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Abstract 

We demonstrate a chirped microstructured polymer fiber Bragg grating based on taper technology 

for strain sensing application. The effective bandwidth of the grating is dependent on strain and 

remains practically constant with respect to temperature and humidity changes. We report a 

sensitivity of 0.90 pm/µε for the central wavelength under stable temperature and humidity values. 

The 3-dB bandwidth of the grating has been measured under different temperature and humidity 

conditions. 
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1. Introduction 

Over the last three decades, fiber Bragg gratings (FBG) inscribed in silica fiber have become a mature 

and recognized technology for both sensing and telecommunications. Compared to conventional sensing 

techniques, fiber sensors present significant advantages such as immunity to electromagnetic interference, 

lightweight and compactness for numerous sensing applications. These include strain [1], temperature 

[1], refractive index [2] [3], deformation [4], ultrasound [5] and liquid level indications [6]. Polymer 

optical fibers (POFs) share several of the advantages of silica fibers. Recently, POF sensors are receiving 

increased attention for their fundamental mechanical advantages over silica fibers including a lower 

Young’s modulus, a higher thermo-optic coefficient, a higher elastic limit and biocompatibility for 

sensing applications. Materials such as poly (methyl methacrylate) (PMMA) [7], cyclic transparent 

optical polymer (CYTOP) [8], TOPAS [9] and Zeonex [10] have been successfully used for POF 

fabrication to date. Non-uniform FBGs have been recently implemented in POF: tilted FBGs (TFBG) 



[11], phase-shifted FBGs (PS-FBG) [12] and chirped FBGs (CFBG) [13], where the applications of these 

devices are attractive due to the benefit of POF.  

POFBGs have been reported for strain measurement [14] by monitoring the resonant wavelength shift. 

However, other parameters such as temperature and humidity also cause wavelength shifts. Such effect 

is typically overcome by incorporating some interrogation scheme in order to distinguish one parameter 

from another, either by using different polymers, reference sensors or other related techniques [15]. One 

option is TOPAS, a humidity insensitive optical fiber material with a humidity sensit ivity of less than 

0.59±0.02 pm/% at 1568 nm, 50 times lower than PMMA fibers [16].  Nonetheless, TOPAS and 

PMMA have similar temperature sensitivity. Static strain sensing requires appropriate compensation 

under varying ambient temperature levels [16]. 

W. Zhang et al [17] investigated the response of PMMA POF grating based humidity sensors with 

different diameters and demonstrated that shorter response times could be obtained with lower fiber 

diameters. A dual FBG structure has been proposed to avoid the effects of temperature and humidity 

fluctuation, where an effective reference FBG is isolated from the parameter for measurement [18]. It 

has been reported that the humidity furcation effect on the wavelength shift of a grating under strain is 

different when compared with a strain free FBG [19]. In silica fiber, CFBGs glued at a slant orientation 

can be used as displacement sensor and accelerometer through bandwidth measurement with temperature 

insensitive performance [20-21], and tapered CFBGs have been demonstrated for strain sensing [22], 

where a 3-dB bandwidth modulation is shown that remains insensitive to humidity and temperature 

changes. Also, CFBGs have found important applications in healthcare, mechanical engineering, and 

shock waves analysis, among others [23,24]. 

In this paper, we present a tapered CFBG in PMMA mPOF, combining the benefits of tapered chirped 

Bragg gratings and fundamental POF characteristics. A sensitivity of 0.90 pm/µε is obtained, higher 

value when compared with uniform FBGs, and fast measurements can be obtained through bandwidth 

measurements. This bandwidth observation is shown to be stable against humidity and temperature, 

making this concept suitable for its usage in temperature and humidity variable environments. 

 

2. Strain response  

Endlessly single-mode BDK-doped PMMA mPOF [25] was produced by using the center hole doping 

technique. In order to remove any residual stress incurred during the drawing process, the fiber was pre-

annealed at 70ºC for 12 hours without humidity control in temperature chamber. A 20 cm long fiber 

sample was cleaved with a portable cleaver [26] and polished with sand paper to enhance the quality of 

the end face. Prior to inscription, the fiber section was tapered in acetone using a computer driven 

translation stage to obtain the desired profile, as shown in Fig. 1 (a).  

A CFBG was inscribed using the phase mask method (total length 10 mm) and a single 15 ns pulse 

from a 2.5 mJ pulsed Coherent Bragg Star Industrial-LN krypton fluoride (KrF) excimer laser at 248 nm. 

The reflected spectral power of the CFBG is shown in Fig. 1 (b). 



 

Fig. 1.  (a) Taper setup for POF, inset: end face of mPOF; (b) Reflected power by an FBG obtained with one pulse KrF laser 

irradiation. 

 

Fig. 2. Strain measurement setup. 

 

The strain sensitivity was tested using the setup depicted in Fig. 2. The fiber was fixed with epoxy in 

order to avoid sliding. Axial strain was applied to the fiber through longitudinal displacement controlled 

by a 3D translation stage. The grating reflected spectrum was monitored using a super luminescent diode 

(Superlum SLD-371-HP1) and an optical spectrum analyzer (Yokogawa AQ6373B) with 20 pm spectral 

resolution. 

 



 

Fig. 3 (a) Spectral reflected power vs strain; (b) Wavelength shift vs strain; (c) Bandwidth vs strain. 

