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Abstract 

Our upper-division course in Signals and Systems at UC Berkeley 

comprises primarily sophomore and junior undergraduates, and assumes 

only a basic background in Electrical Engineering and Computer Science. 

We’ve introduced Jupyter Notebook Python labs to complement the 

theoretical material covered in more traditional lectures and homeworks. 

Courses at other institutions have created labs with a similar goal in mind. 

However, many have a hardware component or involve in-person lab 

sections that require teaching staff to monitor progress. This presents a 

significant barrier for deployment in larger courses. Virtual labs—in 

particular, pure software assignments using the Jupyter Notebook 

framework—recently emerged as a solution to this problem. Some courses 

use programming-only labs that lack the modularity and rich user interface 

of Jupyter Notebook’s cell-based design. Other labs based on the Jupyter 

Notebook have not yet tapped the full potential of its versatile features. 

Our labs (1) demonstrate real-life applications; (2) cultivate computational 

literacy; and (3) are structured to be self-contained. These design 

principles reduce overhead for teaching staff and give students relevant 

experience for research and industry. 
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1. Introduction 

1.1. Signals and Systems at UC Berkeley 

Undergraduates in our Electrical Engineering and Computer Sciences (EECS) Department 

at UC Berkeley take six lower-division courses: (1 and 2) Designing Information Devices 

and Systems I and II; (3) Discrete Mathematics and Probability Theory; (4) Structure and 

Interpretation of Computer Programs; (5) Data Structures; and (6) Machine Structures. 

The first three constitute a design and modeling trilogy, and the last three a computation 

trilogy. Students take these two sequences in parallel during their first four semesters.  

Our course in Signals and Systems assumes completion only of the first two courses in each 

trilogy—constituting a background in linear algebra, basic modeling, and two semesters of 

programming experience. We cover linear time-invariant (LTI) system theory, Fourier 

analysis, analog-to-digital sampling theory, and system analysis using the Z and Laplace 

transforms. Our course is a hub to the upper-division EECS curriculum, including more 

advanced courses, such as Digital Signal Processing and Feedback Control Systems. 

In fall 2015, our Department’s lower-division EE curriculum was restructured, with courses 

(1 and 2) replacing EE 40: Introduction to Microelectronic Circuits and EE20N: Structure 

and Interpretation of Signals and Systems. Our Department used to offer two Signals and 

Systems courses, one in the lower-division (EE 20N) and one in the upper-division (EE 

120: Signals and Systems, our course). The lower-division course had a significant lab 

component (Lee & Varaiya, 2003; Liu et al., 2010) with weekly sections where students 

completed in-person MATLAB or LabView assignments. Many other institutions use 

something similar in their counterpart courses. After the 2015 curriculum revision, students 

in our upper-division course in Signals and Systems continued to engage with the material 

primarily through written homework assignments and weekly discussion sections. 

However, until recently, the course continued without a substantive lab component. 

1.2. Design Considerations 

Around the time our Department restructured its lower-division curriculum, the Jupyter 

Notebook (Kluyver et al., 2016) was published as a spin-off of the IPython suite (Pérez & 

Granger, 2007), providing an interactive platform for scientific computing (“Project 

Jupyter,” 2020). Since its initial release, the Jupyter Notebook has exploded in popularity as 

an educational tool in fields such as signal processing, machine learning, and artificial 

intelligence (Lovejoy & Wickert, 2015; O’Hara et al., 2015; Granado et al., 2018; Herta et 

al., 2019). Even within our Department, many other courses, such as EE 123: Digital 

Signal Processing and EECS 126: Probability and Random Processes, use Jupyter 

Notebook assignments. 
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In light of our course’s role in the EECS curriculum, we reintroduced a hands-on lab 

component, and specified three requirements to make better use of the Jupyter Notebook’s 

rich features. First, students should connect lab material to real-world applications, tracing 

the path from abstract mathematical concepts to concrete engineering. 

Second, the programming tasks within the labs should foster proficiency in the modern 

scientific computing libraries used in industry and academe. Physical labs in a Circuits 

course teach students the ins and outs of hardware tools, such as oscilloscopes and function 

generators. Virtual labs in a Signals and Systems course should highlight the techniques 

essential to modern software implementations, such as vectorized algorithms. 

Third, the labs should be self-contained, so they do not demand excessive hand-holding by 

the teaching staff. This enables scaling to higher enrollments, especially where access 

limitations to personnel, physical space, budget, and other resources exist. 

