
Advanced Elastic Platforms for

High Throughput Computing

on Container-based and

Serverless Infrastructures

March 2020

Dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy in the subject of

Computer Science.

Author: Alfonso Pérez González

Advisor: Dr. Germán Moltó Martínez

Acknowledgments

En primer lugar me gustaría agradecer a mis padres y a mi hermana todo el
apoyo que me han dado a lo largo de todos estos años. Siempre habéis estado
ahí cuando lo he necesitado y sin vosotros no habría llegado hasta aquí.

También me gustaría agradecer a mi mujer por los ánimos que me ha dado a
lo largo de estos años de tesis y por escuchar mis interminables charlas sobre
cuál es la tecnología del momento.

Por último quiero agradecer a mis compañeros de trabajo por no perder la
paciencia con mis innumerables preguntas y por ayudarme siempre que tenía
algún problema. En particular quiero dar las gracias a mi director Germán
Moltó por sus acertados comentarios, sugerencias e ideas durante la realización
de esta tesis y por aguantar estoicamente mis entregas de última hora.

Muchas gracias a todos.

iii

Abstract

The main objective of this thesis is to allow scienti�c users to deploy and
execute highly-parallel event-driven �le-processing serverless applications
both in public (e.g. AWS), and in private (e.g. OpenNebula, OpenStack)
cloud infrastructures. To achieve this objective, di�erent tools and platforms
are developed and integrated to provide scienti�c users with a way for
deploying High Throughput Computing applications based on containers that
can bene�t from the high elasticity capabilities of the serverless
environments. First, an open-source tool to deploy generic serverless
workloads in the AWS public Cloud provider has been created. This tool
allows the scienti�c users to bene�t from the features of AWS Lambda (e.g.
high scalability, event-driven computing) for the deployment and integration
of compute-intensive applications that use the Functions as a Service (FaaS)
model. Second, an event-driven �le-processing high-throughput programming
model has been developed to allow the users deploy generic applications as
work�ows of functions in serverless architectures, o�ering transparent data
management. Third, in order to overcome the drawbacks of public serverless
services such as limited execution time or computing capabilities, an
open-source platform to support FaaS for compute-intensive applications in
on-premises Clouds was created. The platform can be automatically deployed
on multi-Clouds in order to create highly-parallel event-driven �le-processing
serverless applications. Finally, in order to assess and validate all the
developed tools and platforms, several use cases with business and scienti�c
backgrounds have been tested.

v

Resums

El principal objectiu d'aquesta tesi és oferir als usuaris cientí�cs una manera
de crear i executar aplicacions sense servidor (i.e. serverless) altament
paral·leles, dirigides per esdeveniments i orientades al processament de dades,
tant en proveïdors en núvol públics (e.g. AWS) com en privats (e.g.
OpenNebula, OpenStack). Per a dur a terme aquest objectiu, s'ha
desenvolupat e integrat diferents eines que ofereixen una via per desplegar
aplicacions de computació d'altes prestacions basades en contenidors, alhora
que es poden bene�ciar de l'alta escalabilitat present en els entorns
serverless. Primerament, s'ha creat una eina que possibilita el desplegament
de càrregues de treball genèriques al proveïdor públic en núvol AWS. Aquesta
eina permet apro�tar les funcionalitats de AWS Lambda (e.g. alta
escalabilitat, computació basada en esdeveniments) per al desplegament i la
integració d'aplicacions computacionalment intensives que fan ús del model
de funcions com a servei (FaaS). En segon lloc, s'ha desenvolupat un model
de programació d'alt rendiment per al processament de dades i orientat a
esdeveniments, que permet als usuaris desplegar �uxos de treball com un
conjunt de funcions serverless, alhora que ofereix una gestió transparent de
les dades. En tercer lloc, per a superar els problemes presents als proveïdors
públics (e.g. temps d'execució limitat) s'ha creat una plataforma que permet
utilitzar el model FaaS en infraestructures privades. A més, aquesta
plataforma pot ser desplegada automàticament en múltiples proveïdors
públics en núvol. Finalment, per a comprobar i validar les diferents eines i
plataformes dutes a terme, s'han provat diferents casos d'ús amb interès tant
per a la recerca com per a l'empresa.

vii

Resumen

El principal objetivo de esta tesis es ofrecer a los usuarios cientí�cos un modo
de crear y ejecutar aplicaciones sin servidor (i.e. serverless) altamente
paralelas, dirigidas por eventos y orientadas al procesado de datos, tanto en
proveedores en la nube públicos (e.g. AWS) como privados (e.g. OpenNebula,
OpenStack). Para llevar a cabo dicho objetivo, se han desarrollado e
integrado diferentes herramientas que ofrecen una vía para desplegar
aplicaciones de computación de altas prestaciones basadas en contenedores,
que además pueden bene�ciarse de la alta escalabilidad presente en los
entornos serverless. Primero se ha creado una herramienta que permite el
despliegue de cargas de trabajo genéricas en el proveedor público AWS. Esta
herramienta posibilita que se puedan aprovechar las funcionalidades de AWS
Lambda (e.g. alta escalabilidad, computación basada en eventos) para el
despliegue y la integración de aplicaciones computacionalmente intensivas
que usan el modelo de funciones como servicio (FaaS). En segundo lugar se
ha desarrollado un modelo de programación de alto rendimiento para el
procesado de datos y orientado a eventos que permite a los usuarios desplegar
�ujos de trabajo como un conjunto de funciones serverless, a la vez que ofrece
una gestión transparente de los datos. En tercer lugar, para poder superar los
problemas presentes en los proveedores públicos (e.g. tiempo de ejecución
limitado), se ha creado una plataforma que facilita el uso del modelo FaaS en
infraestructuras privadas. Esta plataforma también puede ser desplegada
automáticamente en distintos proveedores públicos de la nube. Finalmente,
para comprobar y validar las diferentes herramientas y plataformas
desarrolladas, se han probado diferentes casos de uso con interés tanto para
investigación como para la empresa.

ix

Contents

Contents xi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives. 5

1.3 Thesis Structure . 6

2 Background 7

2.1 Cloud Computing . 7

2.2 Containers and Container Orchestrators. 9

2.3 Serverless Computing . 11

2.4 Serverless o�erings . 14

2.5 State of the Art . 28

3 Serverless Container-aware Architectures 33

3.1 Generic Architecture. 34

3.2 Framework implementation . 36

3.3 Architecture of SCAR. 38

xi

Contents

3.4 SCAR usage . 41

3.5 On the Lambda function's ephemeral cache . 44

3.6 Study of the AWS Lambda Freeze/Thaw behavior. 47

3.7 Conclusions. 53

4 Event-Driven File-Processing Serverless Programming Model 55

4.1 Highly-scalable HTTP endpoints with API Gateway 58

4.2 S3 �le upload/read triggers Lambda Function . 59

4.3 Data management inside the Lambda Function . 61

4.4 Output �les trigger new Lambda functions . 64

4.5 Job Processing with AWS Batch. 65

4.6 Cost analysis . 67

4.7 Conclusions. 72

5 Open-source Serverless Computing for Data-Processing

Applications 75

5.1 Platform Components . 76

5.2 OSCAR architecture. 80

5.3 Case study: Video Processing Service in On-premises Infrastructure 86

5.4 Conclusions. 93

6 Use cases 95

6.1 Adding support to programming languages and software in AWS Lambda 96

6.2 Massive image processing service . 99

6.3 Video Processing Service in AWS . 104

6.4 Plant classi�cation . 108

6.5 Multi-cloud work�ow for video processing . 109

6.6 Air pollution information service . 112

6.7 Monetizing Private Algorithm Work�ow Executions. 114

6.8 GROMACS in AWS Batch . 117

6.9 Scienti�c di�usion . 118

xii

Contents

7 Conclusions 121

7.1 Summary and Contributions . 121

7.2 Future work . 123

Bibliography 125

Index 145

A SCAR client commands 145

B OSCAR Template 153

Acronyms 159

xiii

Chapter 1

Introduction

Section 1.1 gives the reader the motivation that started the
presented thesis, then section 1.2 presents the main objectives of
the thesis, and �nally section 1.3 summarises the thesis structure.

1.1 Motivation

Over the last years the o�ering made by large enterprises of renting
computing, storage and network capacity on a pay-per-use basis has resulted
in a tremendous revolution that democratized the access to large-scale
enterprise-ready computing infrastructures without large upfront
investments. Indeed, Figure 1.1 shows the results of a survey carried out in
2019 among 786 technical professionals about their adoption of cloud
computing. These professionals ranged from technical executives to managers
and practitioners across a broad cross-section of organizations, where 58% of
the participants where from companies with more than 1,000 employees. The
results indicate that 94% of the companies were using the Cloud [64].

Furthermore, cloud computing has introduced the ability to provide a wide
variety of well-known service models such as Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS).
Elasticity has been the cornerstone functionality of these services, allowing to
provision more resources in order to cope with increased workloads or freeing
resources in order to decrease the cost of such services. To be able to provide
these elasticity capabilities, VMs have played a fundamental role allowing to

1

Chapter 1. Introduction

Figure 1.1: Cloud usage in 2019 among 786 di�erent professionals.

create customized and replicable execution environments, in order to
guarantee successful executions.

The main public cloud computing providers to date, Amazon Web Services
[10], Microsoft Azure [134], and Google Cloud Platform [79], have fostered the
migration of complex application architectures to the public Cloud in order
to take advantage of the pay-per-use cost model. On the other hand, Cloud
Management Platforms such as OpenStack [148] and OpenNebula [145] have
enabled system administrators to create cloud infrastructures on their own
hardware (on-premises).

In parallel, the mainstream adoption of Linux containers, propelled by the
popularity of Docker [52], enabled users to maintain customized execution
environments, in the shape of lightweight Docker images instead of bulky
Virtual Machine Images. This paved the way for the microservices
architectural pattern to rise, in order to decouple complex applications into
several small, independently deployed services that interact via REST
interfaces [55].

Creating distributed applications based on microservices required the ability
to manage a �eet of containers at scale, thus fostering the appearance of
container orchestrators such as Swarm mode in Docker Engine [54], Nomad

2

1.1 Motivation

[92] or Kubernetes [114], and managed services provided by the leading
public cloud providers. Examples of the latter are Amazon ECS [7], Amazon
EKS [8], Azure Container Service [126], and Google Kubernetes Engine [83].
The main drawback with these services is that they are typically oriented to
advanced users, in order to deal with the capacity planning required to deploy
the clusters in advance and optimize the allocation of resources to containers.

Thus, to cope with such issues (e.g. scheduling of resources, management
of containers, etc), serverless computing emerged. Serverless computing is
based on creating application architectures that entirely rely on cloud services
that provide automated resource provisioning on behalf of (and transparent
to) the user. Thus, by not explicitly managing servers, operating systems,
runtimes or applications, developers can focus on the de�nition of the code logic
and the streams of data instead of devoting time to infrastructure provision,
con�guration and scalability.

The SPEC Cloud Group [62] de�nes three key features of serverless cloud
architectures:

� Granular billing: the user is only charged when the application is running.

� Minimal operational logic: the cloud provider is responsible for resource
management and autoscaling.

� Event-driven: short-lived execution of functions in response to events.

Complying with these features, pioneer providers in the serverless area, such
as AWS Lambda [17], introduced large-scale parallelism by allowing functions
(minimal operational logic) to be invoked in response to events (event-driven)
such as uploading a �le to a storage service while o�ering a pay-per-use
model that only charges you by the time that the function is running
(granular billing).

However, the Functions as a Service (FaaS) model that these services impose,
hinders their adoption for the general execution of scienti�c applications. To
adopt the FaaS model, applications need to be redesigned as a set of
event-triggered functions coded in a supported programming language by the
cloud provider, and after all, many applications cannot be easily redesigned
as a set of functions. In fact, the interface between the user and the serverless
platform should not only be based on functions. Instead, serverless providers
should provide the means to allow the users execute generic application
environments in their infrastructures. To this end, containers could provide
users with the ability to run virtually any kind of application without having

3

Chapter 1. Introduction

to introduce changes. Thus, supporting applications de�ned via container
images in a serverless platform would allow the users to: i) easily deploy
applications which may already be packaged as Docker images; ii) use
applications that depend on libraries not available in the runtime
environment of the functions; iii) use programming languages not currently
supported by the serverless provider.

Nevertheless, running containers on public serverless infrastructures is not
the solution for all the restrictions imposed by the public serverless providers.
Limitations such as prede�ned execution time, reduced disk space, or the
restriction to process sensible data in public infrastructures revealed the need
for on-premises FaaS o�erings. However, these on-premises solutions are
mainly focused on the execution of short-lived stateless HTTP-based requests
(similar to the public o�erings), and do not take into account other more
generic applications and long-running jobs. Thus, we identi�ed the need to
support scalable event-driven computing for generic data-processing
applications in on-premises serverless infrastructures. One direct bene�t of
using on-premises infrastructures is that we could tune them to suit our
needs and thus, overcome the strict limitations of the public o�erings.
However this would also imply having to deal again with the con�guration of
the infrastructure resources, taking some steps back in the automatization of
the o�ered services in comparison with the public providers. Thus, a
platform that transparently manages the required resources, that is able to
automatize the application deployment, and in general that facilitates the
usage of the FaaS model in on-premises infrastructures could greatly bene�t
the scienti�c user community.

As summary, the presented challenges that this thesis seeks to address are: 1)
Analyze the viability of executing containers in public serverless
infrastructures. Usually, these closed environments have restricted
functionality that limits the software that can be executed; 2) De�ne a
methodology to allow scienti�c users to create serverless applications in
public infrastructures, to ease the application de�nition, data should be
automatically managed by the platform with no user interaction needed; 3)
Extend the knowledge gathered from tackling the previous challenges to
provide on-premises infrastructures with features similar to the ones present
in public providers. In particular, the resource management and the
con�guration should be automated. Aligned with these research challenges,
the next section proposes the main objectives of this thesis and presents a
summary of the methodology envisaged to achieve such objectives.

4

1.2 Objectives

1.2 Objectives

The main objective of this thesis is to allow scienti�c users to deploy and
execute highly-parallel event-driven �le-processing applications both in public
and in private Cloud infrastructures. Moreover, to ease the application
migration, the data management inside the serverless infrastructures must be
as transparent to the users as possible. To better grasp this objective we
divided it in di�erent milestones that will be tackled sequentially during the
development of this thesis, described as follows:

� Ease the application migration to the public serverless cloud providers
and overcome some of the limitations imposed by such providers.
Limitations such as closed execution environments, �xed execution time,
restricted disk space or the inability to support accelerated computing
hardware, such as GPUs, currently hinder the adoption of these
platforms for scienti�c computing. Allowing the users to easily migrate
their applications to these infrastructures would increase the adoption of
the FaaS paradigm among new users. To this aim, we propose the
development of a tool to allow the users to execute generic applications
packages as container images in public serverless providers.

� O�er the users a model to de�ne highly-parallel event-driven
�le-processing applications. To this aim, we propose a High Throughput
Computing (HTC) [97] programming model that supports the creation
of such applications. This programming model should simplify and
automate the application deployment process and also automatically
manage the data movement throughout the application. Furthermore,
the proposed programming model should be platform-agnostic so it can
be reused in di�erent public and private cloud providers.

� Develop a platform to support on-premises FaaS for general-purpose
�le-processing computing applications. The goal is to facilitate the
adoption of event-driven computation for scienti�c applications that
require processing data �les. To this aim, we propose the development
of tools to self-deploy an scalable integrated platform that can be
accessed by a Graphical User Interface (GUI). Such GUI would allow to
de�ne and manage the complete life cycle of functions that will be
e�ciently triggered upon users uploading �les to speci�ed folders. We
aim to abstract away the details concerning the management of
infrastructure resources, the function scheduling, the function and
storage creation, and specially, the deployment of the platform in

5

Chapter 1. Introduction

di�erent cloud providers. Like in the public o�ering of serverless
services, users should be able to start the function execution by
uploading �les to a prede�ned storage space and after the function
execution, download the generated output �les.

In addition to the previous objectives, another important goal of this thesis is
to share the results with the community of users. Therefore, all the tools
developed during this thesis will be open source and publicly available in
software repositories (e.g. GitHub) to the community.

1.3 Thesis Structure

After the introduction, the remainder of this thesis is structured as follows.
First, chapter 2 describes the related work in the scope of the thesis. Then,
chapter 3 describes the Serverless Container-aware ARchitectures (SCAR)
tool, its architecture, and how the container cache is implemented in the
AWS Lambda environment in order to e�ciently support running generic
application containers in this serverless service. Chapter 4 describes the
programming model proposed to allow the users to de�ne event-driven
�le-processing applications. Next, chapter 5 describes the Open Source
Serverless Computing for Data-Processing Applications (OSCAR) platform
created to support the event-driven programming model of serverless
applications for on-premises cloud infrastructures. Chapter 6 describes
di�erent use cases for the developed tools and platforms in order to evaluate
their bene�ts and limitations. Finally, chapter 7 summarizes the main
contributions of this thesis and presents future works.

6

Chapter 2

Background

This chapter analyzes the state of the art related with serverless
computing. To this aim, sections 2.1, and 2.2, show the evolution
of technologies, work methodologies and programming models until
the arrival of serverless technologies. Then, section 2.3 introduces
serverless computing, and analyzes the public and open-source
alternatives available nowadays to execute Functions as a Service
(FaaS).

In the past couple of years, the term `serverless' has been used to describe
multiple diverse services and platforms that not always presented the intrinsic
characteristics expected of the serverless paradigm. Therefore, to be able to
di�erentiate the characteristics that de�ne a serverless platform and to get a
clear understanding of all the concepts behind the serverless paradigm, �rst we
are going to brie�y go through the services and models that laid the foundations
and paved the way to the development of serverless technologies.

2.1 Cloud Computing

Almost �fteen years ago the term `Cloud Computing' started to be used by
companies like Amazon and Google to describe the paradigm in which people
stored �les, accessed computer power and executed software in the web
rather than in their computers. However, it did not exist a formal de�nition
of `Cloud Computing' until 2011, when the National Institute of Standards
and Technology (NIST) published a document [119] describing it:

7

Chapter 2. Background

�Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
con�gurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management e�ort or
service provider interaction.�

In addition to the de�nition of cloud computing, the NIST document also
states that �the cloud model is composed of �ve essential characteristics, three
service models, and four deployment models�. The essential characteristics
intrinsic to all cloud services are: on-demand self-service, broad network access,
resource pooling, rapid elasticity, and measured service. The four deployment
models that allow us to di�erentiate who manages the infrastructures are:
private cloud, community cloud, public cloud, and hybrid cloud. Finally, to
be able to separate between di�erent levels of responsibility in infrastructure
management there exist the service models. The NIST originally identi�es
three service models: Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS), although in the latest years,
new service paradigms have appeared, such as Container as a Service (CaaS),
Backend as a Service (BaaS), and Functions as a Service (FaaS). To better
understand the di�erences between these service models, a brief description of
each one is presented in the following paragraphs.

The most basic business model o�ered by cloud computing providers consists
in renting servers, storage and network so that users can make use of these
resources as they require. This service model is called Infrastructure as a
Service (IaaS) and some well-known public services in this �eld are AWS
Elastic Compute Cloud (EC2) [14], Azure IaaS [129], and Google Compute
Engine (GCE) [82]. On-premises Cloud Management Platforms (CMPs)
include OpenStack [148] and OpenNebula [145]. Managing these
infrastructures is far from being a trivial task and requires dealing with
operating systems, storage, and network con�gurations. Di�erent open-source
tools to ease the con�guration of virtual infrastructures in multiple cloud
providers can be found in the literature for example the Infrastructure
Manager (IM) [38], Cloudify [45] or Occopus [141].

However, even though these tools exist, not all the users have the necessary
knowledge or time to create and maintain their virtual infrastructures, and
this is why the Platform as a Service (PaaS) model appeared. The PaaS
model o�ers the users a managed environment where their applications can

8

2.2 Containers and Container Orchestrators

be deployed without dealing with infrastructure maintenance or resource
provisioning. Some of the most known PaaS services are AWS Elastic
Beanstalk [15], Google App Engine [77], Heroku [96], or CloudFoundry [44].

The last of the three service models presented in the NIST document is also the
most used nowadays by the end user: the Software as a Service (SaaS) model.
This model o�ers an already deployed application and the user only has to
con�gure some simple things (e.g. choose the email address or set some �lter
rules). Among the most known SaaS providers in this �eld are Google with G
Suite [76], Microsoft with O�ce 365 [136] or Adobe with Creative Cloud [1].
Despite the fact that the SaaS model is the easiest to use, it is also the most
restrictive one regarding the applications used because the user is con�ned to
the application ecosystem o�ered by the provider.

2.2 Containers and Container Orchestrators

In the last few years and thanks to the improvements made in lightweight
virtualization, the container technology has become a strong player in the
�elds of application building, distribution, maintenance, and deployment.
Thanks to the popularization of tools like Docker [52], LXD [41], and
OpenVZ [184], container technology has been adopted like an standard for
application development, and delivery [122].

In addition, the microservices architecture [162], where an application is not
a monolithic piece of code but instead is divided into smaller services, has
also experimented a signi�cant growth in users thanks to the container
technology. Among the main characteristics of the services provided by
microservice architectures are: highly maintainable and testable, loosely
coupled, and independently deployable [163]. Thus, microservices
architectures allows companies to increase their agility, i.e. the application
delivery velocity, that such companies have to meet in order to cope with the
market changes and to deliver new products, services, and features. Figure
2.1 shows a typical evolution of a monolithic system to a complete
containerized cloud of microservices. The �rst step usually implies
containerizing the complete application. From there, if new features are
added or refactorized, those features can be externalized as microservices
that can be deployed in the same infrastructure or in the Cloud. If the
refactorization continues or new features are added as indicated, the
application can eventually become a containerized microservices architecture.

9

Chapter 2. Background

Figure 2.1: Evolution of application architecture. From monolithic on-premises to public
containerized microservices1

However dealing with a high number of microservices, and thus containers,
comes with a cost. The drawbacks of such architectures are, among others,
service discovery, auto scaling, load balancing, and in general service
orchestration [162]. Thus, container orchestrators appeared to ease the
management of such architectures. The main open source container
orchestrators available nowadays are:

� Kubernetes [114], an open-source system for orchestrating Docker
containers originally developed by Google, that thanks to its reliability,
auto-scaling, and load-balancing capabilities, it has become the de facto
standard for container orchestration on both public and private clouds.
Kubernetes has been successfully used to handle numerous use cases
and workloads for many di�erent organizations [112] and has gained so
much momentum that the most relevant public providers currently o�er
speci�c Kubernetes-based services. This is the case of Amazon Elastic
Kubernetes Service (EKS) [8], Microsoft Azure Kubernetes Service
(AKS) [133] or Google Kubernetes Engine (GKE) [83].

� Docker Swarm [54], developed by Docker and included with the Docker
engine distributions, it o�ers the expected orchestrator services like load
balancing, scaling, and service discovery. Docker Swarm is managed by
the same client than the docker engine which provides a direct access
point to container orchestration for users of the docker client.

� Marathon [175], an open-source framework for container orchestration
based on Apache Mesos [176] aimed at executing long-running
applications or services. Marathon has a GUI and also o�ers additional
features such as service metrics, event subscriptions and health checks
to keep up with the status of the deployed applications.

� Nomad [92], the open-source solution for container orchestration o�ered
by HashiCorp. In addition to Docker containers, Nomad o�ers support

1Based on the image from: https://docs.microsoft.com/en-us/azure/service-fabric/

service-fabric-overview-microservices/microservices-migration.png

10

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices/microservices-migration.png
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices/microservices-migration.png

2.3 Serverless Computing

to virtual machines and binary executions, and can also be connected to
other HashiCorp services such as Consul [91], for service discovery, and
Vault [93], for storing and encrypting sensitive data.

Most of the public service providers o�er container orchestration through
managed Kubernetes services. However, some providers still o�er other
container orchestration solutions such as:

� Amazon Elastic Container Service (ECS) [7], a service o�ered by AWS
to manage containers on the Cloud. This service runs the containers in
the Amazon EC2 infrastructure, in order to bene�t from all the features
o�ered like elastic load balancing, service logging, and monitoring.

� Azure Service Fabric [131], the container orchestration platform
developed by Microsoft for managing container-based microservices.
This service not only provides container support, it also o�ers a Native
Programming Model [132] focused on simplifying the design and
development of microservices in their orchestration platform. Common
orchestrator features like service discovery, health checks, and load
balancing are automatically provided by the Service Fabric Platform.

2.3 Serverless Computing

With the popularization of mobile phone and web applications, developers
realized that there was a real need to separate the user layer from the
backend layer of the applications. With this in mind, the Backend as a
Service (BaaS) model appeared. The concept behind the BaaS model is the
same as the SaaS model, but with the application's developer as end user.
Some services o�ered by public providers of this model are Google Firebase
[75], AWS Amplify [12] or Azure Mobile [130]. The providers usually o�er a
set of Application Programming Interfaces (APIs) and Software Development
Kits (SDKs) to the developers that implement features like social networking,
location, and noti�cations and that can be used to connect the applications
to cloud services like storage or user authentication.

Moreover, and continuing with the eagerness for executing lighter tasks in the
cloud (in order to save time and money), the Functions as a Service (FaaS)
model was created. In this service model developers focus on the bare minimum
to develop cloud services, that is de�ning the behaviour of a piece of code (i.e.
the function), while the service provider takes care of provisioning, scaling,

11

Chapter 2. Background

logging, etc. The most straightforward bene�ts from using this model are:
delegation of the infrastructure management, high scalability, and pay-per-
use (i.e. you only pay when your code is executed). However, this model
also imposes some restrictions: the programming languages available to code
your function are limited by the provider; it is a stateless service, meaning
that the application state needs to be outsourced to external services, such
as object storage services (e.g. Amazon S3) for �les and managed databases
(e.g. Amazon DynamoDB) for other kind of data; and �nally, it is a system
designed for short jobs, since long running jobs are not supported due to limited
execution times.

Over the last �ve years, several FaaS providers that comply with the presented
features have arisen: AWS Lambda [17], o�ered by Amazon Web Services,
Google Cloud Functions [78], Microsoft Azure Functions [135], and IBM Cloud
Functions [100] that uses the open-source Apache OpenWhisk [177]. These
services allow the users to take advantage of the improvements o�ered by this
new computing model.

After presenting both BaaS and FaaS models, we can introduce a de�nition
for serverless computing. The Cloud Native Computing Foundation (CNCF)
[46] de�nes in its whitepaper [47] the concept of serverless computing as:

Serverless computing refers to the concept of building and
running applications that do not require server management. It
describes a �ner-grained deployment model where applications,
bundled as one or more functions, are uploaded to a platform
and then executed, scaled, and billed in response to the exact
demand needed at the moment.

Although the terms FaaS and serverless are usually used interchangeably, the
CNCF document also states that a serverless platform may provide one or both
of the BaaS or FaaS services. Thus, serverless is used to generally speak about
applications relying on managed services while FaaS refers to event-driven
execution of functions on the computing infrastructure entirely managed by
the cloud provider.

The serverless computing model aims to revolutionize the design and
development of modern scalable applications, allowing developers to run
ephemeral, event-driven code without provisioning or managing servers. Its
evolution is reinforced by the continuous advances in container-based

12

2.3 Serverless Computing

technology together with the consolidation of cloud computing platforms.
This new computational paradigm is experimenting an industry momentum
around the cloud event abstraction [67], and as can be seen in Figure 2.2,
serverless computing in combination with stream processing are the cloud
services that more growth have experimented (a 50%) from 2018 to 2019. A
further analysis and review of the serverless services is presented in the works
of McGrath et al. [118] and Gannon [69], where they discuss the recent state
of the art in this �eld and outline the potential of cloud event-based services.

Figure 2.2: Cloud services usage in 2019 among 786 di�erent IT professionals.

Bringing the bene�ts of event-driven serverless computing, especially
concerning FaaS, to on-premises environments has paved the way for multiple
open-source frameworks to appear. Some examples are OpenFaaS [143],
Knative [84], Kubeless [37], Fission [156], Nuclio [138], FnProject [65], Ri�
[155], Funktion [68], OpenWhisk [177], and Qinling [149]. These platforms
support the de�nition and execution of functions in response to events and
they typically vary in the degree of support to multiple source of events, their
support to programming languages and the usage of a certain container
orchestration platform, such as Kubernetes.

As a summary of all the service models presented, Figure 2.3 shows the user
and vendor responsibility levels depending on the service model. Remember
that the BaaS service has the same responsibility levels that the SaaS model

13

Chapter 2. Background

but it is focused on the application developer and not the end user. Also
remember that the serverless computing is composed by the last two columns
(FaaS and BaaS).

Vendor Manages You Manage

Hardware

Virtualization

OS

Runtime

Scaling

Functions

Configuration

Software as a
Service (SaaS)

Hardware

Virtualization

OS

Runtime

Scaling

Functions

Configuration

Function as a
Service (FaaS)

Hardware

Virtualization

OS

Runtime

Scaling

Functions

Configuration

Platform as a
Service (PaaS)

Hardware

Virtualization

OS

Runtime

Scaling

Functions

Configuration

Container as a
Service (CaaS)

Hardware

Virtualization

OS

Runtime

Scaling

Functions

Configuration

Infrastructure as
a Service (IaaS)

Hardware

Virtualization

OS

Runtime

Scaling

Functions

Configuration

On-Premises

Figure 2.3: Comparison between di�erent service models2

2.4 Serverless o�erings

The following section summarises the serverless computing o�erings by the
most prominent cloud providers together with the existing open-source
frameworks to achieve serverless computing in on-premises infrastructures.
This section aims at helping the reader to better understand the design
choices made when developing the frameworks presented in the subsequent
chapters.

2.4.1 Serverless compute engines for containers

Before diving in the more speci�c FaaS tools and platforms, it is worth
noting that the last couple of years have witnessed the appearance of
serverless services oriented to run generic container applications in the Cloud.
Although the idea of launching managed container services in the Cloud is
not new (as we saw in section 2.2 with the CaaS platforms), these serverless
container infrastructures are a step further in the abstraction of the
management of container infrastructures. The idea behind this service is to
allow the users to run containers on the Cloud while delegating server
con�guration and management to the providers. Some of the serverless

2Based on visualization from:
https://medium.com/@pkerrison/pizza-as-a-service-2-0-5085cd4c365e

14

https://medium.com/@pkerrison/pizza-as-a-service-2-0-5085cd4c365e

2.4 Serverless o�erings

container services available nowadays are: AWS Fargate [16], Google Cloud
Run [80], and Azure Container Instances [125].

AWS Fargate is a service o�ered by Amazon that runs on top of the Amazon
ECS platform (analyzed in section 2.2) and allows users to run containers
without having to manage servers and their con�gurations. When the user
selects the Fargate launch type in Amazon ECS, the only con�guration required
to launch the container is to specify the container image to use, the Central
processing unit (CPU) and memory required, the networking policies and the
access roles. There is no need to provision con�gure or scale the resources
where the containers are running.

Google Cloud Run is the serverless container service o�ered by Google and it
allows the users to run Docker based applications that are automatically
launched when an HTTP request is received. Google Cloud Run uses the
Knative platform [84] (which is analyzed in section 2.4.3) and like other
serverless platforms it automatically manages the provisioning and
con�guring of the underlying servers. However Google Cloud Run imposes
several restrictions for running a container [81]. Among others, the
application inside the container should be stateless, the container should be
listening for requests in the port 8080, the executables inside the container
image must be compiled for Linux 64-bit, and the container must be up and
running in less than four minutes.

Azure Container Instances is the solution presented by Microsoft to the
serverless container platform ecosystem. The main di�erence with its
competitors is that Azure Container Instances is focused on providing a fast
and easy way to deploy isolated containers on the Azure Cloud, meaning that
typical container orchestration features like auto scaling or service discovery
are not covered by this platform. On the other hand, the main bene�ts of
this platform are that it accepts Windows and Linux containers, it provides
persistent storage through Azure Files [123], and it allows to deploy container
instances that use Graphics processing unit (GPU) resources [124].

2.4.2 Public FaaS Providers

This section compares the most relevant public FaaS services to date: AWS
Lambda [17], Azure Functions [135], Google Cloud Functions [78], IBM Cloud
Functions [100], and Alibaba Cloud Function Compute [3].

First, Table 2.1 summarizes the di�erent features o�ered by each service.
Apart from the set of programming languages supported by each service,

15

Chapter 2. Background

notice that AWS Lambda allows to de�ne custom runtimes, thus providing
support to virtually any runtime; the drawback is that the user has to de�ne
the runtime and verify that the deployed libraries are compatible with the
execution environment. IBM Cloud functions allows to de�ne Docker
containers as functions, which in turn would allow the users to execute any
language they would need inside the container.

Regarding RAM memory size, AWS Lambda, IBM Cloud Functions and
Alibaba Cloud Function Compute allow the users to set the memory available
for each function in small increments, while Azure Functions assigns the
memory automatically based on resource consumption and Google Cloud
Functions o�ers a �xed set of �ve di�erent con�gurations for the
memory/CPU con�guration. All the providers (except Google) transparently
assign CPU resources based on memory allocation. It is important to point
out that in AWS Lambda you get one full vCPU at 1,792MB [18], so when
using memory con�gurations over 1,792MB, it is cost wise to deploy
functions that can take advantage of the AWS Lambda multi-threading
capabilities [166].

16

2.4 Serverless o�erings

A
W
S

A
z
u
r
e

G
o
o
g
le

IB
M

A
li
b
a
b
a
C
lo
u
d

S
e
r
v
ic
e

n
a
m
e

L
a
m
b
d
a

F
u
n
ct
io
n
s

(C
o
n
su
m
p
ti
o
n
P
la
n
,

ru
n
ti
m
e
2
.x
)

C
lo
u
d
F
u
n
ct
io
n
s

C
lo
u
d
F
u
n
ct
io
n
s

F
u
n
ct
io
n
C
o
m
p
u
te

L
a
n
g
u
a
g
e
s

J
av
a
S
cr
ip
t

(N
o
d
e
8
,
1
0
)

J
av
a
(8
)

C
#

(.
N
E
T
C
o
re

1
.0
y
2
.1
)

P
y
th
o
n

(2
.7
,
3
.6
,
3
.7
)

G
o
(1
.x
)

R
u
b
y
(2
.5
)

C
u
st
o
m

R
u
n
ti
m
es

J
av
a
S
cr
ip
t

(N
o
d
e
8
,
1
0
)

J
av
a
(8
)

C
#

&
F
#

(.
N
E
T
C
o
re

2
.2
)

P
y
th
o
n
(3
.6
)

J
av
a
S
cr
ip
t

(N
o
d
e
8
,
1
0
)

P
y
th
o
n
(3
.7
)

G
o
(1
.1
1
)

J
av
a
S
cr
ip
t

(N
o
d
e
8
,
1
0
)

J
av
a
(8
)

P
y
th
o
n

(2
.7
,
3
.6
,
3
.7
)

G
o
(1
.1
1
)

R
u
b
y
(2
.5
)

S
w
if
t
(4
.2
)

.N
E
T
C
o
re

2
.2

P
H
P
(7
.3
)

D
o
ck
er

J
av
a
S
cr
ip
t

(N
o
d
e
6
,
8
)

J
av
a
(8
)

C
#

(.
N
E
T
C
o
re

2
.1
)

P
y
th
o
n

(2
.7
,
3
.6
)

P
H
P
(7
.2
)

M
e
m
o
r
y

F
ro
m

1
2
8
M
B

to
3
,0
0
8
M
B

A
u
to
m
a
ti
c.

