

Self-Contained Jupyter Notebook Labs

Promote Scalable Signal Processing Education

Dominic Carrano, Ilya Chugunov, Jonathan Lee, Babak Ayazifar

Department of Electrical Engineering and Computer Sciences (EECS), University of

California, Berkeley, USA.

Abstract

Our upper-division course in Signals and Systems at UC Berkeley

comprises primarily sophomore and junior undergraduates, and assumes

only a basic background in Electrical Engineering and Computer Science.

We’ve introduced Jupyter Notebook Python labs to complement the

theoretical material covered in more traditional lectures and homeworks.

Courses at other institutions have created labs with a similar goal in mind.

However, many have a hardware component or involve in-person lab

sections that require teaching staff to monitor progress. This presents a

significant barrier for deployment in larger courses. Virtual labs—in

particular, pure software assignments using the Jupyter Notebook

framework—recently emerged as a solution to this problem. Some courses

use programming-only labs that lack the modularity and rich user interface

of Jupyter Notebook’s cell-based design. Other labs based on the Jupyter

Notebook have not yet tapped the full potential of its versatile features.

Our labs (1) demonstrate real-life applications; (2) cultivate computational

literacy; and (3) are structured to be self-contained. These design

principles reduce overhead for teaching staff and give students relevant

experience for research and industry.

Keywords: Python, Jupyter Notebooks, virtual labs, educational

technology, signals and systems, electrical engineering.

6th International Conference on Higher Education Advances (HEAd’20)
Universitat Politècnica de València, València, 2020

DOI: http://dx.doi.org/10.4995/HEAd20.2020.11308

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València 1409

Self-Contained Jupyter Notebook Labs Promote Scalable Signal Processing Education

1. Introduction

1.1. Signals and Systems at UC Berkeley

Undergraduates in our Electrical Engineering and Computer Sciences (EECS) Department

at UC Berkeley take six lower-division courses: (1 and 2) Designing Information Devices

and Systems I and II; (3) Discrete Mathematics and Probability Theory; (4) Structure and

Interpretation of Computer Programs; (5) Data Structures; and (6) Machine Structures.

The first three constitute a design and modeling trilogy, and the last three a computation

trilogy. Students take these two sequences in parallel during their first four semesters.

Our course in Signals and Systems assumes completion only of the first two courses in each

trilogy—constituting a background in linear algebra, basic modeling, and two semesters of

programming experience. We cover linear time-invariant (LTI) system theory, Fourier

analysis, analog-to-digital sampling theory, and system analysis using the Z and Laplace

transforms. Our course is a hub to the upper-division EECS curriculum, including more

advanced courses, such as Digital Signal Processing and Feedback Control Systems.

In fall 2015, our Department’s lower-division EE curriculum was restructured, with courses

(1 and 2) replacing EE 40: Introduction to Microelectronic Circuits and EE20N: Structure

and Interpretation of Signals and Systems. Our Department used to offer two Signals and

Systems courses, one in the lower-division (EE 20N) and one in the upper-division (EE

120: Signals and Systems, our course). The lower-division course had a significant lab

component (Lee & Varaiya, 2003; Liu et al., 2010) with weekly sections where students

completed in-person MATLAB or LabView assignments. Many other institutions use

something similar in their counterpart courses. After the 2015 curriculum revision, students

in our upper-division course in Signals and Systems continued to engage with the material

primarily through written homework assignments and weekly discussion sections.

However, until recently, the course continued without a substantive lab component.

1.2. Design Considerations

Around the time our Department restructured its lower-division curriculum, the Jupyter

Notebook (Kluyver et al., 2016) was published as a spin-off of the IPython suite (Pérez &

Granger, 2007), providing an interactive platform for scientific computing (“Project

Jupyter,” 2020). Since its initial release, the Jupyter Notebook has exploded in popularity as

an educational tool in fields such as signal processing, machine learning, and artificial

intelligence (Lovejoy & Wickert, 2015; O’Hara et al., 2015; Granado et al., 2018; Herta et

al., 2019). Even within our Department, many other courses, such as EE 123: Digital

Signal Processing and EECS 126: Probability and Random Processes, use Jupyter

Notebook assignments.

