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Abstract

Recognizing semantically similar sentences or paragraphs across languages
is beneficial for many tasks, ranging from cross-lingual information retrieval
and plagiarism detection to machine translation. Recently proposed meth-
ods for predicting cross-lingual semantic similarity of short texts, however,
make use of tools and resources (e.g., machine translation systems, syntactic
parsers or named entity recognition) that for many languages (or language
pairs) do not exist. In contrast, we propose an unsupervised and a very
resource-light approach for measuring semantic similarity between texts in
different languages. To operate in the bilingual (or multilingual) space, we
project continuous word vectors (i.e., word embeddings) from one language to
the vector space of the other language via the linear translation model. We
then align words according to the similarity of their vectors in the bilingual
embedding space and investigate different unsupervised measures of semantic
similarity exploiting bilingual embeddings and word alignments. Requiring
only a limited-size set of word translation pairs between the languages, the
proposed approach is applicable to virtually any pair of languages for which
there exists a sufficiently large corpus, required to learn monolingual word
embeddings. Experimental results on three different datasets for measuring
semantic textual similarity show that our simple resource-light approach
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reaches performance close to that of supervised and resource-intensive meth-
ods, displaying stability across different language pairs. Furthermore, we
evaluate the proposed method on two extrinsic tasks, namely extraction of
parallel sentences from comparable corpora and cross-lingual plagiarism de-
tection, and show that it yields performance comparable to those of complex
resource-intensive state-of-the-art models for the respective tasks.

Keywords: semantic textual similarity, cross-lingual, word embeddings,
word alignment, parallel sentences alignment, plagiarism detection;

1. Introduction

There are many applications in natural language processing (NLP) –
machine translation (Resnik and Smith, 2003; Aziz and Specia, 2011), cross-
lingual information retrieval (Franco-Salvador et al., 2014; Vulić and Moens,
2015), or plagiarism detection (Potthast et al., 2011a; Franco-Salvador et al.,
2016a), to name a few – that could directly exploit methods for measuring
semantic similarity between short texts in different languages. Although
recent years have seen a great amount of work on measuring semantic textual
similarity (STS) of short texts (i.e., the task of determining the degree of
semantic equivalence between short texts), the vast majority of these efforts
focused on monolingual STS. Interest for STS has to the largest extent been
instigated by the series of dedicated SemEval tasks (Agirre et al., 2012, 2015,
inter alia).

The task of measuring semantic textual similarity (STS) amounts to
estimating the degree to which two short texts are semantically related or
associated, ranging from semantic equivalence (i.e., the meaning of the two
short texts is exactly the same) to complete unrelatedness (i.e., the meaning
of one short text is completely unrelated to the meaning of the other). As
such, the STS task is defined differently from two closely-related tasks: (1)
recognizing textual entailment (RTE, used interchangeably with natural
language inference) (Dagan et al., 2010; Bowman et al., 2015) and paraphrase
detection (PD) (Socher et al., 2011; Madnani et al., 2012). In RTE, automatic
methods need to recognize one-directional textual entailment between a pair
of sentences (e.g., “cat is purring” entails “animal is making a sound”, but
not vice-versa). PD, on the other hand, is the binary classification task in
which classifiers need to determine whether two texts are paraphrases, i.e.,
semantically equivalent statements, or not. The STS aims to measure the
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degree of overlap in meaning between the two texts (e.g., “cat is purring”
is arguably semantically more related to “dog is barking” than to “turtle is
running”).

Surprisingly – unlike for RTE, for which several Cross-Lingual (CL) meth-
ods have been proposed (Castillo, 2011; Mehdad et al., 2011; Negri et al.,
2012) – the first approaches for cross-lingual STS have only been proposed
most recently (Agirre et al., 2016; Brychćın and Svoboda, 2016; Jimenez,
2016). This is despite the rather obvious applicability of cross-lingual STS in
extracting parallel sentences for machine translation (MT) (Resnik and Smith,
2003; Aziz and Specia, 2011), cross-lingual information retrieval (Franco-
Salvador et al., 2014; Vulić and Moens, 2015), and cross-lingual plagiarism
detection (Potthast et al., 2011a; Franco-Salvador et al., 2016a). The recently
proposed CL STS methods (Brychćın and Svoboda, 2016; Jimenez, 2016) are,
however, not intrinsically cross-lingual because they first employ a full-blown
MT systems to translate one sentence of each pair and then apply existing
monolingual STS models. Since creation of parallel corpora for MT is arguably
the most obvious application of a cross-lingual STS system, using an MT
system to build a cross-lingual STS model seems like introducing a circular
(i.e., “chicken or the egg”) problem. On top of that, open and robust MT
models still do not exist for many language pairs, which further impedes the
wide applicability of the proposed CL STS models. Most of the monolingual
STS models (most of which are for English) are supervised (Šarić et al.,
2012; Bär et al., 2012; Hänig et al., 2015, inter alia) and focus primarily on
learning the best combination of numerous features for a non-linear regression
model. But even the rare, yet quite successful, unsupervised models (Kashyap
et al., 2014; Sultan et al., 2014) rely on various language-specific tools (e.g.,
named entity recognition, dependency parsing) and resources, e.g., WordNet
(Fellbaum, 1998). The fact that such tools and resources exist only for a
handful of languages also limits the impact of these models.

In contrast, in this work we present a resource-light approach to cross-
lingual STS that can easily be applied to a wide range of language pairs. The
main contributions of this work are as follows:

1. An unsupervised model for cross-lingual STS which requires no language-
specific tools and resources. The model merely relies on (1) the avail-
ability of large corpora for both input languages, which is satisfied even
for severely under-resourced languages (De Schryver, 2002; Ljubešić and
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Erjavec, 2011), and (2) a set of word translation pairs of limited size;1

2. An extensive intrinsic evaluation of the proposed model on three bench-
mark STS datasets and for three different language pairs, one of which
includes an under-resourced language;

3. Extrinsic evaluations of the proposed model on two different tasks: align-
ing parallel sentences from comparable corpora for machine translation
and cross-lingual plagiarism detection. To the best of our knowledge,
these are the first extrinsic evaluations of a cross-lingual STS model.