F
ro
m

1
2
8
M
B
to

1
,5
3
6
M
B

1
2
8
M
B
/
2
5
6
M
B
/

5
1
2
M
B
/
1
,0
2
4
M
B
/

2
,0
4
8
M
B

F
ro
m

1
2
8
M
B

to
2
,0
4
8
M
B

F
ro
m

1
2
8
M
B

to
1
,5
3
6
M
B

C
P
U

A
u
to
m
a
ti
c.

B
a
se
d
o
n
R
A
M
.

A
t
1
,7
9
2
M
B
o
f

R
A
M

1
v
C
P
U

A
u
to
m
a
ti
c.

U
p
to

1
v
C
P
U

B
a
se
d
o
n

R
A
M
:
2
0
0
M
H
z/

4
0
0
M
H
z/
8
0
0
M
H
z/

1
.4
G
H
z/
2
.4
G
H
z

A
u
to
m
a
ti
c

A
u
to
m
a
ti
c

D
is
k
sp
a
c
e

fo
r
fu
n
c
ti
o
n

5
1
2
M
B

n
o
n
-p
er
si
st
en
t

U
se
s
A
zu
re

F
il
es
.

U
p
to

5
T
B

tm
p
fs
v
o
lu
m
e,

co
n
su
m
es

fu
n
ct
io
n

m
em

o
ry

N
o
in
fo
rm

a
ti
o
n

5
1
2
M
B

n
o
n
-p
er
si
st
en
t

M
a
x
.
c
o
d
e

si
z
e

5
0
M
B
zi
p
p
ed

2
5
0
M
B
u
n
zi
p
p
ed

N
o
n
e,
y
o
u

p
ay

st
o
ra
g
e
co
st

1
0
0
M
B
zi
p
p
ed

5
0
0
M
B
u
n
zi
p
p
ed

4
8
M
B

5
0
M
B
zi
p
p
ed

5
0
0
M
B
u
n
zi
p
p
ed

M
a
x
.
e
x
e
c
u
ti
o
n

ti
m
e

1
5
m
in

1
0
m
in

9
m
in

1
0
m
in

1
0
m
in

C
o
n
c
u
r
r
e
n
t

fu
n
c
ti
o
n
s

1
,0
0
0

p
er

re
g
io
n

(c
a
n
b
e

in
cr
ea
se
d
)

N
o
li
m
it
s.

D
ep
en
d
s
o
n

tr
ig
g
er
s.

N
o
li
m
it
fo
r

H
T
T
P
ex
ec
u
ti
o
n
.

O
th
er

1
,0
0
0

p
er

p
ro
je
ct
.

1
,0
0
0

p
er

n
a
m
es
p
a
ce

(c
a
n
b
e

in
cr
ea
se
d
)

1
0
0

p
er

re
g
io
n

17

Chapter 2. Background

B
u
il
t-
in

tr
ig
g
e
r
s

K
in
es
is
a
n
d

K
in
es
is
D
a
ta

F
ir
eh
o
se

D
y
n
a
m
o
D
B

S
Q
S

E
L
B

C
o
g
n
it
o

L
ex

A
le
x
a

A
P
I
G
a
te
w
ay

C
lo
u
d
F
ro
n
t

(L
a
m
b
d
a
@
E
d
g
e)

S
3

S
N
S

S
E
S

C
lo
u
d
F
o
rm

a
ti
o
n

C
lo
u
d
W
a
tc
h

(L
o
g
s
&
E
v
en
ts
)

C
o
d
eC

o
m
m
it

A
W
S
C
o
n
�
g

C
o
sm

o
s
D
B

E
v
en
t
H
u
b
s

E
v
en
t
G
ri
d

N
o
ti
�
ca
ti
o
n
H
u
b
s

S
er
v
ic
e
B
u
s

(q
u
eu
es

a
n
d
to
p
ic
s)

S
to
ra
g
e

(b
lo
b
,
q
u
eu
es
,

a
n
d
ta
b
le
s)

O
n
-p
re
m
is
es

(u
si
n
g
S
er
v
ic
e
B
u
s)

T
w
il
io

(S
M
S
m
es
sa
g
es
)

H
T
T
P
(S
)

C
lo
u
d
P
u
b
/
su
b

C
lo
u
d
S
to
ra
g
e

S
ta
ck
d
ri
v
er

L
o
g
g
in
g

F
ir
eb
a
se

A
la
rm

s
C
lo
u
d
a
n
t
d
a
ta
b
a
se

M
es
sa
g
g
e
H
u
b

M
o
b
il
e
p
u
sh

G
it
h
u
b

C
u
st
o
m

(h
o
o
k
s,
p
o
ll
in
g
,

co
n
n
ec
ti
o
n
s)

O
b
je
ct

S
to
ra
g
e

H
T
T
P

T
im
e

C
D
N

M
es
sa
g
e

L
o
g

A
P
I
G
a
te
w
ay

D
a
ta
h
u
b

IO
T

T
a
b
le

2
.1
:
C
o
n
�
g
u
ra
ti
o
n
o
p
ti
o
n
s
o
�
er
ed

b
y
p
u
b
li
c
F
a
a
S
p
ro
v
id
er
s,
a
s
o
f
O
ct
o
b
er

2
0
1
9
.

18

2.4 Serverless o�erings

Concerning disk storage space, FaaS systems are stateless by de�nition, i.e.,
the functions should be de�ned with no a�nity to the underlying
infrastructure. Therefore, no �les should be stored between function
invocations of the same function instance. Nonetheless, most of the services
o�er temporary storage space to allow the user process �les during the
function execution. An exception to the temporary storage policies is Azure
Functions because it automatically mounts a drive in your function that
connects to the Azure Files service [128], allowing the users to take advantage
of their storage quota (and charging them for it).

Another limit to take into account when creating functions is the maximum
code size. This limit restricts the size of the code, including libraries and
dependencies that comprises the function deployment package. Whatever
library, or �le not present in this package has to be dynamically loaded
during the execution of the function, thus prolonging the function's execution
time. On the other hand, the larger this limit is, the longer it usually takes to
launch a function for the �rst time, because the providers have to gather all
the uploaded resources to create the environment where the function is going
to be executed. Depending on the provider, the maximum code size can vary
from 48MB to 500MB with the exception of Azure Functions that uses Azure
Files and can storage up to 5TB (the Azure Files service is the only service
that charges you for the storage of the function's code).

Regarding the maximum execution time, only AWS Lambda allows to
execute a function more than 10 minutes (up to 15 min). The remaining
providers allow to set the maximum execution time around 10 minutes, which
con�rms the statement that FaaS services are designed to process short-lived
requests. Concerning concurrency (that is the number of parallel executions
that happens at a speci�c time) we see that AWS Lambda limits the total
concurrent executions within a given region to 1,000 instances. Likewise,
Google Cloud Functions, IBM Cloud Functions and Alibaba Cloud Function
Compute have a limit of 1,000, 1,000, and 100 function instances respectively,
with the exception that Google Cloud functions presents no limits when
invoking a function using a synchronous HTTP request. Regarding
concurrent executions for Azure Functions, although there is no direct limit
established, the number of concurrent function executions is restricted based
on the number of cores of the underlying Virtual Machine (VM).

To �nish, a list of built-in triggers is presented. AWS o�ers the longest
prede�ned list of services integrated with its Lambda service (e.g. S3,
DynamoDB, and Kinesis for data storage; Cognito for user sign-up, sign-in,
and access control; Lex for speech recognition, etc), while others like Google

19

Chapter 2. Background

or IBM o�er the possibility to de�ne custom triggers based on HTTP(S)
requests or webhooks. In addition, AWS o�ers Amazon EventBridge [9], a
serverless event bus that allow users to connect any custom or SaaS
application that generates events to other AWS tools like AWS Lambda.
Similarly, Microsoft o�ers the Event Hubs service [127], which can also accept
streams of data from several multiple sources and redirect it to other Azure
services like Azure Functions.

Table 2.2, shows a comparison of the di�erent pricing models available between
the �ve selected public providers. The most important di�erence can be seen in
the pricing model o�ered by Google Cloud Functions: they charge for memory
and CPU separately, while all the other providers only charge per allocated
memory and assign CPU shares correlated with the reserved memory. Another
di�erence to remark is that IBM Cloud Functions does not charge per function
invocation while all the others providers do.

20

2.4 Serverless o�erings

A
W
S

A
z
u
r
e

G
o
o
g
le

IB
M

A
li
b
a
b
a
C
lo
u
d

S
e
r
v
ic
e

n
a
m
e

L
a
m
b
d
a

F
u
n
ct
io
n
s

(C
o
n
su
m
p
ti
o
n
P
la
n
,

ru
n
ti
m
e
2
.x
)

C
lo
u
d
F
u
n
ct
io
n
s

C
lo
u
d
F
u
n
ct
io
n
s

F
u
n
ct
io
n
C
o
m
p
u
te

A
v
a
il
a
b
il
it
y
S
L
A

9
9
.9
5
%

9
9
.9
5
%

9
9
.5
%

9
9
.9
%

N
/
A

B
il
li
n
g
in
c
r
e
m
e
n
ts

fo
r
m
e
m
o
r
y

6
4
M
B

1
2
8
M
B

5
si
ze
s

1
M
B

6
4
M
B

M
in
.
b
il
le
d

e
x
e
c
u
ti
o
n
ti
m
e

1
0
0
m
s

1
0
0
m
s

1
0
0
m
s

1
0
0
m
s

1
0
0
m
s

B
il
li
n
g
in
c
r
e
m
e
n
ts

fo
r
e
x
e
c
u
ti
o
n
ti
m
e

1
0
0
m
s

1
m
s

1
0
0
m
s

1
0
0
m
s

1
0
0
m
s

F
u
n
c
ti
o
n
in
v
o
c
a
ti
o
n
s

(p
e
r
1
M
)

$
0
.2
0

$
0
.2
0

$
0
.4
0

F
re
e

$
0
.2
0

D
u
r
a
ti
o
n
/
M
e
m
o
r
y

(p
e
r
1
M

G
B
-s
)

$
1
6
.6
7

$
1
6
.6
7

$
2
.5
0

$
1
7
.0
0

$
1
6
.6
8

D
u
r
a
ti
o
n
/
C
P
U

(p
e
r
1
M

G
H
z
-s
)

N
/
A

N
/
A

$
1
0
.0
0

N
/
A

N
/
A

N
e
tw
o
r
k
e
g
r
e
ss

(p
e
r
G
B
)

$
0
.0
9

$
0
.0
8
7

$
0
.1
2

$
0
.0
9

D
ep
en
d
s
o
n

re
g
io
n

(0
.0
7
−
0
.1
3
)

F
r
e
e
in
v
o
c
a
ti
o
n
s

1
M

1
M

2
M

F
re
e

1
M

F
r
e
e
M
e
m
o
r
y

(p
e
r
m
o
n
th
)

4
0
0
,0
0
0
G
B
-s

4
0
0
,0
0
0
G
B
-s

4
0
0
,0
0
0
G
B
-s

4
0
0
,0
0
0
G
B
-s

4
0
0
,0
0
0
G
B
-s

F
r
e
e
C
P
U

(p
e
r
m
o
n
th
)

N
/
A

N
/
A

2
0
0
,0
0
0
G
H
z-
s

N
/
A

N
/
A

F
r
e
e
n
e
tw
o
r
k

e
g
r
e
ss

(p
e
r
m
o
n
th
)

F
re
e
in

th
e

sa
m
e
re
g
io
n
.

P
a
rt
o
f
ov
er
a
ll
E
C
2

fr
ee

ti
er

o
f
1
G
B

P
a
rt
o
f
ov
er
a
ll

fr
ee

ti
er

o
f
5
G
B

F
re
e
in

th
e

sa
m
e
re
g
io
n
.

5
G
B
to

o
th
er
s

N
o
n
e
n
o
te
d
fo
r

cl
o
u
d
fu
n
ct
io
n
s

N
/
A

T
a
b
le

2
.2
:
P
ri
ci
n
g
su
m
m
a
ry

fo
r
p
u
b
li
c
F
a
a
S
p
ro
v
id
er
,
a
s
o
f
S
ep
te
m
b
er

2
0
1
9
.

21

Chapter 2. Background

AWS Azure Google IBM Alibaba Cloud

Service
name

Lambda
Functions

(Consumption Plan,
runtime 2.x)

Cloud Functions Cloud Functions Function Compute

512MB
3M requests

1s
$25.60 $24.60 $28.95 $25.50 $25.61

128MB
30M requests

200ms
$18.50 $18 $25.86 $12.75 $18.50

128MB
25M requests

200ms

512MB
5M requests

500ms
$79.42 $76.5 $88.92 $74.38 $79.44

1,024MB
2.5M requests

1s

Table 2.3: Prices for di�erent function con�gurations. Network storage fees, and free tier
not included. Data valid as of September 2019.

To show a quick comparison of the pricing fees with some examples, Table
2.3 presents the calculated costs for di�erent function con�gurations. The last
price row corresponds to a combination of three functions, which represents an
application composed by di�erent functions that communicate asynchronously
among them. The calculations have been done without taking into account
the free tier o�ered for each provider. In addition, no network or storage fees
have been calculated. As a remark of this table, we can see that since IBM
Cloud functions does not charge for the function invocations, the IBM service
becomes cheaper than the other options as the number of invocation grows. On
the other hand Google Cloud Functions, which has an invocation price twice as
expensive as the other providers ($0.4 instead of $0.2), increases considerably
its service cost when dealing with a high number of invocations (e.g. 30 million
invocations cost $12 instead of $6).

22

2.4 Serverless o�erings

2.4.3 Open-Source FaaS Platforms

Open-source FaaS platforms appeared as an alternative to the public providers
for users that needed more control over their FaaS solutions because these
platforms can be adapted or extended to suit the users' needs. Furthermore,
these alternatives do not restrict the users to private cloud deployments, since
these open-source systems are based on container orchestrators that are also
available in public providers (as is the case of Kubernetes). Therefore, these
platforms can be deployed in either public or private clouds. However, the
main drawback that arises when dealing with these open-source solutions is the
added complexity to their management, since the deployment and operation
of the platform needs to be performed by the user or system administrator. To
provide additional insights in this area, the following paragraphs analyze the
most relevant open-source FaaS platforms to date:

OpenFaaS

OpenFaas [143] is a FaaS platform based on Docker containers led by Alex
Ellis, with contributions by the community, which supports the following
container orchestrators: Kubernetes, Docker Swarm and OpenShift. It allows
the users to run any code or binary application inside Docker images and
o�ers autoscaling capabilities and metrics thanks to their API Gateway
service and Prometheus respectively.

It allows to do HTTP requests to any Docker de�ned functions via a tiny HTTP
server deployed inside each container (i.e. the function watchdog). Through
the watchdog, the HTTP request received by the function is forwarded to the
standard input of the container. When the function �nishes, the standard
output generated by the container execution is transformed into an HTTP
response and returned back.

The default supported languages are NodeJS, Co�eScript, Go, Python, Java,
.NET Core, R, and shell script, but as stated previously the users can extend
the supported language by using a Docker template provided when de�ning
a new function. Regarding the supported event sources, OpenFaaS provides
the following connectors: HTTP requests, webhooks, the Kubernetes' cron
jobs, and the OpenFaas Command-Line Interface (CLI). Also, via a provided
event connector for pub/sub topics and message queues, OpenFaaS supports:
Apache Kafka, AWS SQS, AWS SNS, AWS S3, Minio, CloudEvents, IFTTT,
VMWare vCenter, Redis pub/sub, and RabbitMQ. Moreover, you can extend
the event connector to other services by using the connector SDK [144].

23

Chapter 2. Background

Knative

Knative [84] is a Kubernetes-based platform, developed and maintained by
Google, that allows to deploy and manage serverless workloads. Through a
set of building blocks on top of Kubernetes, Knative allows to create container
based functions taking advantage of all the functionalities provided by the
underlying Kubernetes system.

Knative is comprised by two main components, eventing and serving.
Eventing allows to manage and deliver events, while serving provides a
request-driven compute that can scale to zero and through Istio [104] create
tra�c rules to balance loads across the functions. To build and deploy
functions in Kubernetes, Knative uses Tekton Pipelines [173]. Tekton
Pipelines allows the users to de�ne tasks, to create Kubernetes jobs, and
pipelines, to connect tasks, to create Continuous Integration (CI)/Continuous
Delivery (CD) style pipelines, thus, for example, supporting the build of a
Docker image from the source code available in GitHub.

Thanks to collection of loosely coupled components that can be used
independently or together, Knative is used as a backend system for other
open-source FaaS platforms (e.g. Ri� [155]) or others are interoperable with
it (e.g. OpenFaaS).

Kubeless

Kubeless [37] is a Kubernetes-native serverless framework built using the
Kubernetes' Custom Resource De�nitions (CRDs). All its internal
functionality is enabled though Kubernetes, and among other features it
o�ers function auto-scaling, through Kubernetes' Horizontal Pod Autoscaling
feature [109], and monitoring backed by Prometheus [158].

The default event sources supported by Kubeless are: HTTP requests,
Kubernetes' CronJob, Kafka, and NATS, but they can be extended using
CRDs. The supported languages to de�ne functions are: Python, NodeJS,
Ruby, PHP, Go, .NET, Ballerina, Java, and any custom runtime that the user
wants to add. Among other features, Kubeless o�ers a CLI compliant with
AWS Lambda and it has been integrated in the Serverless Framework [168].

24

2.4 Serverless o�erings

Fission

Fission [156] is a serverless platform for Kubernetes maintained by Platform9
[157]. Fission abstracts the Docker and Kubernetes management and o�ers
the developers di�erent environments to deploy their code. Those
environments currently support Python, Go, .NET, NodeJS, Perl, PHP,
Ruby, and any Linux executable (both binaries and scripts). In addition,
users can extend the existing environments or create new ones by de�ning
additional container images.

To provide a fast initialization of the functions, Fission keeps a pool of
preloaded containers. Then, when a function is invoked for the �rst time, one
of the `warm' containers is launched. This feature allows Fission to o�er
cold-start latencies around 100ms. The autoscaling capability is based on
CPU usage, where the user can set a target CPU at which autoscaling will be
triggered. In the future its planned to allow the users to set custom metrics
for scaling the functions.

Currently Fission supports the following triggers to launch functions: HTTP
requests, alarms, and message queues. Other important features o�ered by
Fission are: support to function work�ows, live-reload for functions in test
environments, replay of function invocations, and fully automated canary
deployments.

Nuclio

Nuclio [138] is a FaaS platform oriented at real-time and data-driven
applications. Nuclio claims to be able to process up to 400,000
invocations/second, which would turn this platform into the fastest
open-source solution available in this respect. In addition, the platform is
designed to allow its deployment in on-premises and multi-clouds
environments, and even on low power devices.

The supported event sources by Nuclio are: HTTP, NATS, Kafka, Kinesis,
RabbitMQ, Iguazio v3io, Azure Event Hub, and cron (locally invoked). The
supported languages to de�ne the functions are: Go, Python, .NET core, PyPy,
Shell (invoke binary or script via exec), V8 (JavaScript and Node.JS) and Java.

Nuclio has recently started specializing in scienti�c applications, thus o�ering
support to GPU processing and providing integrations with tools such as Spark,
TensorFlow, and Jupyter notebooks.

25

Chapter 2. Background

FnProject

Fn [65] is an event-driven, open source FaaS platform that can run on any
platform that supports Docker containers. Fn uses Docker containers as base
for the deployed functions thus providing support to any programming
language (although the o�cially supported languages are Go, Java, Python,
Ruby, NodeJS, and C#/.Net Core).

The platform also provides Kubernetes support thanks to Helm templates.
When the platform is deployed in Kubernetes, the Fn project also provides
services such as Domain Name System (DNS), Transport Layer Security (TLS),
metrics provided by Prometheus, and data visualization provided by Grafana
[113]. Users can launch Fn functions from HTTP requests or from the Fn client
provided.

Although it is a functionality still in development and currently only works
for Java functions, Fn o�ers Fn Flow. Fn Flow allows users to build high-level
work�ows of functions. Some of the features of this work�ows are: �exible
model of function composition (allows sequencing, retrying, and error
handling), code-driven (work�ows are de�ned in code, not trough yaml �les
or visual graph-designers), and inspectable (one can drill on each stage of the
work�ow and check logs, and stack traces).

Ri�

Ri� [155] is an open source tool for deploying FaaS in Kubernetes. Ri� o�ers
three di�erent function runtimes (core, Knative, and streaming) and three
di�erent languages to de�ne your function (Java, JavaScript and Shell script).

Based on the runtime selected, the deployed functions use basic Kubernetes
functionalities without load balancing or autoscaling (i.e. the core runtime),
Knative to manage the autoscaling of HTTP-triggered workloads (i.e. the
knative runtime) or the functions can be executed on streams of messages
(i.e. the streaming runtime). In the streaming runtime messages �ow between
functions using streams, backed in this case by Apache Kafka [174].

26

2.4 Serverless o�erings

Funktion

Funktion [68] is the Red Hat tool that o�ers an open source event driven
Lambda-style programming model that runs on top of Kubernetes. Thanks to
its integration with Apache Camel [24] the Funktion platform allows to de�ne
more than 200 triggers to launch its functions [25]. Unfortunately, Red Hat
has stopped the funding of this project thus ending with the development of
new features and the maintenance of the code.

OpenWhisk

OpenWhisk [177] is a FaaS platform managed by the Apache Foundation and
created by IBM. As stated in section 2.4.2, OpenWhisk is used internally by
the IBM Cloud Functions service, which turns it into one of the most stable
and tested open-source solutions in the �eld (although the paying service o�ers
more features).

Thanks to its open event provider interface, any service that implements it
can be used as an event source. In addition, the default event sources
provided are: HTTP, Github, Cloudant, IBM Message Hub, Mobile Push,
Slack, Watson, Weather, and Websockets. The default supported languages
for de�ning functions are: NodeJS, Swift, Java, Go, PHP, and Python.
OpenWhisk also allows de�ning functions as Docker containers, so any other
language can be integrated on the platforms. In addition, it allows to build
work�ows through the Composer programming model [101].

Qinling

Qinling [149] is the FaaS solution developed and maintained by OpenStack.
Qinling uses Kubernetes as a default container orchestrator, but it allows to use
as alternatives Docker Swarm, Mesos and Zun [152] (the container orchestrator
solution used by OpenStack). In addition Qinling supports OpenStack Swift
[150], and Amazon S3 as function storage backends.

By default, Qinling o�ers support to the Python programming language and
provides the tools to allow the users to de�ne their own language environments
through the use of Docker containers.

Qinling is tightly integrated with the OpenStack infrastructure so the users
can bene�t from other OpenStack services like authorization and
authentication (OpenStack Keystone [147]), an alarming service (OpenStack

27

Chapter 2. Background

Aodh [146]), or with a multi-tenant cloud messaging service for web and
mobile developers (OpenStack Zaqar [151]). To connect the de�ned functions
with external OpenStack services, Qinling allows to create webhooks that
provide a unique Uniform Resource Locator (URL), and that can be used to
call the functions without an authentication scheme.

2.5 State of the Art

Although it is a relatively new area, there exists in the literature several works
contributing to the evolution of serverless computing. For example, the initial
developments of OpenLambda are presented in [95] as an open source platform
for building web services applications with the model of serverless computing.
The work also includes a case study where performance of executions in AWS
Lambda are compared with executions in AWS Elastic Beanstalk [15], which
concludes with better performance results for AWS Lambda. The authors
further evolved this platform to accommodate lean microservices that depend
on large libraries that start slowly and have an impact on elasticity. For this,
they introduce Pipsqueak [139], a package-aware computing platform based on
OpenLambda. The work by Villamizar et al. [183] presents a cost comparison
of a web application developed and deployed using three di�erent approaches:
a monolithic architecture, a microservices architecture operated by the cloud
customer, and a microservices architecture operated by AWS Lambda. Results
of this study show that AWS Lambda reduces infrastructure costs more than
70% and guarantees the same performance and response times as the number
of users increases.

In addition, several tools related with serverless computing can be found in
the literature. Some of them are: Apex [27], that facilitates the deployment of
vanilla HTTP servers on serverless platforms; Podilizer [171] that implements
the pipeline speci�cally for Java source code as input and AWS Lambda as
output; and Snafu [170] that is a modular system to host, execute and manage
language-level functions o�ered as stateless microservices to diverse external
triggers. Other examples of recent works using serverless computing are open-
source tools like Ooso [50], a Java library designed to execute MapReduce
tasks based on Apache Hadoop and Spark on AWS Lambda, or enterprise
solutions like Databricks Serverless [153], a serverless computing platform for
complex data science and Apache Spark workloads. Moreover, projects like
AWS Serverless Application Model (AWS SAM) [20] attempt to provide the
means to de�ne serverless functions for AWS Lambda.

28

2.5 State of the Art

In fact, AWS Lambda can be e�ectively exploited for scienti�c applications
and there are few examples in the literature using it for distributed
computing such as Bulk Synchronous Processing (e.g. PyWren [106]). This
simpli�es the access to distributed computing by avoiding to provision and
con�gure complex clusters and, instead, de�ne stateless functions to be run
on the Cloud. The authors extended the previous work in the contribution by
Shankar et al. [169] in order to introduce numpywren a system for linear
algebra that runs on AWS Lambda. They also introduced LAmbdaPACK a
domain-speci�c language to implement linear algebra algorithms that are
highly parallel, assessing the increased compute e�ciency achieved and
highlighting the limitations of the Cloud provider. Indeed, the work by
Spillner et al. [172] assesses the bene�ts of adopting serverless computing for
multiple scienti�c domains: mathematics, computer graphics, cryptology and
meteorology, using both public Cloud providers and self-hosted FaaS
infrastructures. Other scienti�c applications in the literature are ExCamera
[66], that allows �ne-grained video processing, a distributed matrix
multiplication system [186], or the work by Giménez-Alventosa et al. [70]
that uses AWS Lambda to execute highly-parallel MapReduce jobs.

Use cases of the emerging event-based programming model can be found in
the literature, like the work by Yan et al. [188] where the authors present a
prototype architecture of a chatbot using the OpenWhisk platform, or the
experiments described in [72] about face recognition with LEON, a research
prototype built with OpenWhisk, Node-RED [107] and Docker. Furthermore,
case studies of data analytics over serverless platforms, like [71], where the
authors perform data processing with Spark over Apache OpenWhisk, are
getting attention of researchers and developers. Regarding machine learning,
in the work of Ishakian et al. [103] the AWS Lambda platform in
combination with the MxNet deep learning framework [26] is used to serve
deep learning models using serverless computing. This study concluded that
serverless infrastructures performed within the acceptable latency ranges if
the underlying function containers are initialized and waiting to be called
(i.e. the serverless infrastructure is warm), a constraint that is not always
met and it is not easy to control when dealing with public providers. A
further analysis in serverless infrastructures states and their impacts on
serverless workloads is presented in the work of Lloyd et al. [115], where they
demonstrate how the performance of the functions can vary up to 15 times
depending on which state the function is in.

Regarding serverless constraints, in one of the earliest works that evaluated
serverless infrastructures [117], the �rst challenges are found: the serverless

29

Chapter 2. Background

applications need to be prepared in a portable way to be executed in the
infrastructure, and the execution time limits hinder the adoption of long
processing workloads. In addition authors such as Baldini et al. [34] address
the problem of function composition entirely performed by serverless
functions. Indeed, they demonstrate that function composition in serverless
applications is achievable but exhibit several constraints to be considered
such as avoiding double billing, adopting a substitution principle and treating
the functions as black boxes. A subsequent work by Baldini et al. [33]
identi�es several challenges related to serverless computing. First, the ability
to use declarative approaches to control what is deployed and the required
tools to support it, and second, the support for long running jobs. The work
by Erwin van Eyk et al. [62] also identi�es some perspectives regarding the
direction of the serverless �eld. They highlight the need to support hybrid
Clouds, where an application could be composed by functions deployed on
on-premises clusters, executing proprietary code, while other parts of the
application could be run on the FaaS service o�ered by a public provider.

More challenges and improvent opportunites for serveless computing are
presented in the work of Hellerstein et al. [94]. By analyzing three di�erent
case studies based on machine learning, data-centric, and distributed
systems, the authors present several limitations that sti�e the development of
pure serverless applications. A posterior work from Jonas et al. [105] with a
focus in increasing the types of applications that could work well with
serverless computing also highlights more limitations currently present in
serverless infrastructures such as inadequate storage for �ne-grained
operations, lack of coordination between functions, poor performance for
standard communication patterns (i.e. broadcast, aggregation, and shu�e),
and the lack of a predictable performance in part due to the variability in the
provisioned hardware resources. However the same study concludes that the
serverless usage will skyrocket in the following years and that serverless
computing will overcome the presented challenges and it will become a
fundamental part of the cloud technologies. The same conclusion is achieved
in the study of Castro et al. [42], where the paper concludes that while it is
true that the developers will need to know how to work around serverless
limitations and how to map the Service Level Agreements (SLAs) of their
applications to the new infrastructures, serverless computing is emerging as
the new paradigm for the deployment of cloud applications.

Finally, the work by Adam Eivy [59] warns about the economic bene�ts of
serverless computing, which strongly depends on the usage patterns and
application workloads. Even though the pricing of services such as AWS

30

2.5 State of the Art

Lambda are billed in the fraction of 100ms of execution time, these can
rapidly add up to surpass the cost of traditional computing approaches
involving virtual machines or even dedicated hardware.

In conclusion, this chapter has covered an explanation of the di�erent service
models existing nowadays in the Cloud. Furthermore, a review of di�erent
providers and platforms both for public and on-premises FaaS infrastructures
was done. Finally a review of the current state of the art in the serverless
�eld has been carried out, highlighting scienti�c serverless tools, and the
bene�ts and drawbacks present in the serverless architectures nowadays.
Several scienti�c challenges have been identi�ed such as restricted execution
environments, limited execution time, lack of inbound connectivity in
serverless providers or the lack of a predictable performance.

Therefore, this thesis aims to address some of the identi�ed challenges and
presents several solutions that can be added up on top of each other to �nally
allow scienti�c users to deploy and execute highly-parallel event-driven
�le-processing applications both in public and in private serverless-based
Cloud infrastructures. To this aim, the following challenges are addressed in
the corresponding chapters. First, chapter 3 tackles the challenge of
providing generic execution environments on public serverless services. Then,
chapter 4 presents a programming model that allows scienti�c users to create
work�ows of functions using a high-level declarative language without having
to pre-provision infrastructure. Additionally, this chapter addresses the
challenge of limited execution time and restrictive resource access by allowing
the serverless application developers to connect the FaaS services with other
managed computational services. Finally chapter 5 presents a platform that
o�ers the event-based functionality of public serverless providers but for
on-premises infrastructures.

31

Chapter 3

Serverless Container-aware

Architectures

This chapter describes the creation of the Serverless
Container-aware ARchitectures (SCAR) tool. Sections 3.1, 3.2,
and 3.3 present the software architecture and its implementation.
Then, a simple use case is shown in section 3.4. To �nish, sections
3.5 and 3.6 carry out a study that analyses the cold start issue in
AWS Lambda.

New architectural patterns (e.g. microservices), the massive adoption of
Linux containers (e.g. Docker containers), and improvements in key features
of cloud computing such as auto-scaling, have helped developers to decouple
complex and monolithic systems into smaller stateless services. In turn, cloud
providers have introduced serverless computing, where applications can be
de�ned as work�ows of event-triggered functions. Figure 3.1 shows a
high-level overview of a basic event-triggered �le-processing work�ow. The
generic work�ow behaves as follows: the user uploads �les to an object
storage system. When the upload is �nished the storage system
automatically triggers the �le processing service. Once the processing service
�nishes, the output �les generated are stored in the object storage system.

Based on this simple use case and taking advantage of the highly-parallel
capabilities of FaaS services, users can easily de�ne highly-scalable
event-based work�ows to process their �les. However, serverless services, such
as AWS Lambda, impose serious restrictions for the applications executed

33

Chapter 3. Serverless Container-aware Architectures

Upload
File Trigger

Store
Results

Object
Storage
Service

File
Processing
Service

Figure 3.1: Generic high-level approach for event-based �le processing applications.

inside their services (e.g. using a prede�ned set of programming languages or
di�culting the installation and deployment of external libraries). Thus, the
goal of this chapter is to provider end users / scientists with a highly scalable
event-driven system to perform �le processing on customized execution
environments. To achieve this goal, this chapter introduces a framework
called Serverless Container-aware ARchitectures (SCAR)1 [154]. The SCAR
framework, in combination with a simple programming model, can be used to
create highly-parallel event-driven serverless applications that run on
customized runtime environments de�ned as Docker images on top of AWS
Lambda.

3.1 Generic Architecture

Figure 3.2 expands the black box schema presented in Figure 3.1 and
describes the generic architectural approach designed to support
container-based applications on FaaS platforms. This approach has been
designed to maximize the integration of existing services typically o�ered by
cloud providers. The main components used to de�ne this generic
architecture are:

� Function Service: in charge of executing cloud functions in response to
events.

1https://github.com/grycap/scar

34

https://github.com/grycap/scar

3.1 Generic Architecture

Supervisor

File Storage
Service Function Service

Container Image
Service

Log
Service

Monitoring
Service

Log Manager

Function Instance

Cache Manager Container

Script

Container Runtime

App

Data Manager

Upload Invoke

Event

Figure 3.2: Architectural approach for supporting container-based �le-processing
applications on top of FaaS platforms.

� File Storage Service: hosts the �les uploaded by the user and sends events
to the function service so the �les can be processed by the functions. N
�le uploads will trigger N function invocations where each one processes
exactly one �le.

� Log Service: where the information concerning the execution of the
function is logged.

� Monitoring service: provides metrics of the resources consumed by the
function. It also helps tracking the function response times, and failure
rates.

� Container Image Service: service in charge of storing the container images
that include the application to be executed, its required environment, and
its dependencies.

In addition, an invocation of a function (i.e. Function instance) involves the
execution of the Supervisor, responsible for: i) Data Management from the
File storage service into the temporary data space allocated to that
particular function invocation; ii) Cache management in order to minimize

35

Chapter 3. Serverless Container-aware Architectures

the data movement from the Container image service to the data space
available to the function; iii) Log management, to store the output of the
execution of the container. The supervisor delegates on a Container runtime
in order to instantiate a Container out of a container image, on which either
a script or an application is executed inside the customized runtime
environment provided by the container.

3.2 Framework implementation

The architecture designed allows to adapt SCAR to any cloud provider.
However, since there are di�erent API de�nitions implemented by such
providers, it was initially chosen AWS Lambda as the serverless back-end.
Thus, the following sections identify and justify the di�erent technology
choices taken while developing SCAR.

