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Abstract  

Hydraulic conductivity (K) heterogeneity is seldom considered in geotechnical practice for the 

impossibility of sampling the entire area of interest and for the difficulty of accounting for scale 

effects. Stochastic three-dimensional K upscaling can tackle these two problems, and a workflow 

is described with an application in a tropical soil. The application shows that K heterogeneity can 

be incorporated in the daily practice of the geotechnical modeler while discussing the aspects to 

consider when performing the upscaling so that the upscaled models reproduce the average fluxes 

at the fine scale.  
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1. Introduction 

Hydraulic conductivity (K) is one of the most important parameters in many geotechnical studies 

such as when analyzing slope stability; the dewatering of an underground excavation the design 

of an earth dam; or the analysis of seepage, flow, and contaminant transport in liners and 
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embankments. Most of these problems are approached using numerical simulations, where K is a 

key input parameter, the heterogeneity of which plays an important role even in apparently 

homogeneous soils [1–6]. However, the use of heterogeneous K fields in numerical modeling in 

geotechnical engineering is an exception rather than a rule [7–9] because, in general, 

deterministic approaches that consider K as a constant value for an entire soil layer are employed 

[1,10–12]. The impossibility of sampling the entire area of interest together with the difficulty of 

accounting for scale effects [6,13–17] are the two main reasons why heterogeneity is not 

accounted for in practice. This paper tries to address these two problems and describes how to 

cope with them.  

To face the problem of having scarce information for a complete description of the heterogeneity 

of K, we use geostatistical techniques such as stochastic simulation or kriging estimation, which 

permit a coherent assignment of values at locations where measurements were not taken, based 

on the values observed at measurement locations [18–22].Whether to employ simulation or 

estimation will depend on the use to be given to the generated maps.  

The coherent assignment of values mentioned above does not remove the uncertainty associated 

with having limited information about the spatial variability of K in the area of interest; a model 

of uncertainty is needed, which is built on the framework of stochastic random fields [23]. 

Hydraulic conductivity will be modeled as a random field, that is, as a set of spatially correlated 

random variables. At each location in space, K is modeled as a random variable with a probability 

density function (pdf) rather than a unique value; the pdf represents the likelihood that K takes a 

specific value at that location [20]. It is important to emphasize that K is not a result of a random 

process, but the concept of random field is a convenient modeling approach to formalize the 

problems of estimation and simulation. The random field is fully described by a multivariate pdf, 

which, in turn, is described by a series of parameters such as the mean, variance, autocorrelation, 
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or variogram. In the past years, the number of researchers in geotechnical engineering, who deal 

with K heterogeneity in a stochastic way, has increased, but deterministic analysis still prevails 

[9,24–28]. 

To face the problem of scale effects, recall that in geotechnical practice, K is measured at the 

field or laboratory on a support of around a few centimeters [29,30]. Then, those K values are 

used to feed the K values of a numerical model, where the discretization support is generally 

orders of magnitude larger than the measurement support [31]. The change of support (from the 

measurement scale or fine scale to the numerical scale or coarse scale) implies a change in the 

properties of the random field. The use of some upscaling technique that transfers the information 

obtained at the fine scale into the coarse scale to be used by the numerical code is necessary to 

deal with the discrepancy between laboratory and numerical scales [19,32,33]. In other words, the 

upscaling process seeks a block conductivity (KV) that preserves the total flow crossing the block 

observed in the block of heterogeneous cell conductivities (Kf) for the same hydraulic head 

gradient. During the transfer between scales, there is a loss of information because the small-scale 

heterogeneity is not preserved; however, the fluxes occurring at the coarse scale should be the 

same as those obtained, had the domain being modeled as fully heterogeneous at the small scale. 

To determine the block conductivity is not a simple task. It should be remembered that the block 

conductivity, as defined above, is not the arithmetic average of the cell values within the block, 

which is a common geotechnical practice to upscale K when only a few measurements are 

available [34].  

Many authors had worked to improve the upscaling methods, which range from simple averaging 

to the Laplacian-with-skin method with uniform and nonuniform coarsening. They have achieved 

very good results, showing some advantages, limitations, and the evolution of the K upscaling 

techniques in a variety of problems [18,32–48]. In addition, some relevant works associated with 
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geotechnical engineering showed that coupled approaches should be used in the upscaling of soil 

properties to properly model some of the behaviors of heterogeneous soils, e.g., consolidation 

[9,49]. There are also complete reviews on saturated K upscaling methods [31,50,51], and the 

reader is encouraged to read these papers. The nomenclature used hereafter to refer to the 

different upscaling approaches is taken from the first reference [31]. Some conclusions found in 

the literature are that the K upscaling is site specific and depends on the boundaries conditions, 

block size and shape, statistical isotropy, block size relative to the correlation length, 

dimensionality of the problem, and complexity of the studied environment. Once the problem of 

upscaling is resolved, one should not forget that cell values (from which the block conductivities 

are computed) are never exhaustively known; therefore, it is necessary to quantify the uncertainty 

associated with the upscaled values using a stochastic approach [48]. 

In this paper, we would like to focus on two upscaling methods, a simple averaging method, 

specifically the empirical power average [52] or p-norm, and the Laplacian-with-skin method 

[48]. The former method has advantages such as usefulness, simplicity, and widespread use 

[38,39,43,52–54], while the latter method has advantages such as robustness and very good 

reproduction of the fine scale flows at the coarse scale [18,19,32,48].  

It is important to stress that almost all the background information provided here was developed 

in petroleum engineering and hydrogeology. Very few studies associated with K upscaling have 

been found in the geotechnical engineering literature [9,47,49,55]; to the best of our knowledge, 

the more sophisticated Laplacian-based upscaling methods have not yet been applied in 

geotechnical engineering. Tropical soils have a very specific behavior and are a source of many 

geotechnical problems; this paper presents, for the first time, an application of K upscaling to this 

type of soil. 
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The power-average method was used to upscale K for a unique block size for a 3D anisotropic 

real aquifer [32] and for a bi-dimensional hypothetical aquifer [38]. Power average was also used 

to determine KV for a range of block shapes for synthetic cases [39]. In the last two works, the 

exponent of the power average was determined based on numerical experiments. The simple-

Laplacian technique was used in a bi-dimensional conceptual model based on data from a real site 

in the context of nuclear waste disposal [20]. K upscaling by the Laplacian-with-skin method was 

applied in a realization of a three-dimensional synthetic K field [18]. This technique was also 

used to determine KV for three block sizes in a bidimensional numerical example, after solving 

the flow equation by a finite-difference numerical model with the approximation of the interblock 

conductivity [18]. 

