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Abstract

Near Threshold Voltage (NTV) computing has been recently proposed
as a technique to save energy, at the cost of incurring higher error rates
including, among others, Silent Data Corruption (SDC). In this paper, we
evaluate the energy efficiency of dense linear algebra routines using several
low-power multicore processors and we analyze whether the potential energy
reduction achieved when scaling the processor to operate at a low voltage
compensates the cost of integrating a fault tolerance mechanism that tackles
SDC. Our study targets algorithmic-based fault-tolerant versions of the dense
matrix-vector and matrix(-matrix) multiplication kernels (GEMV and GEMM,
respectively), using the BLIS framework, as well as an implementation of the
LU factorization with partial pivoting built on top of GEMM. Furthermore,
we tailor the study for a number of representative 32-bit and 64-bit multicore
processors from ARM that were specifically designed for energy efficiency.
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1. Introduction

Aggressive technology scaling is steadily shrinking transistor size, at the
pace dictated by Moore’s Law [1], increasing the occurrence of faults in com-
puting systems in the way. In the future, as the number of components
integrated in CMOS circuits grows, the mean time between failures (MTBF)
for the full system will be significantly reduced, promoting resilience into a
crucial challenge on the road towards Exascale systems [2, 3].

Under the pressure of the energy wall [2, 3, 4], near threshold voltage
(NTV) computing has been proposed as a means to reduce energy consump-
tion [5]. However, scaling the operational voltage diminishes the critical
charge required to flip a stored value [6, 7], so that particles of low energy
due to atmospheric radiation can cause soft errors (SE). Consequently, er-
ror rates for low power modes are higher than those present in high power
modes, as the error rate grows exponentially with the reduction on the supply
voltage [8].

Already today, reliability and energy consumption are key criteria for
system design. However, hardware protection mechanisms cannot be relied
upon as the sole method for SE mitigation. Instead, they should be used
in conjunction with other mitigation techniques for improved reliability at
an energy-efficient cost. In this scenario, fault tolerance techniques such as
checkpointing or redundancy (replication) may be too costly from the com-
putational and energy perspectives, favoring alternative approaches based on
application-specific algorithmic-based fault tolerance (ABFT) [3, 9, 10].

In this paper, we investigate the energy costs of tackling in software with
SE that result in silent data corruption (SDC), using the dense matrix-vector
multiplication (GEMV) and dense matrix multiplication (GEMM) as case stud-
ies. These two kernels are the cornerstone upon which the entire dense linear
algebra (DLA) software stack, and implicitly many scientific and engineering
codes, rely for high performance. One particular example is the LU fac-
torization with partial pivoting (GETRF), which can be encoded to cast a
major fraction of its computations in terms of GEMM, and is adopted in our
work as an additional case study. As target architectures, we employ several
general-purpose multicore processors from ARM that are specially designed
to deliver reasonable performance with high energy efficiency. In more detail,
our paper makes the following contributions:

e We evaluate the energy efficiency under different voltage-frequency
scaling (VFS) configurations. For this purpose, we leverage efficient



multi-threaded implementations of GEMV, GEMM and GETRF based on
the BLIS framework [11], especially tailored for the ARMv7 Cortex-
A7/A15 and the ARMv8 Cortex-A53/A57.

o We review the theoretical costs of introducing simple software resilience
techniques for GEMV, GEMM, and GETRF. For GEMV we discuss how
to deal with the errors via redundancy, exploiting the memory-bound
nature of this kernel to deliver an affordable resilience mechanism. For
GEMM, we follow the ABFT described in [12]; and the same mechanism
provides a reliable solution for GETRF, when built on top of a resilient
GEMM.

e Finally, we introduce iso-energy models that capture the interplay be-
tween VFS, error detection costs, and error correction overhead/error
rates, and how these factors combine to modify the energy efficiency for
these three linear algebra operations and the target low-power archi-
tectures when operating in low-voltage at extended margins (LVEMs)
configurations.

At this point, we note that the detection+correction strategies discussed for
the target dense linear algebra operations can be regarded as theoretical
proposals, and the details of their actual implementation do not impact our
iso-energy model. Indeed, we believe that a detailed analysis of the reliability
of the error detection (and correction) mechanism(s), which may indeed suffer
from errors themselves, is beyond the scope for this work. We consider this
as a clear target for a research that aims to produce practical and efficient
resilient implementations of dense linear algebra kernels; see [12].

In Section 2 we review some related work. In Section 3 we briefly review
the BLIS implementation of GEMV and GEMM, and we describe how to modify
them in order to produce resilient versions, as well as the implications on the
LU factorization in LAPACK. Section 4 outlines the experimental setup.
In Section 5 we present an experimental evaluation of four ARM multicore
processors from the points of view of performance and energy efficiency. Next,
in Section 6 we analyze the trade-off between energy consumption and fault
tolerance. Finally, in Section 7 we summarize our work with some concluding
remarks.



