw data to identify different sample groups and 145 

to find and remove defective outliers (Adnan, Hörsten, Pawelzik, & Mörlein, 2017; Bro 146 

& Smilde, 2014). 147 

The PLS was performed in order to predict the presence of cocoa shell in the cocoa 148 
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powders and the PLS-DA (Berrueta, Alonso, & Héberger, 2007; Prats-Montalbán, Jerez-149 

Rozo, Romañach, & Ferrer, 2012), was constructed to evaluate its capability in 150 

classifying samples according to the following categories: cocoa powders containing less 151 

than 5% cocoa shell (w/w), and cocoa powders containing from 5 to 40% cocoa shell 152 

(w/w). 153 

Both analyses were performed using the pre-treated spectra. The spectral pre-154 

treatments tried included extended multiple signal correction (EMSC) (Martens et al., 155 

2003), standard normal variation (SNV), 2nd derivative with the Savitzky-Golay (S-G), 156 

orthogonal signal correction (OSC) and combinations of all of them with OSC.  157 

To construct both PLS and PLS-DA models, two data matrices were used. The first 158 

one employed for the PCA and PLS model construction, contained the spectra of all 159 

samples (N = 94) and the same 700 X-variables. In this case, all individual cocoa shell 160 

percentages were considered as Y-variable. The second matrix, employed for the PLS-161 

DA model construction, included the spectra of 92 samples (in which the spectra of cocoa 162 

shells were not considered since the considered categories were cocoa shell contents 163 

below 5% and between 5-40%) and 700 predictors or X-variables (wavelengths), and also 164 

a dependent Y-variable containing the 2 categories previously described (<5% and 5-40% 165 

cocoa shell based on fat-free dry matter, w/w).  166 

For both, PLS-DA and PLS models construction, the use of all spectra wavelengths 167 

was considered, jointly with the use of the most important wavelengths. The PLS and the 168 

score of Variable Importance in Projection (VIP) were combined together for these 169 

selection (Botelho, Reis, Oliveira, & Sena, 2015). 170 

To select the optimal factor number and to avoid the over-fitting of both PLS and PLS-171 

DA models, leave-one-out cross-validation was used using 70% of the data, which were 172 

randomly selected. The remaining 30% of the data were used as an external validation 173 
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set. 174 

PLS models accuracy was evaluated by the required number of latent variables (LVs), 175 

the coefficient of determination of calibration (R2
C), RMSEC, the coefficient of 176 

determination of cross-validation (R2
CV), RMSECV, the coefficient of determination for 177 

prediction (R2
P), the root mean square error of prediction (RMSEP), the ratio of prediction 178 

deviation (RPD, which is calculated as ratio between the standard deviation of reference 179 

values in training set and RMSEP) and the bias value (which establishes the difference 180 

between experimental values and NIR predictions). Bias value can be positive 181 

(overestimating) or negative (underestimating), indicating values near to zero a minimum 182 

deviation from experimental and predicted values (Cantor, Hoag, Ellison, Khan, & Lyon, 183 

2011). 184 

On the other hand, the number of latent variables (LVs) for the PLS-DA model was 185 

determined by the low value of the root mean square error of calibration (RMSEC), and 186 

the root mean square error of leave-one-out cross validation (RMSECV) (Botelho et al., 187 

2015). The PLS-DA classification performance was evaluated by sensitivity, specificity 188 

and by the non-error rate (NER). Sensitivity is the model ability related to a correct 189 

classification of the samples with different levels of cocoa shell content. The model 190 

capacity to correctly determine the samples which not correspond to the class and 191 

correctly refuse them is the specificity (Almeida, Fidelis, Barata, & Poppi, 2013). The 192 

non-error rate (NER) is the average of the sensitivities of the different categories 193 

(Manfredi, Robotti, Quasso, Mazzucco, Calabrese, & Marengo, 2018). 194 

 195 

 196 

 197 

 198 
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3. Results and discussion  199 

 200 

3.1. Cocoa powder and shell spectra, pre-treated spectra and PCA analysis 201 

 202 

The mean raw spectra of cocoa powders, cocoa shells and binary mixtures of them at 203 

different percentages are shown in Fig. 1a. As shown in this figure, the main bands 204 

observed appeared at 1470, 1930 and 2130 nm, although other bands at 1730, 2310 and 205 