To summarize, this paper has three objectives: (i) an analysis of stochastic 3D hydraulic 

conductivity upscaling using the Laplacian-with-skin method [48] for a variety of block sizes 

using real K measurements obtained in a tropical soil in Brazil; (ii) to demonstrate the errors that 

can be introduced by using a deterministic upscaling using harmonic, arithmetic, and geometric 

averages of the measured K without accounting for the spatial correlation; and (iii) to show how 

and when the p-norm averaging can be used (for the tropical soil studied) as an alternative to the 

more complex and time-consuming Laplacian-with-skin method, with the aim of providing a 

practical and fast solution for the daily practice of the geotechnical modeler. As a by-product of 

this third objective, the dependence of the exponent of the p-norm as a function of the block size 

is analyzed.  

2. Hydraulic Conductivity Upscaling Methods 

The main objective of upscaling is to obtain a block KV value that reproduces the groundwater 

flow at the coarse scale as if it had been computed at the fine scale. The aim is to replace a 
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finely discretized heterogeneous spatial distribution of conductivities Kf, with a set of block 

values KV, so that the flow response of the set of coarse block values matches the response at 

the fine scale. 

Upscaling methods can be classified as local and nonlocal [31]. Simple averaging techniques are 

local methods and assume that KV depends only on the Kf values within the block [35,37,56]. For 

a perfectly layered soil, it can be shown that KV is equal to the harmonic mean (Kh) of the cell 

conductivities inside the block when the flow is perpendicular to the layers, and to the arithmetic 

mean (Ka) when the flow is parallel to them [56]. It can also be shown that for 2D flow in an 

isotropically heterogeneous field with lognormally distributed conductivities, KV is equal to the 

geometric mean (Kg) of the cell conductivities [35,36]. For 3D-flow, there is no closed form for 

the best average process because it will depend on the statistical isotropy and the spatial 

correlation structure [31] of the cell conductivities.  

It is well established that KV must be between the arithmetic mean and the harmonic mean [37]. 

The p-norm average was proposed as a flexible easy-to-compute alternative because it can 

provide a value for KV between those two limits as a function of the exponent p [52]:  

 

 

(1) 

where V indicates the volume of the block; KV,p is the block conductivity determined using the p 

norm, and Kf represents the cell conductivities within the block. The power p is allowed to vary 

between -1 and +1. When p is equal to -1, KV,p equals Kh; when p is equal to 0, KV,p equals Kg; 

and when p is equal to +1, KV,p equals Ka. The challenge of p-norm upscaling is to determine the 

exponent p that will result in a KV,p that reproduces the flows observed at the fine scale. The p-

norm is a very practical method that can provide very good results in some situations [1,38,39]. In 
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cases where the degree of heterogeneity is mild, simple averaging methods compete favorably 

with more sophisticated methods [53]. However, the p-norm average cannot be used without 

resorting to some prior numerical modeling to find the best p exponent [39]. 

KV depends not only on the cell values of flux and hydraulic head but also on the boundary 

conditions around the block; the fact that the same layered block will have different upscaled 

block values depending on whether the flow is parallel or orthogonal to it proves it. KV is said to 

be nonlocal [31], i.e., it depends not only on the cell values within the block but also on external 

factors. The simple-Laplacian is a nonlocal approach [31,48] that was developed to deal with the 

need to determine KV considering the boundary conditions that are acting on the block 

boundaries. The introduction of this method represented a big improvement of the upscaling 

techniques when compared to local methods. Nevertheless, in this approach, the principal 

components of KV are assumed to be parallel to the block sides and the boundary conditions used 

to solve the flow at the fine-scale do not necessarily coincide with the real boundary conditions 

that the block may have when embedded in a larger model. [31].  

To obtain the head values around the block to be upscaled, which would represent the actual 

boundary conditions of the block when within the studied area, it would be necessary to solve the 

flow equation for the entire studied area (at the fine-scale) [57]. Such a procedure is not practical 

because the main purpose of the upscaling is to avoid solving the flow equation at the fine scale. 

The Laplace-with-skin method was proposed [18,48] to overcome the need for solving the flow 

equation over the entire model and the assumption that the principal directions of the KV tensor 

are parallel to the block sides. In this method, the KV is represented by a tensor that is not 

necessarily diagonal and flow is solved on a small numerical model containing the block plus a 

“skin” around it. The skin surrounding the block has information about the boundary conditions 

near the block, with no need for solving the entire flow problem to obtain the true boundary 
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conditions at the block sides. For a three-dimensional upscaling, the Laplacian-with-skin method 

is described in detail in Zhou et al. [18]. Computing the block conductivity tensor using the 

Laplacian-with-skin method can be summarized as follows: (i) A block size is decided, and a 

block discretization is overlain on the fine-scale K realization. (ii) A skin size is decided, 

generally about half the size of the block. (iii) Each block and its surrounding skin is extracted 

from the fine-scale realization and subject to a number of local flow numerical simulations with a 

variety of boundary conditions that impose piezometric head gradients in different directions (it is 

recommended to use of at least four boundary conditions in two dimensions and eight in three 

dimensions [18]). (iv) From the local solution corresponding to each boundary condition, the 

average specific discharges and the average piezometric head gradients are computed. These 

average values should be related to each other through a version of Darcy’s law formulated at the 

coarse scale. For example, in 3D, it would be the following expression: 

 , 
(2) 

where Kxx, Kxy, Kxz, Kyy, Kyz, and Kzz are the unknown components of the block conductivity 

tensor KV and , ,  and , ,  are the arithmetic mean of the specific discharge and 

the head gradients, respectively, within the block. (v) Equation (2) results in three linear 

equations for each boundary condition; from eight boundary conditions, it will result in an 

overdetermined linear system of 24 equation and 6 unknowns that is solved by least squares 

yielding the conductivity tensor that best associates average gradients with average fluxes for a 

variety of boundary conditions.  
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3. Soil description 

The tropical soil studied is from São Carlos City (21°51′38″ S, 47°54′14″ W), Brazil and is found 

on lithologies belonging to the Botucatu Formation. It consists of fine-grained to medium-sized 

sandstones, with a reddish color, well-selected grains, high sphericity, very friable, or silicified. 

The Botucatu Formation is covered by Cenozoic sediments, which are the parent material, 

constituted by unconsolidated sands with a thickness ranging from 5 m to 7 m and pebbles at the 

base [58,59]. The soil in this area is highly lateritized owing to the intensive tropical weathering 

of the parent material [59]. The soil is mainly constituted by quartz, oxides, 

and hydroxides of aluminum, kaolinite, and gibbsite. At the laboratory, the soil was 

characterized, by the literature, as clayey sand with macropores and a double porosity fabric [60]. 

According to the US Soil Taxonomy classification, the soil type is an Oxisol [61], and according 

to the Brazilian classification system, it is a medium textured, dystrophic, red–yellow 

Latosol [62].  

4. Characterization of the Spatial Variability  

With the aim of characterizing the spatial variability of hydraulic conductivity, 55 undisturbed 

cylindrical samples of radius 0.10 m and height 0.15 m were taken in a domain of 12 m in the x-

direction, 7 m in the y-direction, and 2 m in the z-direction. The hydraulic conductivity was 

measured in the laboratory using a rigid-wall permeameter, under constant-head conditions 

inducing a hydraulic gradient equal to one, and at a constant temperature of 21 ºC.  

