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Resum

El propòsit d’aquesta tesi és dissenyar i optimitzar dispositius fotònics en el règim no

lineal. En particular, s’han triat dos tipus de dispositius, que es classifiquen d’acord

amb el fenomen f́ısic d’interés. El primer tipus correspon a fibres convencionals o del

cristall fotònic, dissenyades per tal que la dinàmica temporal dels paquets d’ona que

es propaguen al seu interior, genere espectres amb les caracteŕıstiques desitjades, en el

context del supercontinu. El segon tipus explota la fenomenologia espacial associada a

les ones electromagnètiques que es propaguen sobre la superf́ıcie d’un metall. Aquestes

permeten, des de dissenyar dispositius tipus chip fotònic, llurs dimensions t́ıpiques

estan molt per sota la longitud d’ona de la llum, fins la generació d’estats no lineals

h́ıbrids de dinàmica singular.

Tots aquests efectes es troben dintre del marc proporcionat per les equacions

de Maxwell macroscòpiques, que s’han resolt numèricament. En alguns casos grans

aproximacions teòriques les simplifiquen a sistemes uni-dimensionals, mentre que en

d’altres, s’integren directament en les tres dimensions espacials. En el cas en que la

optimització del dispositiu en qüestió resulta no trivial després del coneixement que

s’ha adquirit del mateix de manera teòrica, s’empra una recent eina numèrica que

sorgeix de la combinació d’algoritmes genètics i plataforma Grid.
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Resumen

El propósito de esta tesis es diseñar y optimizar dispositivos fotónicos en el régimen no

lineal. En particular, se han elegido dos tipos de dispositivos, que se clasifican según

los fenómenos f́ısicos de interés. La primera clase corresponde a fibras convencionales

o de cristal fotónico, diseñadas para que la dinámica temporal de los paquetes de

onda que se propagan en su interior genere espectros con las caracteŕısticas deseadas,

en el contexto del supercontinuo. La segunda clase explota la fenomenoloǵıa espacial

asociada a las ondas electromagnéticas que se propagan sobre la superficie de un metal.

Estas ondas permiten, desde diseñar dispositivos tipo chip fotónico cuyas dimensiones

t́ıpicas están muy por debajo de la longitud de onda de la luz, hasta la generación de

estados no lineales h́ıbridos de dinámica singular.

Todos estos efectos tienen lugar dentro del marco proporcionado por las ecuaciones

de Maxwell macroscópicas, las cuales han sido resueltas numéricamente. En algunos

casos se emplean grandes aproximaciones teóricas para estudiar sistemas 1D, mientras

que en otros se integran directamente en 3D. En el caso en el que la optimización del

dispositivo resulta no trivial tras haber adquirido un conocimiento teórico profundo

del mismo, se emplea una novedosa herramienta numérica que nace de la combinación

de algoritmos genéticos con plataforma Grid.
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Abstract

The aim of this thesis is to design and optimise photonic devices in the non linear

regime. In particular, two types of devices have been chosen according to the physical

phenomena. The first one corresponds to optical fibres, designed so that the temporal

dynamics associated to the wave-packets travelling along them generates spectra with

the desired characteristics, in the context of supercontinuum. The second one exploits

the spatial phenomenology associated to the electromagnetic waves at the surface

of a metallic material. These waves make possible the design of photonic chips with

dimensions well below the light wavelength and the generation of hybrid nonlinear

states with very particular dynamics.

All these effects are found in the frame provided by the macroscopic Maxwell

equations, which have been solved numerically. In some cases, big theoretical ap-

proximations have been used to study systems of one dimension, whereas in some

others they have been integrated in 3D straight away. In the case in which the device

optimisation is non trivial, even possessing a deep theoretical knowledge about it, a

recently developed numerical tool, combining genetic algorithms and Grid technology,

has been used.
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Chapter 1

Introduction

The first motivation of this thesis is to study theoretically and by means of numerical

simulations a variety of nonlinear photonic devices consisting of crafted and self-

induced optical waveguides. In particular, they can be divided into two main groups.

The first one is based on silica optical fibres, whereas the second one deals with

metal-dielectric junctions. The physical effects are divided accordingly, in the former

group we study temporal effects associated to wave packets and in the latter, spatial

(monochromatic) effects in conjunction with plasmonics.

Technological applications arising from a particular physical effect require in many

cases a fine tuning of the device parameters and particular excitation conditions. For

this reason, the deep theoretical understanding of a particular effect or system is not

the ultimate objective of this thesis, but the scope is also to apply it to the device

optimisation for it to operate with the desired performance. In fact, most of the effects

shown in this work only occur efficiently under very strict determined conditions, being

accidental and of very low importance otherwise. Because the dynamics associated

to a nonlinear system is in general very complex and can be highly unpredictable,

the usage of genetic algorithms combined with Grid technology is explored in the

last chapter for one particular case example. We proceed by introducing first the

optimisation tool in general terms.

Genetic algorithms belong to the more general category of numerical optimisation

methods called evolutionary algorithms. This class of optimisation strategies mimic

some essential features of the evolutionary theories of species in nature. Schematically,

this is done by assimilating each of the input parameters of the physical problem to an

individual ’s gene, constituting the genome altogether. The suitability for adaptation

of a genome is evaluated by a fitness function, which constitutes the medium to

which individuals are to adapt. The evolution towards the best adapted individuals

is carried out by processing the data retrieved from many simulations and creating

1



2 1. Introduction

new individuals or off-springs. This is done by the corresponding genetic operators,

such as mutation, cross over or random generation [Ashlock06].

One key advantage of this type of methods relies on their scalability, since the

number of parameters to optimise, i.e., the dimensionality of the associated space over

which the values of the fitness function are extended, requires a trivial extension of the

optimisation algorithm. The scalability of the computing resources is then essential

to address problems of different complexities. Such a computational tool is provided

by the Grid infrastructure, which coordinates, via the middle-ware, geographically

de-localised resources for them to add together and work on one or several problems

at a time, according to their particular needs [Foster04]. With this technology, created

by Ian Foster in the 1990’s, the sophisticated and expensive usage of supercomputers

is avoided.

In order to understand in more detail the physical effects explored in this thesis, a

general view is given below. In first place the attention is focused on temporal optics,

around its most attractive effect of the last decade, i.e., supercontinuum generation

in optical fibres.

Experimental observation of the nonlinear regime of optics in a macroscopic scale

was just impossible before the first laser was developed in 1960 [Maiman60]. Soon

after, frequency conversion effects arising due to nonlinearity started to be noted, but

it was not until ten years later that [Alfano70a,Alfano70b] reported the first observa-

tion of a spectral broadening covering the whole visible spectrum in bulk BK7 glass.

Typical self trapped beam filaments were observed due to the self focusing nature

of the material and as a result of new wave vector components (spatial frequencies)

generated by the nonlinear interaction.

The study of such spectral broadening, baptised as supercontinuum (SC), attracted

a massive interest at the begining of this century with the development of the Photonic

Crystal Fibre (PCF) [Russell03,Knight03]. In its original form, the first PCF was a

silica fibre with a cross section consisting of an hexagonal lattice of circular air holes

with a defect (absence of hole) at the centre [Ranka00], structure that was analysed

theoretically by [Ferrando99]. PCF’s permitted both to avoid the loss of spatial

coherence, happening in Alfano’s experiments, and the manipulation of the linear

dispersion properties via the lattice parameters, i.e., the holes shape and spacing (see

e.g. [Ferrando00]). The first SC experiment already showed a spectrum spanning over

an octave at both sides of the pump wavelength [Ranka00]. The underlying physics

for such SC generation was soon understood to be related to the dynamics of temporal

solitons of the nonlinear Schrödinger (NLS) equation, predicted soon after Alfano’s

experiments by [Hasegawa73b,Hasegawa73a] and conceived for decades as information
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carriers, due to their non dispersive nature [Mollenauer06]. However, the ability to

engineer PCF’s dispersion changed dramatically the way to perceive them, and they

are nowadays widely recognised as mediators of efficient frequency conversion in the

infrared and visible parts of the spectrum.

Amongst all nonlinear effects in optical fibres, two are the main ingredients for

SC generation. In first place, solitons where found to emit resonant dispersive waves

at a blue-shifted frequency far detuned from their carrier, if they were spectrally

close to the lowest zero of the group velocity dispersion (GVD) wavelength of the

fibre. Because of its similarities to previously well known physical effects these waves

were called Cherenkov radiation [Auston84]. Second, the solitons where also observed

to develop a red-shift due to the Raman effect, which was described analytically

by [Gordon86]. Basic details of the underlying physics in SC, history and applications

are summarised in [Dudley06] and further insight, with other nonlinear processes, are

provided by [Skryabin10]. SC generation and soliton dynamics in PCF’s is still a fast

developing field [Stark11b,Stark11a].

The spatial effects studied in this thesis belong to the general field of plasmonics.

In particular, we focus on phenomena involving the electromagnetic surface waves

that propagate at the interface between a metal and a dielectric material, which are

the so called surface plasmon polaritons (SPP’s). The interesting property from both

physical and technological view points is that these surface waves are confined well

below the diffraction limit, at the subwavelength scale, so they are the first potential

candidates for photonic circuitry at the nano scale [Bozhevolnyi06], already achieved

in electronics. Linear plasmonics is a vast field [Zayats05], but our interest here is

focused on the nonlinear dynamics of these surface waves when only the dielectric

material presents a flux dependent refractive index. Technological evolution and the

possibility of performing experiments at the nanosacle in the nonlinear regime, re-

opened the interest in this topic only few years ago, as briefly summarised below.

A single interface between two semi-infinite dielectric and metal regions is enough

to support SPP waves, which dispersion relations taking into account the nonlin-

ear boundary conditions were already obtained more than twenty years ago [Miha-

lache87]. The ohmic losses inherent to metals motivated recent studies around the

inclusion of gain in the dielectric material [Marini09]. The propagation of waves in

this case becomes the Ginzburg-Landau equation, which supports bright and dark

localised SPP waves [Marini10b]. Diffraction compensation of a beam propagating

along a 2D metal surface has been recently shown numerically to be compensated

above certain power threshold [Davoyan09] forming a spatial soliton. Extension to

the two interface problem, one dielectric slab sandwiched between two metal do-
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mains, has been found to support coupled SPP solutions [Davoyan08] and spatial

plasmon-solitons [Feigenbaum07]. The tapering of this sandwich has been proposed

to compensate for the linear losses introduced by the metal in the absence of gain in

the dielectric [Davoyan10]. Periodicity effects associated to the 1D stratified problem

where found to support subwavelength discrete solitons [Liu07] and more general so-

lutions of these systems were analysed by means of coupled mode theory [Marini10a].

Examples of more realistic set-ups, involving finite waveguide sizes, are the nonlinear

directional coupler [Salgueiro10], arrays of metallic nanowires embedded by nonlinear

material [Ye10] and arrays in two dimensions [Wurtz06,Ye11].

In what follows, the content of the different chapters in this thesis are described.

Chapter 2 starts with transparent derivation of the well known generalised-NLSE

(GNLSE), used to simulate supercontinuum, pointing out all the approximations in-

volved and their physical consequences. This equation is analysed further by means of

Lagrangian and Hamiltonian formalisms, which provide valuable insight and the capa-

bility to perform numerical checks on the evolution of the Hamiltonian. The last sec-

tion provides the derivation of the discrete NLS equation (DNLS) [Christodoulides88],

used for the arrays of coupled waveguides and introduces some concepts used later

on.

The continuum generation part of this thesis is constituted by chapters 3 and 4.

They are both inspired by the typical SC spectral evolution picture formed by bright

solitons and their associated Cherenkov radiation [Gorbach07]. Chapter 3 is entirely

devoted to explore the possibility of generating a similar SC spectrum seeded from

dark solitons. Here, first order time independent perturbation theory is used to un-

derstand the Cherenkov radiation emitted by these solitons and numerical simulations

are performed to explore the influence of Raman effect and the optimised fibre pa-

rameters to excite realistically such SC [Milián09]. The second effect that captivated

our attention was the possibility to enhance both the amplitude and spectral content

of the Cherenkov radiation associated to a single bright soliton. This originated the

chapter 4, where it is found numerically the appropriate variation in a fibre profile

along propagation for this low power spectral broadening effect to be maximised.

Chapters 5 and 6 concern nonlinear plasmonics. Plasmons have been studied

in this thesis always in the context of multichannel systems. In the first of these

chapters, arrays of two and three coupled semiconductor on metal waveguides have

been considered for the study of the nonlinear switching, i.e., suppression of the

linear mode beating, occuring above the threshold power. In this case the waveguides

support plasmonic modes and the coupling between them occurs through the weak

electric field component, the one parallel to the metal interface, and the predictions
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of the DNLSE has been compared with 3D first principle numerical modelling of the

nonlinear and vectorial Maxwell equations [Milián11]. The second chapter of this part,

chapter 6, focuses on a more complex system. Now a one dimensional single interface

is considered to study the coupling between a plasmon at the interface and a spatial

soliton, which propagates in the dielectric material and induces its own waveguide

[Bliokh09]. In that sense, this is a hybrid coupled two channel system. Another

difference with chapter 5 is now that the coupling between the soliton and plasmon

channels occurs through the strongest electric field component, the one perpendicular

to the interface. This hybrid coupling required going beyond the DNLSE model to

qualitatively describe its physics. The forced nonlinear oscillator model is shown to

provide enough insight about the stationary solutions supported by this system.

Optimisation using Grid technology consists the last part of this work and is ex-

plored in chapter 7. The SC codes implement the well known Split-Step and Runge-

Kutta numerical integration methods and were developed in Matlab. This made easy

the compilation into C++ language and the later integration into the Grid service.

The problem presented in this thesis is the one of optimising the initial pulse parame-

ters to obtain the maximum spectral power in a narrow and fixed frequency interval,

located in this case in the anomalous GVD regime of the fibre [Moltó,Ferrando].

Conclusions of the thesis, future work and new directions to explore are exposed

finally in chapter 8.





Chapter 2

Theory of nonlinear

propagation of light

The purpose of this chapter is to introduce in a clear and transparent way the the-

oretical frame and most of the equations used in the following chapters. Section 2.1

introduces the general propagation equations, discussing the origin of nonlinearities

in the materials considered for our waveguides, which are basically dielectrics and

semi-conductors. The properties of waveguide modes are discussed in section 2.2 in

general terms and also under the usual weakly guiding approximation. In section 2.3,

the pulse propagation equation is derived in a slightly more general way than in the

literature and the temporal solitons are introduced. Further theoretical insight is pro-

vided by the Lagrangian and Hamiltonian, which clearly show the terms responsible

for the loss of energy. To finish, section 2.4 focuses on continuous wave (CW) beams

in arrays of parallel waveguides, where the overlapping fields couple to each other

inside the different cores.

2.1 Propagation equations of electromagnetic waves

Our starting point is the macroscopic Maxwell equations for dielectric and non-

magnetic media in frequency domain,

−→∇−→Dw = 0 (2.1)
−→∇ ×−→E w = iω

−→B w (2.2)
−→∇−→B w ≡ 0 (2.3)
−→∇ ×−→Hw = −iω−→Dw, (2.4)

7



8 2. Theory of nonlinear propagation of light

where
−→E w,

−→B w,
−→Dw and

−→Hw are the Fourier components of the real electric and

magnetic fields, electric displacement and magnetic excitation, respectively, defined as
−→
ψ w(−→r , ω) ≡ F̂(

−→
ψ ) ≡

∫ +∞
−∞ dt

−→
ψ (−→r , t)eiωt ⇐⇒ ψw(−→r ,−ω) ≡ ψ∗

w(−→r , ω). Historical

reasons established the convention that
−→E w and

−→Hw are to be incident in the volume

element of the medium and the radiation-matter interaction yields to the outcomes
−→Dw and

−→B w [Born99]. Such picture motivates the material equations, or constitutive

relations,

−→Dw = ǫ0F̂
(
ǫ̂
−→E
)
≡ ǫ0

−→E w +
−→P w

(−→E w

)
(2.5)

−→B w = µ0
−→Hw, (2.6)

in which the relative permittivity tensor, ǫ̂, maps the incident field onto the output

and the polarisation,
−→P w, accounts for the non transparent medium response to the

electric field. The magnetic part is not directly scattered, according to eq. 2.6. When

both electric and magnetic fields are time dependent, they automatically couple and

equations 2.1-2.4 describe the propagation of light (ω 6= 0) through the wave equation

(
∂2

z +
−→∇2

⊥

)−→E w −−→∇
[−→∇−→E w

]
= −µ0ω

2−→Dw, (2.7)

where the subscript ⊥ projects the corresponding vector onto the transverse plane

X̂Y and the z coordinate defines the propagation direction.

The validity of equation 2.5 relies on the light wavelength, λ = 2πc/ω in vacuum. It

has to be large enough for an atom or molecules of the material to experience an almost

constant field. This permits taking the averaged response of the molecules in the

volume element, 〈−→p w〉V , and assign it as a point property of that volume [Jackson62],
−→P w ≡ 〈−→p w〉V , which is then the thick point of the above differential equations 2.1-

2.6. The cut-off wavelength for the validity of these equations can be thought to be of

the order of λ ∼ 10nm (beginning of the X-ray spectrum), since the density ρ ≈ 2.2

g/cm3 [her] and molar mass M ≈ 60gmol−1 of the silica glass (SiO2) implies there

are around 22 molecules/nm3.

