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Abstract

This paper is devoted to a family of Newton-like methods with frozen derivatives
used to approximate a locally unique solution of an equation. The methods have
high order of convergence but only using first order derivatives. Moreover only
one LU decomposition is required in each iteration. In particular, the methods are
real alternatives to the classical Newton method. We present a local convergence
analysis based on hypotheses only on the first derivative. This type of local results
were usually proved based on hypotheses on the derivative of order higher than
two although only the first derivative appears in these type of methods [2, 22, 24].
We apply these methods to an equation related to the nonlinear complementarity
problem. Finally, we find the most efficient method in the family for this problem
and we perform a theoretical and a numerical study for it.
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1 Introduction

The approximation of the solutions of nonlinear equations F'(z) = 0 is a common problem
in science and engineering. Let us consider F': D C X — Y to be a nonlinear operator
where X and Y are Banach spaces.

In order to obtain approximations to the solution, we will use iterative methods of the
form

Tpr1 = P(z,), n >0, (1)

starting with a given initial approximation zy of the solution z*, where ® is a function
defined on a closed subset €2 of X that maps 2 into itself.

The choice of a method for approximating x* usually depends on its efficiency, which
links the speed of convergence (order of convergence) of the method to its computational
cost. For one-point iterative methods without memory, it is known that the order of
convergence v is a natural number and the methods depend explicitly on the first v — 1
derivatives of the function involved in the equation. On the other hand, the computational
cost increases as it is necessary to calculate the successive derivatives of the function
involved in the algorithm of a method. In this paper, we are interested in numerical
methods that avoid the expensive computation of the derivatives of the function F' at
each step.

We start with the iterative process:

ro €D,
Yn = Tn + FnF<wn)7 (2>
T+l = Yn — FnF(yn)y n 2 0.

where T',, = F'(z,,) "%

This method has order of convergence three. In [2], we proved that this iterative
process (2) seems to have simpler dynamics than if we consider the different modifications
shown by means of Newton’s method [5]. This fact tells us that, from a numerical point
of view, the implementation of iterative process (2) is more favorable than if we consider
k-step Newton’s method with frozen derivative, given by Traub’s method [24]. In any
case, in this paper, we will consider an extra parameter in order to analyze the different
possibilities.



If we apply many steps, keeping the derivative frozen, we can obtain

( xo €D,

o =2+ aFnF(:c%O)),
2P =2 — FnF(x,(@l)),

25D 20D p g (2))
2l = g FnF(xﬁlk_l)), n =0,

\

where a € R, x,, = :E,(qo) and x,11 = xg,,k).

This method has order of convergence k + 1, with k > 2 for a = £1. It was presented
by us in [2] from a dynamical point of view. The main advantage of these methods is that
there is not need to evaluate any high order Fréchet derivative, having the same matrix
in each k-step. In particular only one LU decomposition is required in each iteration.
This type of methods appear in many applications where the authors heuristically choose
a given number of steps with frozen derivatives (see for instance this incomplete list of
Refs. [12, 14, 15, 17, 20]).

The study about convergence matter of iterative procedures is usually based on two
types: semi-local and local convergence analysis. The semi-local convergence matter
is, based on the information around an initial point, to give conditions ensuring the
convergence of the iterative procedure; while the local one is, based on the information
around a solution, to find estimates of the radii of convergence balls. In [3] we present
a semilocal convergence analysis, for « = 1, and a general study on the efficient of the
different methods in the family.

In the present paper, we first develop a local convergence analysis based on hypotheses
only on the first derivative for a € R. Usually, this type of local results are proved
based on hypotheses on the derivative of order higher than two although only the first
derivative appears in these type of methods [2, 22, 24]. Next, we apply these methods to
an equation related to the nonlinear complementarity problem [19]. Following [5], we find
the most efficient method in the family for this problem using the efficiency index and the
computational efficiency. In [5] we only studied the case & = —1 (Traub’s method [24]).
Finally, we verify the hypotheses for the local convergence for a particular problem and
we approximate the solution using the proposed methods.

Related studies concerning k-step Newton-type methods can be found in this incom-
plete list [1, 4, 7, 8, 9, 10, 11, 13, 18, 21].

2 Local convergence analysis
We present the local convergence analysis of method (3) in this section. We only use

hypotheses on the first derivative. It is convenient for our local convergence analysis that
follows to introduce some functions and parameters.



Let Ly >0, L >0, M > 1, a € R and k € N be given parameters.
Define functions g;, p; and p; on the interval [0, LLO) by

t) = — (Lt + 2|1 M
p1(t) = Logi (t)t and py(t) = pi(t) — 1.

We have that p;(0) = —1 < 0 and py(t) — +o0 as t — Liof. Then, it follows from the
intermediate value theorem that function p; has zeros in the interval (0, Lio) Denote by
rp, the smallest such zero.