2. Related work

Reducing the operating voltage of an electronic circuit is a well-known
technique that can potentially diminish its power consumption. Oftentimes,
this reduction in voltage comes together with a decrease of the operational
frequency, an strategy known as VFS [13, 14, 15]. However, the supply
voltage can also be reduced while maintaining the operating frequency, an
approach known as undervolting, in an attempt to save power while preserv-
ing throughput. Undervolting and VFS outside of the nominal region can
nevertheless introduce errors, which need to be corrected in case the voltage
is dropped in excess. Hardware support for error detection/correction from
operation at lower supply voltage was introduced in [16]. The impact on the
memory system was specifically studied in [17, 18, 19]. In [20] the authors
explore the potential energy benefits of reducing the chip’s voltage to the safe
limit (Vi) at a fixed frequency. (V. is program dependent.) Exceeding
such safe limits causes SDC to arise, with an avalanche error effect when
the voltage is pushed below a certain threshold. Interestingly, an additional
4-5% undervolt below V,,;, causes the OS to crash. However, that work
does not address resilience mechanisms. Instead, it focuses only on shifting
the guard-band down for energy improvement without impacting the cor-
rectness level. They show that there is about a 20% voltage guard-band for
the graphics processors tested in their work which can result in up to 25%
energy savings.

While most previous research focuses on exploring energy-saving and
resilience-enhancing opportunities separately, only very few selected publi-
cations study their interactions. Some works assess the energy costs of tradi-
tional resilience-enhancing methods such as checkpointing/restart or replica-
tion. The former is analyzed in [21], modeling its energy costs and introduc-
ing checkpoint compression to reduce the energy consumption. The latter
is studied in [22], which examines the energy costs of coordinated check-
pointing and replication, contributing mainly to make replication more time-
and energy-efficient. In [10, 23] the authors study the interplay between
energy efficiency and resilience (mainly the checkpoint /restart technique) in
high performance computing with a focus on undervolting. More specifically,
they develop analytical models to investigate the potential of achieving high
energy efficiency in HPC by undervolting, with hardware/software-level re-

silience techniques applied on-the-fly to guarantee the correct execution of
HPC runs.



In this work we consider low-voltage at extended margins (LVEM), i.e.,
configurations operating below nominal voltage which may incur soft er-
rors, but always considering voltage values above some threshold where an
avalanche error effect will appear and systematically cause catrastofic un-
recoverable errors. Our paper separates from previous work in that we do
not attempt to develop a model for the error type or error rates that may
occur when applying VFS /undervolting at extended margins. Instead, we
focus on the specific domain of dense linear algebra operations, and we an-
alyze the trade-off between energy savings attained via LVEM computing
and the detection+correction overheads introduced by a (generic) resilience
mechanism.

3. Resilient Versions of the BLIS Kernels and the LU Factorization

In this section, we describe the implementation of the BLIS routines for
GEMV and GEMM. In addition, we analyze the theoretical costs of error
detection and correction for both kernels, as well as for the GETRF routine
for the LU factorization, under a unified framework. We note that the multi-
layered organization of the BLIS kernels renders that, inside each loop, a
specific part of the result is updated using certain parts of the inputs. This
in turn allows the integration of a fault tolerance mechanism within different
loops, trading off workspace/error correction cost for error detection cost, as
described next.

3.1. Matriz-vector multiplication

Consider the BLAS-2 GEMV kernel, y := aMx+ By, where M is an m xXn
matrix; y, x are vectors of m, n components, respectively; and «, § are scalars
that, for simplicity, we consider equal to 1. Assuming the matrix is stored
contiguously in memory (either by rows or by columns), this operation is
implemented in BLIS as three nested loops around two packing routines and
a micro-kernel; see Figure 1. The packing routines copy the contents of y,
into contiguous buffers, (but only if the vectors are not already stored with
unit stride,) and the micro-kernel casts the operations in terms of a fused
vector-vector kernel [11].

BLIS does not offer multi-threaded versions of BLAS-2 kernels such as
GEMV. However, a straight-forward solution to parallelize this operation on
the architectures targeted in our work can extract the parallelism from Loop 1
by statically distributing the iteration space (and, therefore, the workload)



Loop1l fori.=0,..., m — 1 in steps of m,

Ylic:ic+me—1) = ye // Pack into y, (if necessary)
Loop 2 for j.=0,..., n — 1 in steps of n.
Z(je tje+ne—1) = 2, // Pack into x. (if necessary)
Loop 3 for j., =0,...,n.—1 in steps of n,. // Macro-kernel

Yo = Mc(ic:tc+me—1,75p:jr +n,— 1) // Micro-kernel
zo(fr : Jr +np — 1)

Yo +=Ye
endfor
endfor
Ye = Ylic 1 i +me —1) // Unpack y. (if necessary)

endfor

Figure 1: High performance implementation of GEMV in BLIS. In the code, M, = M(:
,Je + je +me — 1) is a notation artifact, while y., z. correspond to actual buffers that are
involved in data copies.

of this loop among the threads. This can be easily achieved using, e.g.,
OpenMP.

The low ratio between the floating-point arithmetic operations (flops)
performed in GEMV (2mn) and the number of memory accesses (mn+m+n
at best) turns this kernel into a memory-bound operation that, on current
architectures, proceeds at the speed dictated by the bandwidth of the memory
layer where M is stored. Let us assume that M is large so that it only fits into
the system’s main memory M. A potential strategy to introduce a resilience
mechanism into GEMV consists in computing each micro-kernel twice and
checking for differences between the two results (redundancy or duplication).
If the submatrix M, fits into a certain level of the cache hierarchy that is
considered reliable, say C, we can then expect that the second execution of
the micro-kernel proceeds at the speed of this cache level, which is hopefully
much faster than the main memory, introducing a low detection overhead.
We can denote this cost as O]"’, and we can expect its value to reflect the ratio
between the bandwidths of C and M. If an error is detected, the correction
can simply run the micro-kernel a third time, using a majority vote to select
the correct value(s). Here it is possible to apply the correction selectively, at
a finer granularity, yielding a much lower correction overhead. For example, if
the i,-th entry of 9, is corrupted, we only need to re-compute the dot product
between the 7,-th row of M. and x., for a cost of 2n, flops. Compared with
the 2m.n. flops required to compute the complete micro-kernel, this results
in a correction overhead

Ny

o= . 1)
c'vc



Loop 1 for j.=0,...,n—1 in steps of n,
Loop 2 for p. = 0,...,k —1 in steps of k.