In our approach, we first independently train word embeddings for each
language and then project vectors from one language (i.e., the source language)
to the embedding space of the second language (i.e., the target language)
using the linear translation matrix model proposed by Mikolov et al. (2013a).
We then measure the semantic similarity between short texts of different
languages with three different unsupervised similarity scores, each of which
exploits the word vectors in the shared bilingual embedding space. We first
evaluate the proposed method on three different STS datasets and for three
language pairs – English-Spanish, English-Italian, and English-Croatian. The
obtained experimental results show that the proposed approach (1) reaches
performance levels reasonably close to those of supervised and resource-
intensive STS models and (2) exhibits stable performance across all three
language pairs (i.e., no significant performance drop when an under-resourced
language like Croatian is involved). Finally, we evaluate our CL STS method
on two extrinsic tasks: (1) parallel sentence alignment from comparable
corpora (Smith et al., 2010) (i.e., creation of training data for machine
translation systems) and (2) cross-lingual plagiarism detection (Potthast et al.,
2010). Results from both extrinsic evaluations show that our unsupervised
resource-light approach performs on par with significantly more complex and
resource-intensive state-of-the-art models on both tasks.

2. Related Work

The explosion of research on (monolingual) semantic textual similarity of
short texts can be credited to the SemEval-2012 Pilot on Semantic Textual

1Most recently, Artetxe et al. (2017) have shown that a shared bilingual embedding
space of comparable quality can be induced even without any manually created word
translation pairs.
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Similarity (Agirre et al., 2012), although preceding efforts exist (Islam and
Inkpen, 2008; Oliva et al., 2011). The best-performing systems in the first
STS challenge (Šarić et al., 2012; Bär et al., 2012) were methodologically
almost identical – they combined many content comparison features – ranging
from simple ngram overlaps, over named entity alignments to similarity of
latent representations – with a supervised regression model.

Later SemEval campaigns saw successful unsupervised STS models. Han
et al. (2013) count pairs of semantically aligned words between the sentences,
with the measure of similarity for two given words being based on their latent
semantic vectors and relations between these words in WordNet. The similarity
score of Sultan et al. (2014) also counts the number of aligned word pairs,
but they further employ named entity recognition and dependency parsing
to align the words. Albeit unsupervised, these models use language-specific
resources and tools (parsing, named entity recognition, WordNet), which
prevents them from being directly applicable to under-resourced languages.

The core STS task was extended to include the interpretability of similarity
scores (Agirre et al., 2015; Lopez-Gazpio et al., 2017). The goal of the
interpretable STS is to provide reasoning behind the assigned similarity
scores by identifying the alignment between pairs of segments across the
two sentences, assigning to each alignment a relation type and a similarity
score. At the moment, we focus only on the core STS task in the cross-lingual
setting, and leave the intepretability for future work.

Although there are many applications that would directly benefit from
systems for detecting semantic similarity between short texts across languages
(e.g., machine translation, plagiarism detection, cross-lingual retrieval), the
cross-lingual setting has been considered only in the most recent edition of
the SemEval STS task (Agirre et al., 2016) and only for a single language
pair (English-Spanish). Although the best performing systems (Brychćın
and Svoboda, 2016; Jimenez, 2016) produce the similarity scores that have
90% correlation with human scores, these systems are not truly cross-lingual
because they merely use full-blown MT systems (e.g., Google translate) to
translate one of the texts into another language which then allows them to
apply resource-intensive monolingual alignment models, such as the one of
Sultan et al. (2014). These systems thus have limited applicability as they
cannot be used for pairs of languages for which no robust MT model exists.

Cross-lingual methods have also been proposed for a closely related task
of recognizing textual entailment. However, the CL RTE approaches are also
dominantly supervised, also employ full-blown MT systems (Turchi and Negri,
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Figure 1: Workflow of the resource-light approach for cross-lingual STS.

2013), and rely on lexico-semantic resources (Castillo, 2011), all of which
prevent their off-the-shelf application to an arbitrary pair of languages.

In contrast to all above-mentioned methods, we present the CL STS
approach that is unsupervised and does not require any language-specific
resources and tools. For a given pair of languages, our method requires only
(1) a reasonably large corpora for each of the languages and (2) a reasonably
small set of word translation pairs. This allows for a wide applicability of the
proposed cross-lingual STS approach.

3. Resource-Light Cross-Lingual STS

Our cross-lingual STS model exploits the recently ubiquitous word embed-
dings (Mikolov et al., 2013b; Pennington et al., 2014) and leverages the linear
model for translating embedding spaces (Mikolov et al., 2013a). The overall
workflow of the proposed resource-light cross-lingual STS approach is given
in Figure 1. We start by independently training word embeddings for each
of the two languages from their respective monolingual corpora. We then
use a limited set of word translation pairs to compute the linear translation
matrix that maps vectors from the embedding space of one language to the
embedding space of the other language, effectively inducing this way the bilin-
gual embedding space. Finally, having words of both languages represented
with vectors of the joint bilingual embedding space allows us to compute
resource-agnostic and unsupervised similarity scores by aligning words of
different languages based on the similarities of their vectors.