2.1.1 Origin of nonlinearities

All the physics of the light-matter interaction is contained in the polarisation intro-

duced in eq. 2.5. Physically, a photon with visible or infra-red frequency travelling

inside a piece of a transparent1 material interacts with the atoms and molecules intro-

ducing only small perturbations (in space and time) in their electronic and vibrational
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states, since the frequency is far from the resonances. A beam of photons with low

intensity can be regarded to as constituted of independent photons, so each of them

interacts with the medium as if no previous photon has passed through it. However,

this picture fails for high intensities because the probability of a photon interacting

with the material that still has not recovered from the interaction with the previous

photons starts to increase. At this point, processes involving several photons start

playing a macroscopic role in the dynamics, exciting new spatial and temporal fre-

quencies, polarisation states and modal distributions. Formally, the equations need

to include the electromagnetic field components inside the dielectric tensor, ǫ̂, becom-

ing nonlinear. In particular, when the frequencies and intensities involved are such

that ionisation probability is negligible, the external field
−→E is small in comparison

with the internal field that the atomic nuclei exert on the electrons and
−→P may be

expanded in McLaurin series around
−→E =

−→
0 ,

−→P ≡ Σ∞
m=0

−→P (m) [Mills91]. The i−th

Cartesian component of the m−th order polarisation may be expressed in the time

domain general form

Pπ(m)
i (−→r , t) ≡ ǫ0

∫ ∞

−∞
d−→r 1dt1 · · · d−→r mdtm ×

χ̂
π;ρ1···ρm(m)
i;l1···lm (−→r ,−→r 1, · · · ,−→r m; t, t1, · · · , tm) ×

Eρ1

l1
(−→r 1, t1) · · · Eρm

lm
(−→r m, tm) , (2.8)

where the χ̂
π;ρ1···ρm(m)
i;l1···lm is the (m + 1)−th order susceptibility tensor mixing po-

larisation states (lm) and spatial modes (ρm). However, the assumption that the

waveguides are single mode automatically eliminates the Greek indices. The integrals

account for non local interactions in the material, being the spatial ones negligible

for those considered here. So are negligible the temporal ones in spatial optics be-

cause the electromagnetic fields are assumed in the continuous wave (CW) form and

generation of temporal frequencies is disregarded2. However, temporal nonlocalities

become relevant to describe delayed nonlinear effects arising in the dynamics of ultra

short pulses in silica optical fibres. The most well known of these effects is the Raman

scattering (see chapters 3 and 4). This motivates the functional form for the suscep-

tibility χ̂
(m)
i;l1···lm = χ

(m)
i;l1···lm(−→r )Πj:1→mδ(

−→r −−→r j)R(t− tk:1→m), where R is the time

response function, considered later on in section 2.3. The zero order term (m = 0)

1Dielectric materials are by definition transparent in the visible spectrum. However, semi-
conductors can also be transparent if no transitions between the valence and conducting bands
are excited. This depends much on the energy band-gap between the two bands, which is in many
cases controlable by the relative concentration of the different atomic species.
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of the expansion is the electric dipole moment in the absence of
−→E , which vanishes

for the materials of our interest. The first order term, scalar for our non birefringent

materials, is the contribution to the linear refractive index nL =
√
ǫL ≡

√
1 + χ(1)

and all the higher order terms (m > 1) account for nonlinearity. Symmetry properties

of the susceptibility tensors imply that all even order terms (odd order tensors) are

exactly zero for amorphous materials and centrosymmetric crystals. An example of

the former is the silica glass and one of the latter the zincblende cubic lattice of the

AlGaAs semi-conductor. This leaves the 3rd order susceptibility (4th order tensor)

as the main responsible of nonlinear effects. Symmetry also imposes restrictions on

the even order tensors. In particular, only 21 components of χ̂(3), out of the 34 = 81,

are non vanishing and they satisfy [Boyd03]

χ(3) ≡ χ
(3)
iiii, χ

(3)
iijj = χ

(3)
ijij = χ

(3)
ijji, χ

(3)
iiii = 3χ

(3)
iijj

∀i, j ∈ {x, y, z} /i 6= j, (2.9)

what leads to a polarisation vector in the form

−→P =
−→P L +

−→P NL (2.10)
−→P L ≡ ǫ0χ

(1)−→E (2.11)

PNL
x (−→r , t) ≡ ǫ0

∫ ∞

−∞
dt1dt2dt3R(t, t1, t2, t3)χ

(3)
x;jklEj(t1)Ek(t2)El(t3) + O(E5).

(2.12)

Spatial dependence of the susceptibility tensor and the electric fields was not

written explicitly in eqns. 2.9- 2.12. The reason is that they do depend on the

coordinates in the same way in the spatially local materials. From now on this notation

is adopted and only time or frequency variables will be specified to distinguish clearly

the reciprocal spaces.

2Such an assumption makes sense only in the cases where the group velocity dispersion (GVD)
is normal. In this regime, the CW’s are stable solutions, so newly generated frequencies, e.g., from
noise, do not experience the exponential intensity growth and they do not affect the system at the
macroscopic scale.
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2.2 Linear vs nonlinear waveguide modes

The modes of a waveguide (under our assumptions) satisfy a vectorial equation given

by combining eqns. 2.5, 2.7, Fourier transform of eqns. 2.10-2.12 and the factorisation
−→E ω(x, y, z) =

−→
F ω(x, y)eiβz, implying ∂z → iβ, which reads,

B̂−→F ⊥,ω + µ0ω
2−→P NL

⊥,ω

(−→
F ω

)
= β2−→F ⊥,ω + iβ

−→∇⊥Fz,ω, (2.13)
[−→∇2

⊥ + k2ǫL

]
Fz,ω + µ0ω

2PNL
z,ω

(−→
F ω

)
= iβ

−→∇⊥
−→
F ⊥,ω, (2.14)

B̂ ≡ −→∇2
⊥ −−→∇⊥(

−→∇⊥◦) + k2ǫL. (2.15)

Here,
−→
F ω is the waveguide mode at the frequency ω. The circle product ”◦” is

to be regarded as (Ô1◦)Ô2 ≡ (Ô1Ô2) and k ≡ 2π/λ. Let
−→
F ω =

−→
Φω and β = βL

be the solutions of the above equation with
−→P NL

ω ≡ −→
0 . In this particular case, the

transverse field eq. 2.13 can be re written in the eigenvalue form

M̂−→
Φ⊥,ω = β2−→Φ⊥,ω, (2.16)

M̂ ≡ −→∇2
⊥ +

−→∇⊥(

−→∇ǫ
ǫ

◦) + k2ǫL, (2.17)

where the linear form of eq. 2.1,
−→∇
(
ǫL

−→Eω

)
≡ 0, has been used.

Hence, for small nonlinearity, the modes
−→
F ω =

−→
Φω +

−→
δΦω are expected to have a

propagation constant β = βL + δβNL and eq. 2.13 takes the linearised form

[
M̂ − β2

L

]−→
δΦ⊥,ω + µ0ω

2−→P NL
⊥,ω(

−→
Φω) = δβNL

[
2βL

−→
Φ⊥,ω + i

−→∇⊥Φz,ω

]
. (2.18)

Note that, in the derivation of eq. 2.18 |−→P ωNL(
−→
Φω)|, |−→δΦω| and δβNL are assumed

to be of order O(s), whereas their products and |−→P ωNL(
−→
δΦω)| ∼ O(s2) (smallness,

s, is a dummy parameter ≪ 1). M̂ is not hermitian, however its eigenvectors,
−→
Φ⊥,ω,

still form a biorthonarmal basis
−→
Φ

{j}
⊥,ω, i.e.

∫
S

−→
Ψ i∗

⊥,ω

−→
Φ j

⊥,ω = δij , being
−→
Ψm

⊥,ω the

eigenstates of M̂† and δij de Kronecker tensor [Silvestre98]. The perturbation field
−→
δΦω can then be expanded in the basis

−→
Φ

{m}
ω , which automatically yields to

δβNL =
k2

ǫ0

∫
S

−→
Ψm∗

⊥,ω

−→P NL
ω (

−→
Φ

(m)
ω )

∫
S

−→
Ψm∗

⊥,ω

[
2βL

−→
Φm

⊥,ω + i
−→∇⊥Φm

z,ω

] . (2.19)
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If one considers an infinite homogeneous and isotropic nonlinear medium, the

induced change of the refractive index through the field intensity will affect to the

propagation constant (effective wavelength) of the spatial mode. However, symmetry

considerations show that there is no privileged point such that the light should focus to

or defocus from. Hence, the spatial profile remains unchanged and the mode profiles

differ from the linear ones only by the wavenumber shift eq. 2.19, but not in their

actual distribution, so δΦω = 0. This approximation will be used later on in this

chapter, nevertheless one should bare in mind that this is approximately correct only

for waveguides with core sizes well above the light wavelength.

2.2.1 Weak guidance

The term
−→∇
[−→∇−→E w

]
in eq. 2.7 yields to a diffraction mixing the Cartesian compo-

nents of the electric field. Lack of well established and easy to implement numerical

algorithms taking into account this coupling in the nonlinear regime, limits the va-

lidity of the standard pulse propagation equations in nonlinear media to systems in

which neglecting this term in eq. 2.7 can be justified. It is common to argue that
−→∇(

−→∇−→E ) ≈ 0 because of
−→∇−→D = 0, what implies that the refractive index does not

experience very sharp jumps at the interfaces. For this reason, such an approximation

receives the name of weakly guiding approximation, what reduces eq. 2.7 to the form

of the Helmholtz equation

(
∂2

z +
−→∇2

⊥

)−→E w = −µ0ω
2−→Dw. (2.20)

Although the above is also called scalar approximation, note that the only strictly

scalar field3 in optics is the plane wave of the infinite homogeneous and isotropic

space, so assuming a scalar field straight away in eq. 2.7 just leads to the plane

wave equation. Hence, scalar approximation means only that this vectorial term

is neglected but a little bit of the vectorial nature of the modal fields survives in

the formalism, since the transverse derivatives in the term
−→∇2−→E do not cancel out.

Regarding the electric field, this approximation is in fact a slowly varying polarisation

(SVP) approximation.

3We point out that the usage of the extended terminology scalar field in optics is physically
misleading. Even if the electric field remains linearly polarised, its vectorial nature yields to the well
known boundary conditions at the interfaces between two different media, which are different than
those of a truly scalar field.
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2.3 Pulses in silica fibres

The time response function of fused bulk silica accounting for the Raman effect is

introduced in the functional form R = R(t− t1)δ(t1 − t2)δ(t− t3) [Agrawal07], where

two out of the three time intervals associated to the interaction of four fields are

assumed to be instantaneous, whereas only one of them may be delayed. With this,

Fourier transform of eq. 2.12 reads

P(NL)
x,ω = ǫ0

∫ ∞

−∞

dω1dω2

4π2
R̃(ω1 − ω2)χ

(3)
x;jklEj,ω1

E∗
k,ω2

El,ω−ω1+ω2
. (2.21)

In order to obtain a propagation equation for the spectral envelope of the electric

field, the following factorisation is proposed,

−→E ω =
−→
F ω(x, y)Ãω−ω0

(z)eiβ0z, (2.22)

where
−→
F (x, y) is assumed here to be proportional to the linear mode profile (see

section 2.3.2), Ãω−ω0
(z) the slowly varying spectral envelope, ω0 the reference fre-

quency and β0 ≡ β(ω0). The polarisation then becomes

P(NL)
x,ω = ǫ0

∫ ∞

−∞

dω1dω2

4π2
R̃(ω1 − ω2)

[
χ

(3)
x;jklFj,ω1

F ∗
k,ω2

Fl,ω−ω1+ω2

]
×

Ãω1−ω0
Ã∗

ω2−ω0
Ãω−ω1+ω2−ω0

. (2.23)

At this point of the formalism, a major conceptual and delicate approximation

is done. It consists in assuming that the spatial distributions
−→
F ωi

remain relatively

similar to each other across all the spectrum and hence they can be taken outside

from the integral by assuming
−→
F ωi

→ −→
F ω. Using the properties in eqns. 2.9, the

term in square brackets of eq. 2.23 is expressed as

χ
(3)
x;jklFjF

∗
kFl =

χ(3)
xxxx|Fx|2Fx + (1 − δxj)

{[
χ

(3)
x;xjj + χ

(3)
x;jjx

]
|Fj |2Fx + χ

(3)
x;jxjF

2
j F

∗
x

}
=

χ(3)(1 − δxj)

[
|Fx|2Fx +

2

3
|Fj |2Fx +

1

3
F 2

j F
∗
x

]
= χ(3) 2

3

[
|−→F |2Fx +

1

2

−→
F 2F ∗

x

]
.

(2.24)

The approximation
−→
F ωi

→ −→
F ω could be subject of severe objections when working
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with wide spectral distributions such that those in SC. However, a careful look reveals

that this approximation is valid if the relevant nonlinear effects are due to waves that

remain spectrally close to the reference (usually pump) frequency, ω0. In this way,

the error is introduced by the frequency detuning, ω − ω0, of the fields involved in

the nonlinear interaction. In practise, even in the case of SC generation, most of

these effects happen inside the spectrum of a soliton, being then the biggest source

of error for the assumption above, the Raman induced frequency down-shift towards

the infra-red part of the spectrum.

Reproducing eqns. 2.23 and 2.24 for the components y and z the nonlinear polar-

isation reads

−→P (NL)
ω = ǫ0χ

(3) 2

3

[
|−→F |2−→F +

1

2

−→
F 2−→F ∗

] ∫ ∞

−∞

dω1dω2

4π2
R̃(ω1 − ω2) ×

Ãω1−ω0
Ã∗

ω2−ω0
Ãω−ω1+ω2−ω0

, (2.25)

and inserting it into the wave equation eq. 2.7, together with the factorisation

2.22 and applying the operator
∫

S

−→
F ∗

ω◦ we get

∫

S

|−→F ⊥,ω|2∂2
z Ã+

{
2iβ0

∫

S

|−→F ⊥,ω|2 −
∫

S

−→
F ∗

ω

[−→∇⊥Fz + ẑ
−→∇⊥

−→
F ⊥,ω

]}
∂zÃ =

{(
β2

0 − β2
) ∫

S

|−→F ⊥,ω|2 + i[β0 − β]

∫

S

−→
F ∗

ω

[−→∇⊥Fz + ẑ
−→∇⊥

−→
F ⊥,ω

]}
Ã (2.26)

−2

3
k2χ(3)

∫

S

[
|−→F ω|4 +

1

2
|−→F 2

ω|2
]
×

∫ ∞

−∞

dω1dω2

4π2
R̃(ω1 − ω2)Ãω1−ω0

Ã∗
ω2−ω0

Ãω−ω1+ω2−ω0
,

where the linear eqns. 2.13 and 2.14 have been used to introduce the terms ∼
β, β2. When the waveguides cross sections are big enough, it is usually the case that

|Fz| << |F⊥|, so
∫

S
|−→F ⊥,ω|2 ≈

∫
S
|−→F ω|2. Neglecting also the counter propagating

beam, via the paraxial approximation ∂2
z Ã→ 0, eq. 2.26 is rewritten as
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∂zÃ = −
[
β2 − β2

0

] ∫
S
|−→F ω|2 + i[β − β0]

∫
S

−→
F ∗

ω

[−→∇⊥Fz + ẑ
−→∇⊥

−→
F ⊥,ω

]

2iβ0

∫
S
|−→F ω|2 −

∫
S

−→
F ∗

ω

[−→∇⊥Fz + ẑ
−→∇⊥

−→
F ⊥,ω

] Ã+ iγI

(2.27)

γ ≡ 2

3
k2χ(3)

∫
S

[
|−→F ω|4 + 1

2 |
−→
F 2

ω|2
]

2β0

∫
S
|−→F ω|2 −

∫
S

−→
F ∗

ω

[−→∇⊥Fz + ẑ
−→∇⊥

−→
F ⊥,ω

] (2.28)

I ≡
∫ ∞

−∞

dω1dω2

4π2
R̃(ω1 − ω2) × Ãω1−ω0

Ã∗
ω2−ω0

Ãω−ω1+ω2−ω0
.

(2.29)

Eq. 2.27 describes the nonlinear propagation of the slowly varying spectral enve-

lope of the electric field in a waveguide with an arbitrary cross section (uniform along

z), made of an amorphous material or cubic crystal. This equation could be solved

numerically using well known algorithms, however it is presented in the literature (see

e.g. [Agrawal07]) with two further simplifications. First, the spectrum is assumed to

be such that the dependence of β with ω lets approximate β2 − β2
0 ≈ 2β0∆β, where

β = β0 + ∆β, ∆β ≡∑∞
m=1 βm [ω − ω0]

m
/m! and βm ≡ ∂m

ω β(ω)|ω0
are the so called

dispersion coefficients. Second, the spatial modes are assumed to be slowly varying

functions in the sense that |−→∇⊥
−→
F ω| << |−→F ω|, what is equivalent to the weakly guid-

ing approximation (see section 2.2.1) and hence the terms ∼ −→∇⊥ are disregarded4.