1410

Dominic Carrano, Ilya Chugunov, Jonathan Lee, Babak Ayazifar

In light of our course’s role in the EECS curriculum, we reintroduced a hands-on lab

component, and specified three requirements to make better use of the Jupyter Notebook’s

rich features. First, students should connect lab material to real-world applications, tracing

the path from abstract mathematical concepts to concrete engineering.

Second, the programming tasks within the labs should foster proficiency in the modern

scientific computing libraries used in industry and academe. Physical labs in a Circuits

course teach students the ins and outs of hardware tools, such as oscilloscopes and function

generators. Virtual labs in a Signals and Systems course should highlight the techniques

essential to modern software implementations, such as vectorized algorithms.

Third, the labs should be self-contained, so they do not demand excessive hand-holding by

the teaching staff. This enables scaling to higher enrollments, especially where access

limitations to personnel, physical space, budget, and other resources exist.

In this paper, we offer a tour of one of our labs. We discuss how—through a delicate

interplay of Python code, embedded media, and graphical representations of data—we’ve

created virtual labs that take advantage of the strengths of the Jupyter Notebook to enhance

student learning. Counterpart labs that we’ve surveyed at peer institutions fall short in at

least one of these three design principles. Creating labs that satisfy these criteria has

allowed us to cover the gamut from basic theory to state-of-the-art applications, and to limit

logistical overhead.

2. The Labs

2.1. Related Work

Signals and Systems courses often use labs to reinforce theoretical content from lecture:

● Intro to Signal Processing (“ECE 2026,” 2018) at Georgia Tech features

MATLAB coding labs that extend conventional pen-and-paper problem sets. Most

labs have a strong application focus and concrete visual or auditory components,

but demand substantive in-person instructor time for verification of multiple

checkpoints.

● Signals and Systems (“ELE 301,” 2011) at Princeton has MATLAB-based labs,

several requiring in-person checkoffs of hardware or software implementation.

● Signals and Systems (https://sigproc.mit.edu/fall19) at MIT has Python exercises.

As the students implement most exercises using Python primitives, they don’t taste

the richness of Python’s open-source scientific computing libraries, such as

NumPy and SciPy for multidimensional arrays and signal processing, and

Matplotlib for drawing plots.

1411

Self-Contained Jupyter Notebook Labs Promote Scalable Signal Processing Education

The Jupyter Notebook is a useful tool to teach signal processing concepts. However, many

collections of notebooks available online, such as the companion GitHub repository for the

book “Python for Signal Processing” (Unpingco, 2014), are not intended for classroom use.

Furthermore, many are not self-contained. For example, some use mathematical

knowledge, such as probability and optimization, without providing sufficient background.

Table 1. Labs for EE 120: Signals and Systems at UC Berkeley, Spring 2020.

Lab Topics

Lab 1: Introduction to Python

for Signals and Systems

Essentials of the Python programming language and scientific

libraries, rectangular/exponential signal generation, convolution

Lab 2: Applications of LTI

Filtering

1D edge detector, simple moving average for denoising,

exponential moving averaging of stock price data

Lab 3: Practical Fourier

Analysis

Naive Discrete Fourier Transform (DFT), matrix-vector DFT,

and FFT implementation, virtual oscilloscope calibration

Lab 4: Heart Rate Monitoring Spatial averaging of video of patient’s thumb for dimensionality

reduction, extracting heartbeat frequency through FFT

Lab 5: Deconvolution and

Imaging

2D convolution (image blurring and sharpening), deconvolution

(audio echo cancellation, Hubble telescope image deblurring)

Lab 6: Control Closed-loop system analysis, signal filtering, root locus analysis,

feedback control of a virtual inverted pendulum

2.2. Summary of Contributions

Table 1 summarizes the Jupyter Notebook labs deployed in the spring 2020 semester. Each

Notebook is a single document that consists of text, code, and embedded media “cells” that

are rendered or executed. Although teaching staff provide support during office hours and

through the Piazza online discussion platform at https://piazza.com, most students complete

the labs autonomously and asynchronously because of the labs’ self-contained design:

● Specifications are narrow and well-defined, often on a function-by-function basis,

to guide students to implement a sophisticated application without going off-track.

● Hints about useful scientific computing library routines and in-text hyperlinks to

library documentation build student fluency with computational tools.