The histogram of the measured K values is best fitted by a lognormal distribution with mean and 

standard deviation of 1.35 m/d and 1.65 m/d, respectively. The lognormal model implies that the 

natural logarithm of K (lnK) is modeled by a Gaussian distribution with mean of -0.38 (ln(m/d)) 

and standard deviation of 1.25 (ln(m/d)). The normality of the lnK was confirmed by the 



10 
 

Kolmogorov–Smirnov test with a 95% confidence interval. Fig. 1A and Fig. 1B show the 

histograms and summary statistics of K and lnK, respectively. 

The lnK spatial variability was analyzed using geostatistical techniques. The theory of 

geostatistics is defined as the application of regionalized variables to the study of spatial 

relationships. This theory, formalized by Matheron in 1963 [63], assumes that the correlation 

between properties (e.g., hydraulic conductivity) at different locations is some function of 

distance. We used the Stanford Geostatistical Modeling Software (SGeMS) [64] to compute the 

experimental variogram from the 55 K measurements using many combinations of distance and 

angle tolerances and bandwidths. SGeMS was then used to fit a variogram model. We could not 

identify any direction of preferential continuity (observed ranges in differences directions were 

all in the 3.9 m – 4.2 m range), and the best fit to the experimental variogram of lnK was an 

isotropic spherical variogram  

 
 (3) 

where a is the range with a value of 4 m in all directions, h is the directional lag distance, |·| is the 

modulus operator, and sph() is the spherical function [65]. The total variance, c0 + c1, of lnK is 

1.57 (ln(m/d))2 and represents a moderate heterogeneous media. No nugget (c0) was used to fit the 

model. The experimental variogram and the fitted model are shown in Fig. 2.  

5. Simulation of the Hydraulic Conductivity Random Fields 

Gaussian random fields are completely defined by their first two moments, mean and covariance. 

A Gaussian random field is represented by the infinite set of multivariate Gaussian distributions 

that can be built with any combination of points in some spatial domain [66,67]. Within the 

framework of the random field theory, lnK is modeled as a random variable at each location in 

space, and the resulting random field is assumed second-order stationary, i.e., the expected value 



11 
 

of all random variables is constant, and the covariance of any pair of random variables is 

translation independent. Under these assumptions, 70 equally likely realizations (regionalized 

fields) were generated using the Sequential Gaussian Simulation (SGS) algorithm implemented in 

the code GCOSIM3D [68], with the mean lnK computed from the data and the variogram 

function shown in Fig. 2. These regionalized fields were, by construction, isotropic and 

conditioned to the 55  measured data, that is, realizations not only reproduced the statistical 

spatial patterns of the data but also honored the data at their locations. The honor to the measured 

data is achieved using the sequential simulation decomposition of a n-variate probability 

distribution as the product of n univariate conditional distributions, whereby drawing a realization 

from the n-variate distribution can be replaced by drawing (sequentially) from n univariate 

distributions [23]. 

The random field domain is a parallelepiped with dimensions of x = 24 m, y = 16 m, and z = 8 m, 

and it is discretized into 3,072,000 cubic cells of side 0.1 m to keep the numerical cells with a 

magnitude similar to the scale of the permeameter measurements. We have generated realizations 

within a domain twice the size of the studied area. The justification for the size of the generated 

domain is that the upscaling technique requires an outer skin composed by a certain number of 

additional elements. However, only the inner domain consisting of x = 12 m, y = 8 m, and z = 4 

m dimensions will be used to simulate groundwater flow and to perform upscaling [48]. The 

70 conditional realizations make up a model of the spatial uncertainty of K at the fine scale; they 

will be used to analyze the efficiency of the upscaling techniques. Fig. 3 shows realizations 

numbers 1 and 70. Before performing the groundwater flow numerical simulation, the lnK 

random fields were, obviously, back-transformed into K fields.  
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6. Groundwater Flow Numerical Modeling at the Fine Scale  

Steady-state flow in the absence of sinks and sources of an incompressible fluid in a saturated 

porous media was modeled. Under these conditions, the flow equation at the fine scale can be 

expressed using the following equation [69]:  

 

 
(4) 

Equation (4) results from the combination of Darcy’s Law and the continuity equation, where h is 

the piezometric head and K is a second-order symmetric hydraulic conductivity tensor at the fine 

scale.  

As the observed spatial variability of K is isotropic and it is well known [70] that spatial 

correlation anisotropy is, among other reasons, the responsible for flow anisotropy, we have 

decided to model fine-scale conductivities as isotropic to flow, that is, as scalar values. Each of 

the 70 realizations of K at the fine scale was used as input to 70 numerical models. For each 

realization, three-dimensional flow was solved by the finite element method (FEM) using the 

preconditioned conjugate-gradient method using FEFLOW 7.1 [71]. 

A MATLAB routine was written to manage the entire modeling process. This routine couples the 

execution of GCOSIM3D and FEFLOW to automatically perform the generation of the 

realizations and the flow simulations. MATLAB calls GCOSIM3D to generate the random fields 

and reformats the output files to adequate them to the input format of FEFLOW. The FEFLOW 

runs were configured and executed in MATLAB using the command-line mode with a code 

written in the Python language using interface manager API functions.  

A finite element mesh was generated using the transport mapping method (also called transfinite 

interpolation) on a rectangular discretization of the grid into 120 x 80 x 40 cuboid cells of 0.1 m x 



13 
 

0.1 m x 0.1 m for a total of 384 000 elements. Confined flow was modeled on the realizations 

with no flow boundary conditions at the top and bottom faces of the parallelepiped, and 

prescribed constant heads of 50 m at the right face and 38 m at the left side, forcing flow from left 

to right. The hydraulic gradient induced by these constant head boundaries is one, replicating 

laboratory conditions. From the solution of the flow equation, we retrieved the hydraulic head in 

each node of the model, and the specific discharge in the x-direction (qx) through a control plane 

orthogonal to the flow direction, for each realization.   

7. Hydraulic Conductivity Upscaling  

In this section, the flow equation at the coarse scale is presented, and the details of the upscaling 

are defined. 

7.1. Flow equation at the coarse scale  

At the coarse scale, block conductivity (KV) is defined, using an upscaled version of Darcy’s law, 

as the quantity that relates the average specific discharge within a given block to the average head 

gradient , where the bar denotes volumetric average.  is a symmetric and positive 

definite three-dimensional full tensor, which will be considered as scalar in this paper [72]. The 

decision of model Kv as a scalar was made after performing several tests and checking that the 

differences in Kv values in the x, y, and z directions were not significant; this is an expected 

result because the underlying fine-scale realizations were modeled as spatially isotropic random 

fields [70]. 