With this, the generalised nonlinear Schrödinger equation (GNLSE) is recovered,

∂zÃ = i∆βÃ− γI (2.30)

γ ≈ k2

β0

χ(3)

2

∫
S

2
3

[
|−→F ω|4 + 1

2 |
−→
F 2

ω|2
]

∫
S
|−→F ω|2

. (2.31)

Applying the inverse Fourier transform, using F̂−1
(
(ω − ω0)

mΨ̃ω−ω0

)
= (i∂t)

mΨ(t, z),

Ψ playing the role of Ã and I, the time domain representation of eq. 2.30 is

4Note the smallness of the terms ∼
−→
∇⊥Fz at the subwavelength scale is not guaranted.
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∂zA(z, T ) = i

∞∑

m=2

βm

m!
(i∂T )mA(z, T ) + iγ0

[
1 + i

γ1

γ0
∂T +

∞∑

m=2

γm

γ0
(i∂T )

m

]
×

A(z, T )

∫ ∞

−∞
T1R(T1)|A(z, T − T1)|2, (2.32)

where the change of variable T ≡
[
t− z

Vg

]
has been introduced to remove the first or-

der time derivative from the linear operator, which is a velocity term with no physical

influence for uniform fibres (constant cross section along z). Hence, T represents the

time measured in the reference frame co-moving with A(z = 0, t) at its physical group

velocity Vg = 1/β1 in the lab frame. γm ≡ ∂m
T γ|ω0

and the terms with m ≥ 1 account

for the nonlinear dispersion. The most commonly used of these terms is the first or-

der one, responsible for the optical shock waves developed over the characteristic time

scale τshock ≡ γ1/γ0. The response function of fussed silica glass was experimentally

measured by [Stolen89] and introduced in the analytical form [Blow89]

R(t) = (1 − fR)δ(t) + fRhR(t)

hR (t) := Θ(t)
τ2
1 + τ2

2

τ1τ2
2

e−
t

τ2 sin
t

τ1
, (2.33)

where the Dirac delta function δ(t) accounts for the electronic transitions and

hR(t) ≡ τ2
1 +τ2

2

τ1τ2
2

Θ(t)e−t/τ2 sin(t/τ1) for the excited molecular vibration, which period

and lifetime are given by τ1 = 12.2sf and τ2 = 32sf, respectively. The ratio between the

two nonlinear interactions in R(t) is given by the so called Raman fraction, fR ≡ 0.18,

and Θ(t) is the Heaviside step function, important to restore causality in the integral

of eq. 2.32.

2.3.1 Temporal solitons and the NLS equation

When the pulse spectrum is narrow enough, all the higher order terms in the linear

and nonlinear expansions of eq. 2.32 can be disregarded. Also, the associated wide

temporal profile reduces Raman to an instantaneous effect, i.e., hR(t) → δ(t) and eq.

2.32 reduces to the well known NLS equation (NLSE),

∂A(z, T ) = i
β2

2
(i∂T )2A(z, T ) + iγ|A(z, T )|2A(z, T ), (2.34)

where γ ≡ γ0 and so will be assumed from now on. Temporal solitons in optical



2.3. Pulses in silica fibres 17

fibres are known to exist in the frame of the NLSE for both focusing and defocusing

nonlinear media [Hasegawa73b,Hasegawa73a]. They propagate with undistorted in-

tensity and spectrum profiles because of the linear dispersion cancellation resulting

from the interplay of the lowest order linear (GVD) and nonlinear (Kerr) effects. In

the focusing case (γ/β2 > 0) the lowest order (fundamental) solitons are the well

known bright solitons [Hasegawa73b], which are unchirped, or transform limited, lo-

calised pulses

Abs(z, t) =
√
P0Sech

(
t

√
γP0

−β2

)
ei

γP0
2 z, (2.35)

where
√
−β2/γP0 is the temporal width T0 and is related to the intensity full width

at half maximum by FWHM = 2 ln(1 +
√

2)T0. By increasing the soliton amplitude√
P0 by an integer factor N , eq. 2.35 describes an N−th order soliton in its unchirped

state, which temporal and spectral evolutions are periodic in z.

In the defocusing case (γ/β2 < 0), the undistorted propagation happens for the

also well known dark solitons [Hasegawa73a], which turn out to be a lower intensity

dip laying on a chirped non localised background

Ads(z, t) =
√
P0 [cosφ tanh Θ − i sinφ] eiγP0z, (2.36)

Θ ≡
√
γP0

β2
cosφ

[
t−

√
γP0β2 sinφz

]
, φ ∈ [−π/2, π/2].

In this case, the width of the soliton dip is T0 ≡
√

β2

γP0
/ cosφ, which depends on the

greyness phase, φ. T0 takes the minimum value for the so called black soliton (φ = 0),

for which the intensity falls to zero at the centre of the dip, and it becomes infinite

for the continuous wave limits φ→ ±π/2. Solitons with 0 < |φ| < π/2 are referred to

as grey solitons.

2.3.2 A note on dimensions

In the context of temporal optics it is useful that |A(z, t)|2 has the meaning of total

amount of energy that flows through the fibre cross section per time unit. For that

the dimensions of A are [A(z, t)] = W 1/2 and the function
−→
F w is related to the linear

fibre modes
−→
Φw by

−→
F w(x, y) ≡

−→
Φw(x, y)

P 1/2
, P ≡ 1

2

∫

S

Re
(−→

Φw ×−→H∗
w

)
ûz, (2.37)



18 2. Theory of nonlinear propagation of light

where P is the guided power, ûz is the unitary vector along the z-axis and hence

the units
[−→
Φw

]
=V/m. Taking into account that P =

∫
s
I, where the intensity I ≡

√
ǫLǫ0c|

−→
Φ |2/2, and using β ≈ kǫL, the nonlinear coefficient derived in eq. 2.31 reads

in the recently developed and experimentally confirmed form [Shahraam Afshar09]

(see eq. 2.54 for χ(3) )

γ ≈ ωǫ0χ
(3)

∫
S

2
3

[
|−→Φω|4 + 1

2 |
−→
Φ 2

ω|2
]

[∫
S

Re
(−→

Φw ×−→H∗
w

)
ûz

]2 . (2.38)

Note that in this situation, P0 in eqns. 2.35 and 2.36 has the meaning of peak and

background power, respectively.

The propagation equation eq. 2.32 is many times normalised to the characteristic

time, length and power scales in the sense that the substitutions A → A
√
P0/N ,

z → z/LD and T → T/T0 have to be done in eq. 2.32, leading to

∂zA(z, T ) = i
M∑

m=2

βm

Tm−2
0 |β2|m!

(i∂T )mA(z, T ) + i [1 + iτshock∂T ] ×

A(z, T )

∫ ∞

−∞
dT1R(T1)|A(z, T − T1)|2, (2.39)

where the shock and Raman time scales have also changed to τi → τi/T0, LD ≡ T 2
0

|β2|
is the so called dispersion length and M is the linear dispersion truncation order.

2.3.3 Lagrangian formalism

The action associated to the equation of motion eq. 2.39 must be of the form

S(Ψ, ∂zΨ, ∂
m
t Ψ), with m : 1 → M and Ψ = A,A∗. Hence, Euler-Lagrange equa-

tion is given in the form [Riley06]

∂L
∂Ψ

− ∂z
∂L

∂(∂zΨ)
+

M∑

m=1

(−)m∂m
t

∂L
∂(∂m

t Ψ)
≡ 0, (2.40)

where the ∂m
t Ψ with m : 0 →M − 1 have prescribed values at t→ ±∞ [Courant66].

This formulation of the Lagrangian dynamics does not allow to construct an L such

that eq. 2.40 reproduces simultaneously the equations for A and A∗ with non conser-

vative terms. This prevents the Raman interaction term from being accounted for in

L. Interestingly, the shock term in eq. 2.39 ∼ ∂t(|Ψ|2Ψ) can only be reproduced by

eq. 2.40 accompanied by the terms 2|Ψ|2∂tΨ−Ψ2∂tΨ
∗. This yields to the Lagrangian



2.3. Pulses in silica fibres 19

density

L =
i

2
[A∂zA

∗ −A∗∂zA] − 1

2

∑

m≥2

cm [A∗∂m
t A+ (−)mA∂m

t A
∗] −

−1

2
(1 − fR)|A|4 + (1 − δds)(1 − fR)

i

ω0
|A|2 [A∂tA

∗ −A∗∂tA] (2.41)

that in conjunction with eq. 2.40 gives the equation of motion

−i∂zA =

∞∑

m=2

cm∂
m
t A+ (1 − fR)|A|2A+

+(1 − fR)
i

ω0

{
∂t(|A|2A) + (1 − δds)[4|A|2∂tA− ∂t(|A|2A)]

}
, (2.42)

where cm ≡ imβm

T m−2
0 |β2|m!

. δds is introduced to include the self-steepening term in the

dissipative (δds = 1) and conservative (δds = 0) versions (subscript ds stands for ”dis-

sipative self-steepening”). In conventional pulse propagation equations δds = 1 (see

e.g. [Anderson83]). However optical shock waves have been experimentally proved to

preserve energy along propagation [Wan07], suggesting δds = 0, since they only ex-

change energy when overcoming other slower waves in the system. Because clarifying

such an apparent discrepancy is beyond the scope of this thesis, both possibilities are

accounted for. Speculatively, a possible common point between the two perspectives

above could be find by noting that the conservative shock term reproduced by the

Lagrangian of eq. 2.41 is the non-conservative one plus perturbations in the form of

time derivatives of A, which are smoother than the derivatives of A3,

4|A|2A∂tA = ∂t(|A|2A) + 2|A|2∂tA−A2∂tA
∗ ≈ ∂t(|A|2A) + O(∂tA

1). (2.43)

The Hamiltonian density of the system is readily obtained in the form

H ≡ π∂zA+ π†∂zA
∗ − L =

1

2

∑

m≥2

cm [A∗∂m
t A+ (−)mA∂m

t A
∗] +

+
1

2
(1 − fR)|A|4 + (1 − δds)(1 − fR)

i

ω0
|A|2 [A∗∂tA−A∂tA

∗] (2.44)

π ≡ ∂L
∂(∂zA)

= − i

2
A∗, π† ≡ ∂L

∂(∂zA∗)
=
i

2
A. (2.45)
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Non-conservative dynamics associated to the propagation eq. 2.39 will introduce

a Hamiltonian density variation along z. This can be calculated explicitly by substi-

tuting the equation of motion eq. 2.39 and its complex conjugate in the z-derivative

of the Hamiltonian eq. 2.45, what leads to

∂zH = −〈Rd | icm∂m
t σ̂1 | Rd〉 − 〈Rk | σ̂1 | Rk〉−

−(1 − δds)〈Rs | σ̂1 | Rs〉 − δds2〈Sd | icm∂m
t σ̂1 | Sd〉 (2.46)

with

| Rd〉 ≡



fR[1 + i

ω0
∂t](AI)

A


 (2.47)

| Rk〉 ≡



fR[1 + i

ω0
∂t]AI

(1 − fR)|A|2A


 (2.48)

| Rs〉 ≡




fR[1 + i
ω0
∂t](AI)

(1 − fR) 4i
ω0

|A|2∂tA


 (2.49)

| Sd〉 ≡




(1 − fR) i
ω0
∂t(|A|2A)

A


 (2.50)

σ̂1 ≡
[

0 1

1 0

]
, I ≡

∫ ∞

−∞
dt′hR(t′) |A(t− t′)|2 . (2.51)

Eq.2.46 clearly shows the sources of dissipation in this effective model in the form

of expected values of the operators icm∂
m
t σ̂1 and σ̂1. The former gives the loss due to

the interaction of a linear and a nonlinear effect and the latter due to two nonlinear

effects. Raman effect is dissipative because of the presence of all the conservative

terms, i.e., dispersion, Kerr and self-steepening with δds = 0 as one can see in the non

vanishing expected values involving | Rd〉, | Rk〉 and | Rs〉, respectively. On the other

hand, the non-conservative self-steepening term is so only because of the presence of

linear dispersion, otherwise the expected value involving | Sd〉 vanishes. In practise,

fibres are always dispersive and the Raman effect does not appear without Kerr. The

actual value of δds would determine whether | Rs〉 or | Sd〉 have to be considered or
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not.

Appart from physical insight and motivation for further studies on shock waves,

equations 2.46-2.51 provide a useful semi analytical test for convergence in numer-

ical simulations. By computing at each step H ≡
∫ −∞
−∞ dtH(t) the variation of the

Hamiltonian along z, ∆zH = (H(i) −H(i−1))/δz, can be compared with the explicit

variation eq. 2.46, evaluated with the instantaneous numerically computed fields.

2.4 Continuous wave beams

When the nonlinear interactions are considered for monochromatic fields and fre-

quency conversion effects can be disregarded, the temporal response function becomes

instantaneous (local in time) R(t, t1, t2, t3) ∝ δ(t − t1)δ(t − t2)δ(t − t3) [Agrawal07].

With this, eqns .2.9 and 2.12 give a nonlinear polarisation

PNL
x,ω = ǫ0χ

(3)

{
|Ex,ω|2Ex,ω +

2

3
|Ej,ω|2Ex,ω +

1

3
E2

j,ωE∗
x,ω

}
=

ǫ0χ
(3) 1

3

{
2|−→E ω|2Ex,ω +

−→E 2
ωE∗

x,ω

}
, (2.52)

which is equivalent to the substitution R̃(ω1 − ω2) → 4π2δ(ω − ω1)δ(ω − ω2) in

eq. 2.21 and then dielectric constant matrix introduced in the constitutive relation

eq. 2.5 read as

ǫkl =

[
ǫL +

2

3
χ(3)|~Eω|2

]
δkl +

χ(3)

3
E∗

kEl. (2.53)

The nonlinear change of the refractive is assumed to be δnNL ≡ n2I, where

I =
√
ǫLǫ0c|~E|2/2 is the intensity of the light and n2 the so called nonlinar index. If

δnNL <<
√
ǫL and we think of real fields in eq. 2.53, then

χ(3) = ǫLǫ0cn2. (2.54)

Note that the Maxwell equations we started from, eqns. 2.1-2.4, assume the

Fourier transform of the fields gives real quantities in time domain. Other ap-

proaches [Agrawal07] assume these quantities complex, and as a result the nonlinear

susceptibility, χ(3), is obtained scaled by a different factor (RHS of eq. 2.54 appears

multiplied by 4/3).
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2.4.1 Waveguide arrays: discrete NLS equation

In this section we introduce the coupled nonlinear equations used to study monochro-

matic fields in arrays of waveguides. These equations are used straight away in chapter

5 and generalised in chapter 6 to study the spatial coupling between solitons and plas-

mons.

The ansatz for the electric field is taken in the form

−→E ω =
∑

n

−→
F n(x, y)Ãn(ω, z)eiβz, (2.55)

where the subscript n refers to the nth core of the array, βn is the propagation

constant of its mode and β the the one of the whole array mode or supermode.

Repeating the process that led to eqns. 2.30 and 2.31 (assuming therefor that βn, β

correspond to linear modes), but using instead the nonlinear polarisation eq. 2.52,

one gets

2iβ∂z

(
∑

n

Ãn

∫

S

−→
F ∗

q

−→
F n

)
=
∑

n

[
β2 − β2

n

]
Ãn

∫

S

−→
F ∗

q

−→
F n −

−2

3
k2χ(3)

∑

m,n,p

∫

S

{[−→
F ∗

m

−→
F n

] [−→
F ∗

q

−→
F p

]
Ã∗

mÃnÃp+

+
1

2

[−→
F m

−→
F n

] [−→
F ∗

q

−→
F ∗

p

]
ÃmÃnÃ

∗
p

}
. (2.56)

Assuming the separation between the waveguides yields to a small overlap between

the modal distributions of neighbouring cores,

∫

S

−→
F ∗

i

−→
F j ≈

∞∑

k=−∞
ǫ|k|δi,j+k; |ǫ| ≪ 1 (2.57)

eq. 2.56 can be rewritten as

∂zÃn = − i

2β

[
β2 − β2

n

]
Ãn − i

∞∑

j=1

κ(j)
[
Ãn−j + Ãn+j

]
+ iγ|Ãn|2Ãn

+iγs|Ãn|2
[
Ãn−1 + Ãn+1

]
+ i

γv

2
Ã2

n

[
Ã∗

n−1 + Ã∗
n+1

]
(2.58)

where
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κ(j) ≡
[
β2 − β2

n±j

]

2β

∫

S

−→
F ∗

n

−→
F n±j (2.59)

γ ≡ k2χ(3)

3β

∫

S

[
|−→F n|4 +

1

2
|−→F 2

n|2
]

(2.60)

γs ≡ k2χ(3)

3β

∫

S

|−→F n|2
−→
F ∗

n

−→
F n+1 (2.61)

γv ≡ k2χ(3)

3β

∫

S

−→
F 2

n

−→
F ∗

n

−→
F n+1. (2.62)

If only nearest neighbour linear interaction is considered (κ(j) = 0,∀j > 1) and

cross phase modulation (XPM) between the different waveguides is neglected (γv,s =

0), eq. 2.58 simplifies to

i∂zAn = κ [An−1 +An+1] + γ|An|2An n ∈ [1, N ], (2.63)

where κ ≡ κ(1) is the coupling constant of the N identical waveguides array and

An(z) ≡ Ãn(z)exp(iz[β2−β2
n]/[2β]). This equation was first proposed by [Christodoulides88]

and called the discrete nonlinear Schrödinger (DNLS) equation, because of its obvi-

ous similarity with eq. 2.34. The array is made planar (in chapter 5) by imposing the

boundary conditions An ≡ 0 ∀ n /∈ [1, N ].

Note that, for non-identical cores k(j) → k
(j)
n , so there is no well defined coupling

constant for the system, but the equations up to eq. 2.62 would still hold. However,

when some of the considered modes is nonlinear, e.g., a spatial soliton (as in chapter

6), not even eq. 2.56 is valid, and the simple coupled equations are derived in a

slightly different way.