3.1. Building a Shared Embedding Space

We first train monolingual word embeddings. Word embeddings are dense
numeric vectors of words that have been shown to capture well the meaning
(i.e., semantics) of words. These vectors can be learned from large corpora
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using different models, e.g., Skip-Gram (Mikolov et al., 2013b) or GloVe
(Pennington et al., 2014), that, one way or another, exploit co-occurrence
information and contexts in which words appear. Independent training of
monolingual embeddings, however, produces non-associated embedding spaces
that do not contain similar vectors for the same concept across languages
(e.g., the monolingual embedding vector for the English word “dog” will not
be similar to the embedding vector for its Italian translation “cane”).

In order to have the words from both languages in the same embedding
space, we need to project the embedding space of one language into the
embedding space of the other. Mikolov et al. (2013a) have shown that the
mapping between the independently trained word embeddings is linear. This
means that, given a limited number of word translation pairs, we can learn
the translation matrix that translates embeddings from one embedding space
to the other. Given the training set of word translation pairs (i.e., the set of
paired monolingual embeddings), {si, ti}ni=1, si ∈ Rds , ti ∈ Rdt (where ds is the
dimension of the source language embeddings and dt is the dimension of the
target language embeddings), we obtain the translation matrix M ∈ Rdt×ds

by minimizing the following sum:

n∑
i=1

‖Msi − ti‖2

The translation matrix M is trained using a set of gold translation pairs
which is very small in comparison to the size of the monolingual vocabularies.
Recently, Artetxe et al. (2017) have shown that an equally robust bilingual
embedding space can be induced even without any manually created word
translation pairs. Once obtained, the matrix M is used to project the whole
vocabulary of the source language to the embedding space of the target
language.

3.2. Computing Semantic Textual Similarity

Joint bilingual embedding space allows for semantic comparison of words
from different languages. For a given pair of words (ws, wt), ws from the
source language and wt from the target language, we measure the semantic
similarity simply as the cosine of the angle between their corresponding
vectors in the bilingual embedding space:

sim(ws, wt) = cos(Mvs(ws), vt(wt))
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where vs(ws) gets the initial monolingual embedding for the source word ws

(which is then mapped to the target embedding space via the multiplication
with the translation matrix M), and vt(wt) is the monolingual embedding
of the target word wt. We next exploit this cross-lingual word similarity in
three simple unsupervised CL STS scores.2 Aiming for resource-light and
language-independent STS methodology, these similarity metrics have been
designed to rely on similarities and word-alignments stemming exclusively
from the semantic vectors of words, which can be obtained inexpensively
for virtually any language. In the monolingual setting, for languages for
which robust linguistic tools (like parsers and named entity recognizers) exist,
alignment methods that additionally exploit these signals (parses and named
entities), e.g., (Sultan et al., 2014), will outperform our simple similarity
measures. However, such methods cannot be applied in the cross-lingual
setting unless one (or both) sentences are machine translated to a language
for which necessary linguistic tools exist (Brychćın and Svoboda, 2016).

3.2.1. Greedy Association Similarity.

The computation of the greedy association similarity score is based on
finding for each word from the source language text the most semantically
similar word from the target language text, and vice versa. The greedy
association allows the same word from the target language text (source
language text) to be coupled with multiple source language words (target
language words), assuming it is the most semantically similar target word
(source word) for all of those source words (target words). Let S be the bag of
words of the short text in the source language, and T be the bag of words of
the target language text. Also, let t(ws) return the most semantically similar
word from the target text for the given source word ws and let s(wt) find the
most similar word from the source text for the given target word wt. The

2All three scores can be used for monolingual STS as well, in which case we do not need
any mapping of the embedding spaces.
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non-symmetric greedy association scores are then computed as follows:

ngas(S, T ) =
1

|S|

|S|∑
i=1

sim(wi
s, t(w

i
s)),

ngas(T, S) =
1

|T |

|T |∑
i=1

sim(wi
t, s(w

i
t)).

The final (symmetric) greedy association similarity score is computed as the
average of the two non-symmetric scores, i.e., gas(S, T ) = 1

2
· (ngas(S, T ) +

ngas(T, S)). To compute the greedy association score, we first must compute
the similarity scores between all words from S and all words from T and then
for each word from one set find the most similar word in the other set. Hence,
the complexity of computing the greedy association score is O(|S| · |T |).

3.2.2. Optimal Alignment Similarity.

Unlike for the greedy association similarity, for the computation of the
optimal alignment similarity score we are looking for an optimal alignment
between the source and target words. The optimal alignment is the one for
which the sum of similarities of aligned pairs is maximal. That is, we are
looking for the optimal alignment {(wi

s, w
i
t)}Ni=1, where wi

s is a word from the
source text bag of words S, wi

t is a word from the target text bag of words T ,
and N is the number of aligned pairs, equal to the number of words in the
shorter of the two texts. The optimal alignment is the one maximizing the
sum of pairwise word similarities:

align(S, T ) = max
{wi

s,w
i
t}Ni=1

N∑
i=1

sim(wi
s, w

i
t)

We find the optimal alignment using the Kuhn-Munkres algorithm (Kuhn,
1955),3 which provides the optimal solution to an alignment problem in
polynomial time.4 As the optimal alignment algorithm requires the same
number of elements in both multisets, we pad the shorter of the texts with

3The algorithm is also known as the Hungarian algorithm.
4Although the originally proposed algorithm has the complexity of O(n4), the improved

variant of the algorithm has the cubic complexity O(n3).
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artificial tokens that are maximally dissimilar (i.e., have the similarity score
of -1) to all words from the longer text. Because longer texts will have more
aligned pairs and thus larger similarity score (on the account of length rather
than actual similarity), we normalize the align score with the length of each
of the two sentences, and produce the average of the two normalized scores
as the final optimal alignment similarity score:

oas(S, T ) =
align(S, T ) · (|S|+ |T |)

2 · |S| · |T |
.