 

Figure 3 (a) shows how the reflected power spectrum of the grating changes with the application of 

strain. A 12.62 cm section of POF had strain applied on the grating in 200 µm steps, causing a positive 

wavelength shift as shown in Fig. 3 (a). Fig. 3 (b) indicates that the central wavelength of the grating 

increases with strain. The obtained strain sensitivity is 0.90 ± 0.02 pm/µε, higher than that of a uniform 

POFBG in the same material and geometry (~0.71 pm/µε) due to the tapered etching of the fiber [26]. 

Fig. 3 (c) shows the bandwidth of the grating increase with strain, which can be used to measure this 

magnitude instead of measuring the central wavelength of the grating provided temperature and humidity 

sensitivities are compensated. 

 

3. Temperature response 

Figure 4 (a) shows the reflected optical spectrum of the grating when temperature is set between 22 to 

52 ºC under 60 % humidity without strain. In this condition, the temperature response achieves a stable 

value in less than 5 minutes, and the temperature sensitivity is measured as -57.9 ± 2.0 pm/ºC. This value 

is similar to the one reported for PS-FBGs [12] with the same polymer fiber material and geometry. Fig. 

4 (c) shows the 3-dB bandwidth of the grating which is around 0.18 ± 0.02 nm under temperature increase 

from 22 to 52 ºC. This data confirms the temperature independent behavior previously observed in silica 

fiber [24]. 



 
Fig 4. (a) Grating spectral response under temperature variations; (b) Central wavelength shift vs temperature; (c) 3-dB bandwidth 

vs temperature. 

 

Figure 5 (a) shows the reflected spectrum of the grating between 22 and 52 ºC with 60 % humidity 

and 1.25 % strain. Fig. 5 (b) indicates the 3-dB bandwidth fluctuation under temperature increases from 

22 to 52 ºC, with data collected every 5 min intervals in order to get temperature stabilization after each 

5 ºC step. The 3-dB bandwidth remains constant at 2.00 ± 0.05 nm over the temperature increase from 

22 to 52 ºC. The temperature sensitivity was found to be -58.8 ± 2.0 pm/ ºC (see Fig. 5 (b)), similar to 

the one obtained without applied strain.  

 



 
Fig. 5. (a) Grating spectral response with temperature change under 1.25 % strain; (b) 3-dB bandwidth under 1.25 % strain vs 

temperature; (c) Central wavelength shift under 1.25 % strain vs temperature. 

 

4. Humidity response  

Humidity is usually a challenge for practical applications of POFBGs [18]. During the experiment 

described as follows, the grating was left at a constant temperature of 22 ºC and no strain was applied. 

Figure 6 (a) shows the central wavelength stabilization curve when humidity was decreased from 60% 

to 30%, with stability was observed after 50 minutes. Fig. 6 (b) indicates the resulting curve when the 

ambient humidity is changed from 30 % to 90 %, 100 minutes are required until stability is observed. 

The obtained humidity sensitivity of the grating is 26.0 ± 0.5 pm/% with no applied strain, higher than 

the values (19.9±2.5 pm/%) obtained by L. Pereira et al [12] with PS-FBGs in the same wavelength 

region (due to the high etch) [22]. Fig. 6 (c) depicts the reflected power spectrum of the grating under 

30 % humidity, during humidity change and at 90 % humidity. We observe that the profile is acceptably 

homogeneous under these changes. We can observe that the 3-dB bandwidth is 0.18 ± 0.02 nm, as shown 

in Fig. 6 (d). 

 



 

Fig. 6. (a) FBG central wavelength and 3-dB bandwidth vs time under humidity change from 60% to 30%; (b) FBG central 

wavelength and 3-dB bandwidth vs time under humidity change from 30% to 90%; (c) Reflected spectral power vs wavelength 

under different humidity changes; (d) 3-dB bandwidth vs humidity change from 30% to 90%. 

 

Figure 7 (a) displays the reflected spectrum of the grating under 30 % humidity, during humidity 

change and 90 % humidity for a grating subjected to an axial strain of 1.25 %. The humidity sensitivity 

of the grating is 11.7 ± 0.4 pm/%, slightly lower than the value obtained without strain. A similar 

performance is explained in [17] as a reduced swelling coefficient in the fiber under strain when 

compared with the fiber under no strain condition.  

 

Fig. 7. (a) Reflected spectral power vs wavelength under humidity change, (b) 3-dB bandwidth vs humidity change from 30% to 

90%. 

 

We found the 3-dB bandwidth decreases with humidity increases and a sensitivity about -4.2 ± 0.4 

pm/% is obtained under high strain condition and 60 % humidity fluctuation. Actually, from Fig. 7 (b), 

this sensitivity is lower than the one shown by the central wavelength. Therefore, our CFBG in POF 



performs comparably to ones in silica, showing the bandwidth decreases as long as humidity increases 

under high strain conditions. 

 

5. Conclusion 

We presented a tapered CFBG in PMMA mPOF for strain sensing, with a measured sensitivity of 

0.90 ± 0.02 pm/µε. We have shown wavelength and bandwidth measurements, where the latter are less 

sensitive to humidity changes when the fiber is under no strain. A low humidity sensitivity performance 

around -4.2 ± 0.4 pm/% was achieved under high strain conditions. The grating response time is 

significantly improved by measuring the 3-dB bandwidth, which is a great benefit towards commercial 

strain sensing applications using POFBGs, especially under variable temperature and humidity 

conditions. Furthermore, we can notice a high level of experimental repeatability to fabricate this kind 

of device achieving similar performance from the sensor even using other type of POF structure. 
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