7.2. Upscaling Design 

Each of the 70 realizations of the K fields generated at the fine-scale was upscaled with the 

Laplacian-with-skin method using the code provided by Zhou et al. [18] after a minor 
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modification that allowed the automatic upscaling of all realizations. A MATLAB code was 

written with the objective of coupling GCOSIM3D, FEFLOW, and the upscaling code. We have 

performed upscaling with cubic block sizes 2, 4, 5, 8, 10, and 40 times the side size of the block 

at the fine scale (0.1 m). Additionally, an upscale with a unique block with the same size as the 

entire domain (12 m x 8 m x 4 m) was performed. Table 1 shows the block side size of the 

upscaled models, the total number of elements for each model, and the reduction factor in the 

number of elements when compared with the fine scale. 

The size of the outer skin was set equal to half the block size in each direction to upscaling each 

individual block. Previous work showed that this skin size is adequate to upscale hydraulic 

conductivity [18]. We have performed some initial tests with different skin sizes, and it was 

found that this size of skin is adequate for our problem.  

It is important to clarify that the generated domains have dimensions of x = 24 m, y = 16 m, and 

z =  8 m because the maximum dimension of the block side size was equal to the entire domain 

(12 m x 8 m x 4 m), and we have opted to use a skin equal to half the block size of each side of 

the model. Only the inner area of the x = 12 m, y = 8 m, and z = 4 m dimensions was used to 

verify the efficiency of the upscaling approach; however, the external area was needed to 

compute the block conductivities when using the Laplacian-with-skin approach.  

The conductivity was computed at block centers, and the FEM was used to solve the groundwater 

flow equation. After isolating each block to be upscaled (with the corresponding skin), 

groundwater flow was solved for nine different sets of boundary conditions; these boundary 

conditions were chosen so that the overall head gradient through the block is parallel to the 

directions given by the vectors (1, 0, 0), (0, 1, 1), (1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (-

1, 0, 1), and (0,-1, 1). All the analyses mentioned hereafter were made for all realizations and all 

block sizes mentioned in Table 1. Once the block values have been calculated, they were 
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assembled to build the coarse-scale numerical model, and the groundwater flow equation was 

solved with the boundary conditions same as those used for the fine-scale numerical model. Fig. 4 

shows the upscaled lnK realizations for the fine-scale realization number 1 for all block side sizes 

considered.   

To evaluate upscaling performance, the hydraulic head obtained in each node of each flow model 

at the coarse scale was compared with the corresponding value obtained after solving the flow 

model at the fine scale. As we have 70 realizations and many nodes in each realization, we opted 

to show these results in terms of average relative bias of head (RBh) for each realization and 

block size, given by the equation 

 

 
(5) 

where NN is the total number of coarse model nodes for the given block size and realization; hf,i 

is the hydraulic head obtained from the fine-scale numerical model for node i; and hc,i is the 

hydraulic head obtained from the coarse-scale model at the same node.  

The reproduction of the mean specific discharge in the x-direction (qx) at a control plane 

orthogonal to flow was evaluated using the relative bias of specific discharge (RBq), given by the 

equation 

 

 
(6) 

where NR is the number of realizations; qf,i is the specific discharge through the control plane 

obtained from the fine-scale numerical model for realization i; and qc,i is the specific discharge 

through the same control plane from the coarse-scale model for the same realization. One would 

expect that the RBq would increase with block size.  
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After determining the block values with the rigorous and time-consuming Laplace-with-skin 

approach, our next objective was to determine if these values could be approximated with the 

simple local technique of p-norm averaging. For the evaluation of the p exponent (which, 

presumably, should be a function of the block side), we perform an optimization in MATLAB 

using the function “fminbnd,” which is based on a golden section search and parabolic 

interpolation to minimize the objective function  

 
(7) 

where KV,l.ij is the block value computed with the Laplacian-with-skin method, and KV,p,ij is the 

value computed as a p-norm average. The exponent was constrained to be between –1 and +1 

(corresponding to the harmonic and arithmetic averages). Once the best p exponent was 

determined, groundwater flow at the coarse scale was solved with the optimal KV,p values using 

the boundary conditions same as those used previously. In addition, and for comparison purposes, 

flow was also solved with the block values obtained with p equal to -1, 0 and 1, that is, with 

block values equal to the harmonic, geometric and arithmetic averages of the cell values within 

the block. 

8. Results and discussion 

8.1. Reproduction of the flow at the coarse scale 

In this section, the results of the upscaling using the Laplacian-with-skin method will be 

discussed. Fig. 5 shows the comparison of the specific discharge in the x-direction (qx) obtained 

from the model performed at the fine scale versus the results obtained from the model built with 

the block conductivity values computed by upscaling using the Laplacian-with-skin method. We 

show only the results in the x-direction because the boundary conditions imposed in the model 
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force the flow in that direction. We expect that the results regarding fluxes in the y- or z-

directions would have had similar changes in the boundary conditions to force flow in those 

directions. The relative bias of the specific discharge increases with the increase in the block size 

side, except for a block side size equal to 2 m that presented slightly higher RBq than a block side 

size equal to 4 m. Given that the skin size is half the block side size, blocks greater than 2 m will 

result in blocks greater than the correlation length (4 m), and in that situation, the flow behavior is 

mainly determined by the conductivities within the blocks and the influence of the skin is 

apparently reduced [48]. The increase in the RBq with the block side size is due to the smoothing 

of the heterogeneity caused by the upscaling procedure. The relative variations of the variance 

and the mean of the block conductivities as a function of the block side size are shown in Fig. 6. 

A reduction of up to 83.5% of the variance with the increase in block side sizes was observed. 

This smoothing of the heterogeneity can be clearly verified as mentioned in previous research 

[16,73,74]. The block side sizes up to 1.0 m resulted in a small increase of the mean of up to 4%. 

The higher effect was obtained for the block side sizes equal to 4 and 12 m, where the increase in 

the mean was 17% and 23%, respectively. The increase in the mean was also mentioned by other 

authors [75], which attribute it to the impact of high conductivity features in KV when the block 

increases.  

The reproduction of the specific discharge at the coarse scale is good given the relative small 

errors obtained, indicating that the upscaling method works well, in consonance with the results 

obtained by other authors [18,32]. Upscaling implies smoothing and loss of heterogeneity; we 

have tested upscaling for the purpose of reproducing the average flux crossing the model, and for 

this purpose, the upscaling method is very effective. Previous works focused on capturing some 

local features show that for blocks larger than half the correlation length, the influence of these 

local features is lost. [33]. Other works focused on magnitudes at the scale of the model have 
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obtained good results with blocks up to three times the correlation length (as is the case for our 

most extreme upscaling) [39]. In our work, the reproduction of the total flow crossing the model 

is good for all block sizes, although the RBq deteriorates with the block size. These results are 

very encouraging because we can compute the total flow through the domain of study using a 

model with blocks of 4 m, which has 64,000 times less elements than the model built at the scale 

at which the data are collected.  