2350 nm were also evidenced. Although all spectra have a similar pattern of absorbance, 206 

the relative absorbance of these bands is different for the different types of samples: cocoa 207 

shell is characterized by the highest relative absorbance, which decreased when the 208 

content of cocoa shell in the samples decreased. The signal at 1470 nm correspond to the 209 

first overtone of O-H and N-H stretching which is associated with a CONH2 structure 210 

(peptide) and related to a protein (Osborne, Fearn, & Hindle, 1993). The signal at 1930 211 

nm is related with asymmetric stretching and rocking of water, weakly bounded water, 212 

proteins, and aromatics (Veselá et al., 2007), while the wavelength at 2130 nm can be 213 

assigned to N–H combination bands (CONH2) (Ribeiro, Ferreira, & Salva, 2011). On the 214 

other hand, the band at 1730 nm could be assigned to the first overtone of C-H (Ribeiro 215 

et al., 2011), while 2310 and 2350 nm are mostly related to stretching and rocking 216 

vibrations of CH2 of polysaccharides (Veselá et al., 2007). 217 

 218 
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 219 

Fig 1. Mean spectra of cocoa powders and shells and mixtures of them at different 220 

percentages from (a) raw and (b) pre-treated with EMSC-OSC spectra. 221 

 222 

 223 

The mean spectra obtained after the application of the EMSC-OSC pre-treatment is 224 

shown in Fig. 1b. In this case, the principal wavelengths were 1420, 1470, 1730, 1764, 225 

1930, 2174, 2310, 2350 and 2390 nm. Most of the bands have been previously described, 226 

while the other ones could be attributed to the first overtones of symmetric and anti-227 

symmetric C-H stretch vibration (CH2-groups) (1764 nm) (Krähmer et al., 2015), to a 228 

combination of C-H (2174 nm) (Ma et al., 2017) and to the combination of C-H stretch 229 

and C-H deformation modes (2390 nm) (Wang et al., 2018). 230 

In order to have a more precise idea about the relation between samples and variables 231 

a PCA model, a non-supervised method was performed with the raw spectra data to 232 

identify possible sample groupings. The score plot of the two first principal components 233 

(PCs) is shown in Fig. 2. A total of 98% of the variance is explained by these two first 234 

PCs (87 and 11% for PC1 and PC2, respectively). Along PC1, cocoa shell samples were 235 
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clearly separated from the remaining ones, in which any clear tendency was observed, 236 

although samples containing high cocoa shell percentages (40% w/w) seemed to be 237 

located closer to the PC1 values of cocoa shell. According to the X-loading values (data 238 

not shown), the wavelengths with higher discrimination power were 1930, 1420 and 1470 239 

nm for the PC1 and for the PC2 were 1644, 1326, 2146, 2310 and 2350 nm. Some of these 240 

peaks (1930, 1470, 2310 and 2350 nm) matched with the main peaks observed in raw 241 

spectra, which have been previously mentioned. The other bands corresponded to the fist 242 

overtone of the hydroxyl and amino groups (1420 nm) and first overtone of C-H (1644 243 

nm) (Ribeiro et al., 2011), the second overtone of C-H (1326 nm) (Ma, Wang, Chen, 244 

Cheng, & Lai, 2017) and the combination of C-C and C-H stretching (2146 nm) 245 

(Workman, & Weyer, 2008). 246 

 247 

 248 

Fig 2. PCA score plot of the two first PCs showing the distribution of all the samples 249 

considered in this study. Samples were labelled as follows: cocoa shell content < 5%, 250 

comprised between 5 and 20%, 40% and pure cocoa shells.  251 

 252 
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3.2. Prediction of the added cocoa shell percentage in cocoa powders by PLS 253 

 254 

A total of 8 PLS models using all the available wavelengths (700) as variables, one for 255 

each pre-treatment considered in the study, were performed. The results obtained are 256 

summarized in Table 1. At the sight of the results, the best PLS model was the one 257 

constructed using the EMSC+OSC pre-treatment. In order to reduce the high 258 

dimensionality of the spectral data, the most important wavelengths were selected 259 

according to the VIP scores (figure 3). These VIP scores determine the significance of 260 

each variable in the projection used by a given PLS model by means of their coefficients 261 

in every component, jointly with the significance of each component in regression 262 