● Test cases and juxtaposed plots of expected and actual results help students verify

their progress without divulging the algorithm, reducing debugging frustration.

● Extensive references allow students to dive into the literature that inspired the labs.

1412

Dominic Carrano, Ilya Chugunov, Jonathan Lee, Babak Ayazifar

3. Case Study: Deconvolution and Imaging Lab

Deconvolution and image processing are extensions of the explicit scope of the course.

However, we release this lab later in the semester as a wider exploration of the field. By

introducing our students to higher-dimensional problems and unexpected contexts, the lab

augments their understanding of the operations and transforms taught in the course.

3.1. Real-World Applications

Students often ask, “Can we undo convolution?” This lab presents two deconvolution

problems. In the first, they remove echoes from corrupted audio data (Eneroth, 2001). In

the second, they extend 1D concepts learned in the first problem to deblur 2D image data.

Fig. 1(a) shows deep-space image blurring produced by mirror imperfections of the $1.5B

Hubble Space Telescope. Inspired by expert proposals of that time (e.g., White, 1992), the

lab teaches students how to apply deconvolution algorithms to deblur such images. Fig.

1(b) shows a deblurred image. Students reproduce stunning results through a series of

building blocks, such as signal quantization, subtractive image sharpening, and Gaussian

blurring—each of which is an important signal processing application in its own right.

Fig. 1. Space image deconvolution results. Source: ESA/Hubble, distributed under CC BY 4.0.

3.2. Computational Literacy

Before students implement sophisticated algorithms, they learn how to load, and understand

the structure of, the underlying signal data. In the audio module, they learn how to use the

scipy.io.wavfile module to read and write a WAV file, understand its matrix

dimensions, and recognize its underlying sampling rate. In the image module, they learn

how to use the matplotlib.pyplot.imread function to read an image and understand

how its data matrix renders on the screen. Fig. 2 illustrates how a 1D integer array is

converted to a 2D matrix, and how each matrix entry is mapped to a pixel luminance.

1413

Self-Contained Jupyter Notebook Labs Promote Scalable Signal Processing Education

Fig. 2. Guided example of understanding the underlying image data. Source: Own elaboration.

Next, the lab shows students how to use, and understand the outputs of, functions from the

numpy.fft, numpy.linalg, and scipy.signal modules by solving short subproblems.

Students demonstrate their comprehension in subsequent larger programming sections. To

reinforce the power of these libraries, the final section of the lab cautions students that their

code, if implemented incorrectly or inefficiently, may take too long to converge to a correct

solution. An efficient solution that invokes these libraries should take only seconds.

A drawback of functions in high-level scientific computing libraries is that they often

accept unwieldy combinations of parameters. Student submissions and feedback helped us

find ways to mitigate this. At the first appearance of each function, we embed in the lab

direct links to relevant documentation. As the libraries are open-source, students can even

study the full source code of each function, if they wish.

Sometimes we instruct students to inject deliberate errors into their code and interpret the

results. In this lab, we ask students to blur an image, Fig. 3(a), using a Gaussian filter

having an unsuitable convolution parameter, rather than a recommended one. They must

then comment on the sudden appearance of a black border in the resultant image, Fig. 3(b).

This teaches the effects of parameter modifications, and cultivates debugging skills when

students identify similar errors in later exercises.

Fig. 3. Example of purposeful error. Source: Own elaboration.

Finally, we introduce the parameter sweep, an effective brute force method. Often, there is

no simple expression for an optimal parameter value—as is the case when choosing a

Gaussian filter for the final deconvolution problem in this lab—and the student’s best

option is to sweep a range of values to identify which ones produce acceptable results.

1414

Dominic Carrano, Ilya Chugunov, Jonathan Lee, Babak Ayazifar

3.3. Self-Containment

Jupyter Notebooks eliminate many traditional scalability problems, such as material

distribution and access moderation. However, the number of students who require staff

assistance still grows with enrollment, which can bottleneck course expansion.

To address this, the lab guides the students through tasks ranging from loading audio data

to writing a nested parameter sweep, building skills—as students need them—to complete

all the exercises. Furthermore, the Jupyter Notebook’s cell-based design allows for students

to complete sections in a nonsequential order. For example, if they are stuck on the audio

section, they can take a break from it and work on the imaging sections.