As the cubic time complexity of the Hungarian algorithm asymptotically
dominates over the quadratic complexity of computing pairwise word similar-
ities between input texts S and T , the complexity of computing the optimal
alignment similarity amounts to O(max(|S|, |T |)3).

3.2.3. Aggregation Similarity.

Unlike the previous two semantic similarity scores for which we explicitly
compute the similarities for all pairs of words between the short texts, in
order to find the greedy or optimal alignment, for the aggregation similarity
score we first compute the aggregate embeddings for each of the texts and
then compare the similarity between these aggregate short text embeddings.
The embeddings of the short source text S, denoted v(S), and the embedding
of the short target text T , denoted v(T ), are computed as follows:

v(S) =
1

|S|
∑
ws∈S

Mvs(ws),

v(T ) =
1

|T |
∑
wt∈T

vt(wt).

The aggregation similarity score is then computed as a cosine of the angle
between the aggregate embedding vectors of the two short texts:

agg(S, T ) = cos(v(S), v(T )).

Given that for computing the aggregation similarity between sentences we
only have to sum the embeddings of words in each of the input sentences S
and T and perform a single cosine computation (constant time, O(1)) between
aggregate embeddings, the computation of the aggregation similarity score
has linear time complexity with respect to the length of the input texts, i.e.,
O(|S|+ |T |).
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4. Intrinsic Evaluation

We first evaluate the proposed resource-light cross-lingual STS metrics
intrinsically on three different STS evaluation datasets and for three differ-
ent language pairs: English-Spanish (EN-ES), English-Italian (EN-IT), and
English-Croatian (EN-HR). We have selected Spanish because of a readily
available cross-lingual English-Spanish STS dataset5 from the SemEval 2016
STS task (Agirre et al., 2016). Besides Spanish, we chose Italian because we
had easy access to native speakers of this language. Finally, because we claim
that the main advantage of our method is its applicability to resource-poor
languages, we decided to have one such language in our evaluation. Same as
for Italian, we chose Croatian because we had access to a native speaker of
that language.

4.1. Embeddings and Translation Matrices

To train the translation matrices, we must first obtain monolingual word
embeddings for all four languages. In all experiments, we mapped the embed-
dings of the three other languages to the English embedding space. For each
of the four languages – English, Spanish, Italian, and Croatian – we trained
both (1) the 300-dimensional word embeddings using the Continuous Bag of
Words (CBOW) model (Mikolov et al., 2013b) and (2) the 300-dimensional
word embeddings using the GloVe model (Pennington et al., 2014). Having
produced word embeddings for all languages with two different methods
allowed for different types of source-to-target embedding space mapping –
we tested (1) CBOW to CBOW, (2) CBOW to GloVe, and (3) GloVe to
GloVe embedding space translations. This allowed insight into whether using
different models for producing source and target monolingual embeddings
affects the quality of the obtained translation matrices (i.e., the quality of the
shared embedding space). We trained the Spanish embeddings on the Spanish
Billion Words (SBW) Corpus,6 Croatian embeddings on the hrWaC corpus
(Ljubešić and Erjavec, 2011), whereas we used the Wikipedia dumps from
the Polyglot project7 for English and Italian. The details of the monolingual

5http://alt.qcri.org/semeval2016/task1/data/uploads/

sts2016-cross-lingual-test.tar.gz
6http://crscardellino.me/SBWCE/
7https://sites.google.com/site/rmyeid/projects/polyglot
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Language Corpus Size (in tok.) Method Dims

English EN Wikipedia 1.7B GloVe 300
English EN Wikipedia 1.7B CBOW 300

Spanish SBW 1.5B CBOW 300
Italian IT Wikipedia 0.3B CBOW 300
Croatian hrWaC 1.2B CBOW 300

Table 1: Details on the trained monolingual word embeddings.

word embeddings and the corpora on which they were trained are listed in
Table 1.

Following previous studies on post-hoc mapping of monolingual embedding
spaces (Mikolov et al., 2013a; Dinu et al., 2015), for the training of translation
matrices, we used the word translation pairs consisting of most frequent
words in one of the languages. We selected the 4200 most frequent English
words and translated them to all three other languages via Google translate.8

We then had native speakers of target languages fix incorrect automatic
translations. In each case, we discarded pairs where (1) an English word
had a multi-word translation in the other language or (2) one of the words,
English or the word of other language, was not in its respective vocabulary
of word embeddings. This left us with sets of between 3500 and 3700 word
translation pairs (depending on the language pair), 200 of which we always
left for testing the translation quality. However, the most recent research
results (Artetxe et al., 2017) show that a reliable shared embedding space can
be induced using only a handful of aligned embedding vectors (to which end
the embeddings of, e.g., Arabic digits, present in almost every language, can
be used). Thus, by using a method such as (Artetxe et al., 2017) to induce a
shared embedding space, one can eliminate even this small manual effort of
creating a few thousand word translation pairs.

We learned the optimal values of the translation matrices stochastically,
using the Adam algorithm (Kingma and Ba, 2014). The quality of the
obtained translation matrices is shown in Table 2 in terms of precision at
rank one (P@1) and precision at rank five (P@5). These numbers reflect,
respectively, the percentage of cases in which the correct translation of the

8https://translate.google.com/
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CBOW→CBOW CBOW→GloVe GloVe→GloVe

Mapping P@1 (%) P@5 (%) P@1 (%) P@5 (%) P@1 (%) P@5 (%)

ES→EN 35.6 55.0 48.9 66.7 45.6 67.8
IT→EN 28.4 53.1 35.5 57.9 32.0 55.5
HR→EN 29.9 52.9 32.2 57.5 32.3 48.7

Table 2: Evaluation of translation matrices.