Chapter 3

Continuum generation by

dark solitons in optical fibres

This chapter explores the generation of continuum spectra seeded from dark solitons

in fibres. The key ingredient is the resonant Cherenkov radiation emitted by several

solitons, with different carrier frequencies, across the zero GVD frequency. The Ra-

man effect, always present in silica fibres, turns out to play a key role in the radiation

amplitude, enhancing or suppressing it depending on the fibre dispersion profile. The

chapter is structured as follows. Section 3.1 introduces the dark solitons perturbed

by the presence of a zero GVD frequency. Then, the resonance condition for the per-

turbed dark solitons is derived analytically in section 3.2, proving perfect match with

numerical simulations. Calculation of the resonant radiation (RR) amplitude is the

subject of section 3.3 and the influence of Raman effect in its strength is discussed

only numerically. Raman nonlinearity was not taken into account for the derivation

of the resonance condition, since the modelling did not show that this effect produced

a substantial change in the RR frequency. Finally, the realistic continuum excitation

by a dark soliton train is considered in section 3.4.

3.1 Perturbation of solitons and Galilean transfor-

mation

To study the Cherenkov radiation emitted from a soliton, it is enough to assume the

propagation of the dimensionless electric field envelope, A(z, t), is given by (simplified

form of eq. 2.39)

−i∂zA+
1

2
∂2

tA− |A|2A = −iǫ∂3
tA, (3.1)

25



26 3. Continuum generation by dark solitons in optical fibres

0 

0   

frequency, δ

β 2(δ
) 

(p
s2 /K

m
)

β
2

δ>0δ<0

"Raman Shift"

negative TOD

zero GVD zero GVD

possitive TOD

Figure 3.1: Dispersion profile introduced by the third order dispersion for positive
(red) and negative (blue) ǫ. Horizontal dashed line marks the GVD coefficient, β2, at
the reference frequency ω0.

where the perturbation to the NLSE in the right hand side accounts for the Third

Order Dispersion (TOD), which is controlled here by the coefficient ǫ ≡ β3

6T0|β2| and its

main effect is to introduce a zero GVD frequency, as shown in fig. 3.1. The dispersion

coefficients, β2,3, are evaluated at the reference frequency, ω0.

It is important to note that the solitons of the NLSE (ǫ = 0 in eq. 3.1) given as a

function of t and z, F (z, t) ≡ Asoliton, are at rest in the reference frame defined by t ≡
1
T0

[
T − z

Vg

]
(see section 2.3.1) because the variables (t, z) are treated independently

or, what is the same, the soliton group velocity Vg is a constant parameter. Hence, this

frame is rigid and it does not stay stationary with a soliton which parameters change

during the propagation, what is expected due to various nonlinear effects associated

with the RR, and so it turns out to be an inconvenient frame to work with when

studying perturbation effects. When perturbations are small (|ǫ| << 1), a shift in

the soliton carrier frequency induces a shift in the wave number and group velocity,

but F (z, t) does not lose its solitonic behaviour. Assuming the soliton depth does

not change, all the soliton parameters can be expressed as a function of the soliton

frequency, so it can be the only variable to think of when considering the perturbed

soliton evolution. We can dote our frame with some flexibility if we replace the set of

variables (t, z) by (ξ, z), using the change of variable ξ ≡ t − αz, where α∈ R is the

free parameter. This is the so called Galilean transformation, which allows a reference

frame linear velocity shift from Vg, to match the group velocity of the soliton with

varying parameters. The discussion above motivates the ansatz to solve eq. 3.1 in

the form
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A(z, t) = {F (ξ, z) + g(ξ, z)} eikz−iδst, (3.2)

where F (ξ, z) is the soliton envelope, g(ξ, z) the perturbation field, δs ≡ (ωs −
ω0)T0 the soliton frequency shift from ω0, and k(δs, |F (ξ, z)|) ≡ Ds(δs) + q(|F |) the

associated wave number shift. Ds accounts for the linear shift from β0 due to δs, and

q for the nonlinear contribution due to the soliton background power.

Substituting the ansatz eq. 3.2 into eq. 3.1 and assuming that F (ξ, z) remains

soliton despite the presence of TOD (equivalent to assume that the effect of the

perturbation field g(ξ, z) is to balance the distortion that the TOD would introduce

in the soliton), yields to the equation of motion for the field F (ξ, z)

∂zF + i
d

2
∂2

ξF + iqF = i |F |2 F, (3.3)

where d ≡ 1 + 6ǫδs is the GVD coefficient, and also gives the explicit expressions

for the linear wave number and group velocity shifts,

Ds =
1

2
δ2s + ǫδ3s (3.4)

α = δs + 3ǫδ2s = D
′

s. (3.5)

The latter ones are consistent with the requirements made before (Ds, α = 0 when

δs = 0) and are actually a consequence of the quasi-Galilean invariance of eq. 3.1,

which if ǫ = 0 takes the usual form, Ds = α2

2 and α = δs. Eq.3.3 is the NLSE1 in a

more general way than eq. 3.1, since it accounts for the soliton parameters shift due

to the presence of the perturbation. The well known dark soliton solution of eq. 3.3

requires d > 0, so δs belongs to the normal GVD regime, and is given by [Kivshar97]

F =
√
q [cosφ tanh Θ − i sinφ] (3.6)

Θ ≡ τ cosφ

√
q

d
, τ ≡ ξ − sinφ

√
qdz, (3.7)

being φ ∈ [−π/2, π/2] the greyness parameter and F (φ)∗ ≡ F (−φ). The variable

τ ≡ ξ − sinφ
√
qdz is now introduced to keep grey solitons at rest in our reference

frame, since their velocities are also φ dependent.

The assumptions yielding to eq. 3.3 also give the linearised equation for the

perturbation g, which is coupled with its conjugate complex g∗, and in the reference

1Note the change F → Fe−iqz , q 6= q(z) removes the phase term from eq. 3.3, recovering the
usual NLSE form.
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frame defined by τ reads as

∂z |g〉 + iL̂ |g〉 + O(ǫ2) = ǫ∂3
τ |F 〉 , (3.8)

where

L̂ ≡
[

Ŵ −F 2

F ∗2 ˆ−W ∗

]
, (3.9)

Ŵ ≡ iǫ∂3
τ +

d

2
∂2

τ + i sinφ
√
qd∂τ + q − 2 |F |2 (3.10)

and

|Ψ〉 ≡
[

Ψ

Ψ∗

]
↔ Ψ = F, g. (3.11)

The calculation of the Cherenkov radiation frequency and amplitude is done from

equation 3.8 in the next two sections.

3.2 Radiation frequency: resonance condition

To find the resonant radiation frequency, δ, from eq. 3.8 we need an ansatz for g(τ, z).

The fact that it is treated as a small perturbation yields to our linearised model, in

which several hypo-thetic perturbations with different frequencies would not interact

to each other and would satisfy eq. 3.8 separately. For that, it is enough to consider,

in the zero order approximation, the CW solution

|g〉 =

[
C1

C2
∗

]
eiΩτ +

[
C2

C1
∗

]
e−iΩτ ≡ |g+〉 + |g−〉 , (3.12)

where Ω ≡ δs − δ and |g±〉 are the vectors oscillating like e±iΩτ . A contribution to

the wave number (∼ z) was not included in the exponent of the plane wave because

g has to be phase matched with F and this was already included in eq. 3.2. In this

model, the extension of the perturbation in time domain is infinite and the soliton core

is then of negligible extension. This is the typical scenario where asymptotic analysis

is performed so the perturbation propagation is considered in the limits τ → ±∞,

where the dark soliton tail approaches a CW such that
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lim
τ→±∞

∂m
τ F = 0;∀m > 0

|F∞|2 ≡ lim
τ→±∞

|F |2 = q, (3.13)

so eq. 3.8 becomes a homogeneous system of differential equations

L̂∞ [|g+〉 + |g−〉] = |0〉 , (3.14)

where both terms need to be separately zero and the nontrivial solutions (C1,2 6= 0)

can be found (considering only, e.g., the term ∼ |g+〉) by solving

∣∣∣∣∣
W∞(Ω) −F∞

2

F∞
∗2 −W∞(−Ω)

∣∣∣∣∣ ≡ q2 −W∞(Ω)W∞(−Ω) = 0, (3.15)

where the action of the operator Ŵ∞ has been replaced by the eigenvalue W∞(Ω) ≡
ǫΩ3 − d

2Ω2 − sinφ
√
qdΩ − q, and yields to the sixth order resonance condition

{
ǫΩ3 − d

2
Ω2 − sinφ

√
qdΩ − q

}{
ǫΩ3 +

d

2
Ω2 − sinφ

√
qdΩ + q

}
= −q2. (3.16)

The solution Ω = 0 is a double root and the mathematical reason for it is the

existence of non vanishing off-diagonal terms in eq. 3.15. Because these terms are

precisely the soliton tails it is clear to understand their physical meaning. Indeed,

the tails of the dark soliton are two non zero amplitude plane waves at the carrier

frequency and of course they couple with themselves. Eq. 3.16 reduces then to fourth

order

(
ǫΩ2 − sinφ

√
qd
)2

=
d

2

(
d

2
Ω2 + 2q

)
(3.17)

with solutions

Ω = ± 1

ǫ
√

2


2 sinφ

√
qdǫ+

d2

4
±
√(

2 sinφ
√
qdǫ+

d2

4

)2

+ 4qdǫ2 cos2 φ




1
2

. (3.18)

Because d is positive (the soliton stays in the normal GVD regime), the square

root in eq. 3.18 is real and its modulus bigger than
∣∣∣2 sinφ

√
qdǫ+ d2

4

∣∣∣, so Ω has two

real and two imaginary roots, with opposite signs. The purely imaginary roots have
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Figure 3.2: Dispersion curves for dark soliton (black horizontal line) and the linear
waves propagating on the two tails. Full curves correspond to k+ (tail in which the
radiation is observed) and dashed curves to k− (tail in which only a little grey soliton
is emitted, see fig. 3.5). The vertical dashed lines show the calculated resonant
frequencies, according to eq. 3.18. Parameters: q = 1, T0 = 0.1ps, ǫ = 1/12, δs = 0,
φ = 0 (left) and φ = ±0.25π (right)

the meaning of non radiative localised correction to the dip’s profile [Karpman93],

whereas the purely real ones correspond to the perturbation fields g(τ, z). From now

on, we will only refer to the non zero real roots which are shifted from the soliton

frequency by an equal amount |Ω|.
An equivalent way of calculating the resonance condition is to include a nonzero

perturbation wavenumber shift, kr, in eq. 3.12, introducing the change (δs − δ)τ →
(δs − δ)τ + kshiftz to reproduce eq. 3.16, and then solving the system of equations





ks = Ds + q = ǫδ3s + 1
2δ

2
s + q

kr = ks + kshift ≡ k± = ks − ǫΩ3 + sinφ
√
qdΩ ± Ω

[
d2

4 Ω2 + qd
] 1

2
. (3.19)

The phase matching condition ks = kr ⇔ kshift = 0 leads the the resonance

condition eq. 3.18. The resonances are the consequence of the intersection of the

soliton dispersion with the one of the radiation on top of the CW background (see

fig.3.2).

3.2.1 Effect of soliton greyness and frequency detuning

Fig.3.3 shows the Cherenkov roots for δs = 0 along a period of the greyness phase,

which provides some tunability for the resonant radiation. The effect of soliton de-
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Figure 3.3: Resonances of eq. 3.18 as a function of the greyness phase (φ ∈
[
−π

2 , 3
π
2

]
,

ǫ = 1
12 ) for different positive (left) and negative (right) values of β3. Full curves mark

the most intense resonances whereas the weaker are on the dashed curves. The dashed
vertical lines mark the black solitons (sin =≡ 0). Soliton detuning from carrier was
set to zero (δs = 0). Crosses mark simulation results

tuning from the reference frequency can be seen in fig. 3.4, where δs varies along

the normal dispersion regime. The roots fall to zero at the edge between normal and

anomalous GVD, according with the fact that RR is not generated if β2 = 0. However,

both 3.3 and 3.4 show that the resonances are nonzero in the CW limit (φ = ±π
2 ),

conversely to what one would expect, since higher order dispersion is known not to

affect the CW solution of the NLSE and so there is no extra radiation generated by

them. This will be understood in section 3.3, where the amplitude of the Cherenkov

waves is calculated and found to be exactly zero for φ = ±π
2 (see eq. 3.60).

3.2.2 Numerical results

Direct simulation of eq. 3.1 with positive TOD, initialised with a seed satisfying

periodic boundary conditions (PBC)

Fseed(ξ) = H(ξ)F (φ, ξ − ξ0, z = 0) − [1 − H(ξ)]F (−φ, ξ + ξ0, z = 0), (3.20)

being H(ξ) the Heaviside step function, ξ0 > 100T0 and F given in eq. 3.6, gives the
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Figure 3.4: Resonances of eq. 3.18 as a function of detuning, δs, for different φ values.
β3 = 0.5ps3/Km (left) and β3 = −0.5ps3/Km (right). The dashed vertical lines mark
the zero GVD point. The strongly emitted radiation is found along the full curves.

propagation picture shown in fig. 3.5.a. The temporal evolution shows the emission

of radiation in both tails. In the leading edge, a lower amplitude grey soliton (bigger

|φ| than the original dip) is emitted, but it is not considered in our analytics since we

linearised the equation for the perturbation g (see eq. 3.8). In the trailing, the linear

Cherenkov waves are seen to propagate on top of the soliton background generating

fast oscillations in time domain as previously discussed in [Karpman93,Afanasjev96]

which frequency components are given in eq. 3.18. The spectral features at 30LD are

shown in fig. 3.5d being the most relevant one the appearance of a sharp resonant

peak in the anomalous dispersion regime. The agreement between simulations and

resonance condition eq. 3.18 is also shown in this figure.

Changing the sign of ǫ in eq. 3.1 is equivalent to reverse the t axis so fig. 3.5

for ǫ < 0 would be identical with the difference that the effects in the leading edge

would occur in trailing instead and vice versa. For the same reason, spectral features

would also be frequency reversed. Simulations with different greyness show the same

features and the resonances found numerically are in excellent agreement with the

theory (see fig. 3.3).

The cross-correlation frequency resolved optical gating (XFROG) spectrogram

[Dudley06] in fig. 3.5b is used to make clear the relation between temporal and

spectral features and it is calculated as

S(δ, ξ) ≡
∣∣∣∣
∫ +∞

−∞
dξ′sech(ξ′ − ξ)A(ξ)e−iδξ

∣∣∣∣
0.1

, (3.21)
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Figure 3.5: (c) Time domain evolution of a T0 = 100fs black soliton along 30LD of a
fibre with ǫ = 1/12. (a) is the final state of (c), which spectrum is shown in (d). (b)
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where the power 0.1 is introduced to emphasise the fluctuations in the background

intensity due to the radiation. Both real roots are seen to propagate on the same

tail, as expected in eq. 3.19, although the intensity of the root in the normal GVD

appears to be much smaller. Understanding the latter feature is one of the scopes of

next section.

3.3 Radiation amplitude

According to fig. 3.5.a, the emission of radiation is assumed here to reach a steady

state after the transient associated with the emission of the grey soliton in the opposite

tail. This is in agreement with numerical simulations performed along a distance

which is short enough to consider that the soliton parameters do not drift during the

radiation emission. The model is based on a perturbative approach in the perturbation

field coefficients. Breaking to first order the CW approximation done for the RR

frequency in the previous section, the perturbation is taken in the form

g(τ, z) = G1(τ, z)e
iΩτ +G∗

2(τ, z)e
−iΩτ , (3.22)

which contains the waves at the two resonant frequencies propagating on top of

the same soliton tail and ∂m
τ G

(∗)
1,2 ≈ 0∀m > 1. Substituting eq. 3.22 into eq. 3.8 gives

{
∂zG1 + χ+∂τG1 + iW+G1 − iF 2G2

}
eiΩτ+

+
{
∂zG

∗
2 + χ−∂τG

∗
2 + iW−G∗

2 − iF 2G∗
1

}
e−iΩτ = ǫ∂3

τF ≡ B(τ), (3.23)

where the group velocity coefficients χ± ≡ ∂ΩW± and W± ≡ W (±Ω). The RHS

of eq. 3.23, B(τ) ≡ ǫ∂3
τF (τ, z), is the driving term for the perturbation growth. This

term is not important for the radiation frequency calculation, but neglecting it yielded

to arbitrary amplitudes C1,2 in section 3.2. In other words, the soliton core is needed

to fix the radiation amplitude. The driving term can be written as

B(τ) = B+(τ)eiΩτ +B−(τ)e−iΩτ

B±(τ) ≡
∫ −Ω

−∞

d(Ω
′ − Ω)

2π
B̃(∓Ω

′

)e±i(Ω
′−Ω)τ (3.24)

The resonant nature of the radiation (small spectral width) and the fact that Ω is

large compared with the soliton spectral width let us assume that the functions B±(τ)
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are slowly varying function compared to the terms e±iΩτ . This implies that most

of the resonant radiation at the frequency Ω is excited by the Fourier components

of the driving term, B̃(Ω), around that frequency, what means that the sources for

the RR at ±Ω, B±(τ), can be approximately replaced by the whole source, B(τ) ≡∫ +∞
−∞

dΩ
′

2π B̃(Ω
′

)e−iΩ
′
τ , since the only difference is the extent of the integral into a

frequency region far detuned from ±Ω that barely contributes to the radiation. Under

these considerations eq. 3.23 becomes a system of coupled equations for G1 and G2

∂z |a〉 + χ̂∂τ |a〉 + iL̂ |a〉 = |B〉 , (3.25)

where

|a〉 =

[
G1

G2

]
(3.26)

χ̂ =

[
χ+ 0

0 χ−

]
(3.27)

L̂ =

[
W+ −F 2

F ∗2 −W+

]
(3.28)

|B〉 =

[
B

B∗

]
e−iΩτ . (3.29)

Simulations in section 3.2 showed that only one of the roots was of relevant mag-

nitude. Our aim now is to understand why one of them is much stronger than the

other and to obtain an approximate equation for the former one.