B(pe:pe+ke—1,jc:je+n.—1) = B // Pack into B,
Loop 3 for i, =0,...,m —1 in steps of m,
Alie tic+me —1,pe i pe + ke — 1) = A // Pack into A,
Loop 4 for j, =0,...,n.—1 in steps of n, // Macro-kernel
Loop 5 for i, =0,...,m.— 1 in steps of m,
Co(iy itp +mp — 1,7, : jp +n, — 1) // Micro-kernel

+= Ac(iy tip+my—1,0: k. — 1)
BC(O tke— 1,40 Jr + 0 — 1)

endfor
endfor
endfor
endfor
endfor

Figure 2: High performance implementation of GEMM in BLIS. In the code, C. = C(i. :
ictme—1,7¢ 1 je+n.—1) is just a notation artifact, introduced to ease the presentation of
the algorithm, while A., B. correspond to actual buffers that are involved in data copies.

where E7V is the absolute (total) number of entries in y. with errors.

3.2. Matriz multiplication

Consider next the BLAS-3 GEMM kernel, C = aAB + BC, where C is
mxmn, Aism x k, Bis k xn, and o, are scalars. Hereafter we will
define the problem dimension with the triplet {m,n,k} and, for simplicity,
we will assume that « = f = 1. BLIS [11] implements this operation as two
packing routines embedded into three nested loops around a macro-kernel.
In practice, the packing routines promote that certain blocks of A and B are
copied into the lower-level cache(s), and enforce that the data in these copies
are accessed with unit stride. In addition, BLIS further divides the macro-
kernel update into a sequence of rank-k. updates, or micro-kernels. These
micro-operations perform the actual flops, transferring the data between the
registers/L1 cache and the lower levels of the cache hierarchy; see Figure 2
and [11].

The BLIS parallelization of GEMM for multi-threaded multicore processors
and modern many-threaded architectures was discussed in [24, 25]. The
approach parallelizes the nested five—loop organization of GEMM at one or
more levels (i.e., loops), taking into account the cache organization of the
target platform, the granularity of the computations, and the risk of race
conditions, among other factors. For the multicore processors targeted in this
work, an efficient choice is to extract the parallelism from Loop 4 only [26]
via, e.g., OpenMP.

The two-sided checksum-based detection mechanism for BLIS GEMM pre-
sented in [12] operates at the macro-kernel level. That is, within Loop 3 in
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Figure 2, which computes the macro-operation C. += A.B. of dimension
{me, ne, k.. It requires a total of six matrix-vector products plus the calcu-
lation of two matrix norms (involving A., B. or C,), for a detection cost of
dmen. + dmek. + bk.n. flops. The overhead of the detection mechanism with
respect to the cost of computing the macro-block C. is thus:

_dmene + dmeke + Sken,

Omm
d 2meneke

(2)

The simplest method for correcting errors consists in re-calculating the
whole macro-kernel (product). With this approach, the cost of correcting a
macro-block C\. with errors becomes 2m.n.k. flops, and the overhead ratio
with respect to the total cost (in case C. contains errors) is 1. However, by
detecting the “location of the error”, the correction can be performed at a
lower granularity, considerably reducing its overhead [12]. For example, the
correction can operate at the micro-kernel level (Loop 5 in Figure 2), on each
m,. X n, micro-block of C,. updated with a product of dimension {m,., n,., k.};
see Figure 2. The cost of correction applied to the macro-kernel C,. += A.B.
then becomes 2m,n, k. E7}"", where E7}™ is the number of micro-blocks in C,
with at least one error, and the overhead of correcting the errors within this
macro-block is

2meneke  m

abs - (3)

Omm - - " = - .

c chnckc abs MmN, abs

For many architectures (including the cores targeted in our work), the di-
mensions m., n. involved in the detection are 2—-3 orders of magnitude larger
than m,,n,, and therefore the correction cost is low.

3.3. LU factorization

The legacy routine in LAPACK [27] for the LU factorization with partial
pivoting encodes the right-looking blocked variant of this operation as a loop
that processes the matrix, from the left /top corner to the right/bottom one,
by column blocks (panels) of ny, columns, where 7y, is often referred to as the
algorithmic block size. In rough detail, for each iteration of the loop, the
routine factorizes the “current” panel below the matrix diagonal, applies the
pivots to the remaining blocks of the matrix, and then updates the blocks to
the right of the current panel with respect to the factorization [28].

A key aspect to realize is that, in practice, n, is chosen to be small with
respect to the problem size, so that the algorithm casts most of its operations
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in terms of rank-n;, updates, which are performed via the efficient GEMM.
Therefore, a plain approach to obtain a parallel execution of GETRF on a
multicore processor, can simply rely on a multi-threaded version of GEMM to
leverage the hardware concurrency of the system.