Continuing with the investigation of the efficiency of the upscaling using the Laplacian-with-skin 

method, the relative bias of the head, RBh, for each realization and all block side sizes is shown in 

Fig. 7. For the block side size with the same size of the domain, the RBh is always zero, as there 

are only eight nodes at the coarse scale and are coincident with the boundary conditions at the 

fine scale. The RBh is greater when the block side size increases. The largest RBh occurs for the 

block with a side size equal to the correlation length, yet its value is very small, with the 

maximum RBh below 0.9%. The small errors of the RBq is also due to the small spatial variability 

of the piezometric heads.  

Deterministic models disregard uncertainty. However, uncertainty is inherent to heterogeneity 

when this is characterized from a limited set of observations. Such an uncertainty on conductivity 

propagates through the groundwater flow model onto uncertainty on the results of the model, 

such as the specific discharges. We have evaluated the uncertainty on specific discharges by 

analyzing their statistics as computed from 70 realizations (which are equally likely 

representations of reality given the random field model adopted) of K. Further, we have analyzed 

how this uncertainty changes after performing upscaling. Table 2 shows the statistics of qx at the 

fine scale and after upscaling for the different block sizes. From Table 2, we see that upscaling 

not only produces models with a small RBq but also preserves the uncertainty of qx at the fine 

scale, even for a block size equal to the entire domain. 
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A common practice in geotechnical investigations is to build homogeneous models using some 

average value of the measured data. For this reason, and for comparison purposes, we have also 

computed the single specific discharge associated with homogeneous models. In these models, 

we used conductivities equal to the harmonic, geometric, and arithmetic averages of K. The 

resulting qx values were equal to 0.29 m/d for the harmonic mean, 0.68 m/d for the geometric 

mean, and 1.32 m/d for the arithmetic mean. When these values are plotted in the cumulative 

frequency distribution function of the qx at the fine scale (Fig. 8), the importance of the stochastic 

modeling is obvious. The probability of qx being larger than the value obtained using the 

harmonic mean is 100%. When K is computed using the geometric mean, there is a probability of 

66% that the qx calculated using this K value be exceeded. Finally, the probability of qx being 

smaller than the value obtained using the arithmetic mean is almost 86%. These results 

demonstrate that the use of a unique K value with no consideration of the spatial correlation of 

the K can result in a specific discharge not representative of the real flow and potentially induce 

large errors in the calculation of fluxes.  

8.2. Variation of the p-exponent with the block size 

The p-exponent that produces the best approximation of Kv,l by Kv,p was computed for each 

block side size after minimizing equation (7). Fig. 9 shows the variation of the best p-exponent 

with the variation of the block side size. We can notice that the p-exponent increases up to a limit 

and then stabilizes. The p-exponent lies between 0.26 and 0.29. This variation can be fitted with 

the following exponential model, with an error on p below 5%:  

 . (8) 

Selvadurai and Selvadurai [76] found, for a deterministic isotropic three-dimensional upscaling, 

that the geometric mean (p = 0) was the best p-norm to compute KV [76]. Desbarats [39] found, 
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for a case when the block side size was equal to three times the range, the best p-exponent was 

found to be 1/3 in a 3D mildly heterogeneous and statically isotropic media with arbitrary 

boundary conditions [39].  

The variation of the p-exponent with the number of realizations was also investigated, and it was 

noticed that when computed using less than 20 realizations, the p-exponent presented great 

oscillation. When the number of realization was bigger than 20, the p-exponent tends to stabilize. 

The variance of the K random fields will also influence the p-exponent value, and future research 

may be needed to analyze this behavior. In preliminary analyses in synthetic K fields, we have 

found that the p-exponent tends to increase with the magnitude of the variance for isotropic 

fields. For anisotropic fields, the block value must be a tensor and the p-exponent that 

approximates the component in the direction of maximum continuity increases with variance, but 

it decreases for the component in the direction of minimum continuity.  

The reproduction of the qx obtained from the model performed at the fine scale was compared 

with the results obtained after upscaling using a p-norm, and the results are shown in Fig. 10. 

Similarly, as in Fig. 5, the relative bias of the specific discharge, RBq, increases with the increase 

in the block side size. For block side sizes up to 1.0 m, the RBq obtained with the Laplacian-with-

skin method and p-norm are almost equal. Block side sizes more than 1.0 m resulted in different 

RBq, and for the block side size equal to 12.0 m, the RBq was 17% with the p-norm and 27% with 

the Laplacian-with-skin method. The quality of the upscaling can also be checked by the very 

good agreement between the qx values obtained at the fine scale and at the coarse scale.  

Fig. 11 shows the relative bias of head, RBh, for all block side sizes and all realizations obtained 

with the p-norm using the best p-exponent. As mentioned before in the results of the Laplacian-

with-skin method, the relative bias of the piezometric head, RBh, is always zero for the block with 

a size same as that of the entire domain. With the increase in the block side size, the RBh 
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increases, reflecting the effects of the reduction in the heterogeneity. In this situation, the RBh 

was greater than the one obtained with the Laplacian-with-skin method, but yet the maximum 

RBh was 1.44%, a very satisfactory reproduction of the flow at the coarse scale.  

The specific discharges in the x-direction (qx) computed with block values obtained using p-

norms equal to -1 (harmonic mean), 0 (geometric mean), and 1 (arithmetic mean) were compared 

with the values computed on the fine-scale model and are shown in Figs 12, 13, and 14. The 

purpose of this comparison is to show the errors that could be incurred when using an incorrect p-

exponent. The RBq increases with the increase in the block side size. For block side sizes equal to 

0.2 m and 0.4 m, all the upscaling procedures seem to be adequate, the reason being that the 

heterogeneity within the blocks at this size is small and all p-norms yield similar values. In 

general, the geometric mean (Fig. 13) resulted in the smallest errors and the arithmetic mean (Fig. 

14) in the largest ones. Moreover, in general, qx was underestimated by the harmonic mean (Fig. 

12) and overestimated by the arithmetic mean (Fig 14.). We also analyzed the reproduction of h 

when upscaling using p = –1, p = 0, and p = +1, and we found that the RBh increases with the 

block side size and that the smallest RBh was obtained with the geometric mean.  

These results are of interest for future applications in which there is an interest in performing 

block conductivity upscaling in tropical soils such as the one studied here. The p-exponent could 

be read from the fitted curve given by equation (8) and p-norm upscaling was used to compute 

block values quickly. However, the application of this approach to a new soil would require first 

to perform an analysis similar to the one performed here to find out the best p-exponents before 

conducting the upscaling with the p-norm average.  

The workflow would be as follows: 

Collect samples in the area of interest and characterize their spatial variability. 
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Perform nonlocal upscaling analyses to investigate whether the quantities of interest (in our case 

it was total flow crossing the domain, and piezometric heads at discretization nodes) are well 

reproduced by the upscaled models.   

Determine the best p exponent that produces results similar to those obtained with the nonlocal 

techniques using some minimization technique.  

Generate realizations at the small scale using the algorithm of your choice. 

Use the p-exponent found before to build quickly coarse models using p-norm upscaling, and use 

the coarse models for the study.  