English word from the test set was retrieved by the trained translation matrix
as the most similar or among the five most similar words in the other language.
For example, when we (1) translate the embedding vector of some Spanish
word wES using the learned Spanish-English (CBOW → GloVe) translation
matrix and (2) rank all words from the English vocabulary (several hundred
thousand entries) according to the similarity of their embedding vectors with
the translated embedding of wES, we will find the English word wEN that
is the dictionary translation of wES within the 5 top-ranked English words
in 66% of the cases and as the top-ranked in 48% of the cases. Overall, the
obtained levels of translation performance, shown in Table 2, are comparable
to those reported in the original work (Mikolov et al., 2013a).

Somewhat surprisingly, we consistently observe better translation quality
when we map the CBOW embeddings of other languages to English GloVe
embeddings than when we use CBOW embeddings for English as target
as well. Also, using CBOW embedding at source and GloVe embedding
on target sizes produces slightly better translation performance than those
obtained using GloVe embeddings at both sides of mapping. Although one
would perhaps intuitively expect the mapping to be better if both source and
target embeddings were built using the same embedding method, this is not
necessarily the case. Both GloVe and CBOW build embedding spaces with
similar properties and linear relations between embedding vectors. However,
the monolingual English GloVe embeddings seem to be of higher quality than
the monolingual English CBOW embeddings. We verify this by measuring
the performance of both GloVe- and CBOW-induced embedding spaces on the
semantic similarity benchmark dataset SimLex-999 (Hill et al., 2015) where
GloVe-induced embedding space reaches 38.9% Spearman correlation with
gold similarity scores, compared to 33.5% reached by CBOW embeddings.
Following these results, in all STS and extrinsic evaluations that follow we
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built the translation matrices using the CBOW source embeddings (for other
three languages) and GloVe English embeddings as the target embedding
space.

We have also trained translation matrices using the word translation pairs
randomly selected from the synsets from BabelNet, the large multilingual
knowledge base (Navigli and Ponzetto, 2012). However, by using randomly
sampled translation word pairs from BabelNet, we were consistently obtaining
translation matrices of lower quality (5% average performance drop in both
P@1 and P@5) than when using word translation pairs containing the most
frequent English words.

The translation quality is slightly better for Spanish than for the other
two languages. We speculate that this is due to combination of (1) Spanish
SBW used to train Spanish monolingual embeddings being much larger than
Italian Wikipedia and somewhat larger than hrWaC, used to train Italian and
Croatian monolingual embeddings, respectively, and (2) Spanish words being
more frequent in English corpora than the words of the other two languages.

4.2. Datasets

In order to enable insights into the suitability of proposed STS models on
different types of short texts, we have decided to evaluate them on a battery
of datasets, mutually different both in terms of genre and text length:

• News-16 dataset is the readily available cross-lingual English-Spanish
dataset used in the SemEval 2016 STS task, consisting of 301 pairs of
news headlines (Agirre et al., 2016). We translate the Spanish sentences
into Italian and Croatian in order to create English-Italian and English-
Croatian versions of the same dataset as well as into English in order
to create the monolingual English version of the dataset;

• MulSrc-16 dataset is the readily available cross-lingual English-Spanish
dataset used in the SemEval 2016 STS task, consisting of 294 sentences
originating from multiple sources (new headlines, question-question
and answer-answer pairs from a QA dataset, pairs of sentences from
plagiarism detection datasets) (Agirre et al., 2016). The sentences in
the dataset are mutually much more heterogeneous than in the News-
16 dataset. Same as for News-16 dataset, we translate the Spanish
sentences into Italian, Croatian, and English in order to create English-
Italian, English-Croatian, and monolingual English-English dataset
variants;
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• Microsoft Research video captions dataset (MSRVid-12) is a monolin-
gual English dataset from the SemEval 2012 STS task (Agirre et al.,
2012), consisting of 750 pairs of very short and grammatically simple
video caption sentences. To create multilingual versions of this dataset,
we translated one sentence of each pair to Spanish, Italian, and Croatian;

• OntoNotes-WordNet dataset (OnWN-12), is a also monolingual English
dataset from the SemEval 2012 STS task (Agirre et al., 2012), consisting
of 750 pairs of concept definitions from OntoNotes and WordNet. To
create multilingual versions of this dataset, we translated one sentence
of each pair to Spanish, Italian, and Croatian. Definitional sentences of
the OnWN-12 dataset vary in length much more than the MSRVid-12
dataset.

For all of the dataset, we created the missing cross-lingual and monolingual
variants by first performing automated machine translation with Google
translate and then letting native speakers of target languages fix the errors
introduced by machine translation.9

We summarize the key information about the datasets in Table 3. We
observe that the datasets are mutually very different in terms of average
sentence length, with News-16 dataset sentences being on average five times
longer than the MSRVid-12 sentences. MulSrc-16 and OnWN-12 datasets
have larger within-dataset relative variance in sentence length than News-16
and MSRVid-12. On top of high sentence-length variance, instances in
MulSrc-16 also vary in genre. We believe that evaluating STS models on
the collection of datasets with such mutually differing properties (sentence
length, genre, and both length- and genre-based homogeneity/heterogeneity
can provide more insights into the strengths and weaknesses of different STS
algorithm variants.