In addition, the fact that GETRF casts most of its operations in terms
of GEMM provides a natural detection+correction mechanism based on the
ABFT version of GEMM described earlier. The remaining operations of the
factorization, which given an optimal value of n, represent a tiny fraction
of the total, can be protected via a redundancy approach as that adopted
for GEMV. Under these conditions, we can expect that the detection and
correction overheads for GETRF are similar to those of GEMM; i.e., O ~ O™

and O* ~ O™™,

3.4. Detection vs correction

The design of efficient detection+correction mechanisms, even within a
restricted domain such as dense linear algebra operations, introduces some
complex questions. Among these, we can mention the target error rate, the
possibility of errors in the detection and/or correction mechanisms them-
selves, the fault model, the type of errors (faults that manisfest in the exact
same value when repeating the calculation, single event upsets), etc. We
remark that, while these questions are relevant when proposing a practical
implementation of the resilience mechanisms, they lie beyond the main focus
of this paper.

At this point, we note the difference between the two sources of overhead:
while the detection is performed independently of the error probability, the
correction only occurs when an error is detected [12]. Therefore, the cost
for the detection mechanism is fixed and the correction overhead is directly
proportional to the error rate.

Consider now GEMM, and let us define
gL . (@
re mene/(men,.)
as the rate of micro-blocks with some error(s) per macro-block. Thus, given
that C, consists of m.n./(m,n,) micro-blocks, we obtain that O"" = E"™.
Generalizing this result, OI"" equals the average rate of micro-blocks per
macro-block of C' that contain at least one error. An analogous derivation
yields that, for GEMV, O" is equivalent to the average rate of micro-blocks
of y that contain at least one error.



4. Experimental Setup

For the experimental evaluation, we employed the multicore architectures
from the following two systems in the experimentation:

ODROID-XUS3. This board is furnished with a Samsung Exynos 5422
system-on-chip (SoC). This processor comprises an ARM Cortex-A15 quad-
core cluster plus an ARM Cortex-A7 quad-core cluster, both implementing
the ARMv7a microarchitecture. Each Cortex core has its own private 32-
Kbyte L1 (data) cache. The four ARM Cortex-A15 cores share a 2-Mbyte L2
cache and the four ARM Cortex-A7 cores share a smaller 512-Kbyte L2 cache.
In addition, the two clusters access a 2-Gbyte DDR3 RAM. The frequency
can be varied in the range 200 MHz—1.4 GHz for the Cortex-A7 cluster and
200 MHz—2.0 GHz for the Cortex-A15 cluster, with a 100 MHz-step in both
cases. However, in order to reduce the number of experiments, we will per-
form our experiments with frequencies separated by 200 MHz. This then fixes
the corresponding (supply) voltage as shown in the corresponding columns
of Table 1. Note that the voltage remains constant in the frequency ranges
[200,500] MHz for the Cortex-A7 and [200,700] MHz for the Cortex-A15 [29].
All cores in the same cluster must operate at the same frequency.

In the ODROID-XU3 board the pmlib monitoring tool [30] collects power
consumption corresponding to instantaneous power readings from four inde-
pendent sensors/power domains in the board (Cortex-A7 cluster, Cortex-A15
cluster, DRAM and GPU), with a sampling rate of 250 ms. (To compensate
for this low sampling rate, our calibration experiments repeat the execution
of the kernels for a period that is sufficiently long to obtain enough power
measurements.) When evaluating the energy of one of the clusters, we only
consider the sensor corresponding to that component. Given that we do not
employ the GPU in our experiments, and that the four Cortex-A15 cores
and up to three Cortex-A7 cores can be disabled when idle, we can expect a
negligible power consumption for these components when inactive [29].

Juno (r0). This development platform features an ARM Cortex-A57 dual-
core cluster plus an ARM Cortex-A53 quad-core cluster, both implementing
the ARMv8 microarchitecture. Each core has its own private 32-Kbyte L1
(data) cache. The two ARM Cortex-A57 cores share a 2-Mbyte L2 cache
and the four ARM Cortex-Ab53 cores share a smaller 1-Mbyte L2 cache. Both
clusters are connected to a DDR3 RAM with a capacity of 8 Gbytes. The fre-
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quency and voltage can be varied as displayed in the corresponding columns
of Table 1. All cores in the same cluster must operate at the same frequency.

In the Juno board pmlib collects power consumption data corresponding
to instantaneous power readings using a data acquisition device from Na-
tional Instruments connected to the internal shunt resistors available in the
board (Cortex-Ab3 cluster, Cortex-A57 cluster, system, and GPU), with a
sampling frequency of 100 Hz. When evaluating the energy of one of the
clusters, we only consider the line corresponding to that component, for the
same reasons exposed above.

ARM Cortex-A7 ARM Cortex-A15 ARM Cortex-A53 ARM Cortex-A57
Conf. Freq. [ Voltage Freq. [ Voltage Freq. [ Voltage Freq. [ Voltage

Ch 0.200 0.913 0.200 0.912 0.450 0.820 0.450 0.810
Co 0.400 0.913 0.400 0.912 0.575 0.860 0.625 0.850
C3 0.600 0.951 0.600 0.912 0.700 0.910 0.800 0.900
Cy 0.800 1.026 0.800 0.925 0.775 0.960 0.950 0.950
Cs 1.000 1.101 1.000 0.973 0.850 1.010 1.100 1.000

Cs 1.200 1.176 1.200 1.023 - - - -
Cr 1.400 1.273 1.400 1.062

Cs - - 1.600 1.115 - - _ _
Cy - - 1.800 1.191 - _ _ _
Cio - - 2.000 1.318 - - _ _

Table 1: VFS configurations (voltage-frequency pairs, in V and GHz, respectively) avail-
able in the Samsung Exynos 5422 and Juno (r0) SoCs.