3.2.1 Serverless services: AWS Lambda

As described in section 2, there are several public serverless services that
could be used to develop SCAR (e.g. AWS Lambda, Google Cloud Functions,
Azure Functions, IBM Cloud functions). AWS Lambda was chosen due to its
reliability, ease of use and popularity. AWS Lambda was the �rst cloud
provider that o�ered the FaaS model and it has used this advantage in
combination with additional services (e.g. AWS S3, Amazon DynamoDB,
Amazon RDS, Amazon Kinesis, etc) and unique functionalities like edge
processing and function chaining, to become the de facto platform for
enterprise serverless computing [116].

However, the FaaS service o�ered by AWS Lambda imposes some restrictions
that have to be taken into account when developing a framework on top of
such service. The most important limitations imposed by AWS Lambda are:

� Constrained computing capacity currently limited by a maximum of 3,008
MB of RAM, where CPU performance is correlated with the amount of
allocated RAM.

� Maximum execution time of 900 seconds (15 minutes).

� Read-only �le system based on Amazon Linux.

36

3.2 Framework implementation

� 512 MB of read/write disk space in the /tmp folder, which may be shared
across di�erent invocations of the same Lambda function (the sharing
capabilities are further analyzed in section 3.5).

� Default concurrent execution limited to 1,000 invocations of the same
function (which can be increased up to 3,000 if requested).

� Supported execution environments: Node.js (8.10, 10 and 12), Java (8
and 11), C# (.Net Core 2.1), Python (2.7, 3.6, 3.7, 3.8), Go (1.x), Ruby
(2.5), and custom runtimes.

� No inbound connections allowed for the Lambda invocations.

For the �le storage service, Amazon Simple Storage Service (S3) was chosen.
S3 is an object storage designed to provide durable and highly available access
to �les, stored in buckets, which are created in a speci�c AWS Region. An
additional and useful feature of S3 is that it can automatically send event
noti�cations when certain actions occur. For example, the s3:ObjectCreated
event type is published whenever the S3 API calls PUT, POST or COPY
are used to create an object in a bucket, that is, when a �le is uploaded to
the storage service. These events can be linked with di�erent services such
as Amazon SNS (a push messaging service), Amazon SQS (a message queuing
service), and AWS Lambda, allowing the automatic invocation of such services.
However, using the S3 link functionality as is and connecting several functions
with one bucket implies that all of them will be launched each time a new
�le is uploaded. To avoid this behavior and to be able to allow a one-to-many
((S3 bucket) to Lambda functions) relationship without unwanted invocations,
SCAR creates a unique structure of folders for each linked function based on
the functions' data inside the S3 bucket, thus allowing to link several functions
with one bucket, but only invoking one when a �le is uploaded to the speci�c
folder of such bucket.

Amazon CloudWatch [6] is the monitoring service provided by Amazon Web
Services (AWS). In particular, CloudWatch Logs is a service to monitor, store
and access log �les produced from di�erent sources and services in AWS.
Therefore, the standard output generated by the AWS Lambda function
invocations are sent to CloudWatch Logs in the form of log streams
transparently to the user. By parsing such log streams the logs regarding the
execution of a given invocation can be retrieved and shown to the user.

To provide all these functionalities, the client heavily uses the Boto 3 library
[21] to interact with the AWS services.

37

Chapter 3. Serverless Container-aware Architectures

3.2.2 Containers: Docker, Docker Hub and udocker

Among the di�erent choices for Linux containers that we saw in section 2.2,
we chose Docker due to its mainstream adoption for software delivery. This is
exempli�ed by Docker Hub [53] a cloud-based registry service that hosts Docker
images and can automatically create them by linking source code repositories
such as GitHub, thus providing a centralized place to distribute Docker images.

Since external packages cannot be installed inside the execution environment
of a invoked Lambda function (i.e. no root privileges are available to install
Docker), a mechanism is needed to run a container out of a Docker image
in user space without requiring prior installation or superuser rights. These
features are available in udocker [180, 74], a tool to execute containers in user
space out of Docker images without requiring root privileges. The udocker
tool allows pulling images from Docker Hub and creating containers by non-
privileged users on systems where Docker cannot be installed. This tool has
demonstrated to be useful to run jobs on customized execution environments
in both Grid environments, such as the European Grid Infrastructure [121],
and High Performance Computing (HPC) clusters of PCs in the context of the
INDIGO-DataCloud European project [102].

Udocker provides several execution modes, described in the documentation
[73]. However, due to the restrictions of the execution environment provided
in AWS Lambda, only the F1 execution mode properly works, which involves
using Fakechroot [165] with direct loader invocation. Using this approach, it
is possible to run a process in the execution environment de�ned by a Docker
image without actually creating a Docker container.

Notice that process isolation is automatically provided by the execution model
of AWS Lambda, where di�erent invocations of the same function are executed
on isolated runtime spaces.

3.3 Architecture of SCAR

As exposed previously, SCAR allows users to de�ne Lambda functions where
each invocation will be responsible for executing a container from a Docker
image stored in Docker Hub and, optionally, execute a shell-script inside the
container for further versatility. Figure 3.3 describes the architecture of SCAR
at a high level and presents the two main components that have been developed,
the SCAR client, and the SCAR supervisor.

38

3.3 Architecture of SCAR

File Storage
Service Function Service

Container
Image
Service

Log
Service

Monitoring
Service

Log Manager

Function Instance

Cache Manager Container

Script

Container
Runtime

App

Data Manager

Upload Invoke

Event

AWS LambdaAmazon S3

Amazon
CloudWatch

SCAR
supervisor

Docker
Hub

SCAR client

Figure 3.3: High level architecture of the SCAR framework.

3.3.1 The SCAR client

The SCAR client o�ers the users a Command-Line Interface (CLI) to manage
the lifecycle of the serverless resources. Through the CLI, the user can
initialize, launch, delete, and list the AWS Lambda functions as well as
upload and download �les from the S3 storage and check the generated logs
in CloudWatch.

The input accepted by the client are command line parameters or a
con�guration �le with a YAML Ain't Markup Language (YAML) format.
The bene�ts of using the con�guration �le over the CLI parameters are,
among others, a simpli�cation on the infrastructure de�nition, and ease of
the redistribution, repeatability, and reproducibility of the infrastructure
con�gurations.

Once the input is passed to the SCAR client, the process of creating the
serverless resources is as follows: i) the input con�guration �le or CLI
parameters are validated; ii) the client gathers the required �les, scripts, and
libraries to create the deployment package; iii) the Lambda function, the
CloudWatch Logs and the required S3 buckets and folders are created and
linked automatically.

39

Chapter 3. Serverless Container-aware Architectures

When the infrastructure is deployed, the user can invoke the Lambda functions
also through the SCAR client. If the function invocation is synchronous, the
client waits for the function to �nish and automatically prints the generated
output (i.e. the output of the executed script inside the container) in the
command line. In addition, the SCAR client also o�ers the possibility to
manage �les stored in a S3 bucket (i.e. with the put and get commands), and
also allows the user to retrieve a complete trace of the execution logs generated
by the function execution. To see the full list of commands available in the
SCAR client, please check Appendix A.

Additionally, the SCAR client is able to manage multitenancy in a
transparent way to the user. The con�guration �les required for the client to
work are generated in the user space, thus allowing di�erent system users
have di�erent con�guration �les. Moreover, the client user can also de�ne
di�erent credentials with di�erent access rights and permissions to manage
the AWS platform resources, allowing SCAR to handle di�erent resources
with di�erent credentials if required. Finally, to avoid access to other user's
functions from the SCAR client, each time a function is created, a set of tags
are automatically de�ned. Among other properties, these tags include the
user's name, so when the functions are listed, only the functions identi�ed by
the user name are shown.

3.3.2 The SCAR supervisor

The SCAR supervisor is a library that is executed in each function invocation to
automatically manage the data stage in and stage out, and the container image.
To ease the supervisor version management, the code reusability, and to provide
a uni�ed supervisor for all the created Lambda functions, the supervisor library
is deployed as a Lambda layer [32]. Lambda layers allow to package libraries
and other dependencies and share them across Lambda functions, thus avoiding
to package and deploy the same library each time a new Lambda function is
created. So, by creating a Lambda layer with the supervisor library in it,
SCAR provides �le management and generic environment capabilities to all
the Lambda functions that use such layer.

Figure 3.4 summarizes the supervisor work�ow that, once the function is
triggered by an event, behaves as follows: 1) the event received is analyzed: if
it has been generated by an S3 bucket, i.e. a �le was uploaded to S3, the �le
that created the event is downloaded into the function's ephemeral storage;
2) the Docker image speci�ed by the user is downloaded and stored also in
the function's storage (if the image is already on the storage folder, this step

40

3.4 SCAR usage

1) 2) 3) 4)

Parse
event

External
event

Download
S3 file

Temporal storage

S3 event
found

Check
container

cache

Download
container

Container image
not found

Amazon S3Docker Hub
Amazon S3

Provision
container

Launch
container

Execute
user's script

Check
output
folder

Upload
results

Output files
found

Function instance

Figure 3.4: Work�ow of the supervisor library inside a Lambda function instance.

is skipped); 3) the downloaded S3 �le, the script that the user de�ned (if
any) and the required environment variables are passed down to the Docker
container when the udocker execution is launched; 4) after the execution, if
the container has generated output �les and an output S3 folder has been
especi�ed in the Lambda function de�nition, the generated �les are
automatically copied to the corresponding folder of S3 bucket and the
function execution is �nished.

In addition, the supervisor also traces the complete container execution and
merges these traces with the function's log system.

3.4 SCAR usage

This section demonstrates how to execute an existing docker container using
SCAR. This simple example is used to show the container execution
capabilities inside the Lambda execution environment. The container
executed combines two programs not available by default in the Lambda
environment, the fortune package (that displays a pseudorandom message
from a database of quotations), and the cowsay package (that generates

41

Chapter 3. Serverless Container-aware Architectures

ASCII pictures of a cow with a message). In addition, the cowsay package
needs the Perl libraries to be executed (a language not supported by the
Lambda environment). The Docker image used is available in Docker Hub2

and all the source code of the example is available in the SCAR's Github
repository3. Additional more complex use cases are available in chapter 6.

The usage of SCAR in order to run this example on AWS Lambda is as follows:

� First, create a con�guration �le with (at least) the function name and
the docker image to use:

cat >> cowsay . yaml << EOF
func t i on s :

scar−cowsay :
image : grycap/cowsay

EOF

Listing 3.1: YAML creation script.

In this con�guration �le (i.e. cowsay.yaml) the user is specifying the
function name as scar-cowsay and the Docker image to use as
grycap/cowsay, an existing repository in Docker Hub.

� Second, initialize the Lambda function:

s ca r i n i t −f cowsay . yaml

Listing 3.2: SCAR init command.

This command creates all the resources required to comply with the
con�guration �le speci�ed by the user. In this case, SCAR checks that
the supervisor layer exists (if not, the SCAR client creates a new one),
packages the required supervisor code, deploys the function in AWS
Lambda and, �nally, creates the log group in CloudWatch.

� Third, invoke the function:

s ca r run −f cowsay . yaml

Listing 3.3: SCAR run command.

2https://hub.docker.com/r/grycap/cowsay
3https://github.com/grycap/scar/tree/master/examples/cowsay

42

https://hub.docker.com/r/grycap/cowsay
https://github.com/grycap/scar/tree/master/examples/cowsay

3.4 SCAR usage

The client performs a synchronous invocation of the Lambda function
speci�ed in the con�guration �le, and then waits until the invocation
ends. Once the invocation has ended, the output is printed in the user
console:

Request Id : abd78643−cc74−4caa−b4b9−be730fbfa95b
Log Group Name : /aws/lambda/ scar−cowsay
Log Stream Name : 2019/07/25/[$LATEST]507

a50093815495da3c02f fdc5094510

/ I t i s your de s t iny . \
| |
\ −− Darth Vader /
−−−−−−−−−−−−−−−−−−−−−

\ _̂_̂
\ (oo) _______

(__)\) \/\
||−−−−w |
| | | |

Listing 3.4: Output for the SCAR run command.

The response returned by the function execution includes the output generated
by the container execution (the talking cow in this case), and some extra
information that can be of use to track the function execution. The extra
parameters added to the container output are:

� Request Id : it is a unique identi�er of the Lambda function invocation
that is automatically generated by AWS Lambda service.

� Log Group Name: identi�es the group of logs comprising all the
invocations of functions with the same name.

� Log Stream Name: identi�es the log stream generated by the function
invocation. If the function is updated, fails, or too much time passes
between invocations, another log stream is automatically created by the
CloudWatch service.

43

Chapter 3. Serverless Container-aware Architectures

3.5 On the Lambda function's ephemeral cache

The o�cial Frequently Asked Questions (FAQ) of the AWS Lambda service [19]
states that code executed inside a Lambda invocation �should assume there is
no a�nity to the underlying compute infrastructure. Local �le system access,
child processes, and similar artifacts may not extend beyond the lifetime of
the request, and any persistent state should be stored in Amazon S3, Amazon
DynamoDB, or another Internet-available storage service.� However, in the
same FAQ, just in the question below it states that �to improve performance,
AWS Lambda may choose to retain an instance of your function and reuse it
to serve a subsequent request, rather than creating a new copy.�

Therefore, while it is true that the code of the function should be designed in
a stateless manner to avoid errors, due to the freeze/thaw mechanism, the
Lambda function environment can sometimes be reused and retain �les from
previous executions, as analyzed in the paper by Wang et al. [185]. Then, by
understanding how the freeze/thaw cycle present in the AWS Lambda
environment works, it might be possible to speed up the function invocations
(by storing �les shared among all the function invocations) and thus, reduce
the infrastructure cost for the users. Caching is a fundamental technique
used by SCAR that takes advantage of the aforementioned cycle. The
following section presents a study of the freeze/thaw cycle in AWS Lambda,
and how SCAR implements such caching behavior.

3.5.1 AWS Lambda Freeze/Thaw Cycle

As previously exposed, AWS Lambda functions o�er closed stateless
environments. The closed environment implies that the Lambda service
executes the user code in a sandbox that isolates their processes, �les, and
environment variables from other function invocations. This stateless
functionality also implies that this sandbox environment does not save any
�le or con�guration among function invocations. Designing a caching
functionality in this environment could seem rather challenging, but after
analyzing how the initialization of AWS Lambda works a solution to the
caching problem is presented.

As Figure 3.5 depicts, the �rst time a Lambda function is invoked, the
underlying system has to gather the resources speci�ed by the user, such as
the memory, and provision a new sandbox with the user's code and the
required dependencies. After the sandbox initialization, the function handler
is launched and then the execution starts. Once the function �nishes, if some

44

3.5 On the Lambda function's ephemeral cache

Execution time

2nd and
subsequent

events

Reload when
function update

or sandbox
timeout

AWS
Lambda

Gather
resources

Provision
sandbox

Cold start

Execute
user's
code

1st event
received

Warm start

Figure 3.5: Lambda service behavior regarding function initialization.

time passes before calling the function again, the initialization process has to
be repeated (i.e. the sandbox has to initialize, the user's code has to be
loaded, and the handler has to be launched). This process is always repeated
if the user changes the function's code or modi�es the de�ned Lambda
environment. However, if the user decides to invoke the function again
without modi�cations and not too much time has gone by, the Lambda
service may reuse the previously de�ned sandbox. When this situation
occurs, the �les that were written in the /tmp folder in the last Lambda
execution will continue to exist. To take advantage of this situation, we
de�ne a cache system to store and reuse the Docker containers inside the
Lambda function storage. In the next section, the implementation of the
supervisor's cache is presented.

3.5.2 The SCAR supervisor's cache

The �rst invocation of a Lambda function will pull the Docker image from
Docker Hub into /tmp, which can take a considerable amount of time (in the
order of seconds), depending on the size of the Docker image. Subsequent
invocations of the Lambda function may already �nd that Docker image
available in /tmp and, therefore, there is no need to retrieve the Docker
image again from Docker Hub.

However, caching is not restricted to the Docker image. In addition, the
container �le system created with udocker, is also shared among all the
Lambda invocations that may �nd it already available in /tmp. The rationale
behind this approach is that since Lambda functions are provided with a

45

Chapter 3. Serverless Container-aware Architectures

read-only �le system, so are provided the scripts executed in the containers
executed in the Lambda functions. Notice that due to the stateless
environment inherent to the Lambda functions, caching does not introduce
side e�ects. It just reduces the invocation time whenever the cache is hit and
the container is already available. Therefore, the duration of the Lambda
function invocation using SCAR is greatly dependent on the ability for the
Lambda functions to �nd a cached container �le system.

Concerning the overhead introduced by SCAR, users should be aware that
it requires a reduced amount of memory and disk space to run (∼36MB of
RAM and ∼16MB of disk space). Indeed, it is the size of the container what
really determines how much free disk space is available to be used by the
deployed applications. Empirical experiments show that an image in Docker
Hub larger than 220MB will hardly �t inside the ephemeral storage allocated
to the Lambda function, due to the storage requirements of both the Docker
image and the container �le system unpacked by udocker.

However, thanks to modern minimal Linux distributions such as Alpine Linux
[4] which o�ers a fully functional Linux distribution in only 2.6MB4, and tools
like minicon [88] that is able to minimize already existent containerized Linux
distributions (e.g. a Node.js application along with the server reduced from
686MB to 45.6MB, or the size of an Apache server reduced from 216MB to
50.4MB) it is possible to create Docker images that comply with the AWS
Lambda size constraints. On the other hand, the user has to bear in mind
that tiny images like Alpine, usually change basic system libraries to be able
to o�er the reduced size (i.e. Alpine uses musl_libc instead of glibc), which
sometimes can be associated with slower performances depending on the script
or program executed by the user. As stated in the comparison table of musl
with other di�erent C/POSIX libraries [48], an script that requires thousands
or millions of memory allocations, stated in the comparison table as Tiny
allocation & free and Big allocation & free can present execution times up to
2x when compared with the standard glibc library available in Debian images.

To �nish, regarding the remaining time available for the execution of the
application, once the �rst invocation is �nished and the container is cached,
SCAR takes a negligible time to check if the container exists, thus allowing
the application to run during almost the maximum time allocated to the
function.

4https://hub.docker.com/_/alpine/?tab=tags

46

https://hub.docker.com/_/alpine/?tab=tags

3.6 Study of the AWS Lambda Freeze/Thaw behavior

3.6 Study of the AWS Lambda Freeze/Thaw behavior

Due to the importance of the AWS Lambda's freeze/thaw cycle for the
SCAR framework, an study of the behavior of this feature is conducted in
order to extract optimized invocation patterns to be used by SCAR. For all
the tests in this study, only the time used to download the Docker image
from Docker Hub and run actions (i.e., creation of the container via udocker)
are measured. The time spent by the script executed inside the container is
considered negligible for this study. Also, to provide all the di�erent tests
with the same environment, the amount of RAM memory was set to 512 MB
for all the functions, which is the minimum RAM needed to run the largest
test in this study.

3.6.1 Request-response vs Asynchronous calls

The �rst comparison is done between the two di�erent invocation types that
AWS Lambda o�ers (i.e. request-response (or synchronous) and
asynchronous) [22]. We analyze the time spent for each invocation. Each one
involves creating a container out of a Docker image (in this case centos:7 [43])
stored in Docker Hub and executing a trivial shell-script inside. Ten di�erent
Lambda functions were created for each invocation type (i.e.
request-response and asynchronous). Each function was invoked through the
SCAR client as fast as possible a hundred times (i.e. a total of 2,000
invocations, 10*100 req-resp + 10*100 async). Figure 3.6 shows the average
execution time for each invocation type.

The req-resp line refers to the request-response invocation type and it shows
that all the invocations performed after the �rst one take a negligible time to
execute. The �rst invocation takes 25 seconds on average to download the
container image from Docker Hub, create the udocker container, and run the
script inside it. Then, the subsequent invocations execute in almost negligible
time (in comparison). This is a coherent behavior when using the
request-response type in combination with the SCAR client, because all the
function executions wait for the previous execution to �nish. Thus,
subsequent invocations after the �rst one will �nd the container �le system
already available in the ephemeral space of the Lambda function invocation
(i.e. cached by SCAR).

The async line refers to the asynchronous invocation type and it shows an
slightly erratic behavior in the execution time of the functions along the �rst
40 invocations. Indeed, the asynchronous model carries out all the

47

Chapter 3. Serverless Container-aware Architectures

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Ti
m

e (
s)

No. of invocations

req-resp
async

Figure 3.6: Average execution time for each invocation type.

invocations almost simultaneously, though there is a slight delay due to the
SCAR invocation manager. Therefore, to serve all the invocations at the
same time, the AWS Lambda service provisions di�erent underlying
sandboxes and consequently, these resources do not share the /tmp space, so
all of them need to retrieve the Docker image from Docker Hub and create
the container. This means that the execution is performed successfully, but
requires additional time. It can be seen that after approximately 40
invocations, the AWS Lambda service �nally starts reusing the underlying
sandboxes, so the container is �nally found in the ephemeral cache and,
therefore, the execution time of the subsequent invocations decreases
considerably, as expected.

The main conclusion of this �rst experiment is that a newly created Lambda
function with SCAR should be executed at least once, in order to cache the
container in the ephemeral disk space, before attempting to perform multiple
asynchronous invocations.

48

3.6 Study of the AWS Lambda Freeze/Thaw behavior

3.6.2 Container size

To further investigate how the container size a�ects the caching behavior
when using the asynchronous invocation type, di�erent functions were
invoked that use di�erent container image sizes in order to analyze the
duration of the invocations. To carry out this experiment three di�erent
function types were created: the minideb type, which uses the Docker image
bitnami/minideb [36] and has an image size of 22MB; the c7 type, which uses
the Docker image centos:7 [43] and has an image size of 70MB; and �nally
the ub14 type, which uses the Docker image
grycap/jenkins:ubuntu14.04-python [86] and has an image size of 153MB.
Each one of these types are used to create ten functions (i.e. a total of 30
di�erent Lambda functions) and each di�erent function is invoked a hundred
times (i.e. 3,000 invocations in total, (10*100)*3). For the sake of clarity, the
execution times of the functions belonging to the same type are presented as
average values. Figure 3.7 shows the results of these invocations.

As expected, the minideb function, which represents the smallest container
image, is the �rst one to present a cached behavior. The c7 function, which
has the medium size container image, is cached after approximately 30
invocations and the function with the largest container image, ub14, requires
more invocations, approximately 80, before it is cached. This �gure clearly
shows the relation between increasing the container image size and the time
that takes the container image to be cached in the ephemeral disk space. As
explained above, this is directly related to the asynchronous way of working
of the Lambda functions, in which the system does not wait for the previous
invocation to �nish. Therefore, the container image can be cached or not
depending on the time passed since the �rst execution and the size of such
container image.

As seen in the experiments, on the one hand there is the request-response
invocation, where SCAR achieves a cached behavior starting from the second
invocation, at the expense of waiting for that �rst invocation to end. On
the other hand, there is the asynchronous invocation type, in which all the
invocations can be carried out in parallel, but the container size a�ects the
time until the containers are cached by SCAR in the ephemeral disk space.

In the programming model proposed by SCAR, the executions bene�t from
both invocation types by performing the �rst invocation as request-response
and the reminder invocations as asynchronous. To assess the advantages of this
approach, an experiment was carried out using the aforementioned approach.
The same function types described in the previous test were used to carry out

49

Chapter 3. Serverless Container-aware Architectures

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Ti
m

e (
s)

No. of invocations

minideb
c7

ub14

Figure 3.7: Average execution time for di�erent container sizes. All the invocations are
asynchronous.

this experiment: minideb, c7 and ub14. These types were used to generate 30
di�erent functions and each function was invoked a hundred times. Again, for
the sake of clarity, the execution times of the functions belonging to the same
type are presented as average values.

Figure 3.8 presents the results of this experiment. The erratic behavior of the
caching system has disappeared and all the invocations present a cached
performance starting from the second invocation and thereafter. This
approach allows SCAR to reduce the overall execution time and, therefore,
we adopt it for the event-driven �le processing programming model. As such,
a Lambda function created with SCAR is previously preheated (i.e. invoked
with a request-response type), so that subsequent parallel asynchronous
invocations already �nd the container cached in the ephemeral disk space.

50

3.6 Study of the AWS Lambda Freeze/Thaw behavior

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Ti
m

e (
s)

No. of invocations

minideb
c7

ub14

Figure 3.8: Average execution time for di�erent container sizes. The �rst invocation type
is request-response and subsequent are asynchronous.

3.6.3 Duration of the cache between invocations

The last experiment designed investigates the in�uence of the time between
invocations on the ability for AWS Lambda to reuse the container, which
ends up on SCAR being able to �nd a cached container, thus speeding up
the Lambda function invocation. Since the bene�ts of preheating a Lambda
function were identi�ed in previous sections, it is important to know the time
before it cools down again, i.e., when the invocation of the function will not
reuse the same sandbox and, therefore, SCAR will have to retrieve the Docker
image again from Docker Hub and create a new user-space container.

To this end, this experiment invokes the Lambda function in prede�ned ranges
of time (each one of them de�ned by increasing 15 minutes the previous waiting
time). Eleven time ranges were de�ned, from 0 to 150 minutes of waiting time.

51

Chapter 3. Serverless Container-aware Architectures

A thousand di�erent functions were created and invoked just once in each
period, resulting in a total of 11,000 invocations launched.

 0

 10

 20

 30

 40

 50

 60

0 15 30 45 60 75 90 105120135150

Ti
m

e (
s)

Time (m)

Figure 3.9: Execution time of the Lambda function related to the time waited (in minutes)
from a previous invocation of the same Lambda function.

Figure 3.9 shows the results of this experiment using a box plot representation
of the time used by each invocation. The whiskers of the box plot extend for
a range equal to 1.5 times the interquartile range. By analyzing the �gure we
can extract several conclusions:

� All the functions show that the invocations are being cached between 15
and 30 minutes

� If we wait more than 60 minutes the cache is lost and all of our functions
need to download again the container image

� Waiting 45 or 60 minutes do not ensure the correct working of the cache
due to the randomness of the underlying system.

52

3.7 Conclusions

Additionally, note that the container size and therefore the cache size does
not a�ect the time that the cache is maintained by the Lambda service. The
duration of the cache is directly related to the time passed between invocations
of the same Lambda function. These conclusions are in line with other studies
that have also analyzed the duration of AWS Lambda functions as it can be
seen in the works of Gimenez Alventosa et al. [70], and Wang et al. [185].

To �nish this section we could remark that understanding the behavior of the
freeze/thaw cycle and, therefore, when an invocation of a Lambda function
created with SCAR will be cached, enables to adopt best practices when
adopting serverless computing to execute generic applications. Furthermore,
the knowledge gathered with this experiments is applied in the development
of the SCAR framework to o�er the users an e�cient serverless programming
model.

3.7 Conclusions

This chapter has introduced SCAR, a tool to execute container-based
applications using serverless computing, exempli�ed using Docker as the
technology for containers and AWS Lambda as the underlying serverless
platform. This open-source tool is a step forward contribution to the state of
the art, and opens new avenues for adopting serverless computing for a
myriad of scienti�c applications distributed as Docker images.

Using the proposed framework, customized execution environments can now
be employed instead of being locked-in to programming functions in the
programming languages supported by the serverless platform (in our case
AWS Lambda). SCAR has easily introduced the ability to run generic
applications on speci�c runtime environments de�ned by Docker Images
stored in Docker Hub.

In addition, SCAR not only provides means to deploy containers in AWS
Lambda, it also manages the Lambda functions' lifecycle and eases the
execution of the serverless work�ow by applying optimizations without the
need of user intervention, such as caching the container's underlying �le
system to minimize the execution time or adjusting the API call type to
maximize the probabilities of �nding the container cached in memory. Bursty
workloads of short stateless jobs are specially appropriate to bene�t from the
ultra-elastic capabilities of AWS Lambda, both in terms of the amount of
concurrent Lambda function invocations (in the order of thousands) and the
rapid elasticity (in the order of few seconds).

53

Chapter 3. Serverless Container-aware Architectures

However, the current limitations of AWS Lambda in terms of maximum
execution time (15 minutes), maximum allocated memory (3,008 MB) and,
most important, ephemeral disk capacity (512 MB), impose serious
restrictions for the applications that can bene�t from SCAR. To overcome
these limitations, we developed an extended version of the high throughput
computing programming model introduced in this chapter. This extended
programming model and its new features and capabilities are presented in the
next chapter.

54

Chapter 4

Event-Driven File-Processing

Serverless Programming Model

This chapter introduces a programming model to create highly-
parallel event-driven �le-processing serverless architectures in
combination with generic execution environments (i.e. containers)
and the SCAR tool presented in chapter 3.

In the previous chapter we introduced a framework and a simple
programming model that allowed users to de�ne event-driven container-aware
architectures. Although it worked for short lived jobs and small sized
containers, the proposed framework couldn't overcome all the limitations
imposed by the cloud provider. In this chapter we introduce an extension of
the programming model in combination with a library (i.e. the supervisor)
that allows the users to create serverless work�ows that can bypass these
imposed limits. Combining di�erent services o�ered by AWS we are able to
create serverless work�ows that support the execution of long-running jobs
with intensive computing requirements (i.e. high memory usage, big disk
sizes or even the use of accelerated hardware such as GPUs).

The programming model assumes these two reasonable premises: i) the user
wants to process a set of �les that could be in a storage service or in a local
machine; ii) after the function execution, the output �les will be transferred
to a storage service outside the space allocated to the Lambda function.
Since Lambda functions are stateless so has to be the architecture using this
service. Therefore, we only use the functions to process the data, leaving all

55

Chapter 4. Event-Driven File-Processing Serverless Programming Model

the data input/output management to the library implementing the
programming model.

SCAR
supervisor

Amazon
S3

AWS
Lambda

Amazon
CloudWatch

Docker
Hub

Get
files/logs

Store
output

SCAR
client

Retrieve
image

Put/Read
files

Amazon
API Gateway

Trigger

Invoke

Batch
AWS

Trigger

Store logs

Retrieve
image

Store
output

*

*

Figure 4.1: High level architecture diagram of the programming model proposed for
creating event-driven �le-processing serveless applications.

Figure 4.1 shows the proposed programming model. In addition to the AWS
services used previously, that were AWS Lambda (for the functions), Amazon
S3 (for the object storage), and Amazon CloudWatch (for logs and metrics),
this extended programming model also makes use of:

� Amazon API Gateway [5]: is a service that supports creating,
maintaining, and monitoring REST APIs at any scale. This service can
be linked with AWS Lambda, allowing to provide REST endpoints
connected with Lambda functions. This feature provides an easy to
access entrypoint to the function work�ow and allows to connect the

56

Lambda functions with any external service that can generate HTTP
calls.

� AWS Batch [29]: this service o�ers a platform to run thousands of batch
computing jobs. AWS Batch dynamically provisions the required
compute resources based on resource requirements of the batch jobs
submitted. Moreover, the jobs executed in AWS Batch have no
execution time restriction and can use higher values of RAM. Therefore,
we provided a gateway in order to delegate jobs from AWS Lambda to
AWS Batch, to overcome the time limitation imposed by the Lambda
service. In addition, the environment of a batch job is de�ned as a
Docker container, thus ensuring that the same execution environment is
going to be present in the Lambda functions and the Batch jobs. The
auto-scaling capabilities of AWS Batch allow to execute a large number
of jobs featuring the dynamic provision of computational resources.

Figure 4.1 shows how the users have di�erent ways to process their �les: 1)
the user can submit a �le to be processed using an HTTP request through a
previously de�ned and linked Amazon API Gateway endpoint; 2) the user can
upload a �le to an S3 bucket that is linked with the Lambda function or read
the �les from a non-linked S3 bucket; 3) an S3 bucket, that could be connected
to the same or another AWS Lambda function, can trigger the execution of
more Lambda functions automatically, thus e�ectively implementing serverless
work�ows (as stated in section 3.2.1, SCAR automatically creates the required
folder structure to provide this functionality).

Once a Lambda function has been triggered to process a job, the programming
model o�ers three ways to process it:

� Using AWS Lambda default behavior).

� Using AWS Batch: when it is known that the job will take more than
15 minutes to be processed or needs access to more computing resources
than those provided by AWS Lambda.

� Using a mixed approach between AWS Lambda and AWS Batch: when
the requirements of the job are unknown. This approach executes the
job in AWS Lambda, but if the job does not �nish before the allocated
function's timeout, then it is delegated to AWS Batch.

The supervisor behaves equally independently of the service that is
processing the job, so the jobs executed in AWS Batch can also take

57

Chapter 4. Event-Driven File-Processing Serverless Programming Model

advantage of storing their outputs in a S3 bucket, and their logs in Amazon
CloudWatch. In the following sections, the available work�ows presented in
this programming model are described in more detail.

4.1 Highly-scalable HTTP endpoints with API Gateway

The �rst initialization approach, shown in Figure 4.1, o�ers the users the
capability to de�ne HTTP-based entry points to AWS Lambda work�ows.
By providing this functionality, the programming model o�ers the users the
capabilities of a highly-scalable REST API to invoke scienti�c services with
automatic scaling to zero, and the ability to rapidly scale beyond the limits
achieved by VMs in EC2. To provide this functionality, an Amazon API
Gateway endpoint is required to be linked with the Lambda function to be
invoked (this can be done automatically with the SCAR CLI). When the API
endpoint and the Lambda function are linked, the HTTP request sent to the
endpoint is routed to the Lambda service and preprocessed by the supervisor,
thus leaving the content of the HTTP request ready to be used as a �le by
the container executed inside the function.

API
Gateway Lambda

request
response

call

return
return

invoke
Process
event

Figure 4.2: Synchronous sequence.

S3

store
output

API
Gateway Lambda

aynchronous
call

invoke
Process

event

(if needed)

Figure 4.3: Asynchronous sequence.

As shown in �gures 4.2 and 4.3, when invoking the function the user can
perform a synchronous or an asynchronous invocation. A synchronous
invocation instructs the API Gateway to wait for the Lambda function's
response and to send back that response to the user1. On the other hand, an
asynchronous invocation returns immediately the control to the user, but it

1A synchronous request to API Gateway has a maximum waiting time of 29 seconds. If the
Lambda function takes more time to respond an error is raised

58

4.2 S3 �le upload/read triggers Lambda Function

cannot ensure the correct invocation and execution of the function. The
asynchronous invocation method can be useful to invoke almost
simultaneously hundreds of function instances, allowing the user to take
advantage of the high scalability provided by AWS Lambda.

It is important to point out that only synchronous calls to the API Gateway
allow to return a response (e.g. a processed �le) without using an external
storage service. As shown in Figure 4.3, an asynchronous call has no connection
with the SCAR client, thus making impossible to send the function response
back. If an external �le storage is used, then both types of calls allow to store
the function responses.

4.2 S3 �le upload/read triggers Lambda Function

The second initialization approach shown in Figure 4.1, and more in detail
in Figures 4.4, 4.5, and 4.6, shows how Lambda functions can be invoked by
uploading or reading �les from an S3 bucket. This functionality allow users to
upload �les to an object storage to automatically trigger the �le processing in
parallel with no infrastructure pre-provisioning, featuring automated elasticity
and without any economic cost if the application is not being used. In the
following sections, the three ways of triggering functions using S3 buckets are
described.