(Botelho et al., 2015). As it could be observed in Fig. 3, the most important variables are 263 

wavelengths at 1930, 1420 and 1470 nm at positive values of LV1, and 2310, 2350 and 264 

1730 nm at negative values of LV1. These wavelengths are mostly the same previously 265 

mentioned in both raw and pre-treated spectra, which demonstrated their importance in 266 

cocoa shell content prediction. Most of these wavelengths have been previously described 267 

in literature in the prediction of several compounds (such as fat, carbohydrates, 268 

polysaccharides, moisture, polyphenols, etc.) of cocoa beans and derived products 269 

(Huang et al., 2014; Krähmer et al., 2015; Quelal-Vásconez et al., 2018; Veselá et al., 270 

2007). Using the EMSC+OSC pre-treatment and the six wavelengths obtained in the VIP 271 

scores as variables, another PLS model was constructed. The results obtained for this 272 

model are also shown in Table 1. Compared to the best model obtained with the same 273 

pre-treatment but using all the available wavelengths, this model is less complex although 274 

all the other parameter values are very similar. 275 
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 276 

Fig 3. Variable importance in projection (VIP) scores of the PLS model constructed to 277 

predict cocoa shell percentages. 278 

 279 

Table 1 280 

Results of the PLS models constructed for predicting cocoa shell percentage using 281 

different pre-treatments and different number of wavelengths with a calibration and 282 

validation sets. 283 

#W = number of wavelengths used to construct de model; #LV = latent variables; R2 = 284 

determination coefficient; RMSEC = Root mean square error of calibration; RMSECV = 285 

Root mean square error of cross-validation; RMSEP = Root mean square error of 286 

Pretreatment #W #LV Calibration Cross-validation Validation 
   R2C RMSEC R2CV RMSECV R2P RMSEP Bias RPD 
Raw data 700 7 0.908 3.68 0.694 6.83 0.930 3.52 0.351 3.46 
EMSC 700 7 0.936 3.06 0.857 4.64 0.941 3.24 0.095 3.77 
SNV 700 7 0.931 3.18 0,862 4.55 0.940 3.27 0.057 3.72 
2nd Der. (S-G) 700 7 0.967 2.20 0.936 3.09 0.955 2.96 -0.021 4.11 
OSC 700 1 0.990 1.20 0.989 1.25 0.851 5.16 -0.059 2.36 
EMSC-OSC 700 1 0.974 1.92 0.973 2.01 0.967 2.41 0.204 5.06 
SNV+OSC 700 1 0.978 1.79 0.976 1.89 0.967 2.55 -0.278 4.77 
2nd Der. (S-G)+OSC 700 3 0.944 2.85 0.942 2.96 0.939 3.33 -0.104 3.66 
EMSC-OSC 6 1 0.975 1.91 0.973 2.01 0.967 2.43 0.195 5.03 
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prediction; RPD = Ratio prediction deviation; EMSC = Extended multiple scatter 287 

correction; 2nd Der. (S-G) = Second derivative and Savitzky Golay smoothing, SNV = 288 

Standard Normal Variate, OSC = Orthogonal signal correction. 289 

 290 

 291 

The plot representing the predicted versus the measured cocoa shell percentages of the 292 

prediction set samples constructed with PLS data of the model constructed using the 6 293 

wavelengths as variables is shown in Fig. 4. A good linear fit due to the closer relationship 294 

between the reference values and the NIR spectra is observed, displaying the reliability 295 

and accuracy of the NIR in determining the percentage of cocoa shell present in the cocoa 296 

powders.  297 

 298 

 299 

Fig 4. Predicted versus measured cocoa shell percentages by PLS model constructed 300 

using the 6 main wavelengths in the prediction set.  301 

 302 

 303 



16 
 

3.3. Classification of cocoa powder samples according to the added level of cocoa shell 304 

 305 

Since PCA is a non-supervised method, and it is not possible to observe a clear 306 

separation between the different sample categories, a supervised discriminant model, 307 

PLS-DA, was next constructed using all the available wavelengths (700) and the EMSC-308 