4.3. Results and Discussion

We evaluate all three of our cross-lingual STS scores – greedy association
similarity (GrAssoc), optimal alignment similarity (OptAlign) and aggre-
gation similarity (Aggreg) on the cross-lingual datasets created as described
above. Besides the cross-lingual evaluation, for the sake of comparison, we

9We make the cross-lingual datasets, along with word translation pairs and linear
mapping code, freely available at https://bitbucket.org/gg42554/cl-sts
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Average sentence length

Dataset Num. pairs EN ES IT HR

News-16 301 29.2 ± 10.4 32.7 ± 11.3 31.0 ± 10.9 25.8 ± 9.2
MulSrc-16 294 12.6 ± 7.3 14.0 ± 8.3 13.3 ± 7.7 11.1 ± 6.6
MSRVid-12 750 6.6 ± 1.7 7.2 ± 2.2 6.9 ± 2.0 4.6 ± 1.6
OnWN-12 750 8.1 ± 4.4 7.7 ± 3.8 7.2 ± 3.5 5.8.0 ± 2.8

Table 3: Datasets used for intrinsic STS evaluation

News-16 (EN–) MulSrc-16 (EN–)

Model EN ES IT HR EN ES IT HR

OptAlign 90.8 86.6 84.8 78.4 82.6 77.2 70.4 64.8
GrAssoc 90.4 84.2 78.1 77.4 81.2 76.0 62.7 59.0
Aggreg 77.7 59.4 52.0 53.6 77.0 52.3 40.3 39.4

Brychćın, Svoboda (2016) – 90.6 – – – 81.9 – –
Jimenez (2016) – 88.7 – – – 81.8 – –

Table 4: Results on the News-16 and MulSrc-16 datasets (ρ, in %).

evaluated the same similarity scores on the original monolingual variants
of the (MSRVid-12) and (OnWN-12) datasets. The model performance,
in terms of Pearson correlation (ρ) with human-assigned similarity scores
is shown in Tables 4 and 5. In Table 4, we compare the performance on
the English-Spanish variant of the News-16 dataset with the best perform-
ing models from the SemEval 2016 STS task (Brychćın and Svoboda, 2016;
Jimenez, 2016). Similarly, in Table 5, we provide the performance of the
best-performing monolingual STS models from SemEval 2012 (Šarić et al.,
2012; Bär et al., 2012) as well as the performance of the state-of-the-art unsu-
pervised model of Sultan et al. (2014) on the OnWN-12 and MSRvid-12
datasets. Although we are aware that the performances on monolingual and
cross-lingual variants of datasets cannot be directly compared, we believe that
this still provides useful context for interpreting the cross-lingual performance.

The optimal alignment model (OptAlign), quite expectedly, consistently
outperforms the greedy association model (GrAssoc). The OptAlign model
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MSRvid-12 (EN–) OnWN-12 (EN–)

Model EN ES IT HR EN ES IT HR

OptAlign 75.2 61.3 60.2 52.8 70.2 49.6 45.2 39.0
GrAssoc 75.4 59.7 53.8 48.8 68.2 49.0 44.3 38.5
Aggreg 76.7 59.9 50.1 49.5 66.6 39.0 31.2 29.3

Sultan et al. (2014) 82.0 – – – 72.3 – – –

Šarić et al. (2012) 88.0 – – – 70.5 – – –
Bär et al. (2012) 87.4 – – – 66.5 – – –

Table 5: Results on the MSRvid-12 and OnWN-12 datasets (ρ, in %).

in most cases also outperforms the corresponding aggregation similarity model
(Aggreg) model. However, the gap in performance in favor of OptAlign is
drastically wider on the two longer-sentence datasets, News-16 and MulSrc-
16 (around 25% on average) than on the two datasets with shorter sentences,
MSRvid-12 and OnWN-12 (2-14% in cross-lingual settings). We believe
that this is because the sentence embeddings averaged from a large number
of word embeddings, as computed by the Aggreg model on long sentences,
do not accurately capture the meaning of the sentence. Put differently, the
aggregated sentence embeddings are semantically more accurate for shorter
sentences, and fuzzier for longer sentences.

There is a significant performance drop between the monolingual models
(EN-EN) and their respective cross-lingual models (EN-ES, EN-IT, and EN-
HR), ranging from 5% to 30% (depending on the dataset and the cross-lingual
language pair), that clearly shows how much imperfect embedding space
translation affects the STS performance, as those performance drops cannot
be credited to anything else. The performance for English-Spanish pair is
consistently better than for the other two pairs, which more or less exhibit
comparable performance. We believe that this merely reflects the differences
in quality of the respective translation matrices (see Table 2).

The performance of the unsupervised OptAlign model on the monolin-
gual EN-EN variant of the OnWN-12 dataset is comparable or better than
that of best-performing supervised models (Šarić et al., 2012; Bär et al., 2012)
and only 2% worse than the state-of-the-art unsupervised model of Sultan et al.
(2014). We find this rather encouraging, considering that all of these models
employ a range of tools and resources (e.g., parsing, named entity recognition,
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WordNet) for feature computation or finding optimal word alignments. On
the other hand, on the original monolingual MSRvid-12 dataset, OptAlign
is outperformed by the resource-intensive model of Sultan et al. (2014) by
7%. This is because the similarities between short and grammatically simple
sentences of MSRvid-12 highly depend on the syntactic roles the concepts
occupy (e.g., “The man is playing with the dog” vs. “The dog is playing with
the man”). Whereas the model of Sultan et al. (2014), using dependency
parsing between sentences can take syntactic roles of concepts into account
to better align words between sentences, our simple STS metric – designed to
be language-independent and resource-light – cannot.

The cross-lingual performances of the OptAlign model on the English-
Spanish variants of the News-16 and MulSrc-16 datasets come reasonably
close to the best performing models (Brychćın and Svoboda, 2016; Jimenez,
2016) from the SemEval 2016 STS cross-lingual evaluation. The 4-5% differ-
ence in performance (86% compared to 90% on News-16 and 77% compared
to 82% on MulSrc-16) seems rather satisfying considering that OptAlign
is very resource-light and language-independent, whereas the best-performing
system (Brychćın and Svoboda, 2016) employs a full-blown MT system
(Google translate), and a word alignment model that requires a dependency
parser, a named entity recognizer, and a paraphrase database (Sultan et al.,
2014).