S3 Lambda

upload
file send

event
Process
event

Figure 4.4: Upload a �le
to a linked S3 bucket.

S3 Lambda

send
event

Process
event

S3

copy
file

Figure 4.5: Copy a �le to a
linked S3 bucket from a non
linked S3 bucket.

S3 Lambda

read
files

send event
Process

event

file list

(one for each file)

Figure 4.6: Read �les
from a non linked S3
bucket.

59

Chapter 4. Event-Driven File-Processing Serverless Programming Model

Upload a �le to a linked S3 bucket

Figure 4.4 shows the sequence diagram followed when the user uploads a �le
to a linked S3 bucket. When the upload �nishes, the S3 service sends an
event to the AWS Lambda service with information about the created �le.
Then, the service invokes the Lambda function passing the event information.
If a massive number of �les is uploaded to S3 an internal queue is managed
automatically by the Lambda service in order to retry the Lambda invocations
for up to 6 hours, thus being able to cope with the increased workloads without
any user intervention [23].

Copy a �le to a linked S3 bucket from a non linked S3 bucket

As shown in Figure 4.5 the user can copy a �le from a second available bucket
to the bucket linked with the Lambda function. This will cause, as in the �rst
case, to trigger an event from S3 to Lambda and the invocation of a Lambda
function. By using this path the user takes advantage of the high transfer rates
between S3 buckets and can have all the �les pre-uploaded in S3, thus avoiding
the need to upload a �le each time a Lambda function needs to be invoked.

Read �les from a non linked S3 bucket

Figure 4.6 shows the sequence that occurs when the Lambda function is
invoked in parallel using an S3 bucket that does not need to be the source of
events. To follow this path, through the SCAR CLI the user speci�es a
bucket where the �les to be processed are stored. Then, for each �le found,
the client creates an event and invokes the Lambda function speci�ed. This
approach allows the users to take advantage of already existing data sets, as
in the second path, and also reduces the invocation time between Lambda
instances by invoking all of them following the pattern de�ned in section
3.6.2 (i.e. the �rst invocation is performed synchronous while the following
invocations are made asynchronous).

Finally, the SCAR CLI allows the users to upload �les to S3 buckets, and to
read �les from S3 buckets, without resorting to using the AWS tools (AWS
CLI or AWS Management Console).

60

4.3 Data management inside the Lambda Function

4.3 Data management inside the Lambda Function

After the S3 bucket sends an event with information about the uploaded �le, or
the API Gateway redirects the HTTP request to the linked Lambda function,
AWS Lambda invokes the function passing in the event information as a JSON-
structured document.

Figure 4.7 resumes the internal steps taken by the Lambda function since
the event is received until the output �les are uploaded again to an S3 bucket.
The following paragraphs explain the internal steps carried out by the function
supervisor developed:

� Create temporal folders: the supervisor's execution �rst creates two
random folders (for input and output �les) are created and their paths
are stored as environment variables $TMP_INPUT_DIR and
$TMP_OUTPUT_DIR for the Lambda function. By doing so, the
user, through the de�ned shell script, can always know where the
downloaded input �les are, and where to store the container output
folders so they are automatically managed by the supervisor.

� Process event: once the function instance is created, the received event is
processed to check its source and an input �le is created in the ephemeral
storage allocated to the function invocation (i.e. /tmp). If the source
is the API Gateway, the event body is read and its content is stored as
the input �le. If the event source is Amazon S3, the event information
is further parsed to extract the information that allows the supervisor
to identify the �le, and then the �le is downloaded from the S3 bucket
using the Boto library. This step �nishes creating a global variable (i.e.
$INPUT_FILE) that stores the path to the input �le created. This
global variable is exposed to the programming model for the user to know
the path to the data �le to be processed by the shell-script.

� Check container cache: after the event has been processed, the supervisor
checks if the required container's image and �le system are available in
the Lambda function's cache located in the ephemeral storage path of the
function (i.e. /tmp). If the container image is available in the cache, then
the download of the container from Docker Hub is skipped. Otherwise,
the container image is retrieved from Docker Hub and then stored in
the aforementioned ephemeral storage folder. Afterwards, the supervisor
checks if the container �le system is also available. If the �le system is
found this initialization step is also skipped, and when the container's

61

Chapter 4. Event-Driven File-Processing Serverless Programming Model

opt

S3 Lambda

upload file
send event

request file

download file

Docker Hub

request container
image

download container
image

Prepare
container
environment

Launch
container

Process
event

Process
container
output

upload output

Check
container
cache

Execute
user's script
inside container

Figure 4.7: Data management inside the Lambda Function.

62

4.3 Data management inside the Lambda Function

�le system is not found, the supervisor automatically creates it through
udocker and stores it also in the ephemeral storage folder.

� Prepare container environment: once the container is available, the
environment variables and the temporal output data folder required is
created (if required). Additionally, several global variables from the
AWS Lambda environment are injected in the container: the extra
payload path, if there is any, ($EXTRA_PAY LOAD), the function's
request id (($REQUEST_ID), the temporary input/output folder
variables created at the beginning, and any other environment variables
that the user previously de�ned with the SCAR CLI). To �nish, the
supervisor provides the container with the script uploaded by the user.

� Launch container: when all the environment is prepared, the container
is launched with a timeout that can be de�ned by the user (the default
timeout is the function's execution time minus 10 seconds, that is enough
time to upload any �le that can be generated by the function's execution).
If the container does not �nish on time, the execution of the container
is forced to �nish and if the user de�ned it, the job is delegated to AWS
Batch (the default behavior is stopping the execution and throwing an
error message). If the container �nishes successfully then, the only step
remaining is processing the generated output.

� Process container output: as the �nal step, if the container generates
output �les and the Lambda function is linked to an output source, the
�les are automatically copied to the speci�ed folder of the output source.
In Figure 4.7, the output source is an S3 bucket, so just before the Lambda
function �nishes, all the �les are uploaded to the corresponding bucket.

As the last step in Figure 4.7 shows, if a container generates output �les, the
supervisor can automatically upload them to a S3 bucket. From the S3 service
perspective, uploading a �le from the SCAR client or from the supervisor is the
same, so after initializing the work�ow from the SCAR client by uploading a
�le, such work�ow could automatically be continued without user interaction,
and thus new functions could be launched, if the output �le generated by the
�rst invoked function is uploaded again to S3 by the supervisor. This approach
is further analyzed in the following section.

63

Chapter 4. Event-Driven File-Processing Serverless Programming Model

4.4 Output �les trigger new Lambda functions

The third and last approach presented in Figure 4.1 and in Figure 4.8 allows
the user to de�ne a chain of functions communicated by the events generated
by Amazon S3.

S3 Lambda

send event

upload file

Execute
container

loop

Figure 4.8: Launching Lambda functions using S3 buckets without human intervention.

By using this approach, the user can de�ne input and output buckets and
folders for each of the Lambda functions created, making the output folder
de�ned for one function the input folder of another function. Then, the user
only has to invoke the �rst function of the chain using one of the other invoke
alternatives de�ned above. The remaining linked functions are invoked by the
respective events created by Amazon S3 upon the creation of the �les. This
approach paves the way to de�ne data-oriented work�ows, even supporting
recursive function invocations.

This simple approach for connecting functions allow the platform users to
create scienti�c work�ows modeled as a series of data processing functions
and intermediate storage services. The scienti�c work�ows de�ned using this
approach are data-oriented, can be easily reused and refactored, provide
intermediate storage points so the data manipulation can be tracked, and
�nally and most important, allow to de�ne complex and generic work�ows
without pre-provisioning any infrastructure. Applications designed following
this model can be created on the Cloud and will wait to be called without
incurring in cost for the maintainer of the application. This is clearly a step
forward in cloud application design and liberates the developers from having
to calculate the best trade o� between the amount of provisioned resources to
provide a good service and the service cost.

64

4.5 Job Processing with AWS Batch.

4.5 Job Processing with AWS Batch.

In the early years of computer science, batch processing appeared to allow users
run or schedule jobs without the need of continuous interaction. Queuing
job requests for processing, in contrast to managing every job one by one,
permitted users to delegate resource scheduling and allocation to the underling
system. Thus, batch processing is greatly used in many di�erent �elds where
computing needs are huge (in the order of petabytes) and resources need to be
shared (like in on-premises infrastructures), such as particle physics, weather
forecasts, or space data analysis. However, some of these jobs are so demanding
that even with all the resources of a private cluster a response cannot be
provided in a reasonable amount of time. Fortunately, with the rise of cloud
computing, batch processing became available in the public Cloud, where most
of the restrictions of on-premises clusters are overcome.

Regarding AWS, Amazon o�ers the AWS Batch service. This service
provides users with a simple and e�cient way of running hundreds of
thousand of batch computing jobs. AWS Batch automatically manages all
the underlying resource allocation needed to run the submitted jobs.
However, before running any job, the users need to specify what resources
from the pool of virtual machines available in AWS EC2 can be used and
with what parameters should be spawned. This parameters, such as the EC2
instance type (which can be provided with GPU support if needed), the
maximum or minimum virtual CPUs, or the network con�guration, de�ne the
compute environment that is going to be used for creating the underlying
virtual infrastructure that will execute the batch jobs. In addition to the
compute environment, a job queue and a job de�nition must be created in
order to use AWS Batch. The job queue is used to connect compute
environments with jobs, and with a job de�nition, the user sets the resources
needed for the job that is going to be processed (i.e. the container image to
use for the job environment, the RAM memory and CPUs required, etc.).
After all the required con�guration is done, users can de�ne batch jobs that
run inside Docker container images, with no execution time limits in an
infrastructure with the capability of scaling down to zero or scaling up to
process hundreds of thousands of jobs. However, the main drawback of this
service is its provisioning time, that depending on the resources selected can
vary from one to more than �fteen minutes, thus making this service more
suitable for long running jobs with bigger requirements than the jobs
executed in AWS Lambda. In consequence, a combination of both services,
AWS Lambda and AWS Batch, would allow us to provide support for a wider

65

Chapter 4. Event-Driven File-Processing Serverless Programming Model

set of jobs while keeping serverless features such as scaling down to zero,
scaling up to thousands of requests, and pay-per-use.

As exposed in section 3.2.1, among other limitations, Lambda functions are
restricted to 15 minutes of maximum execution time, 3,008MB of RAM,
512MB of hard disk, and cannot have access to accelerated hardware devices
such as GPUs. By allowing the user to de�ne AWS Batch Compute
Environments and combining AWS Lambda invocations with Batch jobs, it is
possible to overcome these limitations. SCAR does not only automatically
redirects the Lambda jobs to the Batch infrastructure if needed, additionally,
SCAR simpli�es the AWS Batch compute environment, job queue and job
de�nitions by automatically creating all the required AWS con�gurations
based on the SCAR con�guration �le2. The users do not need to manually
manage any AWS Batch con�guration because the complete lifecycle of the
Batch infrastructure can be done though SCAR.

Figure 4.9 shows the sequence followed when a user de�nes a job to be executed
directly in the AWS Batch environment. As in the jobs executed in AWS
Lambda, the Batch supervisor allows the access to storage services like S3
without user interaction.

As summary of this section, it can be concluded that thanks to AWS Batch
the users can de�ne elastic virtual clusters with GPU support, automated
scaling to zero, and the ability to self-deploy additional working nodes to
cope with increased workloads for event-driven compute-intensive �le
processing. Bear in mind that currently AWS Lambda only o�ers support to
CPU based executions, thus limiting the di�erent jobs that can be executed,
with this approach it is opened the de�nition of serverless work�ows to many
di�erent applications that would require GPU resources. Additionally,
combining AWS Lambda invocations with Batch jobs allow the scienti�c
users to de�ne work�ows that support a combination of short and long jobs
while keeping serverless features such as no con�guration management, and
the pay-per-use model.

2The complete set of variables that can be de�ned for the batch environment can be found in
the SCAR con�guration �le that is automatically created when SCAR is executed for the �rst time.
Also more information about the batch mode and the batch con�guration con be found in the SCAR
documentation https://scar.readthedocs.io/en/latest/batch.html

66

https://scar.readthedocs.io/en/latest/batch.html

4.6 Cost analysis

S3Lambda

create function

Batch

initialize Batch resources

ok

ok
invoke launch

batch job
Execute
initialization
template

Launch
user's script
in container

request input data

download data

upload output data
ok

Create compute
environment
Create
job queue

Register
job definition
(with GPU resources
if requested)

Docker
Hub

request Docker container image

download container image

Figure 4.9: Launching AWS Batch jobs through AWS Lambda.

4.6 Cost analysis

To test the scalability and parallel �le processing capabilities of the proposed
programming model we are going to deploy a medical image analysis service
in which several workloads are going to be tested (processing 1, 10, 100, and
1,000 images). The tool used to analyze the images was presented in the
paper by Torro et al. [179]. This tool employs the Di�usion-Weighted

67

Chapter 4. Event-Driven File-Processing Serverless Programming Model

Imaging (DWI) method [35] to extract meaningful information about the
microscopic motions of water in human tissues. The application receives as
input a Medical Resonance Imaging (MRI) �le to analyze, among other
parameters. When analyzing the MRI �le, the application uses OpenMP to
perform automated parallelization thus taking advantage of the
multi-threading capabilities in AWS Lambda functions with more than
1,792MB (as explained in section 2.4.2). The application binary used in this
test case, the Docker�le to create the container image, and the script
executed can be found in the SCAR's repository3. After executing the
di�erent workloads, it will be carried out a cost analysis of the cloud
infrastructures used in this experiment.

This case study was executed in four di�erent environments:

� A local PC machine with 4 CPUs (model i5-4590) and 8GB of RAM: to
provide a ground case for the execution time, a standard PC was used.

� A c5.large EC2 machine with 2 virtual CPUs and 4GB of RAM: the most
basic machine available in AWS EC2 for computer-intensive workloads.
This machine was selected to test the computation capabilities of the
most basic compute-intensive machine available in EC2.

� A c5.18xlarge EC2 machine with 72 virtual CPUs and 144GB of RAM:
the second biggest machine available in AWS EC2 for compute-intensive
workloads. This machine has large parallel capabilities and it was selected
to compare the monolithic approach of one big VM against the decoupled
processing approach o�ered by Lambda functions.

� A Lambda function with 3,008MB of RAM and without concurrency
limits de�ned.

To avoid the cold start of the Lambda functions (see section 3.6, together with
the works by Wang et al. [185] and Pérez et al. [154] for additional details),
the SCAR client preheats the Lambda function doing a synchronous �rst call
during the initialization step. Once the initialization �nishes, the function
invocations are performed asynchronously and executed in parallel. Figure
4.10 shows the execution times for the di�erent infrastructures involved. In
this �gure, the vertical axis (i.e. seconds) is represented using a logarithmic
scale due to the big di�erences in the execution times of the di�erent work�ows.

3https://github.com/grycap/scar/tree/master/examples/dwi-ivim

68

https://github.com/grycap/scar/tree/master/examples/dwi-ivim

4.6 Cost analysis

Figure 4.10: Average execution times to process di�erent number of images in di�erent
execution environments.

Figure 4.10 summarizes the results of the proposed workloads. It can be seen
how the local PC and the c5.large machines scale almost at the same rate
due to its similar parallelization capabilities. Processing one image already
requires all the computing power available in these machines, so when the
number of images to process is ten times bigger, the time used to process such
images also grows ten times. On the other hand, processing one image with
the c5.18xlarge machine outperforms the rest of the platforms tested (around
ten times faster) thanks to its high computing power. When using the same
machine to process ten images, the large parallel capabilities of its architecture
still beat the rest of tested platforms, as it can be seen how the time taken to
process the images doesn't grow at the same rate that the number of images
processed (the number of images is ten times more and the increase of time is
�ve times more). However, it can also be seen that processing one hundred,
and one thousand images saturates the parallel capabilities of the c5.18xlarge
machine and the processing time starts growing at the same rate than the
number of images.

Finally, it can be seen how processing one image with the Lambda function
takes more time than any of the other alternatives, this is due to the average
processing capabilities of the underlying resources of the Lambda functions (2

69

Chapter 4. Event-Driven File-Processing Serverless Programming Model

vCPUs and 3GB of RAM). Still, it can also be appreciated that the Lambda
infrastructure takes the same time to process one, ten, one hundred, or one
thousand images, thus outperforming the rest of platforms when a high level
of parallelism is required (in the one hundred and one thousand tasks). This
results are in line with the parallel capabilities announced by the Lambda
service, which is designed to process embarrassingly parallel workloads.

4.6.1 Cost analysis of the programming model

In this section it is going to be analyzed if it is cost-wise to use the proposed
FaaS programming model in comparison to a more established computational
paradigm that are the virtual machines in the Cloud (i.e. AWS Lambda vs
AWS EC2). To calculate the cost, the last workload of the case study
presented in the previous section is going to be used, that is, analyzing the
cost of processing 1,000 medical images with AWS Lambda and with two
types of AWS EC2 instances (c5.large, and c5.18xlarge). Table 4.1 resumes
the AWS infrastructures used and their respective properties.

AWS
Service

Type
Cost
($/h)

CPU units
(ECU)

Lambda 3,008MB 0.176292 5.75*

EC2
c5.large 0.085 8

c5.18xlarge 3.06 278

Table 4.1: Cost of the AWS services used extracted from the AWS documentation. The
EC2 instances used are on-demand. ECUs for Lambda are estimated based on the execution
time.

In order to compare di�erent instance types with di�erent underlying
architectures, AWS introduces the EC2 Compute Unit (ECU) [30]. As it can
be seen in Table 4.1, only the ECU for the c5.large and the c5.18xlarge
are de�ned in the o�cial documentation [31] Thus, the ECU provided by the
Lambda service are estimated by comparing the execution time of processing
the same test image in an already measured machine (i.e. c5.large) and
then applying equation 4.1 being function_instance_time the time used by a
Lambda invocation to process one image.

c5.large_cpu_time s ∗ c5.large_ECU

function_instance_time s
(4.1)

70

4.6 Cost analysis

AWS
Service

Type
Time to

process 1,000
images (s)

Cost ($)
Machines needed

to match
Lambda time

Cost of the machines
used to match

Lambda time ($)

Lambda 3,008MB 142 (2.36 min.) 6.95 - -

EC2
c5.large 102,500 (28.47 h.) 2.42 722 -

c5.18xlarge 2,820 (47 min.) 2.40 20 2.41

Table 4.2: Summary of the costs of the image analysis. Services' cost extracted from Table
4.1, adopting per-minute billing.

Table 4.2 summarizes the cost calculations for the cost analysis. The equation
used to calculate the cost of di�erent EC2 instances (represented in the 4th
column (Cost ($)) of Table 4.2 is the following:

instance_time s ∗
⌈
instance_cost

3, 600

⌉
$/s (4.2)

Also, Table 4.2 shows the number of concurrent instances needed to match
the lambda execution time and its respective costs. To calculate the total
cost presented in the last column, �rst it is calculated the number of
machines needed (N), dividing the total execution time of the application in
each instance by the time used by Lambda and rounding up. Then, with the
number of machines (N) and using equation 4.3, it can be calculated the
total cost of a multi-instance execution.

N ∗ function_instance_time s ∗
⌈
ec2_instance_cost

3, 600

⌉
$/s (4.3)

In Lambda, the average execution time for the complete execution is 142
seconds. An invocation is performed for every image to analyze, so SCAR
concurrently instantiates 1,000 Lambda functions. So, when using Lambda
functions the time to process 1 or 1,000 images is the same and the total cost
of the execution is, applying equation 4.2 and multiplying by 1,000 function
instances, 6.95$.

Processing the images with the c5.large instance takes 102,500 seconds (i.e.
almost 29 hours) with a cost of 2.42$. Thus to match the Lambda execution
time, we would require 722 c5.large instances working concurrently. The
cost of deploying such number of machines is not calculated because 722 EC2
instances surpasses by far the default maximum number of machines allowed

71

Chapter 4. Event-Driven File-Processing Serverless Programming Model

by the provider for each zone (i.e. 20). On the other hand, the c5.18xlarge
takes 2,820 seconds (aprox. 47 min) with a cost of 2.40$. So, if we wanted to
process the same number of images in the same time as the Lambda service,
we would need 20 c5.18xlarge machines and it would cost us 2.41$.

To �nish this cost analysis, two important aspects should be emphasized. First,
the AWS EC2 service sets a default soft limit in the number of concurrent
instances running at the same time at 20, that can be increased if requested to
the provider. Second, and the most important, launching several EC2 instances
at the same time to execute a high number of jobs inside them requires, in
addition, some type of orchestration service. To be able to deploy all the
instances concurrently we would need a service like AWS Auto Scaling [13],
and also a job scheduler (e.g. SLURM [167], Torque [49], HTCondor [187],
etc.) to ensure the job execution and tracking. These extra software layers
complicate the multi-instance execution, in contrast with the easy parallelism
that the Lambda services o�er in combination with the the SCAR framework
and the programming model presented.

Considering the cost analysis done, it can be outlined that the ease of use and
the reduced execution times of the Lambda platform implies a price increment.
The AWS Lambda service is more expensive than the EC2 instances, but
on the other hand, it is easier to con�gure and launch, specially when used
in combination with SCAR. Furthermore, cheaper solutions usually involve
increasing the complexity of the execution, since orchestration tools would be
needed to manage the execution. Thus, in cost terms, better solutions than
AWS Lambda exist, but featuring important drawbacks that can make them
unfeasible to the user with little or no experience in infrastructure deployment,
which in fact, are the target users of the programming model.

4.7 Conclusions

This chapter has introduced a programming model to create highly-parallel
event-driven serverless applications. The execution environment for this
applications was provided by containers created out of customized Docker
images.

The ability to run code in response to events and the large-scale elasticity
provided by the underlying serverless platform opens new avenues for e�cient
High Throughput Computing tasks. Furthermore, the programming model
allows to abstract away many implementation details typically required on
computing frameworks. Moreover a cost analysis was carried out comparing

72

4.7 Conclusions

the serverless programming model presented and more common cloud
computing architectures. Although the cost analysis revealed that running a
serverless architecture could be costlier than deploying EC2 machines, the
savings in con�guration and execution time in combination with the
pay-per-use model o�ered by AWS Lambda make the serverless architectures
a good option to deploy applications that have to deal with a high amount of
short lived tasks. In addition, several limitations identi�ed in the previous
chapter, such as the amount of memory allocated to each function invocation
and, the most limiting one, the maximum execution time, were tackled by the
presented programming model and can be overcome thanks to the
combination of di�erent AWS services.

Also, it is important to remark that the proposed programming model
enables to deploy complex applications and can automatically provide an
HTTP endpoint to trigger its execution where the cost is linearly dependent
on the amount of requests to the endpoint and the resources consumed.
Exposing a highly-available highly-scalable cost-e�ective endpoint for a
generic application on a cloud platform paves the way for the adoption of
serverless computing for the execution of complex scienti�c applications, even
data-oriented work�ows.

However, users do not always have access to public cloud infrastructures or
depending on the restrictions of their projects, they are not allowed to use
such infrastructures. That is why the next chapter focuses on the adaptation
of the presented programming model to an on-premises functions-as-a-service
platform. We will show how such model can be used in less restricted
environments o�ered by on-premises infrastructures, thus allowing the users
to create serverless workloads in their own clusters.

73

Chapter 5

Open-source Serverless

Computing for Data-Processing

Applications

This chapter presents the Open Source Serverless Computing
for Data-Processing Applications (OSCAR) platform. OSCAR, in
combination with the programming model presented in chapter 4,
allows to de�ne event-driven �le-processing on-premises serverless
architectures. Section 5.1 presents the open-source components
integrated in the OSCAR platform. Section 5.2 explains the
platform architecture, and section 5.3 tests the created platform
with a use case for video processing.

The advent of open-source serverless computing frameworks has introduced
the ability to bring the Functions as a Service (FaaS) paradigm for
applications to be executed on-premises. As reviewed in section 2.4.3 there
already exists a myriad of open source platforms that try to cover the FaaS
on-premises platform gap. However most of those frameworks are focused on
processing short-lived HTTP requests, like the public FaaS services that they
mimic. Moreover, data-driven scienti�c applications can bene�t from the
ability to trigger scalable computation in response to incoming workloads of
�les to be processed. Thus, the challenge faced in this chapter is to provide
an on-premises platform with the focus on the event-driven execution of
compute-intensive applications, and to provide a seamless integration with

75

Chapter 5. Open-source Serverless Computing for Data-Processing Applications

di�erent storage back-ends as sources of events. To this end, this chapter
introduces an open-source framework to achieve on-premises serverless
computing for event-driven data processing applications that features:

� The automated provisioning of an elastic Kubernetes cluster that can
grow and shrink, in terms of the number of nodes, on multi-Clouds.

� The automated deployment of a FaaS framework together with a data
storage back-end that triggers events upon �le uploads.

� A service that provides a REST API to orchestrate the creation of such
functions.

� A graphical user interface that provides a uni�ed entry point to interact
with the aforementioned services.

Implemented together, these features o�er a framework capable of deploying
computing platforms for users to create highly-parallel event-driven
�le-processing serverless applications. The user can de�ne such applications
on customized runtime environments provided by Docker containers that will
run on an elastic Kubernetes cluster.

5.1 Platform Components

Some of open-source projects reviewed in section 2.4.3 have a strong community
behind them and keep adding new features each month. However there is not
a unique project that o�ers all the features that are requested to tackle the
proposed scienti�c challenge. So, when OSCAR was designed, it was decided to
integrate di�erent features of these open-source solutions to provide a platform
that can cover the requirements needed to overcome the proposed challenge.

Figure 5.1 provides a high-level overview of the open-source components
integrated in the OSCAR platform. The integrated components can be
distributed in three main categories: 1) the software used to provide
automated deployment and elasticity to the Kubernetes orchestrator; 2) the
Kubernetes orchestrator itself; 3) the software used to provide a serverless
environment on top of the Kubernetes orchestrator. The following sections
explain these open-source software were integrated with Kubernetes.

76

5.1 Platform Components

KUBERNETES

EC3IM

KANIKOMINIOOPENFAAS

CLUES

Deployment on
multi-Clouds

Elastic Container
Orchestration

Platform

OSCAR
Services

Figure 5.1: Main components used in the OSCAR architecture. The orange dotted line
marks the components that allow elasticity at the level of virtual machines (i.e. powering
on and o� nodes). The blue dashed line delimits the components that provide the functions
as a service and the event programming model.

5.1.1 Automated Kubernetes Cluster Deployment and Elasticity

As explained in section 2.2 Kubernetes has become the de facto solution for
users that want to manage container microservices on di�erent clouds.
Among other features, Kubernetes is able to horizontally autoscale containers
thanks to the Horizontal Pod Autoscaler [109]. With the Vertical Pod
autoscaler [110], Kubernetes can down-scale pods that are over-requesting
resources, and up-scale pods that are under-requesting resources based on
their usage over time, and �nally, thanks to the Cluster Autoscaler [111],
Kubernetes is also capable of resizing the number of nodes in a given node
pool, based on the demands of the received workloads. In conclusion,
Kubernetes is a powerful platform with many di�erent features that supports
a multitude of di�erent use cases. However these adaptability comes with a
cost and the platform su�ers from a steep learning curve and correctly
con�guring and adapting all the Kubernetes services required to provide an
automatically managed FaaS platform can be a di�cult task by the scienti�c
users with no experience in cluster management. Therefore, in order to

77

Chapter 5. Open-source Serverless Computing for Data-Processing Applications

facilitate the con�guration, deployment and management of the elastic
Kubernetes cluster and all its related services the OSCAR platform relies on
the following tools:

� Infrastructure Manager (IM) [38], an open-source tool to describe
complex application architectures using high-level declarative languages
such as Resource Application Description Language (RADL) [89] and
the standard speci�cation Topology and Orchestration Speci�cation for
Cloud Applications (TOSCA) [140] in order to deploy them on multiple
back-ends such as public Clouds (e.g. AWS, Microsoft Azure, Google
Cloud Platform) and on-premises cloud management platforms (e.g.
OpenNebula, OpenStack). The IM is used to support automated
multi-cloud deployments.

� CLUster Elasticity System (CLUES) [2], an open-source modular
elasticity system that supports a wide variety of plugins in order to
introduce elasticity capabilities for cluster-based computing. Many
plugins are supported in order to introduce horizontal elasticity for
di�erent types of clusters: i) based on an Local Resource Management
System (LRMS), supporting SLURM and PBS/Torque; ii) based on
container orchestration platforms, supporting Apache Mesos,
Kubernetes and Nomad, and iii) based on HTC, supporting HTCondor.
Although nowadays Kubernetes relies on the Cluster Autoscaler tool to
o�er a native solution to the horizontal node autoscaling issue, when
this architecture was designed this component did not exist. So, thanks
to CLUES, we can provide horizontal node elasticity, provisioning and
terminating nodes when needed and additionally provide support for
many di�erent Cloud back-ends since it is integrated with the IM.

� Elastic Cloud Computing Cluster (EC3) [39, 40], an open-source tool to
deploy through the IM virtual elastic compute clusters on multi-clouds
that can scale in and out in terms of the number of nodes according to
certain elasticity rules de�ned in the corresponding CLUES plugin. EC3
allows us to o�er a tool that combines the bene�ts of IM and CLUES
in a simple CLI. Thanks to EC3, we can develop a RADL recipe with
the con�guration of the complete cluster to be deployed, which allows
us to have a unique point of maintenance when dealing with the cluster
con�guration. A complete EC3 recipe for the OSCAR platform can be
found in Appendix B.

78

5.1 Platform Components

5.1.2 FaaS services in Kubernetes

After introducing the tools used to manage the low level elasticity (at the
node level), this section presents the open-source software developments
integrated with OSCAR to o�er the users FaaS functionality for event-driven
�le-processing applications.

� OpenFaaS [143]: is a framework for building serverless functions with
Docker and Kubernetes. OpenFaaS was analyzed as one of the
open-source FaaS platforms available for on-premises infrastructures in
section 2.4.3. Although this framework presents issues when executing
long-running jobs, it is designed in a modular and extensible manner,
which allowed us to modify and adjust the required components to the
requirements of compute-intensive jobs. In OSCAR, OpenFaaS is going
to be the system used to manage the function creation, deletion and
invocation.

� MinIO [137]: is an object storage server that features an Amazon S3
compatible API. MinIO is used to provide data persistence for the input
and output data of the functions in OSCAR. In addition, by taking
advantage of its eventing features MinIO, in combination with
OpenFaaS, allows to support data-driven function work�ows with a
similar approach to what was done with AWS S3 and AWS Lambda
(see section 4.2 for more information about the execution work�ows
available).

� Kaniko [108]: a tool to build container images from a Docker�le, inside
a Kubernetes cluster. The main feature of Kaniko is that it does not
depend on a Docker daemon, thus building Docker container images in
userspace. Inside the OSCAR platform, Kaniko is used to manage the
container modi�cations needed for the infrastructure (including the faas-
supervisor binary) without user interaction.

In addition, other services need to be deployed to support the functionality of
all the integrated systems. A distributed Docker registry is used to store the
automatically created container images that represent the functions deployed
by the user. Also, a Network File System (NFS) is used to provide shared
folders among the cluster frontend and working nodes. NFS is used to provide
persistent volumes among all the nodes that comprise the Kubernetes cluster,
and are used by the MinIO, Docker registry and Kaniko services.

79

Chapter 5. Open-source Serverless Computing for Data-Processing Applications

5.2 OSCAR architecture

In the previous sections we have presented deployments that already existed.
In this section we are going to show how these components were integrated
(including the modi�cations to adapt some of them) and also the new software
designed to o�er the user an easy to use platform for deploying FaaS work�ows
in on-premises Cloud platforms.

VM

Hardware

CLUESKube
FrontEnd

Kube
WN

VM VM

Kube
WN

Kubernetes Cluster

OSCAR
Manager

OSCAR
GUI

Minio

OpenFaaS

Docker
Registry

AP
I

OSCAR

Kubernetes Services

Kaniko

Init / Invoke
Functions

Put / Get
Files

Create
Docker Image

Create / Launch
Function

Create
Buckets

Register
Image

File
event

User Script

faas-supervisor

FileWatchdog

Docker Container

1. Stage In
2. Execute

User App
3. Stage Out

Deploy Elastic
Kubernetes Cluster

+
OSCAR

Scale in / out

Manage
Services

NATS
queue

Kubernetes
Job

Pull Docker
Image

OSCAR
Worker

Publish event

Read
event

Create
Job

Figure 5.2: Architectural approach for supporting container-based �le-processing
applications on serverless platforms. The yellow font remarks the components developed
by the doctoral candidate.

Figure 5.2 provides an overview of the interaction among the services
deployed in the elastic Kubernetes cluster dynamically provisioned by the
OSCAR framework. The �gure is divided in two main components, the
underlying Kubernetes cluster in which all the services are deployed and that

80

5.2 OSCAR architecture

provides automatic node elasticity and the OSCAR platform that integrates
all the high-level services that provide the FaaS functionality. Also, as it can
be seen in the �gure, the user does not need to worry about cluster
management, once a system administrator has deployed the OSCAR
platform, which can be accessed through the OSCAR GUI providing an easy
usage of the FaaS infrastructure.

5.2.1 OSCAR Manager

OSCAR manager is the component in charge of orchestrating all the other
high-level services present in the Kubernetes cluster. It o�ers a REST API
that allows the user to initialize, invoke, and delete functions. The process to
create a function is completely transparent to the user and is comprised of the
following steps:

� Through the web interface, the user generates a request to create a
function that is received by the OSCAR Manager service. The basic
�elds needed to create a function are, the function's name, the Docker
container image to use, and the script to be executed inside the function
(which is the function's code).

� Using as base image the user's image, and through Kaniko, a new
Docker image is created with the faas-supervisor binary injected. The
faas-supervisor is in charge of managing the input data required and the
output data generated by the function execution. Once the Kaniko
build is �nished, the image is stored in the shared Docker registry
deployed in Kubernetes.

� Based on the function's name, the OSCAR manager creates the required
input and output buckets in the MinIO service. These buckets and all its
internal �les are accessible from the OSCAR user interface, thus easing
the data uploading and downloading from the platform.

� Finally, the function is created in OpenFaaS. OpenFaaS will use as image
for the function the new image created by Kaniko and retrieves it from
the Docker registry. In addition, the input bucket created in MinIO is
automatically linked with the corresponding function. Thus, when an �le
is uploaded to the bucket, an event with the �le information is generated
and passed to the linked function.

81

Chapter 5. Open-source Serverless Computing for Data-Processing Applications

Besides creating the function and buckets, OSCAR manager is also in charge
of processing the MinIO events. This feature is related with the MinIO
con�guration, because each time a new webhook is added to the MinIO
con�guration �le (i.e. each time a new function is created), the MinIO service
needs to be recon�gured, what takes around 90 seconds and completely
blocks the usage of the storage service. So, to avoid changing the
con�guration �le each time, a webhook is created, but with the OSCAR
manager instead of the new created functions. Then, each time an event is
generated the manager is in charge of redirecting it to the required function.