3.3.1 Equations for the two resonant waves

To solve eq. 3.25 we take advantage from the bi-orthogonality relations satisfied by

the eigenvectors of L̂∞, |z±〉, and L̂†
∞, |v±〉, i.e., 〈zm |vn〉 = δmn (m and n are symbolic

representation for + and −), which share the eigenvalues

λ+ = 0

λ ≡ λ− = W+
∞ −W−

∞
, (3.30)

where the resonance condition
∣∣∣L̂∞

∣∣∣ ≡ q2 − W−
∞W+

∞ = 0 (see eq. 3.15) implies

W+
∞W−

∞ = q2. For the following calculations it is useful to know that the eigenvectors

|z±〉 ≡
1

W±2

∞ − q2

[
F 2
∞

W±
∞

]
, |v±〉 ≡

[
−F 2

∞
W±

∞

]
(3.31)
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satisfy properties

〈z± |z±〉 =
q2+W±2

∞

[W±
∞λ]2

, 〈z± |z∓〉 = −2
λ2

〈zm |vn〉 = δmn, 〈vm |vn〉 = q2 + Wm
∞Wn

∞

|z±〉 = 1

W±2
∞ −q2

[
−1 0

0 1

]
|v±〉

. (3.32)

Using any of the two resonant frequencies, ±Ω, to evaluate the scalar products

one finds that 〈zm | zn〉 ∼ O(ǫ4), because Ω = ±1/2ǫ+ O(1).

We proceed by introducing the expansion |a〉 = U(τ, z) |z+〉 + D(τ, z) |z−〉 in eq.

3.25 to obtain

∂z [U |z+〉 +D |z−〉] + χ̂∂τ [U |z+〉 +D |z−〉] + iL̂ǫ [U |z+〉 +D |z−〉] +

iD
[
W+

∞−W−
∞
]
|z−〉 = |B〉 , (3.33)

where

L̂ǫ ≡ L̂− L̂∞ =


 −2

(
|F |2 − q

)
−F 2 + F 2

∞

F ∗2 − F ∗2

∞ 2
(
|F |2 − q

)

 , (3.34)

which, when projected onto the vectors 〈v±|, using properties in eq. 3.32, gives

the two coupled equations for the amplitudes U and D,

∂zU + ∂τU 〈v+| χ̂ |z+〉 + ∂τD 〈v+| χ̂ |z−〉 + iU 〈v+| L̂ǫ |z+〉 +

iD 〈v+| L̂ǫ |z−〉 = 〈v+ |B〉 (3.35)

∂zD + ∂τU 〈v−| χ̂ |z+〉 + ∂τD 〈v−| χ̂ |z−〉 + iU 〈v−| L̂ǫ |z+〉 +

iD 〈v−| L̂ǫ |z−〉 + iD
[
W+

∞−W−
∞
]

= 〈v− |B〉 . (3.36)

The expansion of |a〉 can be expressed through eqns. 3.26 and 3.31 in the more

explicit form

[
G1

G2

]
=

U

W+2

∞ − q2

[
F 2
∞

W+
∞

]
+

D

W−2

∞ − q2

[
F 2
∞

W−
∞

]
, (3.37)

which together with eqns. 3.35 and 3.36 tell us about the relative strength between

U and D, as described below. Indeed, the strongly radiating root is the one spectrally

located in the anomalous dispersion regime, so its frequency is sign(ǫ)Ω (because

Ω ≡ δs − δ). Mathematically, because Ω ≈ 1/2ǫ, λ ∼ O(1/ǫ2) and it becomes large
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Figure 3.6: Inverse group velocity coefficient of eq. 3.40.

enough for eq. 3.36 to show that D ≈ B
λ ∼ O(ǫ3) (after neglecting all the terms

containing derivatives or ∼ L̂ǫ). Considering that the scalar product (U,D constants

now)

〈a | a〉 = |U |2〈z+ | z+〉 + |D|2〈z− | z−〉 + U∗D〈z+ | z−〉 + +UD∗〈z− | z+〉 (3.38)

is of order g2 ∼ O(ǫ2), that all the brackets are ∼ O(ǫ4), and D ∼ ǫ3), proves that

U ∼ 1/ǫ (otherwise the order of g is not reached) and so |U | >> |D|, what implies

that the second term in the RHS of eq. 3.37 can be neglected and then eq. 3.35 can

be simplified, neglecting the terms ∼ D, to

∂zU + χ̂++∂τU + iL̂ǫ++U = B+, (3.39)

and its coefficients are

χ̂++ ≡ 〈v+ | χ̂ | z+〉 = 3ǫΩ2 − dΩ
q2 + W+2

∞
q2 −W+2

∞
− sinφ

√
qd (3.40)

L̂ǫ++ ≡ 〈v+ | L̂ǫ | z+〉 = 2
[
q − |F |2

] q2 + W+2

∞
q2 −W+2

∞
+

2W+
∞

q2 −W+2

∞
R

{
F ∗2

∞
[
F 2
∞ − F 2

]}

(3.41)

B+ ≡ 〈v+ |B〉 = 2ǫq2
cos4 φ

d
3
2

1 − 2 sinh2 Θ

cosh4 Θ

[
F ∗2

∞ −W+
∞

]
e−iΩτ . (3.42)

The magnitude of the coefficients can be seen in figs. 3.6, 3.7 and 3.8.
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Figure 3.7: Potential coefficient of eq. 3.41. ǫ > 0(> 0) in left (right) column and
|ǫ| = 0.05 (0.083) in top (bottom) row.
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3.3.2 Ratio between the spectral resonant peaks

After neglecting the terms ∼ D in eq. 3.37, the relative strength between the resonant

peaks is given by the modulus of the ratio between the components of the vector |z+〉,

R ≡
∣∣∣∣
G1

G2

∣∣∣∣
2

=
q2

W+2

∞
. (3.43)

Fig. 3.9a shows that the predicted ratio dramatically increases when |ǫ| becomes

smaller and it is in excellent agreement with the simulation results (dots). The reason

for this big ratio is simply that β(Ω) tends to zero when |ǫ| is small, as shown in fig.

3.9b. It turns out that the strong radiation oscillates at the frequency Ω = sign(ǫ)|Ω|
and it always lies in the anomalous GVD region, according to figs.3.5b,d and to the

figures shown later on in this chapter.

3.3.3 Amplitude of the stronger RR root

The general solution of eq. 3.39 is found in the integral form
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U (τ, z) =
e−iS(τ)

χ̂++

∫ τ

τ−χ̂++z

dxB+ (x) eiS(x), (3.44)

with

S (τ) ≡ 1

χ++

∫
dτLǫ++ =

1

χ̂++

2

q2 −W+2

∞

{[
q2 + W+2

∞

]
cosφ

√
qd tanh Θ +

W+
∞

[
τq2 −

∫
dτRe

(
F ∗2

∞F 2
)]}

(3.45)

and

∫
dτRe

(
F ∗2

∞F 2
)

= τq2 cos2 (2φ) − q
3
2

√
d tanh Θ cosφ cos (2φ) +

4q
3
2

√
dsign(cosφ)sign(ǫ) ln (coshΘ) sin2 φ cosφ. (3.46)

−χ̂++ is the radiation inverse phase velocity in the reference frame defined by τ ,

which is consistent with the fact that χ̂++ and ǫ have the same sign and also implies

the condition |χ̂++z| > |τ |, restoring causality in the integral of eq. 3.44, which is

nonlocal in time and extends from the soliton dip to the radiation wave front. The

asymptotic values of the amplitude are
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lim
z→∞,τ→−sign(ǫ)∞

U (τ, z) = 0 (3.47)

lim
z→∞,τ→sign(ǫ)∞

U (τ, z) = sign(ǫ)
e−iS(sign(ǫ)∞)

χ̂++
I (3.48)

with

I ≡
∫ ∞

−∞
dτB+ (τ) eiS(τ) (3.49)

and

S (τ → sign(ǫ)∞) =
|ǫ|
ǫ

2
√
qd cosφ

χ++[q2 −W+2

∞ ]
[q2 + qW+

∞ cos 2φ+ W+2
∞ ]. (3.50)

Equations 3.47 and 3.48 state that the resonant radiation travels on top of the

trailing (leading) tail for positive (negative) ǫ, in agreement with numerics (see fig.3.5).

Because for the radiation tail W∞ = O(ǫ2) << q, eqns. 3.40, 3.41 and 3.42 may be

simplified to

χ̂++ ≈ 3ǫΩ2 − dΩ − sinφ
√
qd (3.51)

L̂ǫ++ ≈ 2
[
q − |F |2

]
(3.52)

B+ ≈ ǫ(∂3
τF )F ∗2

∞ e−iΩτ = 2ǫq2
cos4 φ

d
3
2

1 − 2 sinh2 Θ

cosh4 Θ
F ∗2

∞ e−iΩτ , (3.53)

which let us rewrite eqns. 3.45-3.50 as

S (τ) ≈ 2
√
qd cosφ

χ̂++
tanh Θ (3.54)

S (τ → sign(ǫ)∞) ≈ |ǫ|
ǫ

2
√
qd cosφ

χ++
(3.55)

U∞ ≡ lim
z→∞,τ→sign(ǫ)∞

U (τ, z) =
|ǫ|
χ̂++

Ie−iS∞ , (3.56)

I ≡ F ∗2
∞

∫ ∞

−∞
dτ∂3

τFe
i[S(τ)−Ωτ ]. (3.57)

By realising that the driving term is a localised function in τ , the tanh inside S(τ)

can be approximated by its argument and eq. 3.57 becomes the Fourier transform of

the driving at the frequency Ω̃. The asymptotic amplitude finally reads
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U∞ ≈ π|ǫ|
√
dΩ̃3

χ̂++
F ∗2
∞Csch

(
πΩ̃

2
√
q/d cosφ

)
e−iS∞ , (3.58)

where

Ω̃ ≡ 2q cos2 φ

χ̂++
− Ω. (3.59)

With all the developed above, the asymptotic expression for the perturbation field

in eq. 3.22 reads

g∞ ≈ −π|ǫ|
√
dΩ̃3

χ̂++
e−iS∞Csch

(
πΩ̃

2
√
q/d cosφ

)
eiΩτ . (3.60)

g∞ does not depend on time, what means that the perturbation is a nondispersive

or superfluid wave packet. However, this is a consequence of the assumption made in

eq. 3.22 that ∂m
τ G ≈ 0 ∀m > 1, which automatically prevents a GVD term ∼ ∂2

τG

from appearing in eq. 3.25. Hence it is, in principle, true only up to first order

approximation, since the amplitude U is associated to the superfluid eigenvector, i.e.,

the one with the zero eigenvalue in the spectrum of L̂∞ (and L̂†
∞).

Fig.3.10 shows the amplitude of the soliton background oscillationsdue to radiation

(see inset of fig. 3.5a) as a function of φ and ǫ > 0. The dots correspond to the
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simulation results with δs = 0 as input, whereas the lines show the analytical results

derived from eq. 3.58, for different values of soliton frequency detuning, δs = 0.

Several important features of fig. 3.10 are discussed below.

The functional behaviour of the amplitude eq. 3.60 as a function of greyness

is well reproduced by the simulations and it can be understood as follows. The

radiation frequencies, solution of eq. 3.18, are plotted in fig. 3.4 as a function of

soliton background detuning, for different values of φ and ǫ > 0. Note that grey

solitons with φ < 0 will radiate stronger than φ > 0 because their backgrounds are

spectrally closer to their roots and the efficiency of energy transfer will be therefor

higher. However, when |φ| increases towards the CW limit, the spectral content of the

frequency in resonance decreases. These two effects compete for φ < 0, resulting in

the typical optimisation curve shape seen in fig. 3.10, where the maximum amplitude

is achieved by a greyness of φ ≈ −π/8.

Regarding the absolute value of the amplitude, fig. 3.10 shows that the agreement

between the theory and the modelling depends strongly on the soliton background

shift, δs. Although the initial value in simulations is δs = 0, we indeed expect a little

shift of this parameter along the propagation. The soliton greyness is also expected to

change during propagation, however the dependence of the amplitude with greyness

showed in fig. 3.10 suggests that the effect of a little drift in φ is much smaller than

the one of a little change of δs, so we do not consider it in the discussion. We focus

below in the origin of the soliton frequency shift and its influence on the strength of

the Cherenkov radiation.

Dark solitons keep the resonant radiation extended on top of one tail so the linear

waves mix with the background. Therefor, for positive (negative) TOD the frequency

of g is smaller (bigger) than the soliton carrier and averages down (up) the soliton

background frequency δs. The spectrum is in any case moved towards the zero GVD,

increasing the energy efficiency transfer to the RR and its amplitude [Milián09]. Due

to this, the discrepancy between theory and modelling will be bigger when the strength

of the emitted radiation is bigger too. In fig. 3.10, the maximum δs required to match

the numerical results (at φ ≈ −π/8) is of δs ∼ −0.26, which is a small fraction of the

spectral distance, ∆, between the initial soliton carrier and the zero GVD frequency

∆ ≡ δGV D − δs = −2, δs ≈ ∆/8 (the case of ǫ < 0 is mirror image in φ axis). This

explains qualitatively the discrepancy between the predicted curve at δs = 0 and the

modelling. How to estimate quantitatively the background frequency shift is still an

opened problem that we did not face here.
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Figure 3.11: Black solitons after propagating 30LD with TOD perturbation only (top)
and with Raman on (bottom). ǫ > 0(< 0) in the left (right) figures. Solid lines mark
the zero GVD and dashed the predicted resonant frequencies.

3.3.4 Raman effect

When the Raman term is taken into account, eq. 3.1 takes the form of eq. 2.39 with

M = 3 and τshock = 0,

−i∂zA+
1

2
∂2

tA+ iǫ∂3
tA = A

∫ +∞

−∞
dt′R(t′)|A(t− t′)|2, (3.61)

where the Raman response function is the one in eq. 2.33 with τ1 = 12.2/T0(fs)

and τ2 = 32/T0(fs). Its main effect can be seen for black solitons in fig. 3.11
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Figure 3.12: XFROG diagrams of unperturbed (a) black and (b,c) grey solitons with
φ = ±0.25π.

and is to change the intensity of the resonant radiation (not the frequency), being

both radiation peaks dramatically amplified for positive TOD coefficient (ǫ > 0) and

almost suppressed for negative TOD (ǫ < 0). This proofs that the Raman scattering

decreases the soliton frequency, moving it towards the zero GVD if ǫ > 0, enhancing

the efficiency of energy transfer from the soliton to the RR. The opposite happens if

ǫ < 0. The spectral asymmetry introduced by Raman effect for the different signs of

ǫ was experimentally measured by [Weiner89].

In physical grounds and according to the second law of thermodynamics [Sears75],

inelastic interactions (such as Raman) between optical solitons (of any kind) and

mater vibrations (phonons) are expected to occur in a way in which the energy flows

from the optical state to the phonons [Saleh11a]. This is simply because the optical

solitons are coherent (ordered) states whereas the phonon vibrations are incoherent

or basically noise (disordered). If disorder is to increase in the light-matter system,

one could intuitively predict that ordered energy is converted into disordered emery,

that is, the phonons energy increases at the expense of the soliton energy, whose

decrease induces an average frequency down- or red-shift. A soliton blue shift can

only occur, according to this idea, if the classical analogue photon number [Blow89]

is not conserved. Indeed, soliton blue-shift in lossy (plasmonic) systems has been

recently observed [Saleh11b].

Grey solitons also respond to Raman effect differently, depending on the sign of φ, as

discussed now. The stationary reference frame introduced in setcion 3.1 moves with

the physical (lab frame) group velocity given by

VGrey(δ, φ, q; ǫ) =
V0

1 + V0T0

LD
[D′

s + sinφ
√
qd]

, (3.62)
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Figure 3.13: Solitons after propagating 30LD. (a) φ = −π
4 and (b) φ = π

4 under posi-
tive TOD perturbation only. (c) and (d) show, respectively, the Raman amplification
(ǫ > 0) for the radiation emitted in (a) and (b).

where the constant V0 ≡ 1/β1(δs) > 0 is the group velocity of the unshifted black

soliton. Although solitons with greyness of opposite sign have equal intensity profiles

and background frequencies, their spectrum centre of mass shifts from δs differently

(see figs. 3.12b,c), leading to their different velocities. Note by eq. 3.62 that the

slower one always has positive phase φ, regardless the sign of ǫ.

TOD and Raman effects perturb grey solitons qualitatively in the same way as

they do for black solitons. However, as seen in fig. 3.13 the sign of the greyness phase

introduces important differences. For ǫ > 0, the faster one (φ < 0) radiates always
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Figure 3.14: Perturbation of black (top) and grey (bottom) solitons under TOD only
after propagation distance of 30LD in fibres with the different sign of ǫ.

stronger and the opposite occurs when ǫ is negative. In terms of energy transfer it

is clear from figs. 3.4.a and 3.3.a that it should occur in this way because the roots

are closer in frequency domain for the faster soliton. This is the opposite of what

one would naively expect, since the soliton which radiates stronger has its spectral

centre of mass moved away from the zero GVD point and the efficiency of the energy

transfer would be expected to decrease. However, this argument does not apply here

since there is no shift in the background carrier δs. The greyness phase represents an

internal degree of freedom with its particular physics.