In this paper, we offer a tour of one of our labs. We discuss how—through a delicate 

interplay of Python code, embedded media, and graphical representations of data—we’ve 

created virtual labs that take advantage of the strengths of the Jupyter Notebook to enhance 

student learning. Counterpart labs that we’ve surveyed at peer institutions fall short in at 

least one of these three design principles. Creating labs that satisfy these criteria has 

allowed us to cover the gamut from basic theory to state-of-the-art applications, and to limit 

logistical overhead. 

2. The Labs 

2.1. Related Work 

Signals and Systems courses often use labs to reinforce theoretical content from lecture: 

● Intro to Signal Processing (“ECE 2026,” 2018) at Georgia Tech features 

MATLAB coding labs that extend conventional pen-and-paper problem sets. Most 

labs have a strong application focus and concrete visual or auditory components, 

but demand substantive in-person instructor time for verification of multiple 

checkpoints. 

● Signals and Systems (“ELE 301,” 2011) at Princeton has MATLAB-based labs, 

several requiring in-person checkoffs of hardware or software implementation. 

● Signals and Systems (https://sigproc.mit.edu/fall19) at MIT has Python exercises. 

As the students implement most exercises using Python primitives, they don’t taste 

the richness of Python’s open-source scientific computing libraries, such as 

NumPy and SciPy for multidimensional arrays and signal processing, and 

Matplotlib for drawing plots. 
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The Jupyter Notebook is a useful tool to teach signal processing concepts. However, many 

collections of notebooks available online, such as the companion GitHub repository for the 

book “Python for Signal Processing” (Unpingco, 2014), are not intended for classroom use. 

Furthermore, many are not self-contained. For example, some use mathematical 

knowledge, such as probability and optimization, without providing sufficient background. 

Table 1. Labs for EE 120: Signals and Systems at UC Berkeley, Spring 2020. 

Lab Topics 

Lab 1: Introduction to Python 

for Signals and Systems 

Essentials of the Python programming language and scientific 

libraries, rectangular/exponential signal generation, convolution 

Lab 2: Applications of LTI 

Filtering 

1D edge detector, simple moving average for denoising, 

exponential moving averaging of stock price data 

Lab 3: Practical Fourier 

Analysis 

Naive Discrete Fourier Transform (DFT), matrix-vector DFT, 

and FFT implementation, virtual oscilloscope calibration 

Lab 4: Heart Rate Monitoring Spatial averaging of video of patient’s thumb for dimensionality 

reduction, extracting heartbeat frequency through FFT 

Lab 5: Deconvolution and 

Imaging 

2D convolution (image blurring and sharpening), deconvolution 

(audio echo cancellation, Hubble telescope image deblurring) 

Lab 6: Control Closed-loop system analysis, signal filtering, root locus analysis, 

feedback control of a virtual inverted pendulum 

2.2. Summary of Contributions 

Table 1 summarizes the Jupyter Notebook labs deployed in the spring 2020 semester. Each 

Notebook is a single document that consists of text, code, and embedded media “cells” that 

are rendered or executed. Although teaching staff provide support during office hours and 

through the Piazza online discussion platform at https://piazza.com, most students complete 

the labs autonomously and asynchronously because of the labs’ self-contained design: 

● Specifications are narrow and well-defined, often on a function-by-function basis, 

to guide students to implement a sophisticated application without going off-track. 

● Hints about useful scientific computing library routines and in-text hyperlinks to 

library documentation build student fluency with computational tools. 

● Test cases and juxtaposed plots of expected and actual results help students verify 

their progress without divulging the algorithm, reducing debugging frustration. 

● Extensive references allow students to dive into the literature that inspired the labs. 
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3. Case Study: Deconvolution and Imaging Lab 

Deconvolution and image processing are extensions of the explicit scope of the course. 

However, we release this lab later in the semester as a wider exploration of the field. By 

introducing our students to higher-dimensional problems and unexpected contexts, the lab 

augments their understanding of the operations and transforms taught in the course. 

3.1. Real-World Applications 

Students often ask, “Can we undo convolution?” This lab presents two deconvolution 

problems. In the first, they remove echoes from corrupted audio data (Eneroth, 2001). In 

the second, they extend 1D concepts learned in the first problem to deblur 2D image data. 

Fig. 1(a) shows deep-space image blurring produced by mirror imperfections of the $1.5B 

Hubble Space Telescope. Inspired by expert proposals of that time (e.g., White, 1992), the 

lab teaches students how to apply deconvolution algorithms to deblur such images. Fig. 