5.2.2 OpenFaaS and the OSCAR worker

OpenFaaS is designed to process short-lived requests and, therefore,
attempting to execute several long-running jobs at the same time typically
ends up collapsing the Kubernetes cluster due to the lack of resources for all
the processes. To be able to support long running jobs a new service was
developed to replace the nats-queue-worker deployed by default by
OpenFaaS, i.e. OSCAR worker in Figure 5.2.

Gateway

NATS
Queue

A
P

I

OpenFaaS

Publish
event

OSCAR

Kubernetes
Job

Subscribe

OSCAR
Worker

Kubernetes
Job

Launch One job
per

invocation

Async
request

Figure 5.3: OSCAR worker used to support long-running jobs in combination with
OpenFaaS1.

1Schema extracted from: https://github.com/grycap/oscar-worker

82

https://github.com/grycap/oscar-worker

5.2 OSCAR architecture

As it can be seen in Figure 5.3, the OSCAR Worker transforms asynchronous
requests sent to OpenFaaS into Kubernetes jobs. Thus, the steps taken when
executing a function are as follows. First, when the user uploads a �le to a
MinIO bucket, an event is triggered, processed by the OSCAR manager, and
sent to OpenFaaS as an asynchronous request which is stored in the NATS
queue provided by OpenFaaS. Second, the OSCAR worker (that is subscribed
to the NATS queue) reads the asynchronous request and then creates and
submits a new job to Kubernetes. Submitting a job to Kubernetes allows
OSCAR to delegate the resource management to both Kubernetes and the
CLUES elasticity system. CLUES is able to detect when the Kubernetes
cluster needs more resources (based on CPU and RAM memory usage) and
provisions new nodes accordingly. Likewise, if CLUES detects that
Kubernetes has spare nodes that are no longer needed, it terminates them,
thus freeing the resources.

5.2.3 The FaaS supervisor

As stated before, one of the goals of this thesis is to allow the users to execute
FaaS work�ows in public and private clouds. We also saw that during the
development of SCAR and the high throughput programming model, a library
was developed to manage the data stage in and out when dealing with FaaS
functions. Thus, when we approached the development of a library to manage
the data in a FaaS on-premises platform, we decided to adapt and generalize the
SCAR supervisor and transform it into the `faas-supervisor' library. Depending
on the underlying platform used, the faas-supervisor is used as a Python library
(in AWS Lambda) or as a binary (in OpenFaaS), but the functionality o�ered is
the same, it automatically provides the mechanisms to download the required
data inside the function environment and to upload the generated data from
the function execution.

The faas-supervisor has been designed to process one �le for each event
received, and its generic execution steps (common to all providers) once the
function is initialized are as as follows:

� Create the required temporal folders: to provide users with a generic
way of dealing with the input and output folders, at the beginning of
the supervisor execution, a pair of random folders (for input and output)
are created and then the environment variables $TMP_INPUT_DIR
and $TMP_OUTPUT_DIR are set. Thus, the user's script will always
�nd the downloaded input �les in the speci�ed input folder, and the �les

83

Chapter 5. Open-source Serverless Computing for Data-Processing Applications

created by the script in the output folder will be automatically uploaded
to the linked storage service.

� Parse the received event: currently the supervisor is able to di�erentiate
between events generated by Amazon API Gateway, Amazon S3,
MinIO, and Onedata [142] (Onedata is a high-performance data
management solution that o�ers uni�ed data access across globally
distributed environments and multiple types of underlying storage). In
addition, the supervisor provides a fail-safe mechanism to save an event
that is not recognized so the user can �nd it stored as a �le called
event_�le in the input folder. If an API Gateway event is detected, the
body of the HTTP request in analyzed and its content stored
consequently.

� Read the storage variables: currently the supervisor supports the
following storage providers: MinIO, Onedata, AWS S3 and local storage.
The storage authentication variables are de�ned as environment
variables inside the functions' environment. At the beginning of the
function's execution, the supervisor looks for the environment variables
that follow the pattern $STORAGE_AUTH_$1_$2_$3, where $1 is
the storage provider (MinIO, S3, Onedata), $2 is the variable type
(user, pass, token, space, host), and $3 is the automatically generated
storage id. If there are variables that follow those rules, the
corresponding authentication objects are created.

� Create the supervisor: �nally, once the event and the storage
authorization variables are parsed, the required supervisor is created.
The environment is checked and depending on which platform it is
deployed, the supervisor behaves accordingly (executing an script in
OpenFaaS, or running udocker in AWS Lambda).

In addition, the development of the supervisor library has been detached from
the developments of SCAR and OSCAR and can be checked out in its own
Github repository [87]. This, in combination with its modular design allows
other developers to easily create new data storage plugins, and event managers.

84

5.2 OSCAR architecture

Figure 5.4: OSCAR GUI. Main screen with the summary of the deployed resources.

5.2.4 The OSCAR GUI

To provide the users with a single access and management point to the OSCAR
platform, it was developed a Graphical User Interface (GUI) that connects the
di�erent services inside the Kubernetes cluster.

For the development of the OSCAR GUI, Vue.js and Vuetify were used. Both
are accessible and versatile frameworks for building user interfaces. Vue.js is
a progressive JavaScript framework, with intuitive, modern and easy to use
features, and has a very active community. Vuetify is a semantic component
framework for Vue.js. It aims to provide clean, semantic, and reusable
components.

The graphical user interface is deployed inside the Kubernetes cluster, so it is
necessary to externally expose the application through a port. Since Vue.js is
a frontend framework, and the application is executed on the client side, it was
necessary to create a Node.js application that interacts with the other internal
services of the Kubernetes cluster such as the OSCAR Manager, MinIO, and
OpenFaaS. The application was created using Express which is a robust, fast
and �exible framework for Node.js applications.

Figure 5.5 depicts the Functions tab where you can create, edit or delete
functions and Figure 5.6 shows the Storage tab where the information of the
buckets is shown, as well as the stored �les. In the Storage tab users can

85

Chapter 5. Open-source Serverless Computing for Data-Processing Applications

Figure 5.5: OSCAR GUI. The functions tab shows the user the functions created and the
function status.

upload the �les to be processed, remove them from the buckets or download
the output �les generated by a function.

5.3 Case study: Video Processing Service in On-premises
Infrastructure

In order to assess the OSCAR framework we deployed a serverless video
processing service in an on-premises OpenNebula-based cloud. The service
comprises two functions linked by means of an storage bucket, so when the
�rst function �nishes, the second function is triggered automatically. The
goal of this service is to apply object recognition to the frames of the video
uploaded by the user as input. Figure 5.7 shows the work�ow of the
architecture proposed. The �les needed to reproduce the case study are
open-source and available in GitHub2.

The video processing function uses the �mpeg library to extract the keyframes
from the input video. To be able to create di�erent workloads, the keyframe
extraction rate has been changed to generate di�erent amounts of images. The
image processing function uses the darknet framework in combination with
the You Only Look Once (YOLO) v3 library [161] to detect the objects in
the image. All the libraries and frameworks have been compiled to support
CPU-based executions.

2https://github.com/grycap/oscar/tree/master/examples/video-process

86

https://github.com/grycap/oscar/tree/master/examples/video-process

5.3 Case study: Video Processing Service in On-premises Infrastructure

Figure 5.6: OSCAR GUI. The storage tab shows the user the MinIO buckets automatically
created when the function is deployed in the infrastructure and the stored �les inside those
buckets.

The following steps were taken during the experiment execution:

1. Using the OSCAR GUI the user creates the video processing and the
image processing functions. By de�ning the output bucket of the video
processing function as the input bucket of the image processing function
the user is creating the work�ow that is going to be triggered when a
�le is uploaded into the input bucket. Bear in mind that the creation of
the required containers, the container registration in the internal Docker
registry, the creation of the needed MinIO buckets, and the creation of
the OpenFaaS function is automatically performed without any user
interaction.

2. Through the OSCAR GUI, the user uploads to the input bucket of the
video function the video to process. After this step the user interaction
is not required anymore until the retrieval of the output data.

3. After the video upload �nishes, MinIO creates an event that is pushed
to OpenFaaS which stores the event received in the NATS queue.
Afterwards, the OSCAR worker reads the NATS queue and launches
the function as a Kubernetes job. During the function execution, the

87

Chapter 5. Open-source Serverless Computing for Data-Processing Applications

Upload video

Trigger function
Minio

OpenFaaS

Kubernetes

Download
results

OSCAR
GUI

K8s
Job

Video
processing
function FaaS

supervisor

OpenFaaS Minio

K8s
Job

FaaS
supervisor

K8s
JobK8s

JobK8s
JobK8s

JobK8s
JobK8s

JobK8s
JobK8s

Job

K8s
JobK8s

JobK8s
JobK8s

JobK8s
JobK8s

JobK8s
JobK8s

Job

Store
video images

Store
analyzed
images

Create functions

Trigger function

Image
processing
functions

Figure 5.7: Simpli�ed work�ow of the video processing service. Two functions are used to
process the video. First, a function to extract the video keyframes, and second, a function
to analyze the generated keyframes. the function with the image processing functionality is
triggered automatically for each keyframe created by the video processing function.

88

5.3 Case study: Video Processing Service in On-premises Infrastructure

FaaS supervisor library that acts as a wrapper of the function instance
retrieves the video from the MinIO bucket and stores it inside the
function's ephemeral storage space, in the input folder automatically
created at the beginning of the supervisor execution. Then, the user
script is executed and the generated output is stored in the speci�ed
output folder. As the last step of the video function, the OSCAR
supervisor uploads all the �les present in the output folder to the
output bucket de�ned, thus triggering the image processing function.

4. MinIO detects the new �les in the input bucket and starts the process
again but this time triggering the image processing function. MinIO
generates an event for each �le uploaded to the bucket, so we
automatically end up with a function being launched for each image
stored in the input bucket. The invocation and execution process of the
function is the same as in the previous step but changing the container
and the script executed. After the image processing function �nishes,
the output �les generated are stored in the output bucket linked to the
function.

5. The last step involves the user downloading the �les generated by all the
executed functions.

As summary, this use case demonstrated the feasibility of using the OSCAR
platform to manage FaaS functions in on-premises infrastructures. The
platform allows the users to upload �les to an object storage system and
automatically triggers the processing of the �les in an elastic manner, thus
solving the challenge of freeing the users from the infrastructure management
when dealing with on-premises environments.

5.3.1 Results

To test the scalability and reliability of the OSCAR platform, three di�erent
workloads were used, based on the number of images extracted from each video.
For the �rst workload we extracted 10 images, 100 for the second workload and
1,000 for the third. These workloads involved the invocation of 11, 101 and
1,001 functions respectively in the OSCAR cluster, one for the video processing
and the remaining for the image processing.

The physical infrastructure used in all the experiments is composed by two
type of nodes. The �rst node type has two Intel(R) Xeon(R) CPU E5-2683
v3 2.00GHz (14 cores) processors, 64 GB of memory RAM, 240 GB of Solid

89

Chapter 5. Open-source Serverless Computing for Data-Processing Applications

Figure 5.8: State of the nodes during the execution of the three di�erent workloads.

State Disk, two 1 GB Ethernet network adapter and one 10 GB Ethernet
network adapter. The second node type has two Intel(R) Xeon(R) CPU E5-
2660 v4 2.00GHz (14 cores) processors, 128 GB of memory RAM, 250 GB of
Solid State Disk, two 1 GB Ethernet network adapter and one 10 GB Ethernet
network adapter. The Storage Area Network is a Dell Equallogic PS4210 with
16 TB availables. Finally, the hardware is managed by the OpenNebula Cloud
Management Framework and the KVM hypervisor.

The speci�cations for the virtual cluster used in the case study are the
following: the front-end has 8 virtual CPUs and 16 GiB of RAM. The
working nodes have 4 virtual CPUs and 8 GiB of RAM. The speci�cations of
the nodes were selected to simulate two of the most common instances used
to process compute-intensive workloads in Amazon Web Services [56]. The
front-end is equivalent to a c5.2xlarge and the nodes are equivalent to a
c5.xlarge. The complete virtual cluster is composed by 1 front-end and a
maximum of 10 nodes which will be powered on on-demand. The cluster size
of 10 working nodes was selected because it allows to demonstrate the scaling
capabilities of the deployed platform, and at the same time, it keeps the load
of the infrastructure controlled. All the machines used are virtual machines
deployed in the OpenNebula-based on-premises cloud described above.

Figure 5.8 shows the state of the virtual nodes during the execution of the
three proposed workloads. The colors of the areas represent the following: the
blue area represents the nodes that are idle (i.e. waiting for jobs); the dark
orange area represents the nodes that are busy processing Kubernetes jobs;

90

5.3 Case study: Video Processing Service in On-premises Infrastructure

the grey area shows the number of nodes that are powering on and the gold
area shows the number of nodes that are powering o�. The data in the graph
is stacked, thus the areas that have no color represent nodes that are powered
o� and are not consuming resources in the infrastructure.

In order to immediately process small workloads, the deployed cluster always
has one working node available. This is represented by the orange area along
the �rst 10 minutes in Figure 5.8. Afterwards, the �rst workload starts (i.e.
process a video and ten extracted images). In the minute 10, the video is
processed by the available node and the images to analyze are generated.
CLUES realizes that it does not have the required computing resources to
process the new function invocations and provisions additional nodes to
process the incoming workload. This process can be seen in the �rst grey
area in minute 12. The nodes in power on state (i.e. being deployed and
provisioned) take 3 minutes to be ready which is enough time for the already
deployed working node to process the 10 jobs in the queue. Therefore, the
new nodes that are deployed are in idle state and after a couple of minutes
are powered o� to save resources (this is represented by the gold area in
minutes 14-16).

The second workload starts in minute 17. As in the �rst workload, the available
working node is enough to process the uploaded video. This time 100 functions
are generated, so the CLUES system powers on all the available nodes to attend
the requests (this is represented by the second grey area between the minutes
18 and 26). The new nodes powered on start executing the functions just after
being initialized so no idle nodes are seen until the functions allocated in those
nodes are �nished. The execution of the second workload �nishes in minute 36
and it is represented by the highest peak of the idle area (i.e. the blue area).

With the third workload it is tested the reliability of the infrastructure under a
high load. As stated at the beginning of the section, 1,001 function invocations
are launched and processed. In Figure 5.8 it can be seen that this is carried
out between the minutes 37 and 78. In minute 37 all the working nodes that
are idle receive new function invocations to process and the cluster continues
processing them until minute 73 where the working nodes start to be idle. After
being idle for 5 minutes and not receiving new function invocations, CLUES
starts to terminate nodes until only one working node is left.

Figure 5.9 shows the RAM memory and CPU usage of the nodes along the
execution of the three workloads tested. The graph represent the stacked
resources for each node and the green line represents the total amount of
provisioned resources in the cluster infrastructure with two di�erent Y axis

91

Chapter 5. Open-source Serverless Computing for Data-Processing Applications

Figure 5.9: RAM and CPU usage during the execution of the three di�erent workloads
(11, 101 and 1,001 functions executed respectively).

(GiB of RAM, and number of vCPUs). This can be represented because the
CPU and memory resources are linearly related and grow accordingly. Since
each function invocation has the same resource requirements and all the
functions use the maximum resources available in each execution ,the graphs
of RAM and CPU usage can be combined. It is also important to know that
no more than three functions per node could be deployed due to the image
function requirements (i.e. 1 CPU and 2 GiB of RAM) and that Kubernetes
also needs to deploy their own pods to control each node (those pods also use
CPU and RAM resources). This behavior caused that several GiB of RAM
and CPUs were unused because the unused space in each node was less than
the minimum space required by the functions and that is represented by the
white area under the green line which is the total amount of resources.

As in Figure 5.8, Figure 5.9 clearly depicts the execution of the three
workloads. From minutes 10 to 12 there is a peak in resources consumption
in the available working node. After the cluster �nishes deploying new nodes
this peak has disappeared (i.e. the execution of the functions has �nished)
and the new reserved resources (the working nodes) are freed again
(terminated). The second workload starts in minute 17 and has its maximum
peak of RAM and CPU consumption in minute 26 after all the nodes have
been deployed. As the functions are processed, the usage of the resources of
the working nodes decreases but the nodes are not terminated, thus not
releasing the reserved infrastructure resources. The third workload starts in
minute 37, when the maximum number of functions per node are deployed

92

5.4 Conclusions

again and this behavior continues until the 1,000 images are processed in the
minute 78. Once CLUES detects that the working nodes are idle for 5
minutes, it terminates them. The green line (total amount of resources
reserved) at the end of the graph going down represents this release of
resources.

As a summary of the results, the framework was able to process three
di�erent workloads, executing 11, 101 and 1,001 functions. The �rst 11
function invocations were processed in 3 minutes and no extra nodes were
needed (two new nodes were powered on but were never used). Processing
the 101 function invocations made the cluster reach its top performance as
seen in Figure 5.9 and it took 19 minutes to �nish (including the deployment
time of nodes which is 3 minutes). The third workload, processing 1,001
functions, also �lls all the available processing slots of the infrastructure's
nodes. The third workload �nishes in 41 minutes. This time could be
improved by deploying a bigger cluster (e.g. 20 nodes instead of 10). Thanks
to the elasticity of the cluster, these nodes would only be used when a high
amount of function invocations are needed to be processed, being powered o�
the remaining time. To deploy a bigger cluster, the user only has to change
the maximum number of nodes available when deploying a new cluster. The
OSCAR framework will manage everything else to use those new resources.

5.4 Conclusions

This chapter has introduced a framework to support serverless computing in
on-premises platforms for event-driven data-processing applications. First of
all, a plugin to enable horizontal scalability of a Kubernetes cluster has been
created, in order to cope with incoming workloads by provisioning additional
virtual machines from the underlying Cloud computing platform employed.
Second, the automated deployment and orchestration of the multiple services
required to support this framework is performed with the help of the EC3 and
IM tools, including a FaaS framework, an event-aware data storage back-end,
and support for building and storing Docker images. Third, an integrated web-
based graphical user interface is provided in order to simplify the interaction
with the computing platform and that interacts with the services deployed
inside the Kubernetes cluster.

Users are provided with an open-source platform o�ered via a convenient web
interface that simpli�es the creation and execution of the functions. The
users just need to upload their �les in order to trigger the concurrent

93

Chapter 5. Open-source Serverless Computing for Data-Processing Applications

execution of the application. The application will process the uploaded �les
and leave the output data �les in the corresponding folder for the users to
retrieve them. Being able to interact with a computing platform without
requiring the de�nition of jobs, and by means of a web browser represents a
step forward towards simplifying application execution for data-processing
applications.

In the case study we saw that due to the resource requirements of the
Kubernetes infrastructure, the RAM memory and CPU resources of the
working nodes could not be completely used. Further work in the
infrastructure re�ning the requirements and the behavior of the required
pods could lead to a better usage of the cluster resources and thus to a higher
throughput when processing functions.

As �nal remarks, the aforementioned components are currently being used in
production in the European Grid Infrastructure (EGI) Federated Cloud [63],
a federated IaaS Cloud, composed of academic private clouds and virtualised
resources and built around open standards, whose development is driven by
the requirements of the scienti�c communities [57]. This integration allows
scientists to self-deploy their virtual infrastructures on a federated Cloud in
order to tackle challenging computational problems. OSCAR can be deployed
through the EC3 Portal available in the EGI Applications on Demand3 service.

3EGI Applications on Demand: https://www.egi.eu/services/applications-on-demand/

94

https://www.egi.eu/services/applications-on-demand/

Chapter 6

Use cases

This chapter introduces di�erent use cases where the
frameworks introduced in previous chapters are tested. In addition,
several use cases created by the user community are presented.
Finally, we will describe the most relevant scienti�c contributions
carried out during this thesis and we will talk about user acceptance
and the projects in which the presented developments are being used.

Previous chapters have covered the developments of the tools and platforms
created during this thesis. To test such tools, a couple of use cases were
presented, a medical image analysis service (in section 4.6), and a video
processing service (in section 5.3). This chapter introduces additional use
cases where the tools developed have been used. In addition, since the
developments have been released under an open-source license, we will also
show use cases created by the community. All the use cases presented in this
chapter can be found in the public Github repositories of their respective
projects (SCAR1 and OSCAR2). Table 6.1, summarizes the use cases
presented, what tools where used to create them, which cloud provider was
used and the degree of participation on the development of each use case.

1https://github.com/grycap/scar
2https://github.com/grycap/oscar

95

Chapter 6. Use cases

Use Case Tools Cloud Development

Adding programming
languages support

SCAR
(Lambda) AWS Created

Massive image
processing service

SCAR
(Lambda) AWS Created

Video processing
service

SCAR
(Lambda & Batch) AWS Created

Plant
classi�cation OSCAR On-premises Participated

Multi-cloud work�ow
for video processing

OSCAR,
SCAR
(Batch)

On-premises,
AWS Community

Air pollution
information service OSCAR On-premises Community

Monetizing private
algorithm work�ow executions

SCAR
(Lambda & Batch) AWS Community

GROMACS
SCAR
(Batch) AWS Community

Table 6.1: Summary of the use cases presented.

6.1 Adding support to programming languages and software
in AWS Lambda

One of the most straightforward applications of the SCAR framework is
allowing the execution of programming languages that are currently not
supported by the AWS Lambda. The supported languages tested and added
by SCAR to AWS Lambda are elixir, erlang, R, and Ruby. In addition, any
version of any language can be executed inside the Lambda service if you can
containerize it (and assuming that the container created complies with the
size restrictions), so you could run deprecated or newer versions of the
languages already supported.

Other direct use of the SCAR framework is allowing the execution of software
that have additional dependencies like external libraries or packages. Once
the container is created, the user can de�ne a simple script in bash to execute
the program. The SCAR repository3 includes several examples of these use
cases: for example: a command line client to manage AWS resources
(aws-cli); an open-source neural network framework (darknet); a tool to
convert video and audio (�mpeg); a tool for image manipulation

3https://github.com/grycap/scar/tree/master/examples

96

6.1 Adding support to programming languages and software in AWS Lambda

(imagemagick); a scienti�c application for bayesian inference of phylogeny
(MrBayes); a tool to generate HTML 5 documentation from
OpenAPI/Swagger 2.0 API speci�cations (spectacle) and, �nally, a Python
library that allows users to de�ne, optimize, and evaluate mathematical
expressions involving multi-dimensional arrays e�ciently (Theano).

In conclusion, any software that can be containerized and complies with the
size and memory restrictions applied by AWS Lambda can be executed. As
an example of how to add from scratch unsupported software, the following
section brie�y describes how the support for the Elixir language was introduced
by using SCAR.

Adding support to the Elixir language

To successfully execute an unsupported language inside the AWS Lambda
environment, the user needs to de�ne the container image that includes all
the required language libraries and dependencies. Listing 6.1 shows the
Docker�le de�ned with the Elixir packages inside.

FROM grycap/ e r l ang

e l i x i r expect s ut f8 .
ENV ELIXIR_VERSION="v1 . 4 . 5 " \

LANG=C.UTF−8

RUN se t −xe \
&& ELIXIR_DOWNLOAD_URL="https : // github . com/ e l i x i r −lang / e l i x i r /

r e l e a s e s /download/${ELIXIR_VERSION}/Precompiled . z ip " \
&& buildDeps=' \

ca−c e r t i f i c a t e s \
cu r l \
unzip \

' \
&& apt−get update \
&& apt−get i n s t a l l −y −−no−i n s t a l l −recommends $buildDeps \
&& cu r l −fSL −o e l i x i r −precompi led . z ip $ELIXIR_DOWNLOAD_URL \
&& unzip −d / usr / l o c a l e l i x i r −precompi led . z ip \
&& rm e l i x i r −precompi led . z ip \
&& apt−get purge −y −−auto−remove $buildDeps \
&& rm −r f / var / l i b /apt/ l i s t s /*

CMD ["/ bin / sh " ,"/ usr / l o c a l / bin / i ex "]

Listing 6.1: Docker�le used to create the elixir container.

Once the Docker image is built, the user can initialize the Lambda function
using a SCAR con�guration �le. Listing 6.2 presents the simple SCAR

97

Chapter 6. Use cases

con�guration �le de�ned for this example. Using this con�guration �le we
can create the function with the command: `scar init -f scar-elixir.yaml '.
Listing 6.3 shows the output generated by the creation of the elixir function.
As we can see, the faas-supervisor presented in the previous chapter is used.

f un c t i on s :
scar−e l i x i r :

image : grycap/ e l i x i r

Listing 6.2: YAML �le used de�ne the elixir function (scar-elixir.yaml).

Using e x i s t e n t ' faas−supe rv i so r ' l a y e r
Creat ing func t i on package
Function ' scar−e l i x i r ' s u c c e s s f u l l y c r ea ted .
Log group '/ aws/lambda/ scar−e l i x i r ' s u c c e s s f u l l y c r ea ted .

Listing 6.3: Ouput for the SCAR init command.

To �nish, the user needs to de�ne the script to be executed inside the already
created Lambda function. Listing 6.4 shows a script to check if the elixir
language is working properly. We can launch the Lambda function and the
script execution, with the command: `scar run -f scar-elixir.yaml -s elixir-
hw.sh'.

#! /bin / sh

#E l i x i r example from : https : // github . com/ phi lnash / e l i x i r −examples / t r e e /
master / he l l o−world

cd /tmp

export LANG=en_US .UTF−8
cat << EOF > he l l o−world . exs
IO . puts "He l lo World from E l i x i r code ! "
EOF

e l i x i r he l l o−world . exs

Listing 6.4: Bash script executed inside the elixir container (elixir-hw.sh).

Listing 6.5 shows the output generated by the Lambda function execution. In
the last line, we can see that the Elixir code that we de�ned in Listing 6.4 is
executed successfully and the hello world message is printed.

Request Id : da6f291a−8bd4−439 f−a9d1−4bb1cde1a588
Log Group Name : /aws/lambda/ scar−e l i x i r
Log Stream Name : 2019/09/08/[$LATEST]2 a6d122827ea4a41a3bd03f128fe67da
He l lo World from E l i x i r code !

Listing 6.5: Ouput for the SCAR run command.

98

6.2 Massive image processing service

Notice that we just demonstrated how to add a new programming language
with a couple of scripts and the SCAR tool, thus, bringing the massive elasticity
features of AWS Lambda to a community of users of a certain programming
language (Elixir in this use case).

6.2 Massive image processing service

In this use case SCAR is used to deploy a serverless service that recognizes
di�erent patterns in images using Deep Learning techniques. The framework
used for pattern recognition is Darknet [159], an open source neural network
framework written in C, in combination with the YOLO [160] library. The
Docker image used for this case study can be found in the grycap/darknet
Docker Hub repository4. Darknet and the YOLO library are memory intensive
applications, so the function created for this use case has 2,048MB of RAM.

Figure 6.1 describes the complete architecture and the data work�ow designed
to carry out this case study. We took advantage of the feature o�ered by the
SCAR programming model to automatically perform Lambda invocations out
of a set of �les already available in a cloud storage service (Amazon S3, in this
case). This feature allows the user to reuse an existing S3 bucket with data
�les in order to perform an analysis across all the �les in that bucket, or folder
inside the bucket. For each �le read, one Lambda function is invoked, up to the
1,000 soft limit of concurrent Lambda invocations. Each Lambda invocation
executes a prede�ned shell-script and processes exactly one �le. Listing 6.6
shows the SCAR con�guration �le used to de�ne the work�ow presented in
Figure 6.1.

f un c t i on s :
scar−darknet−s3 :

image : grycap/darknet
memory : 2048
i n i t_ s c r i p t : yo lo . sh
s3 :

input_bucket : scar−darknet

Listing 6.6: SCAR con�guration �le usd to de�ne the massive image processing service.

For this experiment we used: i) a synthetic dataset created out of 100 random
images of animals and objects and scaled up to 1,000 images already stored
in an AWS S3 bucket with a total size of almost 500MB; ii) the Docker image
stored in Docker Hub which contains all the libraries and dependencies needed

4https://hub.docker.com/r/grycap/darknet

99

Chapter 6. Use cases

6) Execute
script

4) Create
lambda

instances

SCAR
supervisor

Store
logs

1) Create
function

Read
logs

SCAR
client

2) Read
S3 Files

AWS
Lambda S3

CloudWatch

3) Trigger
functions

5) Retrieve
files

7) Store
results

Figure 6.1: Work�ow of the Massive Image Analysis Service. The user, through the SCAR
client, 1) creates the Lambda function, and 2) reads the �les needed to process. Then
SCAR automatically 3) sends the events to AWS Lambda making 4) the service to invoke
the function as many times as events received. 5) Then, the supervisor deployed inside
each invocation retrieves the required �les 6) and executes the user script. 7) To �nish, the
supervisor stores the output �les generated by the lambda invocations at the de�ned output
bucket.

to execute the Darknet software (see listing 6.7) and, iii) a shell-script executed
inside the container, in charge of processing the input image using DarkNet
and the YOLO library to obtain the output (see listing 6.8) .

100

6.2 Massive image processing service

FROM bitnami /minideb

COPY darknet . ta r . gz /tmp/

RUN tar xvz f /tmp/darknet . ta r . gz −C /opt/ \
&& rm /tmp/darknet . ta r . gz

RUN apt−get update \
&& apt−get i n s t a l l −y −−no−i n s t a l l −recommends wget ca−c e r t i f i c a t e s \
&& wget https : // p j r edd i e . com/media/ f i l e s / yo lo . weights −P /opt/darknet /

\
&& apt−get remove −y wget ca−c e r t i f i c a t e s \
&& apt−get autoremove −y \
&& apt−get c l ean \
&& rm −r f / var / l i b /apt/ l i s t s /*

Listing 6.7: Docker�le used for the creation of the massive image processing service
environment.

#!/ bin /bash

RESULT="$TMP_OUTPUT_DIR/ r e s u l t . out"
OUTPUT_IMAGE="$TMP_OUTPUT_DIR/image−r e s u l t "

echo "SCRIPT: Analyzing f i l e '$INPUT_FILE_PATH' , sav ing the r e s u l t in '
$RESULT' and the output image in '$OUTPUT_IMAGE. png ' "

cd /opt/darknet
. / darknet de t e c t c f g / yo lo . c f g yo lo . weights $INPUT_FILE_PATH −out

$OUTPUT_IMAGE > $RESULT

Listing 6.8: Script used to launch the YOLO object detection library of the Darknet
framework.

To simplify the creation of the execution scripts, the SCAR supervisor provides
several environment variables that contain information about the input �le
received, and the temporal input and output folders created during the function
invocation. In this case, it can be seen in listing 6.8 that we are using the
INPUT_FILE_PATH and the TMP_OUTPUT_DIR environment variables
to retrieve the input �le and to store the generated output �les respectively.
After the creation of the script variables, the Darknet invocation command
(i.e. darknet detect ...) receives an image as an input �le and stores the results
in two separate �les, the OUTPUT_IMAGE which will be the image with the
recognized objects, and the RESULT �le which will contain the percentage of
certainty for each recognized object. To �nish, all the output �les available in
the folder TMP_OUTPUT_DIR are automatically uploaded by SCAR to the
folder of the speci�ed S3 bucket. The echo command present in listing 6.8 is

101

Chapter 6. Use cases

added to ease the traceability of possible errors, because the SCAR supervisor
passes the container standard output to the AWS CloudWatch Logs service, so
if the container execution fails we can check it after the functions �nishes. A
sample of the input and output images respectively provided and generated in
this use case, are presented in �gures 6.2 and 6.3 respectively. Also the output
�le generated after processing the image is shown in listing 6.9.

Figure 6.2: Test image passed to the
Darknet framework.

Figure 6.3: Animals recognized after the
execution of the YOLO library. Output
generated by the Darknet framework.

Pred ic ted in 11.708465 seconds .
g i r a f f e : 90%
zebra : 80%

Listing 6.9: Output �le generated with the certainty of the recognized objects.

Results

After the execution of this use case, the following metrics were retrieved:

� 2 minutes of real time used to �nish the experiment.

� 880 minutes as the total aggregated execution time across the multiple
Lambda function invocations.

� 4,575 di�erent objects and animals recognized.

102

6.2 Massive image processing service

As summary, in only two minutes we have read, downloaded, processed and
uploaded a thousand images without having to worry about the deployment
and the management of the architecture.

It is important to point out four main conclusions that arise from this case
study:

1. Without SCAR the user has no easy way of using speci�c libraries such
as Darknet in serverless providers like AWS Lambda.

2. The user does not have to manage the deployment of computational
infrastructure, auto-,scaling, coordinating the execution of jobs, etc.
Instead, the serverless computing platform introduced seamless
elasticity by performing multiple concurrent executions.

3. The simplicity of the programming model introduced by SCAR just
requires the user to write a shell-script to process a �le assuming that
will be automatically delivered. This is probably the simplest, most
convenient approach to perform a �le-processing application on the
Cloud.

4. Once the Lambda function has been created by SCAR, this turns into a
reactive service that is left on the Cloud at no cost unless it is triggered
again by uploading a new �le to the bucket. This will cause a new
Lambda function invocation, resulting in the creation of the container
and execution of the shell-script to process the �le. This has an
important economic factor, since real pay-per-use is enforced as opposed
to the pay-per-deploy approach that happens when deploying VMs in a
cloud service, which has a cost regardless of the actual use.

In addition, notice that the ability to scale in the order of thousands of
Lambda function invocations reduces the requirement for a job scheduler, in
cases where the incoming workload can be seamlessly absorbed by the
underlying computing platform. In this use case, after reading the �les, the
SCAR client creates one asynchronous invocation for each �le found. When
the Lambda service receives an asynchronous invocation it doesn't launch the
function immediately, instead it queues the received event and if the scaling
policies allow it, that is, the concurrency limits are not exceeded, it takes the
event from the queue and then launches the function to process such event.
This feature allows the service to manage more events than their concurrency
limits without failure. For example, if the user wants to process 20,000 �les,
then 1 synchronous invocation (i.e. the �rst one), and 19,999 asynchronous

103

Chapter 6. Use cases

invocations are created by the SCAR client and then sent to the Lambda
service. The Lambda service will queue the invocations and will try to invoke
the function again for up to 6 hours with increasing retry intervals. However,
have in mind that if the queue is too big to be processed some events in the
queue might be not read. A deeper explanation of this automatic
functionality can be found in the AWS Lambda documentantion [23].

To �nish, we present a cost of the case study execution. Based on the metrics
extracted earlier, the average execution time of the invocations is 52.8 seconds.
As we said earlier, each function instance uses 2,048MB of RAM, and one
invocation per photo available in the bucket was carried out, so 1,000 functions
were launched in total. Then, the AWS Lambda pricing calculator5 indicates
that the cost of this use case is:

RoundUp (52, 800) = 52, 800 ms(Duration rounded to nearest 100 ms)

1, 000 requests× 52, 800 ms× 0.001 sec/ms = 52, 800 total compute (seconds)

2 GB× 52, 800 seconds = 105, 600 total compute (GB-s)

105, 600 GB-s× 0.0000166667 USD = 1.76 USD (monthly compute charges)

1, 000 requests× 0.0000002 USD = 0.00 USD (monthly request charges)

1.76 USD+ 0.00 USD = 1.76 USD
(6.1)

However, since AWS Lambda o�ers a free usage tier that includes 1,000,000
requests and 400,000 GB-seconds of compute time per month, and this use
case involved 1,000 requests and 105,600 GB-seconds, the cost of classifying
the images using the free tier is 0 USD.