9. Conclusions 

Stochastic three-dimensional upscaling of hydraulic conductivity using the Laplacian-with-skin 

method was performed in a flow model of a tropical soil from Brazil, where conductivity had 

been measured at 55 locations over the support of rigid laboratory permeability. Eight different 

block sizes were analyzed. Deterministic analyses using simple averaging of K were also done to 

show the importance of using a stochastic approach. The upscaling efficiency with the variation 

of the block side size was investigated. The behavior of the p-exponent of the p-norm with the 

increase in the block side size was also studied. 

Upscaling conductivities using the Laplacian-with-skin method gave excellent results showing 

small relative bias for the quantities computed both at the fine and coarse scales, even for a single 

block with the size of the entire domain. The relative biases of specific discharge and of 

piezometric head tend to increase with block side size. The variance of specific discharge tends to 

decrease with the increase in the block side sizes, reflecting the heterogeneity smoothing effect of 

upscaling. The mean of the specific discharge increased with block side size. The uncertainty in 

qx is well captured by the upscaled K values. The analysis of the variation of the p-exponent with 



23 
 

the block side sizes showed that the p-exponent increases with block size up to the block side is 

0.8 m and then it remains stable about p = 0.29. This variation was fitted with an exponential 

expression that gives p as a function of block side. The upscaling using the p-exponent that best 

reproduces the Laplacian-derived Kv,l resulted in very good reproduction of the flow even for 

large block side sizes. The results obtained in this work allow the use of the p-norm in a practical, 

reliable, and fast way for K upscaling in tropical soils of the studied region. The workflow for the 

application of the proposed method in other soils is also provided. Finally, this paper shows the 

errors that could be incurred when using certain deterministic analysis for the analysis of 

groundwater flow and the importance to rely on well-proven methods such as the Laplacian-with-

skin method for upscaling in a geotechnical context.  

 

Acknowledgments 

The authors thank the financial support by the Brazilian National Council for Scientific and 

Technological Development (CNPq) (Project 401441/2014-8). The doctoral fellowship award to 

the first author by the Coordination of Improvement of Higher Level Personnel (CAPES) is 

gratefully acknowledged. The first author thanks the International Mobility Grant awarded by 

CNPq and Santander mobility. The authors also thank DHI-WASI for providing a FEFLOW 

Software license.  

 

References 

[1] Elkateb T, Chalaturnyk R. An overview of soil heterogeneity: quantification and 

implications on geotechnical field problems. Can Geotech 2003. doi:10.1139/t02-090. 

[2] Chapuis RP, Dallaire V, Marcotte D, Chouteau M, Acevedo N, Gagnon F. Evaluating the 

hydraulic conductivity at three different scales within an unconfined sand aquifer at 



24 
 

Lachenaie, Quebec. Can Geotech J 2005;42:1212–20. doi:10.1139/t05-045. 

[3] Sánchez-Vila X, Carrera J, Girardi JP. Scale effects in transmissivity. J Hydrol 

1996;183:1–22. doi:10.1016/S0022-1694(96)80031-X. 

[4] Lacasse S, Nadim F. Uncertainties in characterising soil properties. Publ - Norges Geotek 

Inst 1996;201:49–75. 

[5] DeGroot DJ, Baecher GB. Estimating Autocovariance of In-Situ Soil Properties. J Geotech 

Eng 1993;119:147–66. doi:10.1061/(ASCE)0733-9410(1993)119:1(147). 

[6] Scheibe T, Yabusaki S. Scaling of flow and transport behavior in heterogeneous 

groundwater systems. Adv Water Resour 1998;22:223–38. doi:10.1016/S0309-

1708(98)00014-1. 

[7] Huang J, Griffiths DV. Modelling spatial variability in geotechnical engineering. Georisk 

Assess Manag Risk Eng Syst Geohazards 2016;10:1–1. 

doi:10.1080/17499518.2015.1123727. 

[8] Geetha Manjari K, Sivakumar Babu GL. Probabilistic analysis of groundwater and 

radionuclide transport model from near surface disposal facilities. Georisk Assess Manag 

Risk Eng Syst Geohazards 2017:1–14. doi:10.1080/17499518.2017.1329538. 

[9] Huang J, Griffiths D V., Fenton GA. Probabilistic Analysis of Coupled Soil Consolidation. 

J Geotech Geoenvironmental Eng 2010;136:417–30. doi:10.1061/(ASCE)GT.1943-

5606.0000238. 

[10] Chapuis RP. Numerical modeling of reservoirs or pipes in groundwater seepage. Comput 

Geotech 2009;36:895–901. doi:10.1016/j.compgeo.2009.01.005. 

[11] Blake JR, Renaud J-P, Anderson MG, Hencher SR. Prediction of rainfall-induced transient 

water pressure head behind a retaining wall using a high-resolution finite element model. 

Comput Geotech 2003;30:431–42. doi:10.1016/S0266-352X(03)00055-7. 



25 
 

[12] Feng S-J, Zheng Q-T, Xie H-J. A model for gas pressure in layered landfills with 

horizontal gas collection systems. Comput Geotech 2015;68:117–27. 

doi:10.1016/j.compgeo.2015.04.005. 

[13] Zhou H, Gómez-Hernández JJ, Hendricks Franssen H-J, Li L. An approach to handling 

non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Adv 

Water Resour 2011;34:844–64. doi:10.1016/j.advwatres.2011.04.014. 

[14] Li L, Zhou H, Gómez-Hernández JJ, Hendricks Franssen H-J. Jointly mapping hydraulic 

conductivity and porosity by assimilating concentration data via ensemble Kalman filter. J 

Hydrol 2012;428–429:152–69. doi:10.1016/j.jhydrol.2012.01.037. 

[15] Vogel H-J, Roth K. Moving through scales of flow and transport in soil. J Hydrol 

2003;272:95–106. doi:10.1016/S0022-1694(02)00257-3. 

[16] Vik B, Bastesen E, Skauge A. Journal of Petroleum Science and Engineering Evaluation of 

representative elementary volume for a vuggy carbonate rock — Part : Porosity , 

permeability , and dispersivity. J Pet Sci Eng 2013;112:36–47. 

doi:10.1016/j.petrol.2013.03.029. 

[17] Dousset S, Thevenot M, Pot V, Šimunek J. Evaluating equilibrium and non-equilibrium 

transport of bromide and isoproturon in disturbed and undisturbed soil columns. J Contam 

2007;94:261–76. doi:10.1016/j.jconhyd.2007.07.002. 

[18] Zhou H, Li L, Jaime Gómez-Hernández J. Three-dimensional hydraulic conductivity 

upscaling in groundwater modeling. Comput Geosci 2010;36:1224–35. 

doi:10.1016/j.cageo.2010.03.008. 

[19] Li L, Zhou H, Gómez-Hernández JJ. Transport upscaling using multi-rate mass transfer in 

three-dimensional highly heterogeneous porous media. Adv Water Resour 2011;34:478–

89. doi:10.1016/j.advwatres.2011.01.001. 