All the experiments were performed using IEEE 754 single-precision and a
multi-threaded implementation of BLIS that spawns threads that run on ei-
ther the Cortex-A7, the Cortex-A15, the Cortex-A53, or the Cortex-A57 clus-
ter. Hereafter we report performance in terms of GFLOPS (G), power dissi-
pation (P) in W(atts), and energy efficiency (EE) as the ratio GFLOPS/W.

5. Energy Efficiency of the BLIS Kernels and the LU Factorization

We next analyze the performance and energy efficiency of the GEMV,
GEMM kernels from BLIS, and the GETRF routine for the LU factorization
built on top of GEMM, on the four types of cores available on the target
systems.

Table 2 reports the performance, power dissipation and energy efficiency
metrics for the three linear algebra routines, executed using four cores of
the Cortex-A7, the Cortex-A15 or the Cortex-A53 clusters, or two cores of
the Cortex-A57 cluster. That corresponds to the maximum number of each
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Architecture Configu- || GEMV I GEMM I GETRF |
ration [ G ] P ] EE H G ] P ] EE H G ] P ] EE ]
[of} 0.271 0.064 4.238 0.758 0.072 10.473 0.554 0.060 9.259
Ca 0.501 | 0.115 1.573 | 0.140 1.193 | 0.119
Cs 0.677 0.166 4.086 2.355 0.217 10.834 1.809 0.186 9.733
ARM Cy 0.802 0.233 3.440 3.258 0.328 9.937 2.398 0.279 8.603
Cortex-A7 Cs 0.911 0.319 2.853 4.070 0.483 8.426 2.998 0.409 7.323
Cg 0.999 0.417 2.395 4.893 0.672 7.278 3.536 0.561 6.303

Cr 1.000 0.541 1.848 0.943 5.968 0.784 5.078

[ 0.381 0.188 2.028 3.502 0.496 7.067 2.205 0.388 5.679
Co 0.718 0.335 7.109 0.970 7.328 4.619 0.761 6.068

Cs 0.997 | 0.471 [ 2.115 || 10.652 | 1.436 7.067 | 1.132

Ca 1.227 | 0.582 | 2.108 || 14.165 | 1.926 | 7.356 9.232 | 1.506 | 6.130
ARM Cs 1.396 | 0.768 | 1.817 || 17.757 | 2.686 | 6.611 11.702 | 2.120 | 5.519
Cortex-A15 Ce 1.539 | 0.981 | 1.568 || 21.145 | 3.632 | 5.822 13.700 | 2.793 | 4.905

Cr 1.648 | 1.182 | 1.394 || 24.344 | 4.562 | 5.336 15.856 | 3.532 | 4.489

Cg 1.489 1.179 5.978 4.635 4.539 3.779
Cy 1.728 1.855 0.931 - - - - - -
Cio 1.744 2.569 0.679 — — - - — -

C1 0.877 | 0.198 7.461 | 0.359 4901 | 0.272

Co 1.008 0.259 3.887 9.488 0.510 18.594 6.221 0.374 16.818
ARM Cs 1.106 0.327 3.387 11.271 0.685 16.447 7.453 0.494 15.204
Cortex-A53 Cy 1.148 0.399 2.880 12.533 0.855 14.658 8.164 0.620 13.161

C 0.470 2.536 13.629 1.045 13.040 0.727 12.333
C1 0.733 | 0.270 6.159 | 0.536 4189 [ 0.509

Ca 0.972 | 0.404 | 2.408 8.491 | 0.843 | 10.072 5.801 | 0.781 | 7.429
ARM C3 1.163 | 0.560 | 2.077 || 10.812 | 1.214 | 8.903 7.375 | 1.157 | 6.373
Cortex-A57 Ca 1.286 | 0.709 | 1.814 || 12.698 | 1.586 | 8.006 8.702 | 1.490 | 5.839

Cs 0.858 | 1.603 |[UWEEEE 2.059 | 7.059 CESFl 1952 | 5.115

Table 2: Performance and energy efficiency for GEMV, GEMM and GETRF executed in the
Exynos 5422 and Juno (r0) SoCs. The red color identifies the fastest configuration while
the green color indicates the most energy-efficient one. When executing GEMM/GETRF,
results could not collected in the Cortex-A15 cores for the two highest frequencies, because
the chip temperature raised too high and the operating system reacted by automatically
lowering the frequency.

core type available on each cluster. The only exception is the execution of
GEMV on the Cortex-A15/Cortex-A57, for which we only employed a single
thread/core as the use of a higher number of threads did not deliver any
performance gain, due to the limited memory bandwidth of these architec-
tures and the memory-bound nature of this operation. The sizes for each
problem /architectures were selected to be large enough to achieve a large
fraction of the asympthotic GFLOPS rate for each combination.