4.4. Analysis of the Translation Set Size

Besides the sufficiently large corpora in both languages, the only resource
our models need is the set of word translation pairs as the training set for the
translation matrix. With the goal of the wide applicability in terms of different
language pairs in mind, we aim to make our cross-lingual STS models as
resource-light as possible. To that effect, we examine how the number of word
translation pairs affects the quality of the obtained translation matrices and
to which extent we may reduce the number of word translation pairs without
significantly reducing the CL STS performance. To this end, we conducted
experiments using sets of word translation pairs of four different sizes: 1K,
2K, 3K, and 4K. For each of the four translation sets and for each of the
three language pairs, we evaluated (1) the quality of the obtained translation
matrix (on the same test set of 200 translation pairs) and (2) the cross-lingual
STS performance on the News-16 dataset of our best-performing OptAlign
model when using the corresponding translation matrix. These results are
shown in Figure 2.
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(a) Translation matrix quality (b) Cross-lingual STS performance

Figure 2: Effects of the translation training set size.

These experiments show that we already reach stable cross-lingual STS
performance by using 2K translation pairs for the translation matrix optimiza-
tion. The drop in performance compared to using 3K or 4K training pairs is
small both in terms translation matrix quality STS performance. Moreover,
for the language pair English-Spanish we observe no drop in performance
when reducing the number of the word translation pairs from 4K to 2K. The
more prominent drop in performance for all three language pairs is observed
only when further reducing the number of word translation pairs from 2K to
1K. These results are encouraging as they indicate that we do not need large
sets of word translation pairs to train translation matrices that are sufficiently
good to allow stable CL STS performance.

5. Applications

A cross-lingual STS system is useful for a range of tasks that require
identifying short texts of similar meaning across languages. Two prominent
such tasks on which we extrinsically evaluate our resource-light CL STS model
are: (1) the parallel sentence extraction from comparable corpora (Smith
et al., 2010), as parallel corpora are essential for training MT models; and (2)
cross-lingual plagiarism detection (Potthast et al., 2011a).
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Method AP (%) R@90 (%) R@80 (%)

OptAlign 94.2 87.1 90.4
Smith et al. (2010) 94.7 87.6 90.2

Table 6: Performance on the task of parallel sentence extraction from comparable docu-
ments.

5.1. Parallel Sentences Alignment from Comparable Documents

As creating parallel corpora amounts to recognizing sentences in different
languages with the same meaning (i.e., direct translations), we chose it as
one of the two tasks on which to extrinsically evaluate our resource-light CL
STS model. To this end, we used the English-Spanish portion of the dataset
created by Smith et al. (2010) consisting of twenty aligned Wikipedia articles
(i.e., twenty pairs of comparable documents).

We pair all English sentences with all Spanish sentences for each pair
of comparable documents and compute the similarity scores using our best-
performing OptAlign English-Spanish model. We then simply declare pairs
of sentences with the similarity score above the threshold τ to be parallel
sentences. Obviously, the value of the threshold τ regulates the precision-recall
trade-off because lower τ values lead to higher recall and lower precision,
whereas the higher τ values lead to higher precision and lower recall. In
order to allow for a direct comparison with the supervised model of Smith et
al. (2010), we do not optimize the threshold τ in terms of, e.g., F1 score, but
rather evaluate the performance in terms of the average precision (AP), recall
at the precision of 90% (R@90), and recall at the precision of 80% (R@80),
as proposed by Smith et al. (2010).

The results of the parallel sentence extraction evaluation are shown in
Table 6. The results show that our simple cross-lingual STS model reaches
about the same performance level as the state-of-the-art model of Smith et
al. (2010). This result is quite encouraging given that our unsupervised and
resource-light model matches the performance of the supervised model that (1)
exploits out-of-domain seed parallel sentences for training the word alignment
model, (2) employs a wide set of features, some of which are domain-specific
(e.g., based on Wikipedia markup), and (3) exploits the fact that parallel
sentences come in clusters and accordingly uses a supervised sequence labeling
model to find the globally optimal sentence alignment (Smith et al., 2010).

20



5.2. Cross-Lingual Plagiarism Detection

The second task on which the CL STS methods can be directly applied is
the task of cross-lingual plagiarism detection. We compare the performance
of our best-performing CL STS model with several state-of-the-art methods
for cross-lingual plagiarism detection (Potthast et al., 2011b).

5.2.1. Evaluation Setting

Given a suspicious document dL in a language L and a collection of source
documents D′L′ in a language L′, the task is to identify all fragments of dL
that have been plagiarized from any of the documents from the collection
D′L′ . In order to detect the plagiarism candidates between two documents
dL and d′L′ written in different languages L and L′, the documents are first
segmented into sets of fragments FC ∈ dL and FC′ ∈ d′L. Next, a similarity
model S is used to measure cross-lingual similarities SF = {S(F, F ′)} between
all pairs of text fragments (F, F ′), F ∈ FC and F ′ ∈ FC′. We evaluate our
best-performing CL STS model (i.e., OptAlign) by plugging it into this
framework as the similarity function S.

To evaluate different similarity models for cross-lingual plagiarism de-
tection, we use the Spanish-English (ES-EN) partition of the PAN-PC-11
dataset that was created for the 2011 plagiarism detection competition of
PAN at CLEF.10,11 The plagiarism cases in PAN-PC-11 were generated using
translation obfuscation with Google translate. In addition, the dataset also
contains cases of plagiarism obtained with manual obfuscation following the
automatic translation.