Define the functions g2, g2, p2 and p, on the interval [0, 75, ) by

20 =50 g T Lo @01 - Lot "
92(t) = g2(t) — 1, pa(t) = Loga(t)t and pa(t) = pa(t) — 1.

We have that §»(0) = p2(0) = =1 < 0, and go(t) — 400, pa(t) = +00 as t — 15,. By
the intermediate value theorem, we deduce the existence of r;, and 75, the smallest zeros
of functions go(t) and pa(t) respectively on the interval (0, 7z, ).

Moreover, using induction, define functions g;, g;, p; and p; on the interval [0, 75, ,) by

ng—l(t) L()M(l + gz_l(t))
2(1 = Logi—1(t)t) (1 = Logi—1(t)t)(1 — Lot)

Gi(t) = g:(t) — 1, pi(t) = Logi(t)t and p;(t) = pi(t) — 1, for each i = 2,3,... k.

We have that g;(0) = p;(0) = —1 < 0, and g,;(t) = +o0, p;i(t) = 400 as t — r5,_,.
Using again the intermediate value theorem, we deduce the existence of 75 and 75, the
smallest zeros of functions g;(¢) and p;(t) respectively on the interval (0,75, ,).

Furthermore, define parameters r, 7 and R by

9i(t) = (

)gi—1(t)t,

r= Z.:g}?)i?.’k{réiv Tﬁk}v (4>
F=g(r)r, (5)
R = max{r,7}. (6)
Then, for each t € [0,7),
0<gi(t)<1l for i=23,... k. (7)

Denote by U(z, p) and U(x, p) the open and closed balls in X respectively with center
x € X and radius p > 0.
Next, we present our local convergence analysis using the preceding notation.



Theorem 1 Let F: D C X =Y be a Fréchet differentiable operator. Suppose:
There exists x* € D, Lo >0, L >0, M > 1, k€ N, a € R such that

F(z*)=0,F (") € L(Y, X), (8)
|1F (@) (F'(x) = F'(2"))[] < Lollz —2*||, forall x€ D, (9)
|1F (") (F'(x) = F' ()| < L|lz —yll, forall z,y € Dy=D[\U(a", Lio), (10)
[|F ()" F'(2)|| < M, for all z € Dy, (11)

and
U(z*,R) C D, (12)

where R is defined by (6).
Then the sequence {x,} generated for xy € U(x*,r)\ {x*} by the method (3) is well
defined , remains in U(z*,1) and converges to x*. Moreover, the following estimates hold

o) = 2*| < gi(llen — @) lwn — 2| < 7, (13)
) = 2*|| < gl — 2" Dl — 2| < 7, (14)

for eacht1=2,3,...,k—1, and
|zns1 — 2| < gulllwn — 2" |J2n — 27| < [lzn — 27|, (15)

where the g’ functions, and the parameters r, ¥ are defined above this Theorem, see

(4)-(7).
Furthermore, for T € [r, L%) the limit point x* is the only solution of the equation
F(z)=0in U(xz*,T)ND.

Proof
We shall show the estimates using mathematical induction.
Let x € U(x*, R). Then using (9) we have that

[1F' (@)1 (F (@) = F'(z"))]] < Lollz — 2| < LoR < 1. (16)

It follows from (16) and the Banach lemma of invertible operators [16] that F'(z)~! €
L(X,Y) and
< ! :
1 — Lo||z — x|

[|F' ()7 F (27)]] (17)

In particular, (17) holds for x = x, since z¢ € U(z*, R)\{z*} and xél) is well defined

for the first subset of the method (n = 0).
By (8) we can write

F(xzg) = F(x) — F(x*) = /0 F'(z" 4 0(xo — ) (20 — ) db. (18)
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Notice that
||z* + 0(xg — 2¥) — z*|| = b||xo — 2*|| < R,

which shows that z* + 0(x¢g — 2*) € U(z*, R). In view of (11) and (17), we get that
|1 (2*) 7 F(2o)|| < Mllzo — 2|l. (19)

Then using the first substep of the method for n = 0, (7), (10), (17) and (19), we get
from
2§ — " = (w0 — &* — F'(w0) "' F(20)) + (1 + ) F'(wo) " F (o)

that
s = 2*|| < lwo — 2" — F'(w0) " F( xo>u+|1+amF (w0) ™ F (o)
< F (@) F @) || / v+ 0(z0 — %)) — F(20)) (w0 — *)d0|
Hital [[F(x) ' F@)] |IF( >1F<wo>\|
< L||zg — z*||? +11+qf M||zo — z*||

2(1 = Lo|lzo — 2[]) 1 = Lo||zo — z*||
= g1lllzo — 2"[[xo — 27| < gu(r)r = 7,
which shows (13) for i = 1 and x(()l) e U(z*, 7).