From the point of view of raw performance, GEMM and GETRF deliver con-
siderably higher GFLOPS rates for the Cortex-A15 than for the Cortex-A7.
However, the differences are not so significant for these two compute-bound
kernels when executed on the Cortex-A57 vs the Cortex-A53 as the former
integrates only half the number of cores of the latter. On the other hand,
for the memory-bound GEMV we can observe narrower differences between
the two ARMv7 microarchitectures and the same holds for the two ARMv8
Processors.
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Let us analyze the effect of the frequency next. Considering GEMM,
GETRF and the ARMv7a microarchitectures, the increase of the GFLOPS
rate is slightly superlinear for the Cortex-A7 and a bit sublinear for the
Cortex-A15. For example, in the latter, when the operation frequency raises
from 200 MHz to 1.6 GHz (a factor of 8x), the GFLOPS rate for GEMM
grows by 7.91x. Unsurprisingly, the behaviour for GETRF is similar, with a
growth of 7.78x. On the other hand, GEMV shows a less appealing scenario,
with a performance improvement of only 4.6x under the same conditions.
The behaviour for the ARMv8 microarchitectures is similar to that of the
Cortex-A15. For instance, in the Cortex-A57, changing the frequency from
450 MHz to 1.1 GHz (a factor of 2.4x) results in speedups of 2.36 x for GEMM
and 2.38x for GETRF, but only 1.87x for GEMV.

In general, the energy efficiency (expressed in terms of GFLOPS/W),
benefits from operating at low voltages. In case several frequencies operate
under the same voltage, then using the highest available frequency is normally
desirable in order to obtain higher performance, and consequently, better
energy efficiency.

To conclude this analysis, we point out the differences between a memory-
bound operation such as GEMV vs the compute-bound GEMM, GETRF. This
is reflected in the much lower performance and scalability (with respect to
the number of cores and frequency) of the former but, interestingly, also in
the considerably lower dissipation rates attained by GEMV.

6. Resilience versus Energy for the BLIS Kernels and the LU fac-
torization

The general assumption by the sytem’s programmer/user is that the
“hardware” offers an error-free execution model, but LVEM partially removes
this condition in the search for higher energy efficiency by operating below
the nominal voltage. The question to answer then is whether the energy
gains attained with the reduction of voltage compensate the energy costs of
tackling the errors in the software.

In order to investigate this question in subsections 6.2—6.4, in subsec-
tion 6.1 we first formulate a model that can be leveraged to predict the
power dissipation as a function of the voltage-frequency variations.
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Architecture [ [[ cemv [ Gemm [ GETRF |

a1 0.2048 0.4085 0.3415
ARM Cortex-A7 ag 0.0528 0.0000 0.0000
R 0.0254 0.0209 0.0144
aq 0.6674 2.9285 2.2532
ARM Cortex-A15 ag 0.1307 0.0000 0.0000
R 0.0165 0.0228 0.0119

a1 0.4146 1.1972 0.7767
ARM Cortex-A53 ag 0.1088 0.0000 0.0540
R 0.0063 0.0072 0.0158
a1 0.6738 1.8638 1.7610
ARM Cortex-A57 ag 0.1326 0.0000 0.0000
R 0.0225 0.0071 0.0120

Table 3: Parameters for modeling power dissipation as a function of the voltage and
frequency, and relative residual R.

6.1. Power models

Our power model is grounded in the hypothesis that the CPU power is
given by
PCPU = Pstatic + denamicu

where the dynamic power
2
denamic X vag X f’

with V. and f standing for the CPU voltage and frequency, respectively [31].
In addition, in principle we have

Pstatic X ‘/007

see also [31]. However, after an experimental analysis of different models, for
the static power we decided to depart from this assumption to use

2
Pstatic x V,

ccr

yielding the model
Py(V,f) = ailVf+a,V? (5)

where the coefficients a1 and ay are respectively connected with the dynamic
power (due to CMOS switching) and the static power (due to leakage) of the
system [31].

To callibrate the coefficients of the power models, we solved a linear
least squares problem with nonnegativity constraints, using the actual power
consumption in Table 2 and the voltage-frequency pairs in Table 1. The
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parameters for the power models are presented in Table 3 for each operation—
microarchitecture pair. The relative residual defined by

R = I(P = Pu(V, F)ll2/ 1 Pll2, (6)

also included in Table 3, quantifies the deviation from the model estimation
Py (V) f) and the actual power consumption values P in Table 2, reflecting
the accuracy of the model. Concretely, for these models/parameters, the
largest relative error is 2.54%, but it is also below 1% in several cases. As
illustrated in the following section, having an accurate model paves the way
to elaborate an iso-energy model that relates energy consumption and error
rates when operating with varied VFS configurations.

Considering the coefficients of the power models in Table 3, we observe
two distinct cases, corresponding to the compute-bound GEMM and GETRF vs
the memory-bound GEMV. For the former operations, the parameter values
show that the power consumption is solely dictated by the dynamic com-
ponent (ay = 0). Conversely, the static component plays a nonnegligible
role for the latter. An exception to this is the execution of GETRF on the
Cortex-Ab3, for which there is a contribution from both the dynamic and
static parts to the total power. This is related to the existence of a serial
bottleneck in the execution of this factorization on the Cortex-A53.

6.2. Trading off hardware reliability for energy efficiency

The determination of the optimal configuration from the point of view
of energy efficiency in the previous section sparks the investigation of an
scenario where the clusters operate below the nominal voltage. (We note
that we cannot enforce this configuration in our hardware.) In this situation,
we could expect a reduction of power dissipation but also an increase of
the SDC rate, due to the operation in the LVEM region. The question
which arises then is how much detection+correction overhead we can afford
in a fault-tolerant implementation of DLA operations while matching (or,
hopefully, improving) the enerqy efficiency of the error-free execution.