OSC pre-treatment. The best model was obtained with 2 LVs with RMSEC and RMSECV 309 

values of 0.24 and 0.28, respectively, with most of the variability explained by the LV1 310 

(72%).  311 

Next, using the 6 most relevant wavelengths as variables, another PLS-DA model was 312 

constructed. The discriminant plot obtained using the two LVs for the classification of 313 

samples according to the different categories is shown in Fig. 5. As it can be observed in 314 

this figure, separation between the two categories is achieved along LV1, with negative 315 

scores related to the samples containing < 5% cocoa shell, and positive scores related to 316 

samples containing 5-40% cocoa shell. Once constructed, the model was validated with 317 

the external validation set samples. The results obtained for both calibration and external 318 

validation sets for this model are included in Table 2. As it can be observed in the 319 

confusion table for the calibration samples, all samples were correctly classified. On the 320 

other hand, for the external validation set, all samples of the <5% category were correctly 321 

classified, while 3 samples of the 5-40% category were misclassified. Even if the number 322 

of misclassified samples is very low, it should be highlighted that all the “misclassified 323 

samples” corresponded to samples containing a 5% cocoa shell (based on fat-free dry 324 

matter), which is the limit established by the Codex Alimentarius, and thus the borderline 325 

of both categories. Next, the PLS-DA classification performance was evaluated by the 326 

sensitivity, specificity and NER values, which are also included in Table 2. Taking into 327 

account the values reported and the comments previously mentioned, it could be 328 
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concluded that the PLS-DA model constructed is able to reliable discriminate between 329 

samples containing cocoa shell percentages below and upper 5%. 330 

 331 

Fig 5. PLS-DA discriminant plot constructed using the two first LVs of the model 332 

constructed using the 6 main wavelengths to classify cocoa powders according to the 333 

following categories: cocoa shell content < 5% and cocoa shell content comprised 334 

between 5 and 40%. Both calibration (C<5% and C 5-40%) and external validation 335 

(V<5% and V 5-40%) set samples have been included and represented with different 336 

symbols. 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 
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Table 2 346 

 347 

Confusion table, sensitivity (SENS), specificity (SPEC) and non-error prediction rates 348 

(NER) of the PLS-DA model constructed with variable selection to discriminate cocoa 349 

powders into two categories: cocoa powders with < 5% and between 5-40% cocoa shell.  350 

 351 

 352 

 353 

4. Conclusions 354 

 355 

NIR spectroscopy in combination with PLS and PLS-DA statistical models has 356 

been shown to be a rapid and effective method to determine cocoa shell content in cocoa 357 

powders. Using a PLS analysis, it was possible to quantify the percentage of cocoa shell 358 

present in cocoa powders. The best PLS prediction model was constructed using the 6 359 

main wavelengths (1420, 1470, 1730, 1930, 2310 and 2350) selected according to the 360 

VIP scores, obtaining 1 LV with R2
C and R2

CV of 0.975 and 0.973, respectively, and 361 

RMSEC and RMSECV of 1.91 and 2.01, respectively. Regarding the validation samples, 362 

R2
P was 0.967 while RMSEP was 2.43, confirming the goodness of the model. On the 363 

Calibration set samples 
 Category # Samples        
 <5% 5-40%   SENS (%) SPEC (%) NER (%) 
<5% 22 0 22  100 100 100 

5-40% 0 40 40  100 100 
 22 40 62     

External validation set samples 
  Category # Samples        

 <5% 5-40%   SENS (%) SPEC (%) NER (%) 
<5% 10 0 10  100 85 

92.5 
5-40% 3 17 20  85 100 
  13 17 30     
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other hand, the PLS-DA analysis show that 92.5% of the validation set samples were 364 

correctly classified into two groups: samples with a shell content lower than 5% 365 

(considered the acceptance limit in cocoa powders by the Codex Alimentarius) and shell 366 

contents between 5 and 40%. These results indicate that this technology is therefore an 367 

important tool for cocoa producers and clients, who will be able to discriminate among 368 

samples in or out specifications, avoiding the use of destructive techniques that require a 369 

complex preparation of the sample or techniques that imply an important expense for the 370 

company. 371 
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