Now, using the second substep of the method for n = 0, (7), (10), (17) and (19) for

1 .
Ty = x(() ), we obtain from

2@ _ ot = @D o~ F (@) FED) + (F



that

!

2 * 1 * ’ o (1) — 1 f o (1) — _ 1
28 =] < || =2 = F @) F @)+ 1F @) = F(20) Y Fad))]]

/

IN

HF@?Vﬁwfnm/F%ﬁrﬁFuf+ﬂ%”—f»—F

I @) @O I @) F (o) = F @)+ 1 (@) 7 (F @) = F (@)
1F (a6”) " F (@) 1| F (") 7 F )|
o Il =P Lo(llag = @l + [l — @t Mag” — )]
T 20— Lollag) —aell) (1= Lollwo —2*))(1 = Lollzg” — 2[])
~_ Llg(llzo — )2 ||zo — 2|2
= 2(1 = Loga([[zo — ] [lzo — 2[])
L oM+ gi(lleo = 27 ))ga([ [0 — )|z — 27|
(1 = Lollro — z*|[)(1 = Loga([|zo — x*[])||zo — 2*[])
L(g:(||z0 — 2*])))
= 1201 = Zogi([lwo — @[l — 2*])
n Lo+ gulllz = «7]) 5| 1l = " IDllzo = o°

(1= Lollzo — *|))(1 = Logi([lzo — @*|)|xo — 2]
= gallzo — 2" |Pl|zo — 27| < |wo — ™[] <,

which shows (14) for n = 2 and ng) e U(z*,r).
We obtain using induction

|28 — 2% < gill|zo — 2*|])] |20 — 2*|] < |70 — 2*]| < 1,

which shows (14) for i = 2,3,...,k — 1. and (15).
Similarly, from the identity

asgl) —z* = x — o+ aF (z)  F ()
= (v —2" — F/(.l’l)_lF([L'l)) +(1+ oz)Fl(xl)_lF(:vl)

we get in turn
20" = 2"l < gi([fer — 2" [D]Jer — 27| < 7,
and
o — 2] < go(llzr — 2|21 — 2"|| < [Jos — 27| <.
In this way, we arrive at

12 — 2*|| < gi(||z1 — 2| DJar — 2*|] < |21 — 2*]| <7,

7



1=2,3,...,k—1and
k * * * *
128" — 24| < gellar — 2*|D]Jer — 2| < [Jan — 2| <.

By simply replacing x, x(()i), x1 by Zp, 3357?, Tmi1, in the preceding estimates we
complete the induction. Then, from the estimate

2041 = 2] < lzn — 27| <,

we deduce that

lim z, = z*
n—oo

and z,.; € U(xz*, R). The uniqueness part follows classical arguments [6]. O

As noted previously, method (3) has convergence order k+ 1, with £ > 2. The conver-
gence order was established in [2] using Taylor’s expansions and hypotheses requiring the
existence of at least the third Fréchet derivative. These hypotheses limit the applicability
of method (3). As a motivational example for Theorem 1, let us define the function F' for
X—Y =R D—[-53 by

pinx? — 2t +2° 1 #£0,
F(x):{o xiO

Then, we have that

F'(z) = 32%na®+ 52 — 42° + 222,
F'(z) = 6xlna® 4 202% — 1222 4 10z,
F'(z) = 6lnz®+ 6022 — 24 + 22.

The results in [2] cannot be applied, since ' (z) is not bounded on D. However, Theorem
1 can be applied with say Ly = L = 96.66 and M = 2.

Moreover, results using Taylor’s expansions as in [2] suggest that the initial guess
should be close to the solution z*. But, how close initial guess should be for the con-
vergence of method (3) to z*. On the other hand, how do we compute the error bounds
||z, — 2*|| in this case. These concerns are addressed in Theorem 1, since computable
estimates on the radius of convergence as well as the error bounds are provided.

2.1 Analysis of the efficiency

In this section, we use the efficiency index, (ET), and the computational efficiency, (C'E),
to compare different iterative methods. These are classical measurements of the cost of
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Figure 1: Efficiency index for k=1:10and n=>5:3:17

applying a method, due respectively to Traub [24] and Ostrowski [23]. They are defined

in the following way:
EI=pY" and CE=p'7, (20)

where p is the order of convergence of the method, a represents the number of the eval-
uations of functions necessary to apply the method and p is the number of operations
(products and divisions) that are needed to compute each iteration of the method.