Grey soliton velocity depends on both δs and φ, see eq. 3.62, which are modified

by TOD and Raman at the same time. On the one hand, the two effects induce a

frequency shift. Raman redshifts δs (see fig. 3.11) and TOD induces a shift because

of the radiation being extended on top of the CW background. In fact, the radiation

averages up (down) δs for ǫ < 0 (ǫ > 0). On the other hand, there is the greyness shift.
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Fig.3.14 shows the initial (black) and final (blue) states of dark solitons after 30LD

with different input φ and perturbed under TOD only, which is seen to induce a shit

φ → ±π/2 under ±|ǫ| perturbation. Perhaps the reason behind it is as follows. The

RR soaks away the soliton spectral component in resonance, creating an asymmetry in

the dark soliton spectrum around the dip resembling the typical spectral asymmetry

of grey solitons (see fig. 3.12). Actually, in terms of dark soliton spectra, ǫ > 0 (ǫ < 0)

induces a φ < 0 (φ > 0) type defect. Two effects could be simultaneously associated

to the creation of such defect. First, the soliton throws it away in the form of a φ < 0

(φ > 0) grey soliton for ǫ > 0 (ǫ < 0). According to eq. 3.62, for positive (negative)

ǫ this low amplitude soliton is faster (slower) than the original one, conversely to

radiation and hence they must propagate on top of opposite background tails, as all

the simulations confirm. Second, the soliton spectrum stability recombines internal

frequencies to compensate for this defect. If most of them come from frequencies

further detuned from the zero GVD frequency than δs, then the soliton spectrum

induces to itself the greyness shift consistent with figs. 3.14a-d.

Raman effect is shown in fig. 3.15 and always slows down the solitons, regardless

their initial greyness and ǫ. According to eq. 3.62, it implies, together with the

red-shift, that Raman always induces the shift φ→ +π/2.

The picture explained above is expected to hold in the cases where TOD is of

important magnitude, that is for black solitons and the dark ones with φ > 0 when

ǫ < 0 and vice versa. In the cases greyness has the same sign as TOD, the nonradiative

corrections to the soliton dip (imaginary roots of eq. 3.18) may introduce their own

φ-shifts. In fact, the initially φ = −π/4 soliton in fig. 3.15c does not seem to evolve

according to the previous explanation.

3.4 Continuum generation in the realistic excitation

Higher order dark solitons that decay, under the presence of higher order effects, into

a train of fundamental dark solitons (as for bright solitons), each with different am-

plitude, width, carrier frequency and phases, do not exist. However, a train of dark

solitons with these features can be generated, as proposed and observed in [Rothen-

berg91,Rothenberg92], by the interference of two suitably delayed (bright) pulses in

the normal dispersion regime. The different amplitude and carrier frequencies in this

case are due to the strongly chirped state of the whole pulse. Hence, if higher or-

der effects are present in the system and their characteristic lengths are bigger than



3.4. Continuum generation in the realistic excitation 49

−660 −640 −620 −600 −580
0

0.2

0.4

0.6

0.8

1

time, t

|A
|2

With Raman

ε=−1/12

φ=0

(a)

−620 −600 −580 −560 −540
0

0.2

0.4

0.6

0.8

1

time, t

|A
|2

φ=0

ε=+1/12

(b)

−300 −200 −100 0 100 200 300
0.6

0.7

0.8

0.9

1

1.1

time, t

|A
|2

φ=+π/4φ=−π/4

ε=−1/12

(c)

−300 −200 −100 0 100 200 300
0.6

0.7

0.8

0.9

1

1.1

time, t

|A
|2

ε=+1/12

φ=−π/4 φ=+π/4

(d)

Figure 3.15: Perturbation of black (top) and grey (bottom) solitons under TOD and
Raman after propagation distance of 30LD in fibres with the different sign of ǫ.
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Figure 3.16: (a) Temporal evolution of the dark soliton train under Raman scattering
and positive TOD. Here, ǫ = 0.0217 and initial condition is A =

√
10[sech(t − 3) +

sech(t+ 3)], with T0 = 100fs. (b) is the same as (a), but ǫ = −0.0217
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LD =
T 2

0

|β2| , the train will be generated before the higher order ones play a significant

role. Fig.3.16 shows the evolution in time domain under Raman scattering and TOD.

When ǫ > 0, fig. 3.16a, the solitons start radiating and a continuum spectra is gener-

ated. Note that the solitons generated in the train tend to be black [Rothenberg91].

The ones radiating are the ones found for t < 0, which are the fast ones and hence

spectrally closer to the zero GVD frequency, therefor expected to radiate stronger

than the slow ones, found at t > 0. On the contrary, if ǫ < 0, fig. 3.16b, Raman

enhances the stability of the train because of the radiation suppression.

Figs.3.17a,b show the corresponding spectral evolution of the dark soliton train

in fig. 3.16. As expected, when ǫ > 0, there is a much stronger transfer of energy

to the anomalous GVD region than in the ǫ < 0 case. Absence of Raman scattering

yields to the spectra in figs. 3.17c,d, which final states are compared with those with

Raman in figs. 3.17e,f.

3.5 Conclusions: optimal supercontinuum

Cherenkov radiation is efficiently emitted buy dark solitons close to a zero GVD

frequency with positive TOD, due to the Raman effect. Frequency and amplitude

of the radiation is controlled by the soliton parameters, i.e., background amplitude,

q, frequency, δs and greyness, φ. The latter one, can be easily controlled in realistic

experiments with dark soliton trains by introducing a relative amplitude and phase

between the input delayed bright pulses [Rothenberg91]. Besides, it plays a critical

role in the radiation properties, since it provides a tuning in the continuum in such a

way that spectral content is enhanced at the expense of the emitted radiation intensity,

and vice-versa (see figs. 3.3a, 3.4a and 3.10 altogether). Regarding the spanning of the

continuum, possibly the most crucial parameter is the number of dark solitons in the

train that radiate efficiently (similar to the bright soliton order N), which is expected

to be around half of them (see 3.16) and can be arranged from initial conditions (see

e.g., [Finot06]). Thus, the problem of how to generate an optimised continuum, with

the desired balance between spectral width and power, may be easily solved from the

work developed here and remains opened for the future.
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Figure 3.17: (a) and (b) are the spectral evolution of the dark soliton train in
figs..3.16(a) and (b), respectively. (c) and (d) correspond to the absence of Raman
effect and the output spectra with (full) and without (dashed) Raman are compared
in (e) and (f). TOD is positive for the left column and negative for the right one.





Chapter 4

Polychromatic Cherenkov

radiation and continuum

generation in tapered fibres

In this second chapter about continuum spectra, we focus on bright solitons, which

are extensively studied in the context of SC generation. As mentioned in chapter 1,

the Cherenkov radiation associated to bright solitons in SC experiments is usually of

very low intensity and highly monochromatic [Skryabin10], being necessary the use

of input pulses with a peak power of the order of ∼ 10kW to achieve a big spectral

broadening, which is constituted by the contribution of tens of solitons, each with

their associated resonant radiation spectral peak. Here it is numerically investigated

the spectral broadening of the Cherenkov wave emitted from a single fundamental

bright soliton, for which the use of a tapered fibre becomes necessary.

Tapered optical waveguides with dispersion and nonlinear response varying along

the waveguide length have been already considered for many applications, which in-

clude pulse compression [Travers07,Gérôme07], supercontinuum generation [Kudlin-

ski06,Falk05], radiation trapping [Travers09], control of the soliton self frequency shift

(SSFS) [Pant10,Judge09,Judge10] and blue-shift [Stark11b], for creating the effective

amplification [Davoyan10] and parabolic pulses [Latkin07].

In most of the above cases the prime role of the taper is to keep the solitons

energy and control their durations, while other effects follow from it. It is known

that in SC generation, solitons in the spectral range of the anomalous GVD lose

a little fraction of their energy into the dispersive waves emitted into the range of

normal GVD [Skryabin10]. This emission is the so called Cherenkov radiation, which

intensity is exponentially sensitive to the detuning of the soliton from the zero GVD

53
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frequency [Biancalana04].

In this chapter it is demonstrated, merely by means of numerical simulations, that

a single fundamental soliton in a tapered fibre can develop a spectrally broad tail of

the intense polychromatic Cherenkov radiation, forming a homogeneous continuum.

Conversely to the applications above, the effect presented here requires the soliton

to lose a significant fraction of its energy. This becomes possible, because tapering

provides conditions for maintaining small spectral gap between the Raman shifting

pulse and the zero GVD point, thus efficiency of the Cherenkov radiation remains

high over long propagation distances.

The text below is structured as follows. The first part, section 4.1 introduces the

Cherenkov radiation for bright solitons. Some properties of the tapers studied here

are described in 4.2. Section 4.3 focuses on the first zero GVD point (ǫ > 0) and 4.4

on the second one (ǫ < 0). It is observed that depending on the input pulse power

and tapering, the radiation can be emitted either as a train of pulses or as a wide and

strongly chirped pulse. In the latter case, the radiation can be compressed using a

piece of fibre with suitably designed dispersion profile, as explained in section 4.5.

4.1 Bright solitons and Cherenkov radiation

Resonance condition for bright solitons in the proximity of a zero GVD can be found

by following exactly the same procedure of chapter 3 [Biancalana04]. Briefly, eq. 3.1

with the negative sign for the GVD term ∼ ∂2
t together with the ansatz eq. 3.2 yields

to eq. 3.3 with d = −1+6ǫδs, d < 0 yielding to anomalous GVD, which bright soliton

solution is

F =
√

2qSech(

√
2q

−dξ). (4.1)

Also, same expression for eq. 3.8 is recovered, however the asymptotic analysis

yields to the operator L̂∞ having zero off-diagonal terms and the null determinant

condition W∞(Ω)W∞(−Ω) = 0 (Ω ≡ δs − δ), where W∞(Ω) ≡ ǫΩ3 − d
2Ω2 + q, is the

third order polynomial

q =
d

2
Ω2 − ǫΩ3. (4.2)

The only real root of eq. 4.2, δr, is located in the normal GVD regime at a separa-

tion from the zero GVD frequency such that |δr − δzGV D| & 2|δs − δzGV D|. Condition

eq. 4.2 has the meaning of phase matching between the soliton with propagation con-

stant ks ≡ β0 + β1(ω − ω0) + 1
2γP0 and the linear waves (on top of zero background,
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since bright soliton tails decay to zero), with kl ≡ β0+β1(ω−ω0)+
∑J

j=2 βj(ω−ω0)
j/j!,

where β0, β1 are, respectively, the propagation constant and the inverse group velocity

of the linear fibre mode at ω0. This matching reads

γP0LD

2
=

−1

2
(ω − ω0)

2T 2
0 + ǫ(ω − ω0)

3 + LD

∑

j≥4

βj

j!
(ω − ω0)

j , (4.3)

which is equivalent to eq. 4.2 with the arbitrary parameter δs = 0, q = γP0LD/2

plus the sum over j, which accounts now for the whole linear fibre dispersion. An

example of the phase matching diagram, analogue to fig. 3.2, is shown in fig. 4.1c.

The straight horizontal line is the soliton dispersion at the input wavelength λ0 =

2πc/ω0 = 800nm, and the cubic curve the dispersion of the linear fibre modes, around

the first zero GVD point (ǫ > 0).

Figs.4.1a,b show typical Cherenkov radiation emission by a fundamental bright

soliton under perturbation of TOD and Raman effects. Raman effect quickly shifts

the soliton spectrum away from the zero GVD point, and thereby suppresses transfer

of energy from the soliton to the radiation. Hence the Cherenkov spectrum remains

weak and narrow band (centred around λ ≈ 760nm) due to the critical dependence of

the radiation amplitude with |ωs − ωzGV D| [Biancalana04,Skryabin10]. Grey lines in

fig. 4.1c represent ks of the red shifting soliton after some propagation and show how

the resonant radiation frequency shifts away from the zero GVD point (d2kl/dλ
2 ≡ 0).

4.2 Tapered fibres

Reproducing the derivation of the GNLSE in chapter 2 for fibres with varying cross

section along z, assuming that this variation is smooth enough so reflections and

losses are negligible, one obtains the adiabatic GNLSE [Travers09,Judge09], which is

equivalent to eq. 2.32 but with slowly varying coefficients. Neglecting the nonlinear

dispersion, it reads

−i∂zA(z, t) =

J∑

j≥2

βj(z, ω0)

j!
(i∂t)

jA(z, t) + γ(z)A(z, t)

∫ +∞

−∞
dt′R(t′) |A(z, t− t′)|2 .

(4.4)

z-variations of β, and its ω derivatives, are accounted for through the GVD and

higher order dispersion coefficients only. This provides a reasonable approximation,

since in the tapers considered below the relative changes of β0,1 along the relevant

lengths are ∼ 1%, while β2,3 for a fixed frequency can vary by ∼ 50% and more, as
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Figure 4.1: Radiation emission by a fundamental soliton in a uniform fibre. Propaga-
tion distance is z ≈ 85m and γ ≈ 0.072/W/m at the pump wavelength λ0 = 800nm.
(a) time domain and (b) spectral dynamics. The zero GVD wavelength, λzGV D =
790nm, is marked by the black line and the fibre radius is r ≈ 1.29µm. (c) Matching
between the soliton spectrum (straight lines) and the linear modes (curve) for selected
propagation distances. The thick dots mark the resonant radiation wavelength and
the dashed lines the instantaneous soliton carrier.

shown in fig. 4.2.

The linear fibre mode profiles,
−→
E ,

−→
H , have been used to compute the nonlinear

fibre parameter, γ (given in eq. 2.38),

γ = ǫ20ω0c

ǫ
∫ ∫

dxdy n2(x, y)
2
3

[∣∣∣−→E
∣∣∣
4

+ 1
2

∣∣∣−→E 2
∣∣∣
2
]

[∫ ∫
dxdyRe

{−→
E ×−→

H∗
}
ûz

]2 , (4.5)

where ǫ is the dielectric permittivity of glass at ω0, ûz is the unitary vector along

the z axis, x and y are the transverse coordinates, n2 = 2.6×10−20m2/W the nonlinear

index of silica glass, and c the speed of light in vacuum, which permittivity is ǫ0.

Using numerical data for silica strands with the core radius varying in steps of

0.1µm, we have interpolated the dispersion coefficients, βj (up to J = 11), and non-

linearity, γ. Initial conditions for modelling eq. 4.4 have been taken in the form

A(z = 0, t) =
√
P0sech (t/T0) (see eq. 2.35), where T0 = 30fs is the initial soliton

width, the peak power is P0 = N2|β2|/γT 2
0 and N is the soliton order.

Fig.4.3 shows the dispersion, D = −2πcβ2/λ
2, and nonlinearity, γ, around the

pump wavelengths used around the two zero GVD points, which are considered sep-

arately in the next two sections.
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Figure 4.2: Variation of the first four dispersion coefficients evaluated at λ0 = 800nm
as a function of the fibre radius.

4.3 Cherenkov continuum with positive TOD

Replacing the uniform fibre in fig. 4.1 by a taper with the increasing radius, grad-

ually shifts the zero GVD point (d2kl/dλ
2 ≡ 0) towards smaller frequencies, see fig.

4.3a, and detuning between the spectrally shifting soliton and the zero GVD can be

arranged to remain relatively small. Figs.4.4a,b show the radiation emission in this

case. The boost in the radiation intensity is obvious, but, importantly, its spectrum

broadens significantly and forms the 50nm wide and homogeneous continuum, see fig.

4.4b. Note, that by the conservation of energy, the intense radiation emitted by a

soliton creates the radiation pressure on the soliton and thereby changes its frequency

(spectral recoil effect) [Akhmediev95]. Typical dispersion, D, considered here (fig.

4.3a) yields to blue shifted radiation, and hence the recoil on the soliton from the

emission process shifts the soliton frequency further to the red, which adds up to the

frequency shift produced by the Raman effect [Skryabin10]. The recurrent recoils and

the enhanced Raman shift due to the smallness of |β2| [Gordon86] result in a redder

soliton in the tapered case, what is favourable for spreading the radiation spectrum

over a wider range.

Changes of the soliton detuning from the zero GVD point along the fibre length is

the key feature controlling spectral content and efficiency of the Cherenkov radiation.

Fig.4.5 shows the propagation along three different tapers of length z ≈ 17m in

which the initial conditions are identical to those in figs. 4.1 and 4.4, but the zero
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Figure 4.3: (a,c) Dispersion and (b,d) nonlinearity for several fibre radii. Values
shown are around the lower (a,b) and higher (b,d) zero GVD wavelengths, for which
the pumps are taken at λ0 = 800nm and λ0 = 1000nm, respectively. For the lower
zero GVD, the smallest radius corresponds to the initial conditions of figs. 4.1, 4.4
and 4.5 and the other two, in increasing order, to the final cross sections of figs. 4.4
and 4.7(b), respectively.
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Figure 4.4: Radiation emission by a fundamental soliton in a tapered fibre. Initial
conditions and fibre length are identical to those of fig. 4.1. The final radius is
r ≈ 1.53µm and the zero GVD wavelength is marked by the black line (see also fig.
4.6b).

GVD point and fibre radius achieve three different final values, shown in fig. 4.6.