26 
 

[20] Cassiraga EF, Fernàndez-Garcia D, Gómez-Hernández JJ. Performance assessment of 

solute transport upscaling methods in the context of nuclear waste disposal. Int J Rock 

Mech Min Sci 2005;42:756–64. doi:10.1016/j.ijrmms.2005.03.013. 

[21] Gómez-Hernández JJ, Cassiraga EF. Theory and Practice of Sequential Simulation, 1994, 

p. 111–24. doi:10.1007/978-94-015-8267-4_10. 

[22] Journel AG, Gomez-Hernandez JJ. Stochastic Imaging of the Wilmington Clastic 

Sequence. SPE Form Eval 1993;8:33–40. doi:10.2118/19857-PA. 

[23] Goovaerts P. Geostatistical modelling of uncertainty in soil science. Geoderma 

2001;103:3–26. doi:10.1016/S0016-7061(01)00067-2. 

[24] Griffiths D V, Fenton GA. Three-Dimensional Seepage through Spatially Random Soil. J 

Geotech Geoenvironmental Eng 1997;123:153–60. doi:10.1061/(ASCE)1090-

0241(1997)123:2(153). 

[25] Cho SE. Probabilistic stability analysis of rainfall-induced landslides considering spatial 

variability of permeability. Eng Geol 2014;171:11–20. doi:10.1016/j.enggeo.2013.12.015. 

[26] Reddy KR, Kulkarni HS, Srivastava A, Babu GLS. Influence of Spatial Variation of 

Hydraulic Conductivity of Municipal Solid Waste on Performance of Bioreactor Land fi ll. 

J Geotech Geoenvironmental Eng 2013;139:1968–72. doi:10.1061/(ASCE)GT.1943-

5606.0000930. 

[27] Zhu H, Zhang LM, Zhang LL, Zhou CB. Two-dimensional probabilistic infiltration 

analysis with a spatially varying permeability function. Comput Geotech 2013;48:249–59. 

doi:10.1016/j.compgeo.2012.07.010. 

[28] Liu L-L, Cheng Y-M, Jiang S-H, Zhang S-H, Wang X-M, Wu Z-H. Effects of spatial 

autocorrelation structure of permeability on seepage through an embankment on a soil 

foundation. Comput Geotech 2017;87:62–75. doi:10.1016/j.compgeo.2017.02.007. 



27 
 

[29] Tuli A, Hopmans JW, Rolston DE, Moldrup P. Comparison of Air and Water Permeability 

between Disturbed and Undisturbed Soils. Soil Sci Soc Am J 2005;69:1361. 

doi:10.2136/sssaj2004.0332. 

[30] Osinubi K ‘J., Nwaiwu CM. Hydraulic Conductivity of Compacted Lateritic Soil. J 

Geotech Geoenvironmental Eng 2005;131:1034–41. doi:10.1061/(ASCE)1090-

0241(2005)131:8(1034). 

[31] Wen X-H, Gómez-Hernández JJ. Upscaling hydraulic conductivities in heterogeneous 

media: An overview. J Hydrol 1996;183:ix–xxxii. doi:10.1016/S0022-1694(96)80030-8. 

[32] Li L, Zhou H, Gómez-Hernández JJ. A comparative study of three-dimensional hydraulic 

conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air 

Force Base, Mississippi (USA). J Hydrol 2011;404:278–93. 

doi:10.1016/j.jhydrol.2011.05.001. 

[33] Huang J, Griffiths DV. Determining an appropriate finite element size for modelling the 

strength of undrained random soils. Comput Geotech 2015;69:506–13. 

doi:10.1016/j.compgeo.2015.06.020. 

[34] Sánchez-Vila X, Girardi JP, Carrera J. A Synthesis of Approaches to Upscaling of 

Hydraulic Conductivities. Water Resour Res 1995;31:867–82. doi:10.1029/94WR02754. 

[35] Matheron G. Elements pour une théorie des milieux poreux 1967. 

[36] Gómez-Hernández JJ, Wen X-H. Probabilistic assessment of travel times in groundwater 

modeling. Stoch Hydrol Hydraul 1994;8:19–55. doi:10.1007/BF01581389. 

[37] Cardwell WT, Parsons RL. Average Permeabilities of Heterogeneous Oil Sands. Trans 

AIME 1945;160:34–42. doi:10.2118/945034-G. 

[38] Gomez-Hernandez JJ, Gorelick SM. Effective groundwater model parameter values: 

Influence of spatial variabiity of hydraulic conductivity, leackance, and recharge. Water 



28 
 

Resour Res 1989;25:405–19. 

[39] Desbarats AJ. Spatial averaging of hydraulic conductivity in three-dimensional 

heterogeneous porous media. Math Geol 1992;24:249–67. doi:10.1007/BF00893749. 

[40] Desbarats AJ. Numerical estimation of effective permeability in sand-shale formations. 

Water Resour Res 1987;23:273–86. doi:10.1029/WR023i002p00273. 

[41] Warren J, Price H. Flow in Heterogeneous Porous Media. Soc Pet Eng J 1961;1:153–69. 

doi:10.2118/1579-G. 

[42] Rubin Y, Gómez-Hernández JJ. A stochastic approach to the problem of upscaling of 

conductivity in disordered media: Theory and unconditional numerical simulations. Water 

Resour Res 1990;26:691–701. doi:10.1029/WR026i004p00691. 

[43] Sarris TS, Paleologos EK. Numerical investigation of the anisotropic hydraulic 

conductivity behavior in heterogeneous porous media. Stoch Environ Res Risk Assess 

2004;18:188–97. doi:10.1007/s00477-003-0171-3. 

[44] Dewandel B, Maréchal JC, Bour O, Ladouche B, Ahmed S, Chandra S, et al. Upscaling 

and regionalizing hydraulic conductivity and effective porosity at watershed scale in 

deeply weathered crystalline aquifers. J Hydrol 2012;416–417:83–97. 

doi:10.1016/j.jhydrol.2011.11.038. 

[45] Fleckenstein JH, Fogg GE. Efficient upscaling of hydraulic conductivity in heterogeneous 

alluvial aquifers. Hydrogeol J 2008;16:1239–50. doi:10.1007/s10040-008-0312-3. 

[46] Zhang Y, Gable CW, Sheets B. Equivalent hydraulic conductivity of three-dimensional 

heterogeneous porous media: An upscaling study based on an experimental stratigraphy. J 

Hydrol 2010;388:304–20. doi:10.1016/j.jhydrol.2010.05.009. 

[47] Narsilio GA, Buzzi O, Fityus S, Yun TS, Smith DW. Upscaling of Navier–Stokes 

equations in porous media: Theoretical, numerical and experimental approach. Comput 



29 
 

Geotech 2009;36:1200–6. doi:10.1016/j.compgeo.2009.05.006. 

[48] Gómez-Hernandez J. A stochastic approach to the simulation of block conductivity fields 

conditional upon data measured at a smaller scale. Stanford University, 1990. 