Then, in the presented multi-step method (3), we perform a new function evaluation
in each step, so the value of EI in function of k, the steps performed, and n, the size
problem, is:

1
El(k,n) = (k+1)n* + kn

The C'E index is given by the number of products and quotients that we need for solving
k linear systems with the same matrix of coefficient, by using LU factorization. We have:

3
EC(k,n)=(k+ 1)”3 +3kn?2 —n

In Figures 1 and 2 we can see these values for different methods by taking values for &
from 1 to 10 and considering problems of different sizes, n = 5,8,11,14,17. We observe a
general behavior in both indices, that is, when the size of the problem increases obviously



Computational efficiency
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Figure 2: Computational efficiency for k =1:10and n =5:3: 17

the efficiency decreases and tends to 1. On the other hand, by considering increasing values
of k the efficiency indices increase until reaching a maximum from which the efficiency
drops, this trend is more pronounced in the efficiency index than in the computational
efficiency. In the efficiency index the average value for this maximum is about 5 but or 6
in the computational efficiency is about 3 or 4. Notice that the method corresponding to
k =1 is Newton’s method, the ET for other values of k and n is always better. Moreover,
for CE, we can find worse behavior than Newton’s method only for small size systems,
incasen=>5and k> 7.

2.2 A particular example

In this subsection, a numerical example is worked out to demonstrate the application of
our local convergence analysis for the k-steps iterative method described by (3).

We consider a nonlinear integral equation of Hammerstein type. These equations have
many applications, such that, problems of electro-magnetic fluid dynamics, in the kinetic
theory of gases, and in reformulation of boundary value problems, etc. These equations
are of the form:

x(s) = u(s) +/ K(s,t)H(z(t))dt, 1<s<m,
!
for z(s),u(s) € C[l,m] (the space of continuous functions in [I,m]) with —oco <l <m <
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00, K is the kernel function and H, is a polynomial function. The usual technique to solve
this kind of equations consists in expressing them as a nonlinear operator in a Banach
space. That is

where F': D C C[l,m] — C[l,m] with D a non-empty open convex subset.

We use the uniform norm ||| = maxcp . [v(s)]-

Next, we apply our theoretical study presented in Theorem 1 to a particular Hammer-
stein equation given by:

Fa(s)) = a(s) — s — 2

»* 11, (14 1) (1 + 2(t)*)dt, (21)

with z(s) in C[0, 1].
The numerical scheme of this equation follows by applying a quadrature formula with
n nodes t; and their corresponding weights a;:

| et~ o).

If we denote z(t;) = x;, i = 1,2, ..., n, we transform the equation (21) into the following
nonlinear system:

i=1

Obviously this system can be solved by applying the proposed iterative method given by
(3). But for our local study we obtain the derivative of (21) that can be given by

F'(z(s))(v(s)) = v(s) — %/0 (1+1t)2x(t)v(s)dt.

So, for the solution of z*(s) = 2s we obtain L = Ly = 9 and M = 2. Now using the
iterative method (3) by taking k = 4, that correspond to an efficient method as we have

deduced in section (2.1), and for o = —1, we get:

rp, = 0.081339 > r;, = 0.055216 > 75, = 0.044616 > r,, = 0.039438.

The zeros for functions g; are:

rg, = 0.048076 < rg, = 0.040142 < rg, = 0.036622

11



so r = 0.036622 and 7 = 0.009002395101316. Each function of the ball U(2s,0.036622)
can be taken as a starting function in order to obtain the convergence for the nonlinear
problem (21). The obtained solution is unique in U(2s, 0.222222) (] D.

By choosing a = 1, we obtain the following radii:

rp, = 0.021795 > r5, = 0.010536 > r5, = 0.007895 > 15, = 0.006985

while the zeros for functions g; are:

rg = 0.002031 < 1y, = 0.004422 < 7,5, = 0.005463

and then r = 0.002031 and 7 = 0.008293. So, in this case the ball U(2s,0.002031) provides
starting functions for the problem (21). In Figures 3 and 4 can be seen the graphics of
functions p and g that provide the local convergence radius.
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The comparison of radii of convergence balls of our iterative method (3) for different
values of parameters o and k£ = 4 is displayed in Table 1.

Table 1: Radii of convergence balls for different values of a with four steps

a>0| a=0.85 a = 0.95 oa=1.15 a=1.25
r 0.002313 0.002119 0.001796 0.001662
r1 0.0087649 | 0.0084447 | 0.007866 | 0.0076056
a<0|a=-08|a=-09 |a=—-115 | a=-1.25
r 0.027189 0.031981 0.027189 0.021489
r1 0.0152038 | 0.0109536 | 0.0152037 | 0.0158971

The best radius is obtained for a = —1, that correspond with taking Newton’s method
in first step. On the other hand, from Table 1, we observe that the radius is always better
for negative values near to alpha = -1. Finally, we notice that, for all tested cases, r; > r
for « > 0 and r; < r for a < 0. Obviously if we perform less steps in our method the
radii of the local convergence balls will increase.
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