6.3 Video Processing Service in AWS

We already saw a video processing service in section 5.3 refered to OSCAR.
To demonstrate that the same work�ow can be deployed in a public serverless
provider, we present this use case. A video analysis service that takes a video
as an input and generates an analysis of the keyframes of such video using
the state-of-the-art real time object detection system [161]. The goal of the
service is to apply object recognition to certain frames of the video in order to
reason about the content of the video. Figure 6.4 shows the work�ow of the
architecture proposed.

5https://aws.amazon.com/lambda/pricing/

104

6.3 Video Processing Service in AWS

SCAR
client

Upload file

AWS
Lambda S3

Image
processing
functions

SCAR
supervisor

Trigger
function

Store
video images

AWS
Lambda

Store
results

Trigger function

CloudWatch

Store
logs

Store
logs

Read
logs

Create
functions

S3

AWS
Batch

Launch Job
Retrieve

files

Figure 6.4: Work�ow of the Video Analysis Service. Two Lambda functions and one Batch
environment are de�ned. The execution starts after an S3 bucket invokes a Lambda function
that triggers a Batch job in charge of extracting the keyframes of the input video. Then, for
each keyframe extracted, a function to analyze the keyframes is launched.

105

Chapter 6. Use cases

The �mpeg library is used to extract the keyframes from the input video and
the darknet framework in combination with the YOLO library is used to
analyze the extracted keyframes. The docker images used in this use case are
the public images grycap/�mpeg and grycap/darknet for the video extraction
and the image processing respectively.

Listing 6.10 and 6.11 show the SCAR con�guration �les used to de�ne the
architecture of the use case.

f un c t i on s :
scar−batch−ffmpeg−s p l i t :

image : grycap/ ffmpeg
i n i t_ s c r i p t : s p l i t−video . sh
execution_mode : batch
s3 :

input_bucket : scar−f fmpeg
output_bucket : scar−f fmpeg/ scar−batch−ffmpeg−s p l i t / video−output

Listing 6.10: SCAR con�guration �le for de�ning a default Batch environment and a
speci�c output folder.

Listing 6.10 de�nes the execution mode as batch, so the de�ned Lambda
function automatically transforms the received event into a Batch job and
redirects such job to the Batch service without trying to execute it �rst. In
addition, a speci�c output folder inside an S3 bucket is de�ned. By specifying
a folder instead of letting SCAR to create a default output folder we have
absolute control of the data work�ow.

Listing 6.11 shows the de�nition of the Lambda function used to analyze the
video keyframes. You can see that the input bucket de�ned in this �le is the
same as the output bucket de�ned in listing 6.10. Linking the functions using
buckets allow us to de�ne serverless work�ows comprised by di�erent Lambda
functions that can be executed automatically without user intervention.

f un c t i on s :
scar−lambda−darknet :

image : grycap/darknet
memory : 3008
i n i t_ s c r i p t : ob ject−de t e c t i on . sh
s3 :

input_bucket : scar−f fmpeg/ scar−batch−ffmpeg−s p l i t / video−output
output_bucket : scar−f fmpeg/ scar−batch−ffmpeg−s p l i t / image−output

Listing 6.11: SCAR con�guration �le de�ning a Lambda function to execute the Darknet
framework.

106

6.3 Video Processing Service in AWS

In addition, listings 6.12 and 6.13 show the scripts used inside the de�ned
containers.

#! / bin /sh

echo "SCRIPT: S p l i t t i n g video f i l e $INPUT_FILE_PATH in images and
s t o r i n g them in $TMP_OUTPUT_DIR. One image taken each second"

ffmpeg − l o g l e v e l i n f o −nos ta t s − i $INPUT_FILE_PATH −q : v 1 −vf fp s=1
$TMP_OUTPUT_DIR/out%03d . jpg < /dev/n

Listing 6.12: Script used to split the video in 1 second keyframes.

#!/ bin /bash

RESULT="$TMP_OUTPUT_DIR/$FILE_NAME. out"
OUTPUT_IMAGE="$TMP_OUTPUT_DIR/ ` basename $INPUT_FILE_PATH . jpg ` "

echo "SCRIPT: Analyzing f i l e '$INPUT_FILE_PATH' , sav ing the r e s u l t in '
$RESULT' and the output image in '$OUTPUT_IMAGE. png ' "

cd /opt/darknet
. / darknet de t e c t c f g / yo lo . c f g yo lo . weights $INPUT_FILE_PATH −out

$OUTPUT_IMAGE > $RESULT

Listing 6.13: Script used to launch the YOLO object detection library of the Darknet
framework (object-detection.sh).

After de�ning the containers, the scripts, and the SCAR con�guration �les,
the work�ow is launched by uploading a video �le to the input folder of the
lambda Batch function. The following trace details the steps followed during
the use case:

1. Using the SCAR client, the user uploads a video to the input folder of
the S3 bucket linked with the video processing function. This is the last
step that requires user intervention.

2. After the video upload �nishes, the S3 bucket automatically sends a
trigger to activate the video processing function. The SCAR supervisor
deployed inside the Lambda function detects the Batch environment
and automatically launches a Batch job attaching all the environment
variables required to execute such job. Just before the Batch job is
launched, the SCAR supervisor retrieves the video from the S3 bucket
and stores it in a folder shared with the Batch container. Then, the
container is launched and the job extracts the keyframes of the video
and stores them in the $TMP_OUTPUT_DIR. The SCAR supervisor stores
those �les in the output folder of the speci�ed S3 bucket, thus triggering
the image processing Lambda function.

107

Chapter 6. Use cases

3. To �nish, an image processing function that analyzes the keyframe is
triggered for each keyframe stored in the S3 bucket. Then through the
supervisor, the function stores the result back in their own de�ned output
folder of the S3 bucket.

The logs generated by all the invocations are stored automatically in the log
service (i.e. Amazon CloudWatch). After the execution �nishes, using the
SCAR client, the user can check the log �les and retrieve the generated output
�les stored in the S3 bucket.

As summary of this use case, we demonstrated how to combine di�erent AWS
services to create a video analysis service in the Cloud. Among the features
of the architecture comprising the analysis service we can remark that it has
automated elasticity and scale-to-zero capabilities, no upfront investment has
to be made by the user, and no infrastructure pre-provision is needed.

6.4 Plant classi�cation

This use case was adapted from the repository6 of the
DEEP-Hybrid-DataCloud project [51]. All the adapted code to reproduce
this use case can be found in the OSCAR repository7. The goal of this use
case is to provide a classi�cation service for di�erent plant images at the
same time that di�erent EGI services are integrated. To achieve this, we are
going to combine services from the EGI platform. The OSCAR cluster is
deployed on top of an elastic Kubernetes cluster deployed on the EGI
federated cloud. As a storage service we are going to use a Onedata [142]
space through EGI Datahub [182][58]. The EGI Datahub service makes
existing large scale open data collections discoverable and available for both
EGI users and the general public in the case of open data collections8.

To deploy the cluster, �rst the users have to connect to the EC3 service
trough the EGI Applications on Demand portal9. Once the users are
properly identi�ed through the EGI Check-in service, they can deploy the
OSCAR platform by selecting it in the LRMS selector as seen in Figure 6.5.

After the cluster has been deployed, the usage of the OSCAR platform is the
same as in all the other presented use cases. By using the provided GUI

6https://github.com/deephdc/plant-classi�cation-theano
7https://github.com/grycap/oscar/tree/master/examples/plant-classi�cation-theano
8The Datahub web portal can be found here: https://datahub.egi.eu
9https://marketplace.egi.eu/42-applications-on-demand-beta

108

https://datahub.egi.eu

6.5 Multi-cloud work�ow for video processing

Figure 6.5: Deploying an OSCAR cluster in the EGI federated cloud through the EC3
tool.

we create the plant classi�cation function that is automatically linked to the
Onedata space. As it is shown in Figure 6.6, through the Oneprovider portal
the users can upload their data to be classi�ed.

Once the images have been classi�ed they are being automatically copied to
the output folder and can be retrieved by the platform users.

Further information about this use case is available in the corresponding
YouTube video10. As a summary, we demonstrated how to deploy an image
classi�cation service making use of public European infrastructures.

6.5 Multi-cloud work�ow for video processing

This use case was presented originally in the Ibergrid 2019 Congress [90] and it
was part of a hands-on tutorial. We just saw how to process a video �le using
AWS services, and in section 5.3 we showed how to do it in OpenNebula, an
on-premises cluster provider. The goal of this use case is to create a work�ow

10https://www.youtube.com/watch?v=ZtAlVc1uLwc

109

Chapter 6. Use cases

Figure 6.6: Onedata portal from where the users can upload and download their data. The
folders inside the space are linked with the OSCAR functions.

Figure 6.7: Plant species recognized by the plant classi�cation service.

that is able to execute functions and share data among di�erent clouds. As a
shared storage provider we are going to use the Onedata service through EGI
DataHub (as in the previous use case). Inside EGI DataHub, the users have

110

6.5 Multi-cloud work�ow for video processing

storage quotas called spaces in where their �les can be stored. In this use case,
we are using one of this spaces to communicate clouds from di�erent providers.
Figure 6.8 shows the high level architecture of the deployed work�ow.

EGI DataHub
Space

video-
downloader-in

scar-yolo-
video-out

video-
downloader

Function
AWS Batch

Checks for file
uploads

Invokes
(event)

OneTrigger-
Lambda

Invokes regularly

CloudWatch
event

scar-yolo-
video-in

On-premises OSCAR Cluster

Invokes
(event)OneTrigger

Polls for file
uploads

Amazon Web Services

Submit jobs

scar-yolo-
video

Function

SCAR

Figure 6.8: Work�ow of the multi-cloud data work�ow. The scar-yolo-video-in folder is
used as a link to communicate the di�erent cloud infrastructures.

The work�ow is composed by two functions, a video-downloader function to
download videos with the aria2 [28] tool (deployed in an on-premises cluster)
and a function to submit AWS Batch jobs that will process the downloaded
video (deployed in a public AWS cluster). The OSCAR function will receive
a �le with a list of URLs, download all the videos, and store them in the
speci�ed output folder. The AWS function will apply pattern recognition to
the uploaded video and will store the result in the speci�ed output folder.

Unfortunately, right now Onedata lacks the functionality of triggering an
event when a new �le is created in an storage space, so in addition to the two

111

Chapter 6. Use cases

main functions, another one has to be deployed in each cloud to manage
automatically the �le discovery and eventing in Onedata. More information
about the inner working of the OneTrigger function can be found in the
master's thesis [164].

In OSCAR the function called OneTrigger polls periodically the
video-downloader-in folder if the Onedata space. If a new �le is detected, an
event is generated and the OSCAR function is launched to download the
required videos. In AWS, a Lambda function called OneTrigger-Lambda is
created to check for �le uploads in the storage space. This function is
triggered periodically by a de�ned CloudWatch event and when it discovers a
new �le in the linked folder (scar-yolo-video-in in this case) it creates an
event that is passed to the AWS Lambda service to launch the video
processing function. Once the video is processed, it is stored in the
scar-yolo-video-out and the user can download the result from the Onedata
interface.

Summarizing, the use case presented has demonstrated that a data-hybrid
cluster infrastructure can be created using the proposed high-throughput
programming model in combination with the SCAR and OSCAR tools. This
use case tackles the research challenge of using a public open data storage
service to communicate di�erent FaaS work�ows in di�erent infrastructures.
It also paves the way for using on-premises functions for preprocess and
anonymize sensitive data and then take advantage of the high scalability and
high-end resources of public providers to do the heavy computation at the
same time that all the data (even at the intermediate steps) is kept secure in
a controlled storage service.

6.6 Air pollution information service

This use case appeared originally in Sebastián Risco's master thesis [164], a
more detailed description of the implementation and the services can be found
there. The use case was developed to prove that the event-driven �le-processing
programming model proposed in chapter 4 can be also used to process data
from open-data repositories. Figure 6.9 provides a high level overview of the
use case architecture.

Three functions have been developed to process the data available at the
waqi.info portal, the web page belonging to the World Air Quality Project
[178]. This web portal o�ers an Application Programming Interface (API) to
access the data gathered from more than 10,000 stations around the world.

112

6.6 Air pollution information service

file-
downloader

Function
(OpenFaaS)

Invokes
daily

Cron event
file-

processing
Function
(OSCAR)

On-premises OSCAR Cluster

Invokes
(event)

Check for file
uploads

OneTrigger

Oneprovider

Space

input-
folder

output-
folderwaqi.info

API

Figure 6.9: Architecture of the air pollution service created using open-data from waqi.info.

Thus, the job of the �rst function, that is invoked daily, consist on retrieving
the data from this portal each day and store it in the input-folder speci�ed.
The OneTrigger function also checks periodically if new �les have been
created inside the Onedata space, if a new �le is found, the �le processing
function is launched, the data is analyzed and �nally, a snapshot with a
summary of the air quality of the region speci�ed is stored in the output
folder of the Onedata service, as it can be seen in Figure 6.10.

113

Chapter 6. Use cases

Figure 6.10: Snapshot generated by the air pollution service developed.

6.7 Monetizing Private Algorithm Work�ow Executions

This use case appeared originally in Adolfo Mendez's master thesis [120], a
more detailed description of the implementation and the services can be
found there. The proposed use case presents a diagnose system to detect
cardiac issues through the usage of advanced diagnose algorithms. The
system will use di�erent diagnose algorithms based on the sensor used to
collect the data. To be able to process input data from di�erent sources, the
system internally uses two di�erent work�ows. The �rst work�ow detects
cardiac valve problems, and the second one detects cardiac arrhythmia. Both
work�ows receive input data from external sensors connected to the internet,
and the work�ows start when data is collected during a patient recognition
test. The work�ow to detect cardiac valve problems receives input from an
acoustic sensor, and the complete work�ow is composed by two �lter steps,
and one diagnose step that is based on the acoustic signal previously �ltered.
The work�ow to detect cardiac arrhythmia can receive input from two

114

6.7 Monetizing Private Algorithm Work�ow Executions

di�erent sensors (optical or electrical), the input signals are also �ltered and
then processed by an arrhythmia diagnose algorithm. The generated
diagnosis are automatically stored in a storage system and �nally an email
with the diagnosis is sent to the practitioner that initiated the work�ow.

The goal of this use case is to study how to deploy and monetize private
algorithms using the AWS services and the SCAR tool. To be able to monetize
the API usage, the API Gateway developer portal [11] has been used. Through
this portal, the users can subscribe to an API de�ned in API Gateway. This
subscription will have a cost de�ned by the API creator and can be charged
per use (e.g. 0.001$ per invocation) or per time (e.g. 1$ per day). Once the
user is subscribed, an API Key is created an associated to the user account.
Using this API Key, the user can invoke the registered APIs and execute the
de�ned work�ows. The complete case study is described in Figure 6.11.

Pacient

System
Administrator

Sensor
FilterAcoustic

Sensor

Arrhythmia
Diagnose
Algorithm

API Portal
Services

Pacient

Pacient

Service
Provider

Electrical
Sensor

Optical
Sensor

API for
Acoustic
Sensor

API for
Optical
Sensor

API for
Electrical
Sensor

Sensor
Filter

Sensor
Filter

Ambient
Noise
Filter

Cardiac
Valve

Algorithm

Notification
Sender

Workflow for detecting cardiac valve problems

Workflow for detecting cardiac arrhythmia

Intermediate
Bucket

Intermediate
Bucket

Results
Bucket

Intermediate
Bucket

Amazon
SNS

Figure 6.11: High level architecture of the monetized work�ow.

As shown in Figure 6.11, the sensors are in charge of triggering the
work�ows. Once a sensor registers new data, it invokes the de�ned work�ow
through the linked API. In both work�ows, the AWS Lambda functions were
de�ned following the single responsibility principle, that states that the code
of each function will only have responsibility for a single part of the
functionality. Furthermore, instead of connecting directly the functions,
several intermediate buckets were de�ned. This buckets allow us to check the

115

Chapter 6. Use cases

Serverless ($) EC2 ($) On-premises ($)
Cost per
request ($)

Scenario 1:
10,000
requests

113.84 142.20 2,957.75 32.02

Scenario 2:
150,000
requests

1,718.08 2,133.00 3,491.11 0.215

Scenario 2:
4,000,000
requests

45,795.38 56,880.00 82,291.97 0.075

Table 6.2: Monthly costs for the three di�erent scenarios.

intermediate generated data easing the application tracing and debugging.
Due to Lambda time restrictions, the last part of the cardiac arrhythmia
algorithm was de�ned in AWS Batch. To �nish, the last Lambda function
publish a message with the work�ow results in the AWS Simple Noti�cation
Service (SNS) service. Among other features, AWS SNS allow us to send
SMS or push noti�cations to mobile phones, emails, and it encrypts all the
messages for increased security. All the Lambda functions, the API
endpoints, and the S3 buckets were de�ned with SCAR. Unfortunately SCAR
doesn't allow yet to de�ne and link AWS SNS topics so the SNS topic and
the monetized API endpoint were created manually.

To test the de�ned infrastructure three workloads were created: 1) 10,000
requests/month; 2) 150,000 requests/month; 3) 4,000,000 requests/month.
These workloads were de�ned to simulate the di�erent stages of success of a
medical application, so we can analyze how the cost varies depending on the
number of users per month.

Table 6.2 summarizes the costs for the de�ned workloads. We can see that just
by using the presented serverless architecture instead of a pure EC2 approach
we are saving ∼ 20% of the cost. To calculate the cost of the on-premises
infrastructure, the calculator provided by AWS11 has been used. The last
column shows the cost that each API invocation should have so we can have
a 60% of bene�t. As it happens with all this services, the prices decreases
drastically when the number of requests per month increase. Finally, a �ne-

11https://awstcocalculator.com/

116

https://awstcocalculator.com/

6.8 GROMACS in AWS Batch

grained analysis of the costs and a more complete analysis of the workloads
can be found in the master's thesis were this use case is presented.

6.8 GROMACS in AWS Batch

The last use case presents a scenario that demonstrates that not all the
scienti�c workloads can directly bene�t from moving to the serverless
environment. A more detailed explanation of this cost study can be found in
the Ibergrid 2019 contribution [181].

The GROningen MAchine for Chemical Simulations (GROMACS) software is a
molecular dynamics package mainly designed for simulations of proteins, lipids,
and nucleic acids. The goal of this use case was to make a cost comparison
between AWS Lambda and a farm server executing the GROMACS package,
but due to Lambda restrictions, the �nal tests were carried out in the AWS
Batch infrastructure instead of AWS Lambda. The two di�erent architectures
analyzed in this use case are shown in Figure 6.12.

For this use case SCAR was used to create the complete test environment in
AWS. As conclusions of this cost study, all the executed tests were executed
faster in AWS than in the on-premises infrastructure (∼ 19% less execution
time and ∼ 23% more calculations per day) but the cost of the AWS services
(2,330e) were almost six times more than the on-premises (394e)
infrastructure (∼ 590%) (a complete trace of the cost calculations can be
found in the Ibergrid contribution [181]).

Regarding this use case, one could claim that it is not a pure serverless
architecture, because we are using the underlying AWS ECS infrastructure
that supports AWS Batch. Additionally, one could argue that if the container
executing GROMACS would �t in AWS Lambda, the price could have come
down substantially, but the truth about this use case is that is not suitable
for the serverless infrastructure as is. It can be concluded that serverless
technology should not be seen as a one-size-�ts-all technology, and each
problem should be studied before migrating it to a serverless architecture.

117

Chapter 6. Use cases

Upload
file

Trigger
function

Container
queue

AWS Batch

1)

2)

Figure 6.12: Di�erent execution queues for executing GROMACS. 1) The work�ow is
executed in a bare metal server using a LRMS. 2) The work�ow is executed in AWS Batch.

6.9 Scienti�c di�usion

During the realization of the this thesis the following papers were presented in
indexed journals and congresses:

� JCR Q1 Journal: Pérez, A., Moltó, G., Caballer, M., & Calatrava, A.
(2018). Serverless computing for container-based architectures. Future
Generation Computer Systems, 83, 50�59.
https://doi.org/10.1016/j.future.2018.01.022. This paper tackles the
research goal of executing generic applications in public serverless
infrastructures. The SCAR tool with its Docker in Lambda capabilities
and a prototype of the high throughput programming model are
presented. It is the basis for chapter 3.

� GGS Class 2 Congress12: Pérez, A., Caballer, M., Moltó, G., &
Calatrava, A. (2019). A programming model and middleware for high

118

6.9 Scienti�c di�usion

throughput serverless computing applications. In Proceedings of the
ACM Symposium on Applied Computing (Vol. Part F147772, pp.
106�113). Association for Computing Machinery.
https://doi.org/10.1145/3297280.3297292 This paper deals with the
research challenge of providing the scienti�c users with a generic
highly-scalable data-driven programming model. It presents a complete
version of the high throughput programming model in combination with
two use cases, one of them demonstrating the execution of function
work�ows. It is the basis for chapter 4.

� GGS Class 2 Congress12: Perez, A., Risco, S., Naranjo, D. M., Caballer,
M., & Molto, G. (2019). On-Premises Serverless Computing for
Event-Driven Data Processing Applications (pp. 414�421). Institute of
Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/cloud.2019.00073 This paper engages in the
research challenge of providing an on-premises infrastructure focused on
event-driven executions of compute-intensive applications. The OSCAR
framework is presented, introduces the scalability capabilities at node
level of a Kubernetes cluster and asses the infrastructure with two
di�erent use cases. This paper is the basis for chapter 5.

The SCAR tool, the high throughput programming model, and the OSCAR
platform were developed under the �BigCLOE� project, funded by the
Spanish �Ministerio de Economía, Industria y Competitividad" with the
reference number TIN2016-79951-R. In addition, the development of the
OSCAR platform was partially funded by the EGI Strategic and Innovation
Fund and by the Primeros Proyectos de Investigación (PAID-06-18),
Vicerrectorado de Investigacion, Innovación y Transferencia de la Universitat
Politècnica de València (UPV), València, Spain. To �nish, the SCAR [61]
and the OSCAR [60] tools have been registered in the Explora i+D+i portal
of the UPV.

Regarding the SCAR tool, we could say that it has been widely accepted by
the users' community. In its GitHub repository13 it has been starred more
than 480 times and it counts with 31 forks. Furthermore, the SCAR tool
is featured in the Cloud Native Computing Foundation (CNCF) landscape
of serverless tools, as it can be seen in their web portal [85]. The CNCF is
part of the nonpro�t Linux Foundation and serves as the vendor-neutral home
for many of the fastest-growing open source projects, including among others
the Kubernetes project. Moreover, the CNCF brings together the world's top

12Based on the GII-GRIN-SCIE (GGS) Conference Rating: http://gii-grin-scie-rating.scie.es
13https://github.com/grycap/scar

119

Chapter 6. Use cases

developers, end users, and vendors, and runs the largest open source developer
conferences, which has brought a great impact in the SCAR's project visibility.

Additionally, an OSCAR prototype was presented at the Ibergrid 2018 congress
[98], and an OSCAR version featuring hybrid-data clouds and GPU support
was presented in the Ibergrid 2019 congress [99]. Moreover, OSCAR has been
integrated in the European Grid Infrastructure (EGI) Federated Cloud [63].
Through the EC3 portal14, the users can deploy, in the di�erent federated
clouds, an elastic Kubernetes cluster with the OSCAR platform con�gured.

14https://servproject.i3m.upv.es/ec3-ltos/index.php

120

Chapter 7

Conclusions

This chapter presents a summary of the work done in this
thesis and it also states di�erent research paths that can be followed
upon the completion of this work.

7.1 Summary and Contributions

This thesis has presented a set of tools and platforms together with a
programming model to allow the users to execute highly-parallel event-driven
�le-processing applications both in public and in private cloud
infrastructures. By adopting the presented tools, the users can de�ne
work�ows of functions and bene�t from transparent data management from
the beginning to the end of the such work�ows.

To this aim, �rst we introduced SCAR, a framework to execute
container-based applications using serverless computing, exempli�ed using
Docker as the technology for containers and AWS Lambda as the underlying
serverless platform. SCAR represents a step forward contribution to the state
of the art, implemented in an open-source framework, that opens new
avenues for adopting serverless computing for a myriad of scienti�c
applications distributed as Docker images. Using SCAR, customized
execution environments can now be employed instead of being locked-in to
programming functions in the programming languages supported by the
serverless platform. This has easily introduced the ability to run generic
applications on speci�c runtime environments de�ned by Docker Images

121

Chapter 7. Conclusions

stored in Docker Hub, a functionality that is actually missing from most of
the current serverless computing platforms. But SCAR not only provides
means to deploy Docker containers in AWS Lambda, it also manages the
Lambda functions' life cycle and eases the execution of the serverless
work�ow by applying optimizations without the need of user intervention,
such as caching the container's underlying �le system to minimize the
execution time.

Second, we introduced a high throughput computing programming model to
create highly-parallel event-driven serverless applications. The execution
environment for this applications was provided by containers created out of
customized Docker images. The ability to run code in response to events and
the large-scale elasticity provided by the underlying serverless platform opens
new avenues for e�cient High Throughput Computing tasks. This was
demonstrated by the case studies where the programming model abstracted
away many implementation details typically required on computing
frameworks. Moreover a cost analysis was done comparing the serverless
programming model presented and the usual cloud computing architectures.
Although the cost analysis revealed that running a serverless architecture
could be costlier than deploying virtual machines, the savings in con�guration
and execution time in combination with the pay-per-use model o�ered by
AWS make the public serverless architectures a good option to deploy
applications that have to deal with bursty workloads of short stateless jobs.

Third, to o�er an alternative to public serverless providers and avoid the
limitations imposed by them, the OSCAR platform was developed. OSCAR
is composed of di�erent open-source tools that allow us to provide similar
features than the ones present in the public providers. Moreover, while
developing OSCAR, a Kubernetes plugin for CLUES was developed,
providing the underlying Kubernetes cluster with elastic node capabilities.
This feature allow us to o�er elasticity at di�erent levels of the infrastructure,
�rst at hardware level, provisioning and terminating nodes based on the CPU
and memory consumption of the deployed systems, and second at function
level, launching more functions when the workload is increased and scaling
down to zero when there is no workload available. To provide the users with
an easy access point to the OSCAR platform, a web interface was also
developed, where the users can control the complete life cycle of the
application, creating, launching and deleting the functions needed for their
applications.

Finally to evaluate all the tools developed, several use cases (created by
ourselves and by the community) were tested. In these use cases we saw how

122

7.2 Future work

to add support for new languages in AWS, we successfully deployed image an
video analysis services, we showed the integration of the programming model
with public scienti�c infrastructures (e.g. EGI), we demonstrated how to
create data-hybrid work�ows, how to take advantage of open-data portals,
how to monetize private algorithm work�ows and, to �nish, we presented a
use case to demonstrate that maybe is not cost-wise to migrate all the
applications to the proposed serverless architectures without doing �rst an
study of the application deployment process and the costs implied.

7.2 Future work

Future work in the SCAR tool includes adapting the development to other
serverless providers. Our dependence on udocker, which is developed in
Python, suggests using a provider supporting that language. Fortunately, the
main serverless providers support Python in their FaaS services.
Furthermore, IBM Cloud Functions supports directly the de�nition of Docker
container as functions, making the portability of the high throughput
programming model even easier. In addition, SCAR users could bene�t from
a mechanism that maintains the deployed Lambda functions `hot', based on
the knowledge extracted from the freeze/thaw cycle study by means of
periodic invocations of the Lambda functions.

Regarding the high throughput programming model, we plan to simplify the
de�nition of data driven work�ows, so the user can de�ne complete FaaS
applications by using a simple infrastructure de�nition �le in YAML.
Moreover, we have plans to add support for more storage providers and more
event services to ease the deployment of data-hybrid serverless applications
that encompass the high scalability capabilities of the cloud providers and
the less restricted environments of the on-premises deployments.

Finally, further work in the OSCAR platform by re�ning the requirements
and the behavior of the required pods could lead to a better usage of the
cluster resources and thus to a higher throughput when processing functions.
Moreover, we presented a GPU integration in the public serverless services
through AWS Batch, but for OSCAR we have not provided yet a solution
to allow users execute work�ows that can take advantage of GPU resources
(although this feature is being initially explored, further research is required).
In addition, we are planning to integrate SCAR with OSCAR by means of
a shared CLI to provide the users with a unique tool from where to deploy
event-based data-hybrid serverless applications.

123

Bibliography

[1] Adobe. Adobe Creative Cloud. url: https://www.adobe.com/es/
creativecloud.html (visited on 09/20/2019) (cit. on p. 9).

[2] Carlos de Alfonso et al. �Multi-elastic Datacenters: Auto-scaled Virtual
Clusters on Energy-Aware Physical Infrastructures�. In: Journal of Grid
Computing 17.1 (July 2019), pp. 191�204. issn: 15729184. doi: 10.
1007/s10723-018-9449-z (cit. on p. 78).

[3] Alibaba. Alibaba Cloud Function Compute. url:
https : / / www . alibabacloud . com / products / function - compute
(visited on 10/11/2019) (cit. on p. 15).

[4] Alpine. Alpine Linux. url: https://www.alpinelinux.org/ (cit. on
p. 46).

[5] Amazon. Amazon API Gateway. url: https://aws.amazon.com/
apigateway (visited on 06/19/2019) (cit. on p. 56).

[6] Amazon. Amazon CloudWatch. url:
https : / / aws . amazon . com / cloudwatch (visited on 06/20/2019)
(cit. on p. 37).

[7] Amazon. Amazon EC2 Container Service (ECS). url: https://aws.
amazon.com/es/ecs/ (visited on 06/19/2019) (cit. on pp. 3, 11).

125

https://www.adobe.com/es/creativecloud.html
https://www.adobe.com/es/creativecloud.html
https://doi.org/10.1007/s10723-018-9449-z
https://doi.org/10.1007/s10723-018-9449-z
https://www.alibabacloud.com/products/function-compute
https://www.alpinelinux.org/
https://aws.amazon.com/apigateway
https://aws.amazon.com/apigateway
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/es/ecs/
https://aws.amazon.com/es/ecs/

Bibliography

[8] Amazon. Amazon EKS. url: https://aws.amazon.com/eks (visited
on 09/23/2019) (cit. on pp. 3, 10).

[9] Amazon. Amazon EventBridge. url:
https://aws.amazon.com/eventbridge/ (cit. on p. 20).

[10] Amazon. Amazon Web Services (AWS). url: https://aws.amazon.
com/ (visited on 06/19/2019) (cit. on p. 2).

[11] Amazon. API Gateway Developer Portal. url:
https://github.com/awslabs/aws-api-gateway-developer-portal
(visited on 10/07/2019) (cit. on p. 115).

[12] Amazon. AWS Amplify. url: https://aws.amazon.com/amplify/
(visited on 09/23/2019) (cit. on p. 11).

[13] Amazon. AWS Auto Scaling. url:
https://aws.amazon.com/autoscaling/ (cit. on p. 72).

[14] Amazon. AWS EC2. url: https://aws.amazon.com/ec2/ (visited on
09/20/2019) (cit. on p. 8).

[15] Amazon. AWS Elastic Beanstalk. url: https://aws.amazon.com/
elasticbeanstalk (visited on 06/20/2019) (cit. on pp. 9, 28).

[16] Amazon. AWS Fargate. url: https://aws.amazon.com/fargate/
(cit. on p. 15).

[17] Amazon. AWS Lambda. url: https : / / aws . amazon . com / lambda
(visited on 06/19/2019) (cit. on pp. 3, 12, 15).

[18] Amazon. AWS Lambda : 1792MB 1vCPU. url: https://docs.aws.
amazon.com/lambda/latest/dg/resource-model.html (cit. on p. 16).

[19] Amazon. AWS Lambda FAQ. url: https://aws.amazon.com/lambda/
faqs (cit. on p. 44).

126

https://aws.amazon.com/eks
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/
https://aws.amazon.com/
https://github.com/awslabs/aws-api-gateway-developer-portal
https://aws.amazon.com/amplify/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/elasticbeanstalk
https://aws.amazon.com/fargate/
https://aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://aws.amazon.com/lambda/faqs
https://aws.amazon.com/lambda/faqs

Bibliography

[20] Amazon. AWS Serverless Application Model. url:
https : / / github . com / awslabs / serverless - application - model
(visited on 06/19/2019) (cit. on p. 28).

[21] Amazon. Boto 3 Documentation. url: https://boto3.readthedocs.
io/en/latest/ (visited on 06/20/2019) (cit. on p. 37).

[22] Amazon. Invoke. url: http://docs.aws.amazon.com/lambda/latest/
dg/API_Invoke.html (visited on 06/20/2019) (cit. on p. 47).

[23] Amazon. Lambda asycnhronous invocations. url: https://docs.aws.
amazon.com/lambda/latest/dg/invocation- async.html (cit. on
pp. 60, 104).

[24] Apache. Apache Camel. url: https://camel.apache.org/ (cit. on
p. 27).

[25] Apache. Apache Camel Components. url: https://camel.apache.
org/components/latest/ (cit. on p. 27).

[26] Apache. Apache MXNet. url: https://mxnet.apache.org/ (cit. on
p. 29).

[27] Apex Software. Apex: Up, deploy serverless apps in seconds. url: http:
//apex.run/ (visited on 06/19/2019) (cit. on p. 28).

[28] Aria2. Aria2. url: https://aria2.github.io/ (visited on 10/03/2019)
(cit. on p. 111).

[29] AWS Batch. 2019. url: https://aws.amazon.com/batch/ (visited on
12/09/2019) (cit. on p. 57).

[30] AWS EC2 ECU. 2019. url: http://aws.amazon.com/ec2/faqs/
(visited on 12/10/2019) (cit. on p. 70).

[31] AWS EC2 pricing on demand. 2019. url: https://aws.amazon.com/
ec2/pricing/on-demand/ (visited on 12/10/2019) (cit. on p. 70).

127

https://github.com/awslabs/serverless-application-model
https://boto3.readthedocs.io/en/latest/
https://boto3.readthedocs.io/en/latest/
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
http://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html
https://camel.apache.org/
https://camel.apache.org/components/latest/
https://camel.apache.org/components/latest/
https://mxnet.apache.org/
http://apex.run/
http://apex.run/
https://aria2.github.io/
https://aws.amazon.com/batch/
http://aws.amazon.com/ec2/faqs/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

Bibliography

[32] AWS Lambda Layers. 2019. url:
https://docs.aws.amazon.com/lambda/latest/dg/configuration-
layers.html (visited on 12/10/2019) (cit. on p. 40).

[33] Ioana Baldini et al. �Serverless computing: Current trends and open
problems�. In: Research Advances in Cloud Computing. Singapore:
Springer Singapore, 2017, pp. 1�20. isbn: 9789811050268. doi:
10.1007/978-981-10-5026-8_1. arXiv: 1706.03178 (cit. on p. 30).

[34] Ioana Baldini et al. �The serverless trilemma: function composition for
serverless computing�. In: Proceedings of the 2017 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and
Re�ections on Programming and Software - Onward! 2017. New York,
New York, USA: ACM Press, 2017, pp. 89�103. isbn: 9781450355308.
doi: 10.1145/3133850.3133855. arXiv: 1611.02756 (cit. on p. 30).