[49] HUANG J, GRIFFITHS DV. One-dimensional consolidation theories for layered soil and 

coupled and uncoupled solutions by the finite-element method. Géotechnique 

2010;60:709–13. doi:10.1680/geot.08.P.038. 

[50] Renard P, de Marsily G. Calculating equivalent permeability: a review. Adv Water Resour 

1997;20:253–78. doi:10.1016/S0309-1708(96)00050-4. 

[51] Sanchez-Vila X, Guadagnini A, Carrera J. Representitive Hydraulic Conductivities in 

Saturated Groundwater Flow. Rev 2006;44:1–64. doi:10.1029/2005RG000169. 

[52] Journel A, Deutsch C, Desbarats A. Power averaging for block effective permeability. Proc 

SPE Calif Reg Meet 1986. doi:10.2118/15128-MS. 

[53] Vidstrand P. Comparison of upscaling methods to estimate hydraulic conductivity. Ground 

Water 2001;39:401–7. doi:10.1111/j.1745-6584.2001.tb02324.x. 

[54] Phillips SP, Belitz K. Calibration of a Texture???Based Model of a Ground???Water Flow 

System, Western San Joaquin Valley, California. Groundwater 1991;29:702–15. 

doi:10.1111/j.1745-6584.1991.tb00562.x. 

[55] Benson CH, Zhai H, Rashad SM. Statistical Sample Size for Construction of Soil Liners. J 

Geotech Eng 1994;120:1704–24. doi:10.1061/(ASCE)0733-9410(1994)120:10(1704). 

[56] Freeze R, Cherry J. Groundwater (p. 604). New Jersey: PrenticeHall Inc Englewood cliffs; 

1979. 

[57] White CD, Horne RN. Computing Absolute Transmissibility in the Presence of Fine-Scale 

Heterogeneity. SPE Symp. Reserv. Simul., Society of Petroleum Engineers; 1987. 

doi:10.2118/16011-MS. 



30 
 

[58] Azevedo AAB de, Pressinotti MMN, Massoli M. Sedimentological studies of the Botucatu 

and Pirambóia formations in the region of Santa Rita do Passa Quatro (In portuguese). Rev 

Do Inst Geológico 1981;2:31–8. doi:10.5935/0100-929X.19810003. 

[59] Giacheti HL, Rohm SA, Nogueira JB, Cintra JCA. Geotechnical properties of the 

Cenozoic sediment (In protuguese). In: Albiero JH, Cintra JCA, editors. Soil from Inter. 

São Paulo, Sao Paulo: ABMS; 1993, p. 143–75. 

[60] Rohm SA. Shear strength of a non-saturated lateritic sandy soil in the São Carlos region 

(In portuguese). University of Sao Paulo, 1992. 

[61] Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and 

Interpreting Soil Surveys. Washington, D.C.: Blackwell Publishing Ltd; 1999. 

doi:10.1111/j.1475-2743.2001.tb00008.x. 

[62] Santos HG dos, Jacomine PKT, Anjos LHC dos, Oliveira VÁ de, Lumbreras JF, Coelho 

MR, et al. Brazilian system of soil classification (In portuguese). 4th ed. Brasília, DF: 

EMBRAPA. Centro Nacional de Pesquisa de Solos; 2014. 

[63] Matheron G. Principes of geostatistics. Econ. Geol., vol. 58, 1963, p. 1246–66. 

doi:10.2113/gsecongeo.58.8.1246. 

[64] Remy N. SGeMS: Stanford Geostatistical Modeling Software. Softw Man 2004:1–87. 

doi:10.1007/978-1-4020-3610-1_89. 

[65] Isaaks EH, Srivastava RM. An introduction to applied geostatistics. Oxford University 

Press; 1989. 

[66] Vanmarcke E. Random Fields: Analysis and Synthesis. 1983. 

[67] Griffiths D V., Fenton G a. Risk Assessment in Geotechnical Engineering. 2008. 

[68] Gómez-Hernández JJ, Journel A. Joint Sequential Simulation of MultiGaussian Fields. 

Geostatistics Tróia ’92, vol. 5, 1993, p. 85–94. doi:10.1007/978-94-011-1739-5_8. 



31 
 

[69] Freeze R, Cherry J. Groundwater, 604 pp 1979. 

[70] Lake LW. The Origins of Anisotropy (includes associated papers 18394 and 18458 ). J Pet 

Technol 1988;40:395–6. doi:10.2118/17652-PA. 

[71] Diersch H-JG. Finite Element Modeling of Flow, Mass and Heat Transport in Porous and 

Fractured Media. 2014. doi:10.1007/978-3-642-38739-5. 

[72] Giudici M, Vassena C. About the Symmetry of the Upscaled Equivalent Transmissivity 

Tensor. Math Geol 2007;39:399–408. doi:10.1007/s11004-007-9101-0. 

[73] Tidwell VC, Wilson JL. Permeability Upscaling Measured on a Block of Berea Sandstone: 

Results and Interpretation. Math Geol 1999;31:749–69. doi:10.1023/A:1007568632217. 

[74] Hunt AG. Scale-dependent hydraulic conductivity in anisotropic media from dimensional 

cross-over. Hydrogeol J 2006;14:499–507. doi:10.1007/s10040-005-0453-6. 

[75] Tidwell VC. Scaling Issues in Porous and Fractured Media. Gas Transp. Porous Media, 

Springer Netherlands; 2006, p. 201–12. doi:10.1007/1-4020-3962-X_11. 

[76] Selvadurai PA, Selvadurai APS. On the effective permeability of a heterogeneous porous 

medium: the role of the geometric mean. Philos Mag 2014;94:2318–38. 

doi:10.1080/14786435.2014.913111. 



32 
 

List of Tables 

Table 1 Block size used in the coarse models, total number of elements for the model and 

reduction factor of the number of elements when comparing to the fine-scale model. 

Table 2 Statistics of qx computed form the model built at the fine-scale and for the models with 

all block side sizes studied  

 



33 
 

 

Table 1 

Block side size 

(m) 
0.2 0.4 0.5 0.8 1 2 4 12a 

Total number of 

elements 
48 000 6 000 3 072 750 384 48 6 1 

Reduction factor 8 64 125 512 1 000 8 000 64 000 384 000 

a: this value represents only the size at x-direction 
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Table 2 

Statistics of the qx  

 Fine 0.2 m 0.4 m 0.5 m 0.8 m 1 m 2 m 4 m 12 m 

Mean 

[m/d] 
0.92 0.92 0.92 0.92 0.92 0.93 0.93 0.93 1.09 

Std. Dev. 

[m/d] 
0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.54 

Minimum 

[m/d] 
0.35 0.34 0.34 0.34 0.34 0.34 0.34 0.35 0.37 

Maximum 

[m/d] 
2.18 2.14 2.13 2.13 2.13 2.18 2.17 2.18 2.56 

Coef. Var. 0.40 0.39 0.39 0.39 0.39 0.38 0.38 0.40 0.50 
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