5.2.2. Competing Models

We compare our best performing cross-lingual STS model (according to
intrinsic evaluation, this is the optimal alignment model), which we dub
CL-STS-OptAlign in this evaluation, with three state-of-the-art similarity
scores for plagiarism detection. The first similarity measure, named CL-
VSM, is the cosine between TD-IDF weighted vector space model vectors
of the text fragments. As the fragments are in different languages (L and
L′), each document vector dL is transformed into the bilingual form dLL′ by
concatenating the vector dL′ which contains translations of words from dL

10http://www.uni-weimar.de/en/media/chairs/webis/corpora/

corpus-pan-pc-11/
11http://www.clef-initiative.eu/
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obtained using a statistical dictionary. The statistical dictionary necessary
for this model is trained using the word-alignment machine translation model
IBM M1 (Och and Ney, 2003) on the parallel JRC-Acquis (Steinberger et al.,
2006) corpus. This similarity score is resource-intensive as it requires an
existence of a word alignment model for the two given languages, which in
turns requires the existence of sufficiently large parallel corpora.

The most similar method to ours is the Continuous Word Alignment-based
Similarity Analysis (CWASA) model (Franco-Salvador et al., 2016a) which
also measures the similarity by aligning words from two text fragments based
on their continuous vectors. However, unlike CL-STS for which we obtain
bilingual embedding vectors via the translation matrix model with only a
limited number of word pairs, CWASA learns the bilingual embedding vectors
by running the Siamese Neural Network (S2Net) model (Yih et al., 2011) on
the EN-ES DGT translation memory parallel corpora,12 which is drastically
more difficult and expensive to obtain than a couple of thousands of word
translation pairs. Due to the computational time of S2Net, we follow the
setting from (Franco-Salvador et al., 2016a) and restrict its vocabulary to
the 20,000 most frequent words.

Finally, the Knowledge-Based document similarity (KBSim) model is
based on grounding the content of text fragments in the large multilingual
knowledge graph (Franco-Salvador et al., 2014, 2016b,a), namely BabelNet
(Navigli and Ponzetto, 2012). The subgraph of BabelNet is extracted for each
of the two fragments in different languages and the similarity between the
corresponding extracted BabelNet subgraphs is used for plagiarism detection.
The graph-based similarity score is further dynamically combined with the
CL-VSM similarity, with weights assigned to each of the similarity components
depending on the connectivity of the knowledge base subgraphs extracted for
input text fragments. Besides the resources required by CL-VSM, KBSim
additionally requires access to a multilingual knowledge base and to a part-
of-speech tagger with lemmatization.

5.2.3. Evaluation Metrics and Results

We measure the performance of different similarity scores with the overall
document recall of plagiarized text measured at the character level. This

12https://ec.europa.eu/jrc/en/language-technologies/

dgt-translation-memory
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Model R@1 R@5 R@10 R@20

CL-VSM 0.791 0.880 0.905 0.924
CWASA (S2Net) 0.859 0.909 0.921 0.936
KBSim (CL-VSM) 0.927 0.955 0.961 0.965

CL-STS-OptAlign 0.895 0.930 0.940 0.948

Table 7: Performance analysis on the task of cross-lingual plagiarism detection (in terms
of R@k, where k = {1, 5, 10, 20}).

experiment shows the potential of the models to detect cases of plagiarism
at the document level, without differentiating between individual plagiarism
cases. The character-level recall (R@k) is measured using the top k fragments
from the source documents most similar to the fragment of the suspicious
text. The results of the plagiarism detection evaluation are given in Table
7. Our simple unsupervised and resource-light CL STS model performs
on par with state-of-the-art similarity scores for cross-lingual plagiarism
detection. CL-STS-OptAlign significantly outperforms the CL-VSM and
the CWASA (S2Net) models for R@1 and CL-VSM for R@5. Although
KBSim similarity numerically outperforms the CL-STS-OptAlign model
for all four metrics, the differences are not statistically significant.13 This
findings are very promising as they show that robust detection of cross-lingual
plagiarism can be achieved without expensive language-specific resources and
tools.

6. Conclusion

In this article, we presented an unsupervised resource-light approach to
cross-lingual STS based on linear translations between monolingual embedding
spaces. Unlike existing STS models (monolingual and cross-lingual alike),
our method does not exploit expensive-to-build language-specific resources.
Instead, our models require only large corpora for both input languages and
a small set of word translation pairs – resources that are cheap and easy to
obtain for the vast majority of languages and language pairs.

13We tested all significances using the non-parametric bootstrap resampling (Efron and
Tibshirani, 1994) test with α of 0.05 and 1000 samplings.
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In the proposed approach we first construct the shared bilingual continuous
vector space by mapping embedding vectors of words from one language to
the embedding space of the other language. The mapping is achieved through
the linear translation matrix which is learned using the set of aligned word
pairs between the languages. We show that as few as 2000 word translation
pairs is already enough to obtain high-quality translation matrices, leading
to stable cross-lingual STS performance.

We thoroughly evaluated the proposed CL STS model: (1) intrinsically on
three STS datasets and for three different language pairs and (2) extrinsically
on two different tasks: parallel sentence alignment from comparable corpora
and CL plagiarism detection. The results of the intrinsic evaluation show
that the resource-light CL STS exhibits competitive performance as well as
stability across different language pairs, including the pair with Croatian as an
under-resourced language. Both extrinsic evaluations reveal that our resource-
light method performs on par with state-of-the-art models for respective tasks,
which are, without exception, much more complex and resource-intensive.

Our future efforts will go in three different directions. First, we intend
to investigate methods for constructing multilingual semantic spaces that
either require no (or fewer) word translation pairs or produce higher quality
mappings than the linear translation matrix model. Secondly, we intend to
build CL STS models for other language pairs, to allow for wider adoption of
CL STS in various tasks. Finally, we intend to evaluate the CL STS models
in other extrinsic tasks such as cross-lingual document and passage retrieval
or cross-lingual text classification.
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