[35] Vinit Baliyan et al. �Di�usion weighted imaging: Technique and
applications�. In: world journal of radiology 8 (Sept. 2016),
pp. 785�798. doi: 10.4329/wjr.v8.i9.785 (cit. on p. 68).

[36] Bitnami. Docker Hub: bitnami/minideb. url: https://hub.docker.
com/r/bitnami/minideb/ (visited on 06/20/2019) (cit. on p. 49).

[37] Bitnami. Kubeless. url: https : / / kubeless . io/ (visited on
06/19/2019) (cit. on pp. 13, 24).

[38] Miguel Caballer et al. �Dynamic Management of Virtual
Infrastructures�. In: Journal of Grid Computing 13.1 (Mar. 2015),
pp. 53�70. issn: 15729184. doi: 10.1007/s10723-014-9296-5 (cit. on
pp. 8, 78).

[39] Miguel Caballer et al. �EC3: Elastic cloud computing cluster�. In:
Journal of Computer and System Sciences 79.8 (2013), pp. 1341�1351.
issn: 00220000. doi: 10.1016/j.jcss.2013.06.005 (cit. on p. 78).

[40] Amanda Calatrava et al. �Self-managed cost-e�cient virtual elastic
clusters on hybrid Cloud infrastructures�. In: Future Generation
Computer Systems 61 (Aug. 2016), pp. 13�25. issn: 0167739X. doi:
10.1016/j.future.2016.01.018 (cit. on p. 78).

128

https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://doi.org/10.1007/978-981-10-5026-8_1
https://arxiv.org/abs/1706.03178
https://doi.org/10.1145/3133850.3133855
https://arxiv.org/abs/1611.02756
https://doi.org/10.4329/wjr.v8.i9.785
https://hub.docker.com/r/bitnami/minideb/
https://hub.docker.com/r/bitnami/minideb/
https://kubeless.io/
https://doi.org/10.1007/s10723-014-9296-5
https://doi.org/10.1016/j.jcss.2013.06.005
https://doi.org/10.1016/j.future.2016.01.018

Bibliography

[41] Canonical Ltd. LXD. url: https://linuxcontainers.org/ (visited
on 09/23/2019) (cit. on p. 9).

[42] Paul Castro et al. �The rise of serverless computing�. In:
Communications of the ACM 62.12 (2019), pp. 44�54. issn: 00010782.
doi: 10 . 1145 / 3368454. url:
http://dl.acm.org/citation.cfm?doid=3372896.3368454 (cit. on
p. 30).

[43] CentOS. Docker Hub: centos:7. url: https://hub.docker.com/_/
centos/ (visited on 06/20/2019) (cit. on pp. 47, 49).

[44] CloudFoundry. CloudFoundry. url: https://www.cloudfoundry.org/
(visited on 09/20/2019) (cit. on p. 9).

[45] Cloudify. Cloudify. url: https : / / cloudify . co/ (visited on
09/20/2019) (cit. on p. 8).

[46] CNCF. CNCF. url: https://www.cncf.io/ (visited on 09/24/2019)
(cit. on p. 12).

[47] CNCF. �CNCF WG-Serverless Whitepaper v1.0�. url:
https : / / github . com / cncf / wg -
serverless / blob / master / whitepapers / serverless -
overview/cncf_serverless_whitepaper_v1.0.pdf (cit. on p. 12).

[48] Comparison of C/POSIX standard library implementations for Linux.
2020. url: http://www.etalabs.net/compare_libcs.html (visited
on 03/02/2020) (cit. on p. 46).

[49] Adaptive Computing. TORQUE Resource Manager. url: http://www.
adaptivecomputing.com/products/torque/ (cit. on p. 72).

[50] D2SI Open Source Platform. Ooso, serverless mapreduce. url: https:
//kubeless.io/ (visited on 06/19/2019) (cit. on p. 28).

[51] Deep. Deep Hybrid Datacloud. url:
https : / / deep - hybrid - datacloud . eu/ (visited on 10/04/2019)
(cit. on p. 108).

129

https://linuxcontainers.org/
https://doi.org/10.1145/3368454
http://dl.acm.org/citation.cfm?doid=3372896.3368454
https://hub.docker.com/_/centos/
https://hub.docker.com/_/centos/
https://www.cloudfoundry.org/
https://cloudify.co/
https://www.cncf.io/
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
https://github.com/cncf/wg-serverless/blob/master/whitepapers/serverless-overview/cncf_serverless_whitepaper_v1.0.pdf
http://www.etalabs.net/compare_libcs.html
http://www.adaptivecomputing.com/products/torque/
http://www.adaptivecomputing.com/products/torque/
https://kubeless.io/
https://kubeless.io/
https://deep-hybrid-datacloud.eu/

Bibliography

[52] Docker. Docker. url: https : / / www . docker . com/ (visited on
06/19/2019) (cit. on pp. 2, 9).

[53] Docker. Docker Hub. url: https : / / hub . docker . com/ (visited on
06/20/2019) (cit. on p. 38).

[54] Docker. Docker Swarm. url: https://docs.docker.com/engine/
swarm/ (visited on 09/22/2019) (cit. on pp. 2, 10).

[55] Nicola Dragoni et al. �Microservices: yesterday, today, and tomorrow�.
In: CoRR abs/1606.0 (June 2016). arXiv: 1606.04036 (cit. on p. 2).

[56] EC2 Compute Optimized. 2019. url: https://aws.amazon.com/ec2/
instance-types/#Compute_Optimized (visited on 12/05/2019) (cit. on
p. 90).

[57] EGI Foundation. EGI Federated Cloud. url: https://www.egi.eu/
federation/egi-federated-cloud/ (visited on 06/19/2019) (cit. on
p. 94).

[58] EGI Foundation. EGI Federated Data. url: https://wiki.egi.eu/
wiki/EGI_Federated_Data (visited on 10/03/2019) (cit. on p. 108).

[59] Adam Eivy. �Be Wary of the Economics of 'Serverless' Cloud
Computing�. In: IEEE Cloud Computing 4.2 (Mar. 2017), pp. 6�12.
issn: 23256095. doi: 10.1109/MCC.2017.32 (cit. on p. 30).

[60] Explora OSCAR. 2019. url: https://aplicat.upv.es/exploraupv/
ficha-tecnologia/patente_software/27824 (visited on 03/10/2012)
(cit. on p. 119).

[61] Explora SCAR. 2019. url: https://aplicat.upv.es/exploraupv/
ficha-tecnologia/patente_software/24666 (visited on 10/07/2019)
(cit. on p. 119).

[62] Erwin van Eyk et al. �The SPEC cloud group's research vision on FaaS
and serverless architectures�. In: Proceedings of the 2nd International
Workshop on Serverless Computing - WoSC '17. New York, New York,

130

https://www.docker.com/
https://hub.docker.com/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://arxiv.org/abs/1606.04036
https://aws.amazon.com/ec2/instance-types/#Compute_Optimized
https://aws.amazon.com/ec2/instance-types/#Compute_Optimized
https://www.egi.eu/federation/egi-federated-cloud/
https://www.egi.eu/federation/egi-federated-cloud/
https://wiki.egi.eu/wiki/EGI_Federated_Data
https://wiki.egi.eu/wiki/EGI_Federated_Data
https://doi.org/10.1109/MCC.2017.32
https://aplicat.upv.es/exploraupv/ficha-tecnologia/patente_software/27824
https://aplicat.upv.es/exploraupv/ficha-tecnologia/patente_software/27824
https://aplicat.upv.es/exploraupv/ficha-tecnologia/patente_software/24666
https://aplicat.upv.es/exploraupv/ficha-tecnologia/patente_software/24666

Bibliography

USA: ACM Press, Nov. 2017, pp. 1�4. isbn: 9781450354349. doi: 10.
1145/3154847.3154848 (cit. on pp. 3, 30).

[63] Enol Fernández-Del-Castillo, Diego Scardaci, and
Álvaro López García. �The EGI Federated Cloud e-Infrastructure�. In:
Procedia Computer Science. Vol. 68. Elsevier, Jan. 2015, pp. 196�205.
doi: 10.1016/j.procs.2015.09.235 (cit. on pp. 94, 120).

[64] Flexera. State of the Cloud Report 2019. url: https://www.flexera.
com/blog/cloud/2019/02/cloud-computing-trends-2019-state-
of-the-cloud-survey/ (visited on 10/22/2019) (cit. on p. 1).

[65] Fn. FN Project. url: https://fnproject.io/ (cit. on pp. 13, 26).

[66] Sadjad Fouladi et al. �Encoding, Fast and Slow: Low-Latency Video
Processing Using Thousands of Tiny Threads�. In: USENIX NSDI.
Boston, MA: USENIX Association, 2017, pp. 363�376. isbn:
9781931971379 (cit. on p. 29).

[67] Geo�rey C Fox et al. Status of Serverless Computing and Function-as-
a-Service(FaaS) in Industry and Research. Tech. rep. Aug. 2017. doi:
10.13140/RG.2.2.15007.87206. arXiv: 1708.08028 (cit. on p. 13).

[68] Funktion. Funktion. url: https://funktion.fabric8.io/ (cit. on
pp. 13, 27).

[69] Dennis Gannon. Observations about Serverless Computing With a few
examples from AWS Lambda, Azure Functions and Open Whisk.
Tech. rep. 2017. doi: 10.13140/RG.2.2.30281.03685 (cit. on p. 13).

[70] V Giménez-Alventosa, Germán Moltó, and Miguel Caballer. �A
framework and a performance assessment for serverless MapReduce on
AWS Lambda�. In: Future Generation Computer Systems 97 (Mar.
2019), pp. 259�274. issn: 0167739X. doi:
10.1016/j.future.2019.02.057 (cit. on pp. 29, 53).

[71] Alex Glikson. TRANSIT: Flexible pipeline for IoT data with Bluemix
and OpenWhisk. url: https://medium.com/openwhisk/transit-

131

https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1016/j.procs.2015.09.235
https://www.flexera.com/blog/cloud/2019/02/cloud-computing-trends-2019-state-of-the-cloud-survey/
https://www.flexera.com/blog/cloud/2019/02/cloud-computing-trends-2019-state-of-the-cloud-survey/
https://www.flexera.com/blog/cloud/2019/02/cloud-computing-trends-2019-state-of-the-cloud-survey/
https://fnproject.io/
https://doi.org/10.13140/RG.2.2.15007.87206
https://arxiv.org/abs/1708.08028
https://funktion.fabric8.io/
https://doi.org/10.13140/RG.2.2.30281.03685
https://doi.org/10.1016/j.future.2019.02.057
https://medium.com/openwhisk/transit-flexible-pipeline-for-iot-data-with-bluemix-and-openwhisk-4824cf20f1e0
https://medium.com/openwhisk/transit-flexible-pipeline-for-iot-data-with-bluemix-and-openwhisk-4824cf20f1e0

Bibliography

flexible-pipeline-for-iot-data-with-bluemix-and-openwhisk-
4824cf20f1e0 (cit. on p. 29).

[72] Alex Glikson, Stefan Nastic, and Schahram Dustdar. �Deviceless edge
computing�. In: Proceedings of the 10th ACM International Systems and
Storage Conference on - SYSTOR '17. SYSTOR '17. New York, New
York, USA: ACM Press, 2017, pp. 1�1. isbn: 9781450350358. doi: 10.
1145/3078468.3078497 (cit. on p. 29).

[73] Jorge Gomes. uDocker Documentation. url: https://github.com/
indigo-dc/udocker/blob/master/doc/user_manual.md (visited on
06/20/2019) (cit. on p. 38).

[74] Jorge Gomes et al. �Enabling rootless Linux Containers in multi-user
environments: The udocker tool�. In: Computer Physics
Communications 232 (Nov. 2018), pp. 84�97. issn: 00104655. doi:
10.1016/j.cpc.2018.05.021 (cit. on p. 38).

[75] Google. Firebase. url: https://firebase.google.com/ (visited on
09/23/2019) (cit. on p. 11).

[76] Google. G Suite. url: https : / / gsuite . google . com/ (visited on
09/20/2019) (cit. on p. 9).

[77] Google. Google App Engine. url:
https : / / cloud . google . com / appengine (visited on 09/20/2019)
(cit. on p. 9).

[78] Google. Google Cloud Functions. url: https://cloud.google.com/
functions/ (visited on 06/19/2019) (cit. on pp. 12, 15).

[79] Google. Google Cloud Platform. url: https://cloud.google.com
(visited on 06/19/2019) (cit. on p. 2).

[80] Google. Google Cloud Run. url: https://cloud.google.com/run/
(cit. on p. 15).

132

https://medium.com/openwhisk/transit-flexible-pipeline-for-iot-data-with-bluemix-and-openwhisk-4824cf20f1e0
https://medium.com/openwhisk/transit-flexible-pipeline-for-iot-data-with-bluemix-and-openwhisk-4824cf20f1e0
https://medium.com/openwhisk/transit-flexible-pipeline-for-iot-data-with-bluemix-and-openwhisk-4824cf20f1e0
https://doi.org/10.1145/3078468.3078497
https://doi.org/10.1145/3078468.3078497
https://github.com/indigo-dc/udocker/blob/master/doc/user_manual.md
https://github.com/indigo-dc/udocker/blob/master/doc/user_manual.md
https://doi.org/10.1016/j.cpc.2018.05.021
https://firebase.google.com/
https://gsuite.google.com/
https://cloud.google.com/appengine
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com
https://cloud.google.com/run/

Bibliography

[81] Google. Google Cloud Run: Container Contract. url: https :
//cloud.google.com/run/docs/reference/container- contract
(cit. on p. 15).

[82] Google. Google Compute Engine. url: https://cloud.google.com/
compute/ (visited on 10/11/2019) (cit. on p. 8).

[83] Google. Google Kubernetes Engine. url: https://cloud.google.com/
kubernetes-engine/ (visited on 09/23/2019) (cit. on pp. 3, 10).

[84] Google. Knative. url: https://cloud.google.com/knative/ (visited
on 09/27/2019) (cit. on pp. 13, 15, 24).

[85] GRyCAP. CNCF: Scar. 2019. url: https :
/ / landscape . cncf . io / format = serverless{\ & }selected = scar
(visited on 10/04/2019) (cit. on p. 119).

[86] GRyCAP. Docker Hub: grycap/jenkins:ubuntu14.04-python. url:
https://hub.docker.com/r/grycap/jenkins (visited on 06/20/2019)
(cit. on p. 49).

[87] GRycAP. faas-supervisor. url: https://github.com/grycap/faas-
supervisor (cit. on p. 84).

[88] GRyCAP. Minicon. url: https : / / github . com / grycap / minicon
(cit. on p. 46).

[89] GRyCAP. Resource and Application Description Language (RADL).
url: https : / / imdocs . readthedocs . io / en / latest / radl . html
(visited on 06/19/2019) (cit. on p. 78).

[90] GRyCAP. SERVERLESS COMPUTING FOR DATA-PROCESSING
APPLICATIONS ON MULTI-CLOUDS (HANDS-ON TUTORIAL).
url: https://indico.lip.pt/event/575/contributions/2002/
(visited on 10/03/2019) (cit. on p. 109).

[91] Hashicorp. Consul. url: https : / / www . consul . io/ (visited on
09/23/2019) (cit. on p. 11).

133

https://cloud.google.com/run/docs/reference/container-contract
https://cloud.google.com/run/docs/reference/container-contract
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/kubernetes-engine/
https://cloud.google.com/knative/
https://landscape.cncf.io/format=serverless{\&}selected=scar
https://landscape.cncf.io/format=serverless{\&}selected=scar
https://hub.docker.com/r/grycap/jenkins
https://github.com/grycap/faas-supervisor
https://github.com/grycap/faas-supervisor
https://github.com/grycap/minicon
https://imdocs.readthedocs.io/en/latest/radl.html
https://indico.lip.pt/event/575/contributions/2002/
https://www.consul.io/

Bibliography

[92] Hashicorp. Nomad. url: https://www.nomadproject.io/ (visited on
09/22/2019) (cit. on pp. 3, 10).

[93] Hashicorp. Vault. url: https://www.vaultproject.io/ (visited on
09/23/2019) (cit. on p. 11).

[94] Joseph M. Hellerstein et al. �Serverless Computing: One Step Forward,
Two Steps Back�. In: (2018). arXiv: 1812.03651. url: http://arxiv.
org/abs/1812.03651 (cit. on p. 30).

[95] Scott Hendrickson et al. �Serverless Computing with OpenLambda�. In:
8th USENIX Workshop on Hot Topics in Cloud Computing. HotCloud
'16. Denver, CO: USENIX Association, 2016 (cit. on p. 28).

[96] Heroku. Heroku. url: https : / / www . heroku . com/ (visited on
09/20/2019) (cit. on p. 9).

[97] High Throughput Computing. 2019. url: https://wiki.egi.eu/wiki/
Glossary_V1#High_Throughput_Computing (visited on 12/05/2019)
(cit. on p. 5).

[98] Ibergrid. On-premises Serverless Container-aware ARchitectures. 2018.
url: https://indico.lip.pt/event/437/contributions/1408/
(visited on 10/04/2019) (cit. on p. 120).

[99] Ibergrid. Serverless Computing for Data-Processing Across Public and
Federated Clouds. 2019. url: https://indico.lip.pt/event/575/
contributions/1850/ (cit. on p. 120).

[100] IBM. IBM Cloud Functions. url: https://www.ibm.com/cloud/
functions (visited on 09/19/2019) (cit. on pp. 12, 15).

[101] IBM. OpenWhisk Composer. url:
https : / / github . com / ibm - functions / composer (visited on
09/27/2019) (cit. on p. 27).

[102] INDIGO-DataCloud Collaboration. �INDIGO-DataCloud:A data and
computing platform to facilitate seamless access to e-infrastructures�.
In: (Nov. 2017). arXiv: 1711.01981 (cit. on p. 38).

134

https://www.nomadproject.io/
https://www.vaultproject.io/
https://arxiv.org/abs/1812.03651
http://arxiv.org/abs/1812.03651
http://arxiv.org/abs/1812.03651
https://www.heroku.com/
https://wiki.egi.eu/wiki/Glossary_V1#High_Throughput_Computing
https://wiki.egi.eu/wiki/Glossary_V1#High_Throughput_Computing
https://indico.lip.pt/event/437/contributions/1408/
https://indico.lip.pt/event/575/contributions/1850/
https://indico.lip.pt/event/575/contributions/1850/
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://github.com/ibm-functions/composer
https://arxiv.org/abs/1711.01981

Bibliography

[103] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski.
�Serving deep learning models in a serverless platform�. In: (2017).
arXiv: 1710.08460. url: http://arxiv.org/abs/1710.08460 (cit. on
p. 29).

[104] Istio. url: https://istio.io/ (visited on 09/27/2019) (cit. on p. 24).

[105] Eric Jonas et al. �Cloud Programming Simpli�ed: A Berkeley View on
Serverless Computing�. In: (2019). arXiv: 1902.03383. url: http://
arxiv.org/abs/1902.03383 (cit. on p. 30).

[106] Eric Jonas et al. �Occupy the Cloud: Distributed Computing for the
99%�. In: Proceedings of the 2017 Symposium on Cloud Computing -
SoCC '17 (Feb. 2017), pp. 445�451. doi: 10.1145/3127479.3128601.
arXiv: 1702.04024 (cit. on p. 29).

[107] JS Foundation. Node-RED. url: https://nodered.org/ (visited on
06/20/2019) (cit. on p. 29).

[108] kaniko. kaniko. url: https://github.com/GoogleContainerTools/
kaniko (cit. on p. 79).

[109] Kubernetes. Kubernetes Horizontal Pod Autoscaler. url:
https : / / kubernetes . io / docs / tasks / run -
application/horizontal-pod-autoscale/ (cit. on pp. 24, 77).

[110] Kubernetes. Kubernetes Vertical Pod Autoscaler. url: https :
//github.com/kubernetes/autoscaler/tree/master/vertical-
pod-autoscaler (cit. on p. 77).

[111] Kubernetes. KubernetesCluster Autoscaler. url: https://github.com/
kubernetes/autoscaler/tree/master/cluster-autoscaler (cit. on
p. 77).

[112] Kubernetes: Case studies. url:
https://kubernetes.io/case-studies/ (cit. on p. 10).

[113] Grafana Labs. Grafana. url: https://grafana.com/ (cit. on p. 26).

135

https://arxiv.org/abs/1710.08460
http://arxiv.org/abs/1710.08460
https://istio.io/
https://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
http://arxiv.org/abs/1902.03383
https://doi.org/10.1145/3127479.3128601
https://arxiv.org/abs/1702.04024
https://nodered.org/
https://github.com/GoogleContainerTools/kaniko
https://github.com/GoogleContainerTools/kaniko
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://kubernetes.io/case-studies/
https://grafana.com/

Bibliography

[114] Linux Fundation. Kubernetes. url: https://kubernetes.io/ (visited
on 09/22/2019) (cit. on pp. 3, 10).

[115] Wes Lloyd et al. �Serverless Computing: An Investigation of Factors
In�uencing Microservice Performance�. In: 2018 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2018, pp. 159�169.
isbn: 978-1-5386-5008-0. doi: 10 . 1109 / IC2E . 2018 . 00039. url:
https://ieeexplore.ieee.org/document/8360324/ (cit. on p. 29).

[116] Theo Lynn et al. �A Preliminary Review of Enterprise Serverless
Cloud Computing (Function-as-a-Service) Platforms�. In: 2017 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom). Vol. 2017-Decem. IEEE, Dec. 2017, pp. 162�169. isbn:
978-1-5386-0692-6. doi: 10.1109/CloudCom.2017.15 (cit. on p. 36).

[117] Maciej Malawski. �Towards Serverless Execution of Scienti�c
Work�ows - HyperFlow Case Study�. In: unde�ned (2016). url:
https://www.semanticscholar.org/paper/Towards-Serverless-
Execution - of - Scientific - Case -
Malawski / 1117a065a291a06b066ab6c6af17aa620bf2b589 (cit. on
p. 29).

[118] Garrett McGrath et al. �Cloud Event Programming Paradigms:
Applications and Analysis�. In: 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD). IEEE, June 2016,
pp. 400�406. isbn: 978-1-5090-2619-7. doi: 10.1109/CLOUD.2016.0060
(cit. on p. 13).

[119] P M Mell and Tim Grance. The NIST de�nition of cloud computing.
Tech. rep. Gaithersburg, MD: National Institute of Standards and
Technology, 2011. doi: 10.6028/NIST.SP.800-145 (cit. on p. 7).

[120] Adolfo Méndez Madrigal. Ejecución Monetizada de Work�ows de
Algoritmos Privados en Plataformas Serverless Públicas. 2019. url:
http://hdl.handle.net/10251/129147 (cit. on p. 114).

[121] Ivan Merelli et al. �Exploiting Docker containers over Grid computing
for a comprehensive study of chromatin conformation in di�erent cell
types�. In: Journal of Parallel and Distributed Computing 134 (2019),
pp. 116 �127. issn: 0743-7315. doi: https://doi.org/10.1016/j.

136

https://kubernetes.io/
https://doi.org/10.1109/IC2E.2018.00039
https://ieeexplore.ieee.org/document/8360324/
https://doi.org/10.1109/CloudCom.2017.15
https://www.semanticscholar.org/paper/Towards-Serverless-Execution-of-Scientific-Case-Malawski/1117a065a291a06b066ab6c6af17aa620bf2b589
https://www.semanticscholar.org/paper/Towards-Serverless-Execution-of-Scientific-Case-Malawski/1117a065a291a06b066ab6c6af17aa620bf2b589
https://www.semanticscholar.org/paper/Towards-Serverless-Execution-of-Scientific-Case-Malawski/1117a065a291a06b066ab6c6af17aa620bf2b589
https://doi.org/10.1109/CLOUD.2016.0060
https://doi.org/10.6028/NIST.SP.800-145
http://hdl.handle.net/10251/129147
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.08.002
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.08.002

Bibliography

jpdc.2019.08.002. url: http://www.sciencedirect.com/science/
article/pii/S0743731519305593 (cit. on p. 38).

[122] Dirk Merkel. �Docker: Lightweight Linux Containers for Consistent
Development and Deployment�. In: Linux Journal 2014.239 (2014),
pp. 76�90. issn: 1075-3583 (cit. on p. 9).

[123] Microsoft. ACI: azure �le share. url: https://docs.microsoft.com/
en-us/azure/container-instances/container-instances-volume-
azure-files (cit. on p. 15).

[124] Microsoft. ACI: GPU access. url: https://docs.microsoft.com/en-
us/azure/container-instances/container-instances-gpu (cit. on
p. 15).

[125] Microsoft. Azure Container Instances. url:
https://azure.microsoft.com/services/container-instances/
(cit. on p. 15).

[126] Microsoft. Azure Container Service. url: https://azure.microsoft.
com/services/container-service/ (visited on 06/19/2019) (cit. on
p. 3).

[127] Microsoft. Azure Event Hubs. url: https://azure.microsoft.com/
services/event-hubs/ (cit. on p. 20).

[128] Microsoft. Azure Files. url:
https://azure.microsoft.com/services/storage/files/ (visited
on 10/11/2019) (cit. on p. 19).

[129] Microsoft. Azure IaaS. url: https://azure.microsoft.com/en-
us/overview/what-is-azure/iaas/ (visited on 10/11/2019) (cit. on
p. 8).

[130] Microsoft. Azure Mobile. url: https://azure.microsoft.com/en-
us/solutions/mobile/ (visited on 09/23/2019) (cit. on p. 11).

137

https://doi.org/https://doi.org/10.1016/j.jpdc.2019.08.002
https://doi.org/https://doi.org/10.1016/j.jpdc.2019.08.002
http://www.sciencedirect.com/science/article/pii/S0743731519305593
http://www.sciencedirect.com/science/article/pii/S0743731519305593
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-volume-azure-files
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-volume-azure-files
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-volume-azure-files
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-gpu
https://docs.microsoft.com/en-us/azure/container-instances/container-instances-gpu
https://azure.microsoft.com/services/container-instances/
https://azure.microsoft.com/services/container-service/
https://azure.microsoft.com/services/container-service/
https://azure.microsoft.com/services/event-hubs/
https://azure.microsoft.com/services/event-hubs/
https://azure.microsoft.com/services/storage/files/
https://azure.microsoft.com/en-us/overview/what-is-azure/iaas/
https://azure.microsoft.com/en-us/overview/what-is-azure/iaas/
https://azure.microsoft.com/en-us/solutions/mobile/
https://azure.microsoft.com/en-us/solutions/mobile/

Bibliography

[131] Microsoft. Azure Service Fabric. url: https://azure.microsoft.com/
en-us/services/service-fabric/ (visited on 11/27/2019) (cit. on
p. 11).

[132] Microsoft. Azure Service Fabric Programming Model. url: https://
docs . microsoft . com / en - us / azure / service - fabric / service -
fabric-choose-framework (visited on 11/27/2019) (cit. on p. 11).

[133] Microsoft. Microsoft AKS. url: https://azure.microsoft.com/en-
us/services/kubernetes-service/ (visited on 09/23/2019) (cit. on
p. 10).

[134] Microsoft. Microsoft Azure. url: https : / / azure . microsoft . com
(visited on 06/19/2019) (cit. on p. 2).

[135] Microsoft. Microsoft Azure Functions. url:
https : / / azure . microsoft . com / en - in / services / functions/
(visited on 06/19/2019) (cit. on pp. 12, 15).

[136] Microsoft. O�ce 365. url: https://www.office.com/ (visited on
09/20/2019) (cit. on p. 9).

[137] MinIO. MinIO. url: https://min.io/ (cit. on p. 79).

[138] Nuclio. Nuclio. url: https://nuclio.io/ (visited on 09/27/2019)
(cit. on pp. 13, 25).

[139] Edward Oakes et al. �Pipsqueak: Lean Lambdas with Large Libraries�.
In: 2017 IEEE 37th International Conference on Distributed Computing
Systems Workshops (ICDCSW). IEEE, June 2017, pp. 395�400. isbn:
978-1-5386-3292-5. doi: 10.1109/ICDCSW.2017.32 (cit. on p. 28).

[140] OASIS. TOSCA Simple Pro�le in YAML Version 1.1. url: http://
docs.oasis- open.org/tosca/TOSCA- Simple- Profile- YAML/v1.
1/TOSCA-Simple-Profile-YAML-v1.1.html (visited on 06/19/2019)
(cit. on p. 78).

[141] Occopus. Occopus. url: https://occopus.lpds.sztaki.hu/home
(cit. on p. 8).

138

https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com
https://azure.microsoft.com/en-in/services/functions/
https://www.office.com/
https://min.io/
https://nuclio.io/
https://doi.org/10.1109/ICDCSW.2017.32
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.html
https://occopus.lpds.sztaki.hu/home

Bibliography

[142] Onedata. Onedata. url: https://onedata.org (visited on 10/01/2019)
(cit. on pp. 84, 108).

[143] OpenFaaS. OpenFaaS. url: https://www.openfaas.com/ (visited on
09/28/2019) (cit. on pp. 13, 23, 79).

[144] OpenFaaS. OpenFaaS connector SDK. url: https://github.com/
openfaas-incubator/connector-sdk (visited on 09/28/2019) (cit. on
p. 23).

[145] OpenNebula. OpenNebula. url: https://opennebula.org (visited on
06/19/2019) (cit. on pp. 2, 8).

[146] OpenStack. Aodh. url: https://github.com/openstack/aodh (visited
on 09/28/2019) (cit. on p. 28).

[147] OpenStack. Keystone. url:
https://github.com/openstack/keystone (visited on 09/28/2019)
(cit. on p. 27).

[148] OpenStack. OpenStack. url: http : / / openstack . org (visited on
06/19/2019) (cit. on pp. 2, 8).

[149] OpenStack. Qinling. url: https://github.com/openstack/qinling
(visited on 09/28/2019) (cit. on pp. 13, 27).

[150] OpenStack. Swift. url: https : / / github . com / openstack / swift
(visited on 09/28/2019) (cit. on p. 27).

[151] OpenStack. Zaqar. url: https : / / github . com / openstack / zaqar
(visited on 09/28/2019) (cit. on p. 28).

[152] OpenStack. Zun. url: https://github.com/openstack/zun (visited
on 09/28/2019) (cit. on p. 27).

[153] Greg Owen et al. Databricks Serverless: Next Generation Resource
Management for Apache Spark. 2017. url: https :
//databricks.com/blog/2017/06/07/databricks- serverless-

139

https://onedata.org
https://www.openfaas.com/
https://github.com/openfaas-incubator/connector-sdk
https://github.com/openfaas-incubator/connector-sdk
https://opennebula.org
https://github.com/openstack/aodh
https://github.com/openstack/keystone
http://openstack.org
https://github.com/openstack/qinling
https://github.com/openstack/swift
https://github.com/openstack/zaqar
https://github.com/openstack/zun
https://databricks.com/blog/2017/06/07/databricks-serverless-next-generation-resource-management-for-apache-spark.html
https://databricks.com/blog/2017/06/07/databricks-serverless-next-generation-resource-management-for-apache-spark.html
https://databricks.com/blog/2017/06/07/databricks-serverless-next-generation-resource-management-for-apache-spark.html

Bibliography

next-generation-resource-management-for-apache-spark.html
(visited on 06/19/2019) (cit. on p. 28).

[154] Alfonso Pérez et al. �Serverless computing for container-based
architectures�. In: Future Generation Computer Systems 83 (June
2018), pp. 50�59. issn: 0167739X. doi:
10.1016/j.future.2018.01.022 (cit. on pp. 34, 68).

[155] Pivotal. Ri�. url: https://projectriff.io/ (cit. on pp. 13, 24, 26).

[156] Platform9. Fission. url: https : / / fission . io/ (visited on
06/19/2019) (cit. on pp. 13, 25).

[157] Platform9. Platform9. url: https : / / platform9 . com/ (visited on
09/27/2019) (cit. on p. 25).

[158] Prometheus. url: https://prometheus.io (visited on 09/27/2019)
(cit. on p. 24).

[159] Joseph Redmon. Darknet: Open Source Neural Networks in C. 2013.
url: http://pjreddie.com/darknet/ (visited on 06/20/2019) (cit. on
p. 99).

[160] Joseph Redmon and Ali Farhadi. �YOLO9000: Better, Faster, Stronger�.
In: CoRR abs/1612.0 (Dec. 2016). arXiv: 1612.08242 (cit. on p. 99).

[161] Joseph Redmon and Ali Farhadi. �YOLOv3: An Incremental
Improvement�. In: arXiv (2018). arXiv: 1804.02767 (cit. on pp. 86,
104).

[162] Chris Richards. Microservices Patterns WITH EXAMPLES IN JAVA.
1st editio. Vol. 2018. March. Manning Publications, 2018, pp. 1�3. isbn:
9781617294549. url: https://b-ok.cc/book/3620439/ea5ed9 (cit. on
pp. 9, 10).

[163] Chris Richardson. Microservices Architetures. url:
https://microservices.io/patterns/microservices.html (visited
on 11/26/2019) (cit. on p. 9).

140

https://databricks.com/blog/2017/06/07/databricks-serverless-next-generation-resource-management-for-apache-spark.html
https://databricks.com/blog/2017/06/07/databricks-serverless-next-generation-resource-management-for-apache-spark.html
https://doi.org/10.1016/j.future.2018.01.022
https://projectriff.io/
https://fission.io/
https://platform9.com/
https://prometheus.io
http://pjreddie.com/darknet/
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
https://b-ok.cc/book/3620439/ea5ed9
https://microservices.io/patterns/microservices.html

Bibliography

[164] Sebastián Risco Gallardo. �Plataforma Serverless Híbrida de Procesado
de Datos�. PhD thesis. Sept. 2019 (cit. on p. 112).

[165] JPiotr Roszatycki. Fakechroot. url: https://github.com/dex4er/
fakechroot (visited on 06/20/2019) (cit. on p. 38).

[166] Keith Rozario. Multiprocessing in Lambda functions. url: https://
www.keithrozario.com/2019/10/multiprocessing- in- lambda-
functions.html (cit. on p. 16).

[167] SchedMD. SLURM Workload Manager. url: https://slurm.schedmd.
com/ (cit. on p. 72).

[168] Serverless. Serverless. url: https : / / serverless . com/ (visited on
09/28/2019) (cit. on p. 24).

[169] Vaishaal Shankar et al. �numpywren: serverless linear algebra�. In: (Oct.
2018). arXiv: 1810.09679 (cit. on p. 29).

[170] Josef Spillner. �Snafu: Function-as-a-Service (FaaS) Runtime Design
and Implementation�. In: CoRR abs/1703.0 (2017). arXiv: 1703.07562
(cit. on p. 28).

[171] Josef Spillner and Serhii Dorodko. �Java Code Analysis and
Transformation into AWS Lambda Functions�. In: CoRR abs/1702.0
(2017). arXiv: 1702.05510 (cit. on p. 28).

[172] Josef Spillner, Cristian Mateos, and David A Monge. �Faaster, better,
cheaper: the prospect of serverless scienti�c computing and HPC�. In:
Communications in Computer and Information Science. Vol. 796.
Springer, Cham, 2018, pp. 154�168. isbn: 9783319733524. doi:
10.1007/978-3-319-73353-1_11 (cit. on p. 29).