4. Student Feedback

After each lab, we conduct an anonymous survey to determine what to fine-tune in the

future. Fig. 4 depicts how self-contained, interesting, and applications-driven our students

found the first three labs offered in spring 2020. Typically, we receive 20-30 responses—

about a 25% yield. Our data suggest that a high percentage of our students believe that the

labs adhere to the design principles we’ve laid out in this paper.

Fig. 4. Anonymous student feedback. Q1: “The lab was self-contained, and all of the information I needed to

complete it was in the instructions or easily Google-able documentation.” Q2: “The lab was interesting and

applications-driven, with a clear connection between its content and the concepts from lecture and discussion.”

5. Conclusions and Future Work

We have showcased an approach to lab design that emphasizes applications as well as a

flavorful use of open-source scientific computing libraries to train and motivate students for

research and industry. Every resource needed to complete each lab is embedded therein. So,

each lab is self-contained, scalable, and deployable with limited administrative overhead.

We have six labs now, and plan to create four additional ones. We will publish all ten

online at https://github.com/dominiccarrano/ee-120-labs, so our colleagues at other

institutions can adopt them and give us constructive feedback. We intend to integrate tools

for the Jupyter Notebook—such as the nbgrader project at

1415

Self-Contained Jupyter Notebook Labs Promote Scalable Signal Processing Education

https://nbgrader.readthedocs.io—into our labs, so we can automate lab grading in the

future.

References

ECE 2026: Intro to Signal Processing. (2018). Lab Assignments for ECE 2026. Retrieved

January 17, 2020, from https://barry.ece.gatech.edu/2026/labs/

ELE 301: Signals and Systems. (2011). Lab Assignments. Retrieved January 17, 2020, from
https://www.princeton.edu/~cuff/ele301/labs.html

Eneroth, P. (2001). Stereophonic Acoustic Echo Cancellation: Theory and Implementation

(Doctoral dissertation). Department of Electroscience, Lund University.

Granado, E. C., & García, E. D. (2018). Guide to Jupyter Notebooks for educational

purposes (Á.D. Fernández, Trans.). Retrieved from Universidad Compultense de

Madrid Web site: https://eprints.ucm.es/48305/1/ManualJupyterIngles.pdf

Herta, C. et al. (2019). Deep Teaching: Materials for Teaching Machine and Deep

Learning. 5th International Conference on Higher Education Advances (HEAd’19),

1153-1161. doi: 10.4995/HEAd19.2019.9177.

Kluyver, T., et al. (2016). Jupyter Notebooks—a publishing format for reproducible

computational workflows. Proceedings of the 20th International Conference on

Electronic Publishing. doi:10.3233/978-1-61499-649-1-87.

Lee, E. A., & Varaiya, P. (2003). Laboratory Manual to Accompany Structure and

Interpretation of Signals and Systems. Boston, MA: Addison Wesley (Pearson).

Liu, H., Kotker, J., & Ayazifar, B. (2010). A First Lab in Filter Design: Power Line Hum

Suppression in an ECG Signal. Proceedings of 2010 IEEE International Symposium on

Circuits and Systems. doi:10.1109/ISCAS.2010.5536981.

Lovejoy, M. R., & Wickert, M. A. (2015). Using the IPython notebook as the computing

platform for signals and systems courses. 2015 IEEE Signal Processing and Signal

Processing Education Workshop (SP/SPE). doi:10.1109/DSP-SPE.2015.7369568.

O'Hara, K. J., Blank, D., & Marshall, J. (2015). Computational notebooks for AI education.

Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research

Society Conference.

Pérez, F., & Granger, B. E. (2007). IPython: A System for Interactive Scientific

Computing. Computing Science & Engineering, 9(2), 21-29.

doi:10.1109/MCSE.2007.53.

Project Jupyter. (2020). About Us. Retrieved April 13, 2020, from https://jupyter.org/about

Unpingco, J. (2014). Python for Signal Processing. New York, NY: Springer.

White, R. L. (1992). Restoration of images and spectra from the Hubble Space Telescope.

Astronomical Data Analysis Software and Systems I, 25, 176-185.

1416