Fig.4.5a corresponds to the geometry, which shifts the zero GVD towards redder

frequencies at the rate which is faster than the soliton self-frequency shift. In this

case, there is a periodic increase and decrease of the detuning of the soliton from the

zero GVD point, and therefore intensity of the Cherenkov radiation is modulated in

time. This modulation happens because the recoil on the soliton from the intense

radiation temporarily accelerates the net red shift of the soliton frequency, and hence

leads to the drop in the radiation emission. With the weakening recoil, the detuning

between the soliton and the zero GVD point starts to narrow again, which amplifies

the radiation and the cycle is repeated. By slightly increasing the rate of tapering,

as in figs. 4.5b,c, we can ensure that the zero GVD point moves fast enough, so that

it catches up not only with the bare soliton self-frequency shift, but also with the

addition from the recoil contribution. Then the latter does not adversely impact the

radiation intensity as much and the modulations smooth over giving a homogeneous

plateau in the spectrum and a strongly chirped radiation pulse in time domain. In this

case, however, most of the soliton energy is transferred to the radiation over shorter

propagation distances.

Note that the polychromatic Cherenkov radiation effect is somehow similar to the

linear effect of the rainbow storage [Tsakmakidis07] in a metamaterial core waveguide.

In both cases a continuous range of frequencies is extracted from a light pulse and

slowed down, being the extraction controlled by the waveguide width. In the rainbow



60
4. Polychromatic Cherenkov radiation and continuum generation in

tapered fibres

t (ps)

z 
(m

)

−3 0 3 6 9 12
0
5

10
15

λ (nm)

z 
(m

)

700 800 900
0
5

10
15

(a)

t (ps)

z 
(m

)

−3 0 3 6 9 12
0
5

10
15

λ (nm)

z 
(m

)

700 800 900
0
5

10
15

(b)

t (ps)

z 
(m

)

−3 0 3 6 9 12
0
5

10
15

λ (nm)

z 
(m

)

700 800 900
0
5

10
15

(c)

5 10 15

−40

−20

0  

20 

40 

60 

z (m)

ω
s−

ω
zG

V
D

 (
T

H
z)

(d)

Figure 4.5: Fundamental soliton along ∼ 17m of several tapered fibres. The fibre
in (a) keeps constant in average the soliton detuning with the zero GVD wavelength
(as in fig. 4.4), whereas those in (b) and (c) increase λzGV D and r faster (see figs.
4.6a,b), showing single pulse emission. The detuning in frequency is monitored in (d)
for the three cases, corresponding the bottom line to (a) a the top one to (c).
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Figure 4.6: (a) and (b) show, respectively, the variation of the zero GVD wavelength
and radius along z corresponding to the tapers in fig. 4.4b (lines up to z = 85m) and
4.5a-c (lines up to z = 17m only).

effect all the frequency components are gradually slowed down at the same time,

coupling each of them to a slower modes of the tapered waveguide. In our case,

the frequency to extract is selected by the Cherenkov resonance, which slows down

progressively as the waveguide radius increases.

4.3.1 Higher order solitons

Increasing the initial power beyond the power corresponding to the N = 2 soliton

in a uniform fibre, the pulse breaks up into several solitons, with most of the power

absorbed by the firstly ejected soliton, which duration is reduced well below the input

pulse one [Dudley06, Skryabin10]. Fig.4.7a shows the N = 5 input conditions for

λ0 = 800nm in a uniform fibre with λzGV D = 795nm and 4m length. Fig.4.7b shows

dynamics of the same input pulse, but in a tapered fibre which radius and zero GVD

wavelength are plotted in fig. 4.8. The radiation emission in the tapered case is much

larger and splitting of the input pulse into fundamental solitons is largely suppressed,

so that the dynamics we observe is similar to the single soliton excitation shown in

figs. 4.4 and 4.5a,b, but the radiation tail is more powerful, the associated continuum

much broader and it develops over a shorter length scale. When N ≥ 2 sharp spectral

gaps appear (see fig. 4.7b at λ ≈ 800nm) which correspond to a train of pulses in time

domain. They arise because the ∼ N2 times higher spectral content of the resonant

frequency in the initial Nth order soliton spectrum yields to a bigger boost of energy

into the Cherenkov radiation and hence to a stronger recoil effect [Akhmediev95], that

quickly detunes the soliton from λzGV D.
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Figure 4.7: Fifth order solitons propagating in (a) non tapered and (b) tapered fibres
along z ≈ 4m. Black lines mark the zero GVD wavelengths, which start in both cases
at λzGV D = 795nm.

Temporal and spectral modulation of the radiation is seen to be small in figs.

4.5b,c, and the Cherenkov band broadens continuously. Figs.4.5a and 4.4b present

some modulation and fig. 4.7b shows clear discrete jumps in the radiation spectrum.

These continuous or discrete spectral development of the radiation is analogue to

that of the radiation in uniform fibres, when it is trapped by a soliton or bounces

with it [Skryabin10], respectively, depending on their relative power. The important

difference between these effects in uniform and tapered fibres is that, whereas in the

former the soliton collides back with the emitted radiation, erasing the Cherenkov

spectral history, in the latter the emitted radiation propagates away from the soliton

despite the Raman effect (see fig. 4.4a) and its frequency will add up into the spectrum

formed by the subsequently emitted Cherenkov waves.

4.4 Cherenkov continuum with negative TOD

When the soliton spectrum is close to the second zero GVD wavelength the slope

dD/dλ changes from positive to negative, as shown in fig. 4.3c. To simulate the

emission of dispersive waves emission at the second zero GVD wavelength, a fibre
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Figure 4.8: (a) Zero GVD wavelength and (b) radius of the taper in fig. 4.7b.

with λzGV D = 1050nm, r ≈ 425nm, and γ ≈ 0.31/W/m at the pump wavelength,

λ0 = 1µm is considered.

Physically, the most relevant difference from the dD/dλ > 0 case is that Raman red

shift and spectral recoil shift push the soliton spectrum in opposite directions so they

cancel to each other in uniform fibres [Gorbach07], as in fig. 4.9a. In this situation,

a polychromatic radiation tail filling the spectral gap between the soliton and the

radiation can be easily generated by smoothly decreasing the fibre cross section, what

increases ωzGV D and ωr. Figs.4.9b, 4.9c and 4.9d show the evolution of the spectral

steady state in z = 40LD ≈ 76.7cm along tapers with linearly interpolated ωzGV D.

Comparison between figs. 4.9b and 4.9c shows how the bandwidth is increased by

increasing the λzGV D(z) slope whilst keeping the taper length to 20LD, whereas the

bandwidth remains the same when the taper length is increased to 40LD but the final

λzGV D value is fixed, as in figs. 4.9c and 4.9d. This happens because the spectral

recoil and Raman shift are balanced so the soliton does not experience sudden jumps

in ωs, what makes the radiation to be broadened continuously, implying that the

bandwidth depends mainly on the initial and final values of λzGV D(z) and not on the

taper length. Matching between soliton and radiation along the evolution of fig. 4.9

is explicitly shown in fig. 4.10a for z = 0, 40LD and in 4.10b for the final states of

the tapered fibres. An important observation here is that the spectral recoil effect is

eventually stronger than Raman effect in the proximity of the zero GVD, yielding the

former one to the soliton blue shift seen in figs. 4.9b-d (and 4.10b), effect that has

been reported in recent experiments [Stark11b].
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Figure 4.9: Fundamental soliton propagating close to the second zero GVD wave-
length. 4.9a shows the first 40LD in a non tapered fibre with λzGV D = 1050nm
(r = 424.9nm), where the soliton reaches the Raman self frequency shift cancel-
lation state. Further propagation is shown by tapering the fibre from z = 40LD

to reach the final values of (b) λzGV D(60LD) = 1025nm (r = 415.3nm), (c)
λzGV D(60LD) = 1000nm (r = 405.6nm) and (d) λzGV D(80LD) = 1000nm.
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Figure 4.10: Matching between soliton (straight lines) and linear waves (curves)
propagation constants. (a) corresponds to initial (horizontal) and final (inclined)
conditions of fig. 4.9a. (b) shows matching at the end of the evolution in 4.9b (black)
and 4.9c,d (grey). The horizontal dashed line corresponds to the lower power soliton
at z ≈ 1.5m of 4.9d. Soliton instantaneous carrier is marked by the vertical dashed
lines.

4.5 Compression of the radiation pulses

When the resonant radiation is emitted continuously a single pulse is formed and it can

be efficiently compressed by a suitably designed fibre which dispersion compensates

the non trivial chirp of the multicolour tail. As an example, we consider the compres-

sion of the final field of fig. 4.4b (z = 200LD). The phase space of the Cherenkov tail

is shown in fig. 4.11a through the spectrogram function, computed as S(ω − ω0, t) =

|
∫∞
−∞ dt′A(t′/T0)Sech([t

′−t]/T0)e
−i(ω−ω0)t/T0|2, from where a simple polynomial fit-

ting gives us the chirp in the form t(ω−ω0) =
∑J

j=1 Cj−1(ω−ω0)
j−1 (dashed curve).

Compression is achieved if all the linear waves in the tail overlap in a given time, tref ,

after certain fibre length, ∆z, what implies that the inverse group velocity of each of

these waves needs to satisfy β1(ω − ω0) = − [t(ω − ω0) − tref ] /∆z. Substituting in

this expression the polynomial expansions of β1(ω−ω0) ≡
∑J

j=1 βj(ω−ω0)
j−1/ [j − 1]!

and t(ω−ω0), and comparing term by term results in the following expression for the

dispersion coefficients of the fibre

βj(ps
j/Km) = − [j − 1]!

∆z(Km)

[
Cj−1(ps

j) − tref (ps)δj1
]
, (4.6)

where j : 1 → J and δjk is the Kronecker symbol. Note that there is an infinite

number of linear fibres satisfying the compression condition eq. 4.6 because the βj ’s

can be modified by setting different values of ∆z and tref . By choosing tref = 0ps
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Figure 4.11: (a) Cherenkov radiation spectrogram corresponding to the final field of
fig.2b. Vertical line marks the zero GVD frequency and the dashed line the polynomial
fit t(ω − ω0). The compression in time domain is shown in (b) and the spectrogram
of the compressed state is in (c).

and ∆z = 10m the linear dispersion of the compression fibre is approximately given

by β2 = −36.16ps2/Km, β3 = −0.48ps3/Km, β4 = 17 × 10−2ps4/Km and β5 =

10−5ps5/Km at the pump frequency. The compression occurs as shown in fig. 4.11b

and the resulting pulse has a width ∆T = 18.7fs, which is shorter than the input

soliton of T0 = 30fs (see fig. 4.11c). This could find applications in ultra short pulse

generation from a polychromatic Cherenkov tail.

4.6 Conclusions: further optimisation

The effect shown numerically in section 4.3 are the result of a simple numerical opti-

misation of the optical fibre, according to the input pulse parameters, which is done

automatically by the numerical code. The latter is programed to keep the soliton car-

rier at a fixed distance from the moving zero GVD frequency, readjusting linear and

nonlinear parameters at each step. Generation of polychromatic Cherenkov radiation

provides a method to flatten the SC spectra, often desired for some applications (see

e.g., [Vukovic10]). Besides, the low power required lets operate the laser source at

higher repetition rates, useful in real time measurements.

On the contrary, effects in 4.4 happen easily, being the only requirment that the

zero GVD frequency is blue-shifted with propagation, hence recoil effect yields to the

soliton blue-shift [Stark11b]. However, some taper designs may be used around the

second GVD wavelength (β3 < 0) to optimise spectral extension towards the IR. An

interesting problem is the one of maximising the soliton red-shift that moves close to

the zero GVD [Judge09]. This requires a compromise between the soliton and zero

GVD spectral distance, because smallness of |β2| enhaces red-shift [Gordon86], but
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also induces soliton power depletion through the emission of radiation. Moreover, if

the soliton has trapped some of its radiation at the long-wavelength side, further IR

extension is expected. Note that, a soliton can only trap its own radiation through the

second GVD wavelength in a tapered fibre that modifies the soliton-radiation relative

group velocity. Trapping accross this point in a uniform fibre must invlove more than

one soliton, i.e., a soliton can only trap radiation that has been emitted by a different

soliton that is closer to the zero GVD [Chapman10].





Chapter 5

Nonlinear switching in

subwavelength semiconductor

on metal plasmonic

waveguides

The aim of this chapter is to demonstrate numerically the nonlinear switching in

planar arrays of two and three coupled plasmonic waveguides. Nonlinear switching

is known as the state in which, above the threshold power, the light stops being

transferred from one waveguide to another and most of it stays in the initially excited

waveguide. This effect has led to flourish of activities related to discrete optical

solitons [Aceves96,Lederer08] dominantly focused, until recently, on waveguides with

cross sections significantly larger than the light wavelength.

The plasmonic waveguides considered here are AlGaAs semiconductor wires placed

on top of silver substrate, hence surface plasmon polaritons (SPP’s) at the metal-

semiconductor interfaces provide tight confinement of electromagnetic energy. As a

consequence, the nonlinear response is shown to boost with respect to the waveg-

uides placed on top of glass substrate, which use only total internal reflection (TIR)

guidance, and hence the switching can be achieved with much lower power levels.

This enhancement of the nonlinearity by the metal has been already shown in the

context of metal nanowires by [Ye10]. The strong vectorial nature of the plasmonic

modes requires modelling tools that allow for solving vectorial Maxwell equations,

which can be done in 2 and 3D by using the finite element analysis (FEA) [Szabo91],

implemented in Comsol.

69
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plasmonic waveguides

This type of plasmonic waveguides have been proposed recently [Krasavin10] and

studied in the linear regime only. The importance of accounting for the Ohmic losses

introduced by the metal will require an optimal choice of the waveguide parameters

in order to demonstrate the nonlinear switching along a propagation distance of a loss

length [Milián11]. The two photon absorption (TPA) losses are avoided here by the

choice of the AlGaAs semiconductor because, conversely to silicon, it can be arranged

for the Telecom wavelength λ = 1550nm, used here, to be just below the half band

gap [Aitchison97].

The chapter is structured as follows. Section 5.1 is devoted to theoretical and nu-

merical analysis of the two and three waveguides arrays, using the coupled waveguides

equations derived in chapter 2. The concept of linear SPP waves is briefly introduced

in section 5.2. 5.3 discusses the linear and nonlinear properties of the modes in terms

of wavelength and waveguides geometry. Finally, section 5.4 presents the numerical

results of the 3D propagation simulations in the optimal arrays, where the nonlinear

switching is shown.

5.1 Nonlinear coupled oscillator model

The systems of two and three coupled waveguides are analysed theoretical and numer-

ically in this section, using the nonlinear oscillator model provided by the DNLSE (eq.

2.63), assuming that the individual waveguides are single mode, so the N -waveguides

array has N linear modes.

5.1.1 Directional coupler

In the particular case of two coupled waveguides, also called directional coupler

[Jensen82], eq. 2.63 reads

−i∂zA1 = κA2 + γ|A1|2A1

−i∂zA2 = κA1 + γ|A2|2A2, (5.1)

which analytical solutions are found in the form A1,2 = a1,2e
iφ1,2(z) (a1,2, φ1,2 ∈

Re), giving
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sin(φ2 − φ1) = 0

φ̇1 = κ
a2

a1
ei(φ2−φ1) + γ|a2

1|

φ̇2 = κ
a1

a2
e−i(φ2−φ1) + γ|a2

2|. (5.2)

Because the first equation implies φ2(z) − φ1(z) = mπ,m = 0,±1,±2, ... the last

two reduce to

φ̇2 − φ̇1 = κ[
a1

a2
− a2

a1
] cos(mπ) + γ[a2

2 − a2
1] = 0, (5.3)

which can be rearranged as

[a2
2 − a2

1][a1 +
κ

γa2
cos(mπ)] = 0 (5.4)

and the three solutions are

a ≡ a1 = ±a2, φ ≡ φ1,2 = q±z ≡ [±κ+ γa2]z (5.5)

a ≡ a1 =
κ

γa2
, φ ≡ φ1,2 = qsz ≡ [γa2 +

κ2

γa2
]z, (5.6)

where the total mode power is P ≈ a2
1+a2

2. Solutions in eq. 5.5 are the symmetric,

Ψ+(z), and antisymmetric, Ψ−(z), modes of the linear coupler, plus the wavenumber

shift, γa2, accounting for nonlinearity induced phase shift. In the linear regime, their

relative phase rotates over an angle 2π along a propagation distance equal to π/κ,

being half that distance the so called coupling length Lc ≡ π/(2κ), along which the

power is transferred from one waveguide to another. The coupling constant, defined

in eq. 2.59 for j = 1, reads

κ =

[
β2

s − β2
0

]

2βs

∫

S

−→
F ∗

1s

−→
F 2s =

[
β2

a − β2
0

]

2βa

∫

S

−→
F ∗

1a

−→
F 2a, (5.7)

where β0, βs, βa are the propagation constants of the single channel, Ψ+, Ψ−

modes, respectively. Eq. 5.5 implies that
∫

S

−→
F ∗

1s

−→
F 2s = −

∫
S

−→
F ∗

1a

−→
F 2a and then

κ = 1
2 (βs − βa), or κ = 1

2Re(βs − βa) [Agrawal08] if there are losses in the system, as

considered from now on.