In order to derive a model that relates the correction and detection over-
heads to the energy efficiency, let us consider an error-free reference con-
figuration (Vg, fr), with Vg above the safety threshold margin, delivering
a performance rate G for a power dissipation Pr. On the other hand,
assume an error-prone arbitrary configuration (Vy, fa), with V4 below the
lowest nominal margin, offering a performance G4, and a power dissipation
P4 which can be approximated using our models as Py (Va, fa).
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In the error-prone execution, we can expect to pay a total overhead de-
termined by Oy and O.. Concretely, the effect of both sources of overhead
can be modeled in the same manner, by assuming they yield a decrease in
the “effective” GFLOPS rate to Giﬁ = G4(1+ 04+ O,)7t, with overhead
factors 0 < Og4, O.. Note that this consideration turns the analysis of the en-
ergy trade-offs between VFS and resilience independent of the specific fault
tolerance tecnique introduced in the algorithms.

In order to match the energy efficiency (iso-energy) of the original rou-
tine, executed with the reference configuration and no errors, with that of
the fault-tolerant version, executed with the arbitrary configuration with po-
tential errors causing additional overheads O, and O., the following must

hold:

@

E
Gp _ G2 Ga (7)
Pr Py (1+04+0) P4 "

From this expression, we can then obtain the sought-after iso-energy for-
mula that relates the correction overhead, and therefore the error rate (as
O, = E,¢ for GEMV, GEMM and GETRF), to the voltage-frequency configu-
ration (for a given detection overhead) under iso-energy conditions:

OF0 — Eif - %-j-(1+00). (®)
We will proceed next to specialize this model depending on the voltage-
frequency relation and the type of DLA operation (compute-bound vs
memory-bound).

6.3. Undervolting

Let us consider first an scenario where the voltage is reduced (Vg > V4 —
0) while the frequency is maintained (fr = fa). Here, because of the constant
frequency, we have G = G4, and equation (8) can be simplified to

00 = Ir_(1+0,). (9)

Then, applying the model in (5), and taking into account again that fr = f4,

) Py (Ve fR
0l = E2-(1+0,) ~ RS - (1400
_ o Vifrtas V3 _ (ve\? aifat
= aUmeli (1100 = (V) e - (140, (10)

_ (%)2 1+ 0,).
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This formula informs us that, for any architecture and DLA operation, the
correction overhead/error rate that the execution can accommodate simply
depends on the balance between the energy savings due to the voltage re-
duction, given by (Vr/Va)?, and the fived detection overhead to be paid for
operating with an error-prone hardware, that is (1+O4). When these factors
are equal, they cancel each other in (10) and the execution cannot incur any
error without suffering an increase in the energy consumption. When the
energy savings due to the voltage reduction exceed the energy costs of error
detection, (Vg/V4)? > (1 + O4), the surplus can be used to accommodate
the correction overhead. If the error rate is low, this may even yield certain
energy gains. In the opposite situation, i.e. (Vzx/Va)? < (1+Oy), even with-
out any errors, there is an energy cost to be paid for the detection overhead
that was not compensated by the reduction of voltage, and the correction
overhead will add on top of this excess.

Iso-energy curves for undervolting (fa=fg)

[ ["od=0.01
—~ %7 odo0s
o 0d=0.10
5 96| od-0.25
(]
£ 05
[0
>
S 04
c
S
g 03
8 02
S
I 0.1
0
1 0.95 0.9 0.85 0.8

Normalized voltage w.r.t. Vg

Figure 3: Configurations for the fault-tolerant versions of DLA operations, operating in
undervolting conditions in the Cortex-A15, that attain the same energy efficiency as the
original routines executed in the reference configuration C's without errors.

Figure 3 graphically depicts the iso-energy curves with respect to voltage
scaling, for four different detection overhead rates: O, = 0.01, 0.05, 0.10
and 0.25. There we consider the reference voltage to be Vi = 0.912 (cor-
responding to the lowest nominal voltage for the Cortex-A15), and we vary
Va € [0.7, Vg|, normalizing the reduction with respect to Vz. The plot shows
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some relevant data points to be discussed. First, even when there are no
errors, and the correction overhead is therefore nonexistent, the voltage still
needs to be scaled down to a certain extent to compensate for the (fixed) cost
due to the detection. From that point, as the voltage is further diminished,
the fault-tolerant versions of the routines can accommodate a certain correc-
tion overhead while still delivering the same energy efficiency as the reference
error-free execution. For example, when O, = 0.10 (green curve), the volt-
age has to be decreased to around 95% of Vi (about 0.870 V) to compensate
for the detection overhead, even if there are no errors and, therefore, the
execution incurs no correction overhead. For the same detection overhead,
if the voltage is further scaled down to 85% of Vi (0.775 V), a correction

overhead 09 of about 28% basically matches the energy efficiency of the
reference configuration. However, if the number of errors per macro-block
in the DLA operations enforces a lower correction overhead, such voltage
scaling will deliver a higher energy efficiency than the reference case.

6.4. General VFS

Let us consider next the more general case where the voltage is reduced,
Vr > V4 — 0, while the frequency is simultaneously scaled down from the
reference value: fr > fq4 — 0.