[173] Tekton. Tekton Pipelines. url:
https://github.com/tektoncd/pipeline (visited on 09/28/2019)
(cit. on p. 24).

[174] The Apache Software Foundation. Apache Kafka. url: https://kafka.
apache.org/documentation/streams/ (cit. on p. 26).

141

https://github.com/dex4er/fakechroot
https://github.com/dex4er/fakechroot
https://www.keithrozario.com/2019/10/multiprocessing-in-lambda-functions.html
https://www.keithrozario.com/2019/10/multiprocessing-in-lambda-functions.html
https://www.keithrozario.com/2019/10/multiprocessing-in-lambda-functions.html
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://serverless.com/
https://arxiv.org/abs/1810.09679
https://arxiv.org/abs/1703.07562
https://arxiv.org/abs/1702.05510
https://doi.org/10.1007/978-3-319-73353-1_11
https://github.com/tektoncd/pipeline
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/

Bibliography

[175] The Apache Software Foundation. Apache Marathon. url: https://
mesosphere.github.io/marathon/ (cit. on p. 10).

[176] The Apache Software Foundation. Apache Mesos. url: https://mesos.
apache.org (visited on 09/22/2019) (cit. on p. 10).

[177] The Apache Software Foundation. Apache OpenWhisk. url: http://
openwhisk.incubator.apache.org/ (visited on 06/19/2019) (cit. on
pp. 12, 13, 27).

[178] The World Air Quality Project. The World Air Quality Index. url:
http://waqi.info (visited on 10/03/2019) (cit. on p. 112).

[179] Ferran Borreguero Torro et al. �Accelerating the Di�usion-Weighted
Imaging Biomarker in the clinical practice: Comparative study�. In:
Procedia Computer Science. Vol. 108. Supplement C. 2017,
pp. 1185�1194. doi: 10.1016/j.procs.2017.05.108 (cit. on p. 67).

[180] UDocker. uDocker. url: https://github.com/indigo-dc/udocker
(visited on 06/19/2019) (cit. on p. 38).

[181] André Vieira. GROMACS AWS Batch. 2019. url: https://indico.
lip.pt/event/575/contributions/1843/ (visited on 10/07/2019)
(cit. on p. 117).

[182] Matthew Viljoen et al. �Towards European Open Science Commons:
The EGI Open Data Platform and the EGI DataHub�. In: Procedia
Computer Science 97 (2016). 2nd International Conference on Cloud
Forward: From Distributed to Complete Computing, pp. 148 �152. issn:
1877-0509. doi: https://doi.org/10.1016/j.procs.2016.08.
294. url: http://www.sciencedirect.com/science/article/pii/
S187705091632110X (cit. on p. 108).

[183] Mario Villamizar et al. �Cost comparison of running web applications
in the cloud using monolithic, microservice, and AWS Lambda
architectures�. In: Service Oriented Computing and Applications 11.2
(2017), pp. 233�247. issn: 1863-2394. doi:
10.1007/s11761-017-0208-y (cit. on p. 28).

142

https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/
https://mesos.apache.org
https://mesos.apache.org
http://openwhisk.incubator.apache.org/
http://openwhisk.incubator.apache.org/
http://waqi.info
https://doi.org/10.1016/j.procs.2017.05.108
https://github.com/indigo-dc/udocker
https://indico.lip.pt/event/575/contributions/1843/
https://indico.lip.pt/event/575/contributions/1843/
https://doi.org/https://doi.org/10.1016/j.procs.2016.08.294
https://doi.org/https://doi.org/10.1016/j.procs.2016.08.294
http://www.sciencedirect.com/science/article/pii/S187705091632110X
http://www.sciencedirect.com/science/article/pii/S187705091632110X
https://doi.org/10.1007/s11761-017-0208-y

Bibliography

[184] Virtuozzo. OpenVZ. url: https://openvz.org (visited on 09/23/2019)
(cit. on p. 9).

[185] Liang Wang et al. �Peeking Behind the Curtains of Serverless
Platforms�. In: 2018 USENIX Annual Technical Conference (USENIX
ATC 18). 2018, pp. 133�146. isbn: 978-1-931971-44-7 (cit. on pp. 44,
53, 68).

[186] Sebastian Werner et al. �Serverless Big Data Processing using Matrix
Multiplication as Example�. In: 2018 IEEE International Conference on
Big Data (Big Data). IEEE, 2018, pp. 358�365. isbn: 978-1-5386-5035-
6. doi: 10.1109/BigData.2018.8622362. url: https://ieeexplore.
ieee.org/document/8622362/ (cit. on p. 29).

[187] University of Wisconsin-Madison. HTCondor. url: https://research.
cs.wisc.edu/htcondor/ (cit. on p. 72).

[188] Mengting Yan et al. �Building a Chatbot with Serverless Computing�.
In: Proceedings of the 1st International Workshop on Mashups of Things
and APIs - MOTA '16. MOTA '16. New York, New York, USA: ACM
Press, Dec. 2016, pp. 1�4. isbn: 9781450346696. doi: 10.1145/3007203.
3007217 (cit. on p. 29).

143

https://openvz.org
https://doi.org/10.1109/BigData.2018.8622362
https://ieeexplore.ieee.org/document/8622362/
https://ieeexplore.ieee.org/document/8622362/
https://research.cs.wisc.edu/htcondor/
https://research.cs.wisc.edu/htcondor/
https://doi.org/10.1145/3007203.3007217
https://doi.org/10.1145/3007203.3007217

Appendix A

SCAR client commands

In the following pages we present the SCAR command lines as described in
the CLI help. First, a general help describing all the available commands is
presented.

usage : s ca r [−h] [−−ve r s i on] { i n i t , invoke , run , update , rm , l s , log , put , get }
. . .

Deploy con ta i n e r s in s e r v e r l e s s a r c h i t e c t u r e s

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t
−−ve r s i on Show SCAR ver s i on .

Commands :
{ i n i t , invoke , run , update , rm , l s , log , put , get }

i n i t Create lambda func t i on
invoke Ca l l a lambda func t i on us ing an HTTP reque s t
run Deploy func t i on
update Update func t i on p r op e r t i e s
rm Delete func t i on
l s L i s t lambda func t i on s
l og Show the l o g s f o r the lambda func t i on
put Upload f i l e (s) to bucket
get Download f i l e (s) from bucket

Run ' s ca r COMMAND −−help ' f o r more in fo rmat ion on a command .

145

Appendix A. SCAR client commands

To control the complete lifecycle of the functions we can use the following
commands: `init', `invoke', `run', `rm', and `update'. The `init' command is
the most important one, because it automatizes all the function deployment
process (e.g. package the required libraries, creation of the required layers, etc)
and the linking with other services (e.g. creation of the API Gateway endpoint,
creation of the required AWS S3 buckets and folders and linking them with
the Lambda function, creation of the CloudWatch Log groups, etc).

usage : s ca r i n i t [−h] [−d DESCRIPTION] [−e ENVIRONMENT]
[− l e LAMBDA_ENVIRONMENT] [−m MEMORY] [− t TIME]
[− t t TIMEOUT_THRESHOLD] [− l l LOG_LEVEL] [− l LAYERS]
[− ib INPUT_BUCKET] [−ob OUTPUT_BUCKET] [−em

EXECUTION_MODE]
[− r IAM_ROLE] [− sv SUPERVISOR_VERSION] [−bm

BATCH_MEMORY]
[−bc BATCH_VCPUS] [−g] [− j] [−v] [−pf PROFILE]
(− i IMAGE | − i f IMAGE_FILE | −f CONF_FILE) [−n NAME]
[− s INIT_SCRIPT] [−ph] [−ep EXTRA_PAYLOAD]
[−db DEPLOYMENT_BUCKET] [− api API_GATEWAY_NAME]

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t
−d DESCRIPTION, −−d e s c r i p t i o n DESCRIPTION

Lambda func t i on d e s c r i p t i o n .
−e ENVIRONMENT, −−environment ENVIRONMENT

Pass environment va r i ab l e to the conta ine r (VAR=
val) .

Can be de f ined mul t ip l e t imes .
− l e LAMBDA_ENVIRONMENT, −−lambda−environment LAMBDA_ENVIRONMENT

Pass environment va r i ab l e to the lambda func t i on
(VAR=val) . Can be de f ined mul t ip l e t imes .

−m MEMORY, −−memory MEMORY
Lambda func t i on memory in megabytes . Range from

128 to
3008 in increments o f 64

−t TIME, −−time TIME Lambda func t i on maximum execut ion time in
seconds . Max

900 .
−t t TIMEOUT_THRESHOLD, −−timeout−th r e sho ld TIMEOUT_THRESHOLD

Extra time used to po s tp roc e s s the data . This
time i s

ex t rac t ed from the t o t a l time o f the lambda
func t i on .

− l l LOG_LEVEL, −−log−l e v e l LOG_LEVEL
Set the log l e v e l o f the lambda func t i on .

Accepted
va lue s are :
'CRITICAL' , 'ERROR' , 'WARNING' , ' INFO' , 'DEBUG'

− l LAYERS, −−l a y e r s LAYERS
Pass l a y e r s ARNs to the lambda func t i on . Can be
de f ined mul t ip l e t imes .

−ib INPUT_BUCKET, −−input−bucket INPUT_BUCKET

146

Bucket name where the input f i l e s w i l l be s to r ed
.

−ob OUTPUT_BUCKET, −−output−bucket OUTPUT_BUCKET
Bucket name where the output f i l e s are saved .

−em EXECUTION_MODE, −−execut ion−mode EXECUTION_MODE
Sp e c i f i e s the execut ion mode o f the job . I t can

be
' lambda ' , ' lambda−batch ' or ' batch '

−r IAM_ROLE, −−iam−r o l e IAM_ROLE
IAM ro l e used in the management o f the f unc t i on s

−sv SUPERVISOR_VERSION, −−supe rv i so r−ve r s i on SUPERVISOR_VERSION
FaaS Superv i so r v e r s i on . Can be a tag or ' l a t e s t

' .
−bm BATCH_MEMORY, −−batch−memory BATCH_MEMORY

Batch job memory in megabytes
−bc BATCH_VCPUS, −−batch−vcpus BATCH_VCPUS

Number o f vCPUs re s e rved f o r the Batch conta ine r
−g , −−enable−gpu Reserve one phy s i c a l GPU f o r the Batch conta ine r

(i f
i t ' s a v a i l a b l e in the compute environment)

−j , −−j s on Return data in JSON format
−v , −−verbose Show the complete aws output in j son format
−pf PROFILE, −−p r o f i l e PROFILE

AWS p r o f i l e to use
− i IMAGE, −−image IMAGE

Container image id (i . e . c entos : 7)
− i f IMAGE_FILE, −−image− f i l e IMAGE_FILE

Container image f i l e c r ea ted with ' docker save '
(i . e .

centos . ta r . gz)
−f CONF_FILE, −−conf− f i l e CONF_FILE

Yaml f i l e with the func t i on c on f i gu r a t i on
−n NAME, −−name NAME Lambda func t i on name
−s INIT_SCRIPT, −−i n i t−s c r i p t INIT_SCRIPT

Path to the input f i l e passed to the func t i on
−ph , −−preheat Preheats the func t i on running i t once and

downloading
the nece s sa ry conta ine r

−ep EXTRA_PAYLOAD, −−extra−payload EXTRA_PAYLOAD
Folder conta in ing f i l e s that are going to be

added to
the lambda func t i on

−db DEPLOYMENT_BUCKET, −−deployment−bucket DEPLOYMENT_BUCKET
Bucket where the deployment package i s going to

be
uploaded .

−api API_GATEWAY_NAME, −−api−gateway−name API_GATEWAY_NAME
API Gateway name crea ted to launch the lambda

func t i on

After the function is created, we can launch it in di�erent ways. Directly
through the `invoke' or `run' commands or indirectly by uploading a �le to

147

Appendix A. SCAR client commands

an S3 bucket with the `put' command. The di�erence between `invoke' and
`run' lies in the invocation method used, that is, `invoke' allow us to launch
a Lambda function with an API endpoint de�ned, and `run' will call directly
the function using a python library. You cannot `invoke' a function without
an API endpoint, but you can `run' a function de�ned with an endpoint.

usage : s ca r invoke [−h] [−pf PROFILE] [−a] [−o OUTPUT_FILE]
(−n NAME | −f CONF_FILE) [−db DATA_BINARY] [− jd

JSON_DATA]
[−p PARAMETERS]

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t
−pf PROFILE, −−p r o f i l e PROFILE

AWS p r o f i l e to use
−a , −−asynchronous Launch an asynchronous func t i on .
−o OUTPUT_FILE, −−output− f i l e OUTPUT_FILE

Save output as a f i l e
−n NAME, −−name NAME Lambda func t i on name
−f CONF_FILE, −−conf− f i l e CONF_FILE

Yaml f i l e with the func t i on c on f i gu r a t i on
−db DATA_BINARY, −−data−binary DATA_BINARY

F i l e path o f the HTTP data to POST.
−jd JSON_DATA, −−j son−data JSON_DATA

JSON Body to Post
−p PARAMETERS, −−parameters PARAMETERS

In add i t i on to pas s ing the parameters in the URL
, you

can pass the parameters here (i . e . '{" key1 " : "
value1 " ,

"key2 " : [" value2 " , " value3 "] } ') .

usage : s ca r run [−h] [− j] [−v] [−pf PROFILE] [−a] [−o OUTPUT_FILE]
(−n NAME | −f CONF_FILE) [− s RUN_SCRIPT]
. . .

p o s i t i o n a l arguments :
c_args Arguments passed to the conta ine r .

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t
−j , −−j s on Return data in JSON format
−v , −−verbose Show the complete aws output in j son format
−pf PROFILE, −−p r o f i l e PROFILE

AWS p r o f i l e to use
−a , −−asynchronous Launch an asynchronous func t i on .
−o OUTPUT_FILE, −−output− f i l e OUTPUT_FILE

Save output as a f i l e
−n NAME, −−name NAME Lambda func t i on name
−f CONF_FILE, −−conf− f i l e CONF_FILE

Yaml f i l e with the func t i on c on f i gu r a t i on
−s RUN_SCRIPT, −−run−s c r i p t RUN_SCRIPT

148

Path to the input f i l e passed to the func t i on

The `rm' command is in charge of deleting the Lambda function and all the
links created (if it has any). The AWS S3 buckets and folders created with the
`init' command are not deleted with the `rm'. This is done to guarantee the
data persistence and to avoid deleting it by mistake.

usage : s ca r rm [−h] [− j] [−v] [−pf PROFILE] (−n NAME | −a | −f CONF_FILE
)

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t
−j , −−j s on Return data in JSON format
−v , −−verbose Show the complete aws output in j son format
−pf PROFILE, −−p r o f i l e PROFILE

AWS p r o f i l e to use
−n NAME, −−name NAME Lambda func t i on name
−a , −−a l l De lete a l l lambda func t i on s
−f CONF_FILE, −−conf− f i l e CONF_FILE

Yaml f i l e with the func t i on c on f i gu r a t i on

The `update' command allow us to update the AWS Lambda properties
without having to deploy it again. This command cannot create or delete
new AWS S3 buckets or folders and AWS API endpoints. It has only been
designed to allow the users modify the intrinsic properties of the Lambda
function.

usage : s ca r update [−h] [−d DESCRIPTION] [−e ENVIRONMENT]
[− l e LAMBDA_ENVIRONMENT] [−m MEMORY] [− t TIME]
[− t t TIMEOUT_THRESHOLD] [− l l LOG_LEVEL] [− l LAYERS]
[− ib INPUT_BUCKET] [−ob OUTPUT_BUCKET] [−em

EXECUTION_MODE]
[− r IAM_ROLE] [− sv SUPERVISOR_VERSION] [−bm

BATCH_MEMORY]
[−bc BATCH_VCPUS] [−g] [− j] [−v] [−pf PROFILE]
(−n NAME | −a | −f CONF_FILE)

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t
−d DESCRIPTION, −−d e s c r i p t i o n DESCRIPTION

Lambda func t i on d e s c r i p t i o n .
−e ENVIRONMENT, −−environment ENVIRONMENT

Pass environment va r i ab l e to the conta ine r (VAR=
val) .

Can be de f ined mul t ip l e t imes .
− l e LAMBDA_ENVIRONMENT, −−lambda−environment LAMBDA_ENVIRONMENT

Pass environment va r i ab l e to the lambda func t i on
(VAR=val) . Can be de f ined mul t ip l e t imes .

−m MEMORY, −−memory MEMORY

149

Appendix A. SCAR client commands

Lambda func t i on memory in megabytes . Range from
128 to

3008 in increments o f 64
−t TIME, −−time TIME Lambda func t i on maximum execut ion time in

seconds . Max
900 .

−t t TIMEOUT_THRESHOLD, −−timeout−th r e sho ld TIMEOUT_THRESHOLD
Extra time used to po s tp roc e s s the data . This

time i s
ex t rac t ed from the t o t a l time o f the lambda

func t i on .
− l l LOG_LEVEL, −−log−l e v e l LOG_LEVEL

Set the log l e v e l o f the lambda func t i on .
Accepted

va lue s are :
'CRITICAL' , 'ERROR' , 'WARNING' , ' INFO' , 'DEBUG'

− l LAYERS, −−l a y e r s LAYERS
Pass l a y e r s ARNs to the lambda func t i on . Can be
de f ined mul t ip l e t imes .

−ib INPUT_BUCKET, −−input−bucket INPUT_BUCKET
Bucket name where the input f i l e s w i l l be s to r ed

.
−ob OUTPUT_BUCKET, −−output−bucket OUTPUT_BUCKET

Bucket name where the output f i l e s are saved .
−em EXECUTION_MODE, −−execut ion−mode EXECUTION_MODE

Sp e c i f i e s the execut ion mode o f the job . I t can
be

' lambda ' , ' lambda−batch ' or ' batch '
−r IAM_ROLE, −−iam−r o l e IAM_ROLE

IAM ro l e used in the management o f the f unc t i on s
−sv SUPERVISOR_VERSION, −−supe rv i so r−ve r s i on SUPERVISOR_VERSION

FaaS Superv i so r v e r s i on . Can be a tag or ' l a t e s t
' .

−bm BATCH_MEMORY, −−batch−memory BATCH_MEMORY
Batch job memory in megabytes

−bc BATCH_VCPUS, −−batch−vcpus BATCH_VCPUS
Number o f vCPUs re s e rved f o r the Batch conta ine r

−g , −−enable−gpu Reserve one phy s i c a l GPU f o r the Batch conta ine r
(i f

i t ' s a v a i l a b l e in the compute environment)
−j , −−j s on Return data in JSON format
−v , −−verbose Show the complete aws output in j son format
−pf PROFILE, −−p r o f i l e PROFILE

AWS p r o f i l e to use
−n NAME, −−name NAME Lambda func t i on name
−a , −−a l l Update a l l lambda func t i on s
−f CONF_FILE, −−conf− f i l e CONF_FILE

Yaml f i l e with the func t i on c on f i gu r a t i on

The `ls' command allow us to list the de�ned functions created with SCAR. In
addition, it allow us to list the contents of an AWS S3 bucket or a folder in a
bucket.

150

usage : s ca r l s [−h] [− j] [−v] [−pf PROFILE] [−b BUCKET] [− l]

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t
−j , −−j s on Return data in JSON format
−v , −−verbose Show the complete aws output in j son format
−pf PROFILE, −−p r o f i l e PROFILE

AWS p r o f i l e to use
−b BUCKET, −−bucket BUCKET

Show bucket f i l e s
−l , −− l i s t −l a y e r s Show lambda l a y e r s in fo rmat ion

With the `log' command we can check the execution's traces of the functions.
This command also allo us to �lter based on the log stream name and the
request id.

usage : s ca r l og [−h] [−pf PROFILE] (−n NAME | −f CONF_FILE)
[− l s LOG_STREAM_NAME] [− r i REQUEST_ID]

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t
−pf PROFILE, −−p r o f i l e PROFILE

AWS p r o f i l e to use
−n NAME, −−name NAME Lambda func t i on name
−f CONF_FILE, −−conf− f i l e CONF_FILE

Yaml f i l e with the func t i on c on f i gu r a t i on
− l s LOG_STREAM_NAME, −−log−stream−name LOG_STREAM_NAME

Return the output f o r the log stream s p e c i f i e d .
− r i REQUEST_ID, −−request−id REQUEST_ID

Return the output f o r the r eque s t id s p e c i f i e d .

Both `put' and `get' commands are used to manage the upload and download
�les from AWS S3 buckets. By uploading �les to an speci�c folder in nucket
we can trigger AWS Lambda invocations.

usage : s ca r put [−h] −b BUCKET −p PATH [−pf PROFILE]

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t
−b BUCKET, −−bucket BUCKET

Bucket to use as s t o rage
−p PATH, −−path PATH Path o f the f i l e or f o l d e r
−pf PROFILE, −−p r o f i l e PROFILE

AWS p r o f i l e to use

usage : s ca r get [−h] −b BUCKET −p PATH [−pf PROFILE]

op t i ona l arguments :
−h , −−help show th i s he lp message and ex i t

151

Appendix A. SCAR client commands

−b BUCKET, −−bucket BUCKET
Bucket to use as s t o rage

−p PATH, −−path PATH Path o f the f i l e or f o l d e r
−pf PROFILE, −−p r o f i l e PROFILE

AWS p r o f i l e to use

152

Appendix B

OSCAR Template

The following pages show the template used to deploy the OSCAR
infrastructure presented in chapter 5. The latest version of this template can
be found in the o�cial GitHub repository1

d e s c r i p t i o n kubernetes (
kind = 'main ' and
shor t = ' I n s t a l l and con f i gu r e a c l u s t e r us ing the grycap . kubernetes

an s i b l e r o l e and i n s t a l l a l l needed s e r v i c e s to run OSCAR. ' and
content = 'The template i n s t a l l s the grycap . kubernetes an s i b l e r o l e .

I n i t i a l l y the template c r e a t e s as many working node hostnames
as the sum of the va lue s o f f e a tu r e "ec3_max_instances_max" in
every system .

Webpage : https : // kubernetes . i o / '
)

network pub l i c (
kubernetes por t s
outbound = ' yes ' and
outport s conta in s '443/ tcp ,22/ tcp ,6443/ tcp ,31112/ tcp ,32112/ tcp ,31852/

tcp ,8800/ tcp '
)

network p r i va t e ()

1https://github.com/grycap/oscar/blob/master/templates/oscar-latest.radl

153

https://github.com/grycap/oscar/blob/master/templates/oscar-latest.radl

Appendix B. OSCAR Template

system f r on t (
cpu . count>=2 and
memory . s i z e >=4096m and
ne t_ in t e r f a c e . 0 . connect ion = ' pr ivate ' and
ne t_ in t e r f a c e . 0 . dns_name = ' kubeserver ' and
ne t_ in t e r f a c e . 1 . connect ion = ' publ ic ' and
ne t_ in t e r f a c e . 1 . dns_name = ' kubese rverpub l i c ' and
queue_system = ' kubernetes ' and
ec3_templates conta in s ' kubernetes_oscar ' and
d i sk . 0 . a pp l i c a t i o n s conta in s (name = ' an s i b l e . modules . grycap .

kubernetes ') and
d i sk . 0 . a pp l i c a t i o n s conta in s (name = ' an s i b l e . modules . grycap . nfs ') and
d i sk . 0 . a pp l i c a t i o n s conta in s (name = ' an s i b l e . modules . grycap . kubefaas

') and
d i sk . 0 . a pp l i c a t i o n s conta in s (name = ' an s i b l e . modules . grycap . kubeminio

') and
d i sk . 0 . a pp l i c a t i o n s conta in s (name = ' an s i b l e . modules . grycap .

kubereg i s t ry ') and
d i sk . 0 . a pp l i c a t i o n s conta in s (name = ' an s i b l e . modules . grycap . kubeoscar

') and
d i sk . 0 . a pp l i c a t i o n s conta in s (name = ' an s i b l e . modules . grycap . c lues ')

and
d i sk . 0 . a pp l i c a t i o n s conta in s (name = ' an s i b l e . modules . grycap . im ') and
d i sk . 1 . type=' standard ' and
d i sk . 1 . s i z e=20GB and
d i sk . 1 . dev i c e='vdf ' and
d i sk . 1 . f s t ype='ext4 ' and
d i sk . 1 . mount_path='/pv/minio ' and
d i sk . 2 . type=' standard ' and
d i sk . 2 . s i z e=20GB and
d i sk . 2 . dev i c e='vdg ' and
d i sk . 2 . f s t ype='ext4 ' and
d i sk . 2 . mount_path='/pv/ r e g i s t r y '

)

c on f i gu r e f r on t (
@begin
−−−

− vars :
AUTH:

ec3_xpath : / system/ f r on t /auth
SYSTEMS:

ec3_jpath : / system/*
NNODES: '{{ SYSTEMS | s e l e c t a t t r (" ec3_max_instances_max" , " de f ined

") | sum(a t t r i b u t e="ec3_max_instances_max") }} '

pre_tasks :
− name : Create d i r f o r kaniko bu i l d s

f i l e : path=/pv/kaniko−bu i l d s s t a t e=d i r e c t o r y mode=755
− name : Create auth f i l e d i r

f i l e : path=/etc / kubernetes / pki s t a t e=d i r e c t o r y mode=755 r e cu r s e=
yes

− name : Create auth data f i l e with an admin user

154

copy : content='{{ lookup (' password ' , '/ var /tmp/dashboard_token
chars=asc i i_ lowercase , d i g i t s l ength =16 ') }} , kubeuser , 100 ,"
users , system : masters " ' des t=/etc / kubernetes / pki /auth mode=600

− name : Generate minio s e c r e t key
se t_fac t :

minio_secret : "{{ lookup (' password ' , '/ var /tmp/minio_secret_key
chars=a s c i i_ l e t t e r s , d i g i t s ') }}"

r o l e s :
− r o l e : ' grycap . nfs '

nfs_mode : ' f ront '
nfs_exports :
− {path : "/pv/minio " , export : "* . loca ldomain (rw , async ,

no_root_squash , no_subtree_check , i n s e cu r e) "}
− {path : "/pv/ r e g i s t r y " , export : "* . loca ldomain (rw , async ,

no_root_squash , no_subtree_check , i n s e cu r e) "}
− {path : "/pv/kaniko−bu i l d s " , export : "* . loca ldomain (rw , async ,

no_root_squash , no_subtree_check , i n s e cu r e) "}

− r o l e : ' grycap . kubernetes '
kube_server : ' kubeserver '
kube_apiserver_options :
− { opt ion : "−− i n s ecure−port " , va lue : "8080"}
− { opt ion : "−−token−auth− f i l e " , va lue : "/ e t c / kubernetes / pki /auth"}
− { opt ion : "−−s e r v i c e−node−port−range " , va lue : "80−32767"}
kube_deploy_dashboard : t rue
kube_insta l l_metr i c s : t rue
kube_persistent_volumes :
− {namespace : "minio " , name : " pvnfsminio " , l a b e l : "minio " ,

capac i ty_storage : "20Gi " , nfs_path : "/pv/minio "}
− {namespace : "docker−r e g i s t r y " , name : " pvn f s r e g i s t r y " , l a b e l :

" r e g i s t r y " , capac i ty_storage : "20Gi " , nfs_path : "/pv/
r e g i s t r y "}

− {namespace : " osca r " , name : " pvn f skan ikobu i ld s " , l a b e l : " oscar
−manager " , capac i ty_storage : "2Gi " , nfs_path : "/pv/kaniko−
bu i l d s "}

kube_version : ' l a t e s t '

− r o l e : ' grycap . kubefaas '
faas_framework : ' openfaas '
master_deploy : t rue

− r o l e : ' grycap . kubeminio '
e nab l e_no t i f i c a t i o n s : t rue
webhook_endpoints : [{ id : "1" , endpoint : " http :// oscar−manager .

o scar :8080/ events "}]
minio_secretkey : '{{ minio_secret }} '
master_deploy : t rue

− r o l e : ' grycap . kubereg i s t ry '
pub l i c_acces s : f a l s e
type_of_node : " f r on t "
svc_name : " r e g i s t r y . docker−r e g i s t r y "

155

Appendix B. OSCAR Template

delete_enabled : t rue
master_deploy : t rue

− r o l e : ' grycap . kubeoscar '
minio_pass : '{{ minio_secret }} '
vue_app_backend_host : '{{ hos tvar s [groups [" f r on t "] [0]] ["

IM_NODE_PUBLIC_IP"] }} :{{ nginx_https_nodeport }} '
master_deploy : t rue

− r o l e : ' grycap . im '

− r o l e : ' grycap . c lues '
auth : '{{AUTH}} '
clues_queue_system : kubernetes
max_number_of_nodes : '{{ NNODES }} '
vnode_pref ix : 'wn '
c lues_conf ig_opt ions :

− { s e c t i o n : ' schedul ing ' , opt ion : 'IDLE_TIME' , va lue : '300 ' }
− { s e c t i o n : ' schedul ing ' , opt ion : 'RECONSIDER_JOB_TIME' ,

va lue : '60 ' }
− { s e c t i o n : ' monitoring ' , opt ion : 'MAX_WAIT_POWERON' , va lue :

'3000 ' }
− { s e c t i o n : ' monitoring ' , opt ion : 'MAX_WAIT_POWEROFF' , va lue :

'600 ' }
− { s e c t i o n : ' monitoring ' , opt ion : 'PERIOD_LIFECYCLE' , va lue :

'10 ' }
− { s e c t i o n : ' monitoring ' , opt ion : 'PERIOD_MONITORING_NODES' ,

va lue : ' 2 ' }
− { s e c t i o n : ' c l i e n t ' , opt ion : 'CLUES_REQUEST_WAIT_TIMEOUT' ,

va lue : '3000 ' }
These opt ions enable to have always one s l o t f r e e
− { s e c t i o n : ' schedul ing ' , opt ion : 'SCHEDULER_CLASSES' , va lue :

' c l u e s l i b . s ch edu l e r s . CLUES_Scheduler_PowOn_Requests ,
c l u e s l i b . s ch edu l e r s . CLUES_Scheduler_Reconsider_Jobs ,
c l u e s l i b . s ch edu l e r s . CLUES_Scheduler_PowOff_IDLE , c l u e s l i b .
s ch edu l e r s . CLUES_Scheduler_PowOn_Free ' }

− { s e c t i o n : ' schedul ing ' , opt ion : 'EXTRA_SLOTS_FREE' , va lue :
' 1 ' }

@end
)

system wn (
cpu . count>=2 and
memory . s i z e >=4096m and
ec3_node_type = 'wn' and
ne t_ in t e r f a c e . 0 . connect ion=' pr ivate '

)

c on f i gu r e wn (
@begin
−−−

− r o l e s :

156

− r o l e : ' grycap . nfs '
nfs_mode : 'wn'
n f s_c l i ent_imports :
− { l o c a l : "/pv/minio " , remote : "/pv/minio " , server_host : "

kubeserver . loca ldomain "}
− { l o c a l : "/pv/ r e g i s t r y " , remote : "/pv/ r e g i s t r y " , server_host : "

kubeserver . loca ldomain "}
− { l o c a l : "/pv/kaniko−bu i l d s " , remote : "/pv/kaniko−bu i l d s " ,

server_host : " kubeserver . loca ldomain "}

− r o l e : ' grycap . kubernetes '
kube_type_of_node : 'wn'
kube_server : ' kubeserver '
kube_version : ' l a t e s t '

− r o l e : ' grycap . kubereg i s t ry '
pub l i c_acces s : f a l s e
type_of_node : "wn"
svc_name : " r e g i s t r y . docker−r e g i s t r y "

@end
)

inc lude kube_misc (
template = ' openports '

)

deploy f r on t 1

157

Acronyms

AKS Azure Kubernetes Service.

API Application Programming Interface.

AWS Amazon Web Services.

BaaS Backend as a Service.

CaaS Container as a Service.

CD Continuous Delivery.

CI Continuous Integration.

CLI Command-Line Interface.

CLUES Cluster Elasticity System.

CNCF Cloud Native Computing Foundation.

CPU Central processing unit.

CRD Custom Resource De�nition.

DNS Domain Name System.

159

Acronyms

EC2 Elastic Compute Cloud.

EC3 Elastic Cloud Computing Cluster.

ECS Elastic Container Service.

ECU EC2 Compute Unit.

EGI European Grid Infrastructure.

EKS Elastic Kubernetes Service.

FaaS Functions as a Service.

FAQ Frequently Asked Questions.

GCE Google Compute Engine.

GKE Google Kubernetes Engine.

GPU Graphics processing unit.

GUI Graphical User Interface.

HPC High Performance Computing.

HTC High Throughput Computing.

IaaS Infrastructure as a Service.

IM Infrastructure Manager.

LRMS Local Resource Management System.

NFS Network File System.

NIST National Institute of Standards and Technology.

OSCAR Open-source Serverless Computing for Data-Processing
Applications.

PaaS Platform as a Service.

160

Acronyms

RADL Resource Application Description Language.

S3 Amazon Simple Storage Service.

SaaS Software as a Service.

SCAR Serverless Container-aware ARchitectures.

SDK Software Development Kit.

SNS Simple Noti�cation Service.

TLS Transport Layer Security.

TOSCA Topology and Orchestration Speci�cation for Cloud Applications.

URL Uniform Resource Locator.

VM Virtual Machine.

YAML YAML Ain't Markup Language.

YOLO You Only Look Once.

161

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Structure

	2 Background
	2.1 Cloud Computing
	2.2 Containers and Container Orchestrators
	2.3 Serverless Computing
	2.4 Serverless offerings
	2.5 State of the Art

	3 Serverless Container-aware Architectures
	3.1 Generic Architecture
	3.2 Framework implementation
	3.3 Architecture of SCAR
	3.4 SCAR usage
	3.5 On the Lambda function's ephemeral cache
	3.6 Study of the AWS Lambda Freeze/Thaw behavior
	3.7 Conclusions

	4 Event-Driven File-Processing Serverless Programming Model
	4.1 Highly-scalable HTTP endpoints with API Gateway
	4.2 S3 file upload/read triggers Lambda Function
	4.3 Data management inside the Lambda Function
	4.4 Output files trigger new Lambda functions
	4.5 Job Processing with AWS Batch.
	4.6 Cost analysis
	4.7 Conclusions

	5 Open-source Serverless Computing for Data-Processing Applications
	5.1 Platform Components
	5.2 OSCAR architecture
	5.3 Case study: Video Processing Service in On-premises Infrastructure
	5.4 Conclusions

	6 Use cases
	6.1 Adding support to programming languages and software in AWS Lambda
	6.2 Massive image processing service
	6.3 Video Processing Service in AWS
	6.4 Plant classification
	6.5 Multi-cloud workflow for video processing
	6.6 Air pollution information service
	6.7 Monetizing Private Algorithm Workflow Executions
	6.8 GROMACS in AWS Batch
	6.9 Scientific diffusion

	7 Conclusions
	7.1 Summary and Contributions
	7.2 Future work

	Bibliography
	Index
	A SCAR client commands
	B OSCAR Template
	Acronyms