The soliton-like solution eq. 5.6 does not exist below Ps = 2κ/γ (a1 = a2 =√
κ/γ). Above P = Ps, most of the soliton amplitude localises in one waveguide (see
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Figure 5.1: (a) Phases of the directional coupler nonlinear solutions and (b) power
ratio between the two channels as a function of the power in the channel that retains
most of the light in the soliton case.

fig. 5.1b) and thus its phase asymptotically tends to that of the single waveguide

mode γa2 = γP (see fig. 5.1a), compensating then for the split ±κ introduced by

the linear coupling. This solution appears at a local bifurcation from the Ψ+(z)-

branch [Wiggins90] (see fig. 5.1), and thus it is associated to the instability of the

symmetric mode. Hence, threshold power, Pth, for Ψs excitation, when pumping

only one channel, can be easily calculated by stability analysis of Ψ+(z) under small

perturbations. The system eq. 5.1 can be rewritten in terms of the superposition

A± ≡ 1
2 [A1 ±A2] (A1,2 > 0), as

−i∂zA+ = +κA+ + γ
{
A+[|A+|2 + 2|A−|2] +A∗

+A
2
−
}

−i∂zA− = −κA− + γ
{
A−[|A−|2 + 2|A+|2] +A∗

−A
2
+

}
. (5.8)

Substitution of A+ = Ψ+ + ǫ+ and A− = ǫ− in the system above results in

uncoupled equations for the perturbations, satisfying the antisymmetric ones

−i d
dz

[
ǫ−

ǫ∗−

]
=

[
−κ+ 2γ|Ψ+|2 γΨ2

+

−γΨ2∗
+ κ− 2γ|Ψ+|2

][
ǫ−

ǫ∗−

]
. (5.9)

Null determinant condition gives the two solutions for the power |A+|2 = κ/(3γ),

κ/γ. The physical meaning, if any, of the former solution is not understood here,

but the latter one yields to the well known result that the symmetric mode becomes

unstable when the power in one channel is above the bifurcation in fig. 5.1, a2 =

κ/γ, corresponding also to the point q− = 0 (see eq. 5.5). The single channel
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excitation can be regarded as a superposition of the symmetric and antisymmetric

modes with equal power. Hence, if exciting only channel 1 in a way that |A±|2 = κ/γ,

|A1|2 = |A+ + A−|2 = 2κ/γ + 1/2|A1|2 and then the power needed to observe the

presence of the soliton is Pth ≡ |A1|2 = 4κ/γ = 2π/(Lcγ). The waveguide where the

field is launched in experiences an increase of the refractive index over the typical

distance given by the nonlinear length, LNL ≡ 1/(γP ), so the light is trapped by

this waveguide and the beating between the linear modes (coupling) is minimized.

However, this is possible only because LNL is substantially smaller than the beat

length, since LNL ≤ Lc/(2π) for input powers P ≥ Pth. The threshold nonlinear

phase shift associated to suppression is then given by the inverse nonlinear length,

φth
NL ≡ γPth = 4κ = 2π/Lc. (5.10)

5.1.2 Three channel system

For three waveguides, eq. 2.63 with the ansatz Aj = aje
iqz results in the algebraic

system,



γa2

1 κ 0

κ γa2
2 κ

0 κ γa2
3






a1

a2

a3


 = q



a1

a2

a3


 . (5.11)

The amplitudes of the three modes with γ = 0, A+,0,− = [A1, A2, A3], are found to

be A± ≡ a0

2 [±1,
√

2,±1], A0 ≡ a0√
2
[+1, 0,−1], with their corresponding wavenumbers

q± = ±
√

2κ, q0 = 0. In this model, only the modes A± have interacting channels

and their wavenumber difference introduces the beat length L
(3)
c ≡ π/(2

√
2κ) =

π/Re(β1−β3), where β1, β3 are the biggest and smallest linear propagation constants

βj = β0+qj , where β0 is the one of a single channel. According to this oscillator model,

Re(β1 − β3) =
√

2Re(βs − βa), what happens to be in good agreement with realistic

arrays which waveguide separation is large enough (see sec. 5.4.2). The complete

set of nonlinear modes of this system could not be found analytically, so numerical

solutions of eq. 5.11 where sought. Their phases, q, vs total mode power, P , are

plotted in fig. 5.2a. For low powers, linear shift of the nonlinear phase dq/dP = γ/2

is observed, which is expected because the power in the waveguide with more light

is P/2. The presence of two global bifurcation points [Wiggins90], Σ and Π, gives a

total of seven solutions.

Classification of the nonlinear modes, Γ, can be done taking into account the

self-focusing nature of the nonlinear equations, κ/γ > 0. Indeed, the wavenumber
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Figure 5.2: (a) Phases of the three waveguides array solutions as a function of the total
mode power. Numerical values are taken from the three waveguides array of section
5.4, κ ≈ 2.73 × 105m−1, γ ≈ 3300/W/m. The bifurcation points Σ and Π arise at
P ≈ 260W and 665W, respectively. (b) Normalised mode profiles at P = 800W,
sorted by decreasing q, from left to right and top to bottom. Each row is associated
to one asymptotic slope.

of any mode has to tend, as P → ∞, to that of a single waveguide with the power

P , P/2 or P/3 depending on whether the power is asymptotically concentrated in

one (Γ1 modes), two (Γ2) or three (Γ3) channels. The three possible asymptotes of

the wavenumbers are shown in fig. 5.2a and the mode profiles at P = 800W are

shown in fig. 5.2b. In the case of Γ1, there are two different families of modes. The

ones with q & γP concentrate most of the power in the central channel, c, and the

phase difference between waveguides is 0 between channels left-centre and 0 between

centre-right, so that they are identified as Γ1c
00 modes. The other Γ1 family (q . γP ),

arises from bifurcation point Σ and are Γ1s
00, because the power is localised on a side

channel, s. The other five modes, in decreasing q order, are Γ2sc
00 (arising from Σ),

Γ2ss
π (with zero power in the central channel), Γ2sc

π0 and Γ3
π0 (both arising from Π),

and Γ3
ππ.

Modes Γ1c
00, Γ2ss

π , Γ3
ππ exist in the linear limit as A+,0,−, respectively. It is atright

forward to see from eq. 5.11 that Γ2ss
π = a0[1, 0,−1]eqz, q = γa2

0 = γP/2. The other

two are not stright forward to find, however, by imposing the condition A1 = A3 6= A2,

one finds that

q =
γP

3
+

2κ

3

[
A2

2 +A2
1

A1A2

]
, A1A2 = ± κP

2q − γ[A2
1 +A2

2]
, (5.12)

where the signs +,− stand for the sign of the product A1A2, corresponding to

Γ1c
00, Γ3

ππ, respectively. The two equations above give an expression for q,
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q± =
γ

3

P ∓ 2[A2
1 +A2

2]
2/P

1 ∓ 4[A2
1 +A2

2]/[3P ]
, (5.13)

which does not give the analitical form of the curves q(P ) in fig. 5.2a, but its

asymptotic dependences, as P → ∞, are q+ = γP , when A2
2 → P in Γ1c

00, and

q− = γP/3, when A1 = −A2 = A3 = P/3 in Γ3
ππ, according to the assymptotic

behavior predicted above.

Note the different nature of the bifurcations in the cases of two and three waveg-

uides. In the former case, new solutions appear from existing branches and move

away from them (in q) as P → ∞. In the latter, however, the new solutions appear

from (P ,q) points apparently unrelated with the existing solutions, and then move

towards the original branches as P → ∞.

The appearance of the purely nonlinear modes at the bifurcations is the key feature

for the switching effect shown in section 5.4.

5.2 Linear surface plasmon polariton waves

When an external electric field excites a material in a way that the movement of the

electron cloud can be regarded to as freely moving electrons, a surface current is said

to be generated. Under this situation the real part of the electric permittivity ǫm,

Re(ǫ), remains negative for frequencies below the critical value (plasma frequency)

ωc = 4πNe2/me − 1/τ2 , where N , e and me are the volume density1, electric charge

and mass of the free electrons, respectively. τ is the typical time scale over which

their motion is damped and introduces Im(ǫ) 6= 0 [BornWolf]. Above the plasma

frequency, ω > ωp, the material behaves as a dielectric, below, ω < ωp, presents

metallic properties and these are the interesting ones here.

In a single interface scenario between a semi-infinite metal (Re(ǫ) < 0) and and a

semi-infinite dielectric (Re(ǫ) > 0), the linear propagation of the electric field eq. 2.7

in each zone reduces to the well known Helmholtz equation, in virtue of
−→∇−→E = 0,

(
∂2

z +
−→∇2

⊥

)−→E + k2ǫL
−→E = 0, (5.14)

where ǫL is a linear permittivity. Eq.5.14 limits the existence of SPP waves to the

transverse magnetic (TM) case, meaning that the magnetic excitation vector,
−→Hw,

remains perpendicular to the direction of propagation [Maier07]. If z is associated

1Densities are assumed to be large, so the classical Maxwell equations can still be used.
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with propagation, the y-axis is perpendicular to the interface between the dielectric

(y > 0) and metallic (y < 0) media, and the x-axis is parallel to it, then the nonzero

electromagnetic components of the complex fields are Hx, Ey, Ez,

Ed
y (y) = Eyoe

iβze−kdy, Em
y (y) = ǫd

ǫm
Eyoe

iβzekmy

Ed
z (y) = −ikd

β Eyoe
iβze−kdy, Em

z (y) = ikmǫd

βǫm
Eyoe

iβzekmy

Hd
x(y) = −ω

β ǫ0ǫdEyoe
iβze−kdy, Hm

x (y) = −ω
β ǫ0ǫdEyoe

iβzekmy

, (5.15)

where the super-indices d, m denote dielectric and metal regions respectively, the

propagation constant is β ≡ k
√
ǫmǫd/(ǫm + ǫd), and the decay coefficient in each

medium is kd,m ≡
√
β2 − k2ǫd,m. Note that kd,m/β =

√
1 − (ǫm + ǫd)/ǫm,d, so the

strongest component in the dielectric (metal) side is Ey(z).

In this chapter, however, we do not deal with the 1D geometry. Each waveguide

has a rectangular cross section that lies on the X̂Y plane (see inset of fig. 5.4b) and

it is characterized by the width, w, along the x-axis (parallel to the metal interface)

and a height, h, along the y-axis. They are separated from each other by a distance d,

chosen to be above the cut off for all the linear modes (see fig. 5.4c). The z direction,

perpendicular to the cross sections, is associated with propagation. Using
−→∇−→D ≡ 0

with
−→D = ǫ0ǫL

−→E , it is clear that

0 ≡ −→∇−→D = ǫ0ǫL
−→∇−→E + ǫ0

−→∇ǫL
−→E → −→∇−→E = −

−→∇ǫL
ǫL

−→E (5.16)

and hence eq. 2.7 is readily transformed into the eigenvalue equation

L̂2D
−→E = β2−→E , (5.17)

with

L̂2D ≡
[
k2
0ǫL +

−→∇2
⊥ +

−→∇
(−→∇ǫL

ǫL
◦
)]

, (5.18)

being the circle product defined as (F◦)G ≡ (FG). In what follows, this equation

is solved numerically in 2D using Comsol to compute the linear modes of the waveguide

arrays, which linear and nonlinear properties are discussed below.
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Figure 5.3: (a) Dispersion of a single waveguide surrounded by air (solid blue) and
placed on top of metal (solid black). The one-dimensional plasmon at the AlGaAs-
silver interface (black dashed) is also plotted together with the air and AlGaAs light
lines (straight dashed blue and black, respectively). (b) Real (top) and imaginary
(bottom) components (x,y,z from left to right) of the electric field mode profile at
λ = 1550nm. Waveguide dimensions are w = 100nm and h = 260nm.

5.3 Properties of the plasmonic modes

The relevant properties of the waveguide modes involved in the design of the arrays

to observe the switching are discussed briefly below, separating the linear from the

nonlinear ones. Why some particular values of w and h are chosen here will be clarified

in section 5.4.

5.3.1 Linear properties

Fig.5.3a shows the numerically computed dispersion ω(β0) for an AlGaAs waveguide

placed on top of silver (black solid curve) or completely surrounded by air (blue solid

line), together with the 1D plasmon at the silver-AlGaAs interface (black dashed

curve), ω/β0 = c
√

(ǫm + ǫsc)/(ǫmǫsc), where ǫsc is the relative permittivity of the

semiconductor and the dispersion of the silver is taken into account as in [Rakic98]. A

notorious feature of the plasmonic mode dispersion is that its effective index is below

the semiconductor index for ω . 2.21015Hz (λ & 860nm) and above it otherwise.

Indeed, for large wavelengths the semiconductor waveguide is barely seen by the

plasmonic mode and it approaches the dispersion for the 1D plasmon at the air-silver

interface.

At the Telecom wavelength, λ = 1550nm, the relative electric permittivities of
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the AlGaAs, silver and air are assumed to be ǫsc = 12.1, ǫm = −103.33 − 8.2i and

ǫair = 1, respectively. The waveguide in fig. 5.3 does not support the purely total

internal reflection (TIR) guided mode, being the guidance possible only because of

the metal substrate. Indeed, the metal pulls the light towards the interface (see

fig. 5.3b), increasing the mode index and reducing its effective wavelength, thus

decreasing the cut-off frequency for TIR guidance, happening along the x direction,

from ω0 ≈ 1.51015Hz (λ ≈ 1260nm) to ω ≈ 0.91015Hz (λ ≈ 2100nm). The Cartesian

components of the mode profile plotted in fig. 5.3b show its pronounced SPP nature

along ŷ, with the predominant component being perpendicular to the metal substrate

(see eqns. 5.15).

Fig.5.4a shows the real effective index, neff ≡ Re(β0)/k, of an h = 260nm waveg-

uide as a function of its width, w (and the cut-off at w = 280nm for the same waveg-

uide placed on glass substrate). The large effective indices correspond to modes highly

confined at the metal interface, thus with propagation length, Lloss ≡ 1/Im(β0), lim-

ited to ∼ 10µm, as fig. 5.4b shows. Same figure shows coupling length for two waveg-

uides, Lc, as a function of separation, d, for the w = 100nm case, being d . 485nm

necessary for the beating to occur before the power is substantially dumped by the

loss length. In the three waveguides (w = 100nm, h = 260nm) array, existence of all

three linear modes requires d & 200nm.

5.3.2 Nonlinear properties

The nonlinear coefficient γ of a single channel has been computed from the linear

mode profiles, using eq. 2.38

γ = ǫ20ω0c

ǫsc

∫ ∫
dxdy n2(x, y)

2
3

[∣∣∣−→E
∣∣∣
4

+ 1
2

∣∣∣−→E 2
∣∣∣
2
]

[∫ ∫
dxdyRe

{−→E ×−→H∗
}
ûz

]2 , (5.19)

where n2 ≃ 1.5 × 10−17m2/W for AlGaAs2. It is shown in fig. 5.5a as a function of

the waveguide width, w, and height, h. For the range of heights shown here, it has

the maximum values for w ∈ [120, 130]nm which correspond to the optimum modal

confinement. Narrower waveguides fail to keep the light inside and the wider ones

spread the mode over the larger area.

A precisely calculated γ is important for an accurate prediction of the threshold

power for the directional coupler, given in eq. 5.10 and shown as a function of d

2Note the widely used silicon has, apart from a strong TPA, the smaller nonlinear index n2 ≃
4 × 10−18m2/W.
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Figure 5.4: (a) Effective index of the single semiconductor on metal and semiconductor
on silica wires as a function of the waveguide width, w, for h = 260nm. Dashed
horizontal lines mark (from bottom to top) the refractive indices of air, glass and
semiconductor, respectively. (b) Loss length (dashed blue) in a single waveguide on
metal substrate as a function of the waveguide width, w. Coupling length (full line) for
two coupled waveguides as a function of the separation distance, d, and w = 100nm.
(c) Propagation constants of the three waveguides array linear modes as a function
of separation.

Figure 5.5: (a) Nonlinear parameter γ and (b) Pth as a function of d, calculated for
several widths and h = 260nm.
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Figure 5.6: Evolution of Re(Ey) in a single waveguide with w = 100nm and h =
260nm. (a) is the linear regime and (b) is the nonlinear one (with P = 396W). (c)
shows the nonlinear phase shift as a function of P , the slope of the straight line gives
γ and the dashed vertical line marks Pth.

for different w values in fig. 5.5b. The derivation of eq. 2.38 (see chapter 2) is

based on a perturbation approach [Shahraam Afshar09] and its value at P ≈ Pth

might be different from the one predicted by this formula. Also, the mode profile

may have changed significantly from the linear one, yielding even a correct formula

to some significant error. For this reason, γ was explicitly computed by measuring

the nonlinear phase shift, φNL ≡ γP = βNL − β0, in single channel simulations

(w = 100nm, h = 260nm) done with different input powers, P , as shown in fig. 5.6.

Fig.5.6a,b show examples of propagation with P = 20W, 396W, from which the fitting

in fig. 5.6c gives γ ≈ 3300/W/m, which is larger than the value of ∼ 3000/W/m given

by eq. 2.38.

5.3.3 Comparison with ”on glass” waveguides

The advantage of the metal substrate, in comparison to silica glass (ǫs = 2.01) sub-

strate is obvious when comparing the nonlinear coefficients of fig. 5.5 and fig. 5.7.

In the latter case, the nonlinear coefficient is shown for several geometries and its

global maximum is achieved at γ ≈ 920/W/m, for a waveguide with w ≈ 200nm and

h ≈ 380nm.

5.4 Nonlinear switching: numerical results

The numerical results corresponding to 3D propagation simulations are presented

here. First, the directional coupler parameters are optimised to observe the switching

effect over the propagation distance, and then the third waveguide is added, keeping
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Figure 5.7: Nonlinear coefficient γ for an AlGaAs waveguides on silica glass as a
function of the width, w, and height, h.

the same geometry parameters, to show the nonlinear switching when exciting the

array in either the central or a side channel.

Before proceeding, it has to be mentioned that the silver domain, which requires

very small mesh elements (to sample properly the electric field decay) and a substantial

amount of RAM memory in the NL simulations, has been replaced by the Leontovich’s

standard impedance boundary condition (IBC) [Senior