1(b) shows a deblurred image. Students reproduce stunning results through a series of 

building blocks, such as signal quantization, subtractive image sharpening, and Gaussian 

blurring—each of which is an important signal processing application in its own right. 

 

Fig. 1. Space image deconvolution results. Source: ESA/Hubble, distributed under CC BY 4.0.  

3.2. Computational Literacy 

Before students implement sophisticated algorithms, they learn how to load, and understand 

the structure of, the underlying signal data. In the audio module, they learn how to use the 

scipy.io.wavfile module to read and write a WAV file, understand its matrix 

dimensions, and recognize its underlying sampling rate. In the image module, they learn 

how to use the matplotlib.pyplot.imread function to read an image and understand 

how its data matrix renders on the screen. Fig. 2 illustrates how a 1D integer array is 

converted to a 2D matrix, and how each matrix entry is mapped to a pixel luminance. 
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Fig. 2. Guided example of understanding the underlying image data. Source: Own elaboration. 

Next, the lab shows students how to use, and understand the outputs of, functions from the 

numpy.fft, numpy.linalg, and scipy.signal modules by solving short subproblems. 

Students demonstrate their comprehension in subsequent larger programming sections. To 

reinforce the power of these libraries, the final section of the lab cautions students that their 

code, if implemented incorrectly or inefficiently, may take too long to converge to a correct 

solution. An efficient solution that invokes these libraries should take only seconds. 

A drawback of functions in high-level scientific computing libraries is that they often 

accept unwieldy combinations of parameters. Student submissions and feedback helped us 

find ways to mitigate this. At the first appearance of each function, we embed in the lab 

direct links to relevant documentation. As the libraries are open-source, students can even 

study the full source code of each function, if they wish. 

Sometimes we instruct students to inject deliberate errors into their code and interpret the 

results. In this lab, we ask students to blur an image, Fig. 3(a), using a Gaussian filter 

having an unsuitable convolution parameter, rather than a recommended one. They must 

then comment on the sudden appearance of a black border in the resultant image, Fig. 3(b). 

This teaches the effects of parameter modifications, and cultivates debugging skills when 

students identify similar errors in later exercises. 

 

Fig. 3. Example of purposeful error. Source: Own elaboration. 

Finally, we introduce the parameter sweep, an effective brute force method. Often, there is 

no simple expression for an optimal parameter value—as is the case when choosing a 

Gaussian filter for the final deconvolution problem in this lab—and the student’s best 

option is to sweep a range of values to identify which ones produce acceptable results. 
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3.3. Self-Containment 

Jupyter Notebooks eliminate many traditional scalability problems, such as material 

distribution and access moderation. However, the number of students who require staff 

assistance still grows with enrollment, which can bottleneck course expansion. 

To address this, the lab guides the students through tasks ranging from loading audio data 

to writing a nested parameter sweep, building skills—as students need them—to complete 

all the exercises. Furthermore, the Jupyter Notebook’s cell-based design allows for students 

to complete sections in a nonsequential order. For example, if they are stuck on the audio 

section, they can take a break from it and work on the imaging sections. 

4. Student Feedback 

After each lab, we conduct an anonymous survey to determine what to fine-tune in the 

future. Fig. 4 depicts how self-contained, interesting, and applications-driven our students 

found the first three labs offered in spring 2020. Typically, we receive 20-30 responses—

about a 25% yield. Our data suggest that a high percentage of our students believe that the 

labs adhere to the design principles we’ve laid out in this paper. 

 

Fig. 4. Anonymous student feedback. Q1: “The lab was self-contained, and all of the information I needed to 

complete it was in the instructions or easily Google-able documentation.” Q2: “The lab was interesting and 

applications-driven, with a clear connection between its content and the concepts from lecture and discussion.”  

5. Conclusions and Future Work 

We have showcased an approach to lab design that emphasizes applications as well as a 

flavorful use of open-source scientific computing libraries to train and motivate students for 

research and industry. Every resource needed to complete each lab is embedded therein. So, 

each lab is self-contained, scalable, and deployable with limited administrative overhead. 

We have six labs now, and plan to create four additional ones. We will publish all ten 

online at https://github.com/dominiccarrano/ee-120-labs, so our colleagues at other 

institutions can adopt them and give us constructive feedback. We intend to integrate tools 

for the Jupyter Notebook—such as the nbgrader project at 
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https://nbgrader.readthedocs.io—into our labs, so we can automate lab grading in the 

future. 
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