The first aspect to discuss is what is the effect of reducing the frequency
on the performance. For this purpose, we remind that the analysis of the
results in Section 5 exposed that, for GEMM and GETRF the performance
basically scales linearly with the frequency, but the same does not hold for
GEMV. However, in this subsection we are interested in the behaviour of
these routines when both the frequency and the voltage are reduced from
low reference values (Vy is among the lowest safe operation voltages and the
corresponding fr is also low). As the performance scalability problems of the
memory-bound GEMV across the frequency were present only for the higher
frequencies, we can also assume the linear behaviour of this operation for the
cases we are interested in.

Imposing the linear relation on the frequency-performance interplay, we

obtain G4 = Gg(fa/fr), and (8) can be simplified as

OF0 = Ga-Pr—(140y) = 52— (140), (11)
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and applying the model in (5),

fa . Pu(Viofn)
T PaVata) — (1 +0a)

Q

00 = %'%_(1"‘0(1)

Vr 2 Cfa  aafrtas (1 + Od)

2 2
= fa. oupintosty (1 JrOd) - (W) fr  ai1fa+taz

fr a1V3fataaV3
(12)
From this point, we will distinguish two different behaviours, corresponding
to the compute-bound operations GEMM and GETRF vs the memory-bound
GEMV. For the former, the power model states that as = 0 (see Table 3), and
thus (12) boils down to (10). Therefore, the same analysis of the undervolting
case applies to the compute-bound operations, for any architecture, when the
frequency is reduced simultaneously with the voltage.
Unfortunately, the analysis of GEMV is not so simple, as it will depend
on the actual rate fr/fa (and the architecture). To study the behaviour in
this operation, we consider four voltage-frequency relations (RY):

1. Constant RY.: f4 =& fg, with 0 < 6 < 1, constant and independent of
Vr/Va. Thisis an “aggressive” approach as we choose to maintain f4 as
V4 is scaled down. Note that if 6 = 1, this corresponds to undervolting.

2. Linear RY: fr/fa = Vr/Va.
3. Quadratic RY: fr/fa = (Vr/Va)>.

4. Modeled RY: fr/fa = (B1VE + B2VR)/(B1V3 + B2Va4). Here we model
the frequency as a function of the voltage by applying linear regression
to identify the trend in the data in Table 2. (In practice, in order
to obtain the models for the Cortex-A7 and Cortex-A15 architectures,
we discard the lowest and two lowest configurations, respectively, as in
those cases the voltage is maintained while the frequency is reduced.)
This is a “conservative” approach as we can consider that the data
in Table 2 follows a VFS pattern that is above the threshold safety
margin.

Let us consider the execution of GEMV on the Cortex-A15 to illustrate
the behaviour of the iso-energy curves. As the reference configuration, we
adopt the most energy-efficient one, corresponding to Cy (Vi = 0.912 V and
fr =400 MHz). The plots in Figure 4 for the constant, linear and quadratic
relations in R} (top row and bottom-left corner) are scaled versions of that
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Iso-energy curves for constant RVF, delta=0.8 Iso-energy curves for linear RVF
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Figure 4: Configurations for the fault-tolerant version of GEMV, operating in VFS con-
ditions in the Cortex-A1b, that attain the same energy efficiency as the original routine
executed in the reference configuration Cy without errors. The coefficients for the modeled
RY, are 3; = 1.8403, 32 = —0.7665, offering a relative error R = 0.1005.

reported for the undervolting scenario, demonstrating that, under such con-
ditions imposed on the relation between frequency and voltage, there is still
hope for a strategy that tackles the energy costs of error detection+correction
via software. On the other hand, the modeled relation (bottom-right corner)
illustrates a more restrictive scenario, requiring a larger voltage reduction
factor to compensate the detection overhead but also hinting an asymptotic
limit on the iso-energy curves.

7. Concluding Remarks

Computing below the nominal voltage promises higher energy efficiency
at the cost of exposing hardware unreliability to the user. In this paper, we
have used three relevant kernels from dense linear algebra to investigate the
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trade-offs between the energy gains due to lower power dissipation unleashed
when operating at extended low-voltage margins versus the costs required
to deal with soft errors (in the data) via a software resilience mechanism.
We approach this question by distinguishing between the error detection
overhead, which is constant and independent of the number of errors, and the
error correction overhead, which is proportional to the error rate. Concretely,
we rely on a simple power model that decomposes the consumption into its
dynamic and static components, to then determine the error rate that an
execution can accommodate while matching the energy efficiency (iso-energy)
of an error-free configuration that operates above the voltage safety threshold.
We recognize that a weak point of our study is the use of extrapolation to
estimate the power consumption when operating at low voltage scale. To
compensate for this, our extrapolation examples correspond to values that
are within 85% and 95% of the lowest nominal voltage.

Our iso-energy models show that fault tolerance techniques for dense
linear algebra operations, implemented in software, can complement hard-
ware reliability in LVEM computing scenarios. Furthermore, (i) under un-
dervolting conditions, the iso-energy models are independent of the DLA
operation (algorithm); (ii) when the frequency is varied with the voltage,
the same applies to the execution of a compute-bound DLA operations; and
(iii) for memory-bound operations, when the frequency scaled proportionally
to the voltage, it is tougher to compensate the energy costs of error detec-
tion+correction via VFS. Finally, we note that our methodology for the cases
(i) and (ii) carries over to other architectures such as those from Intel and
AMD designed for high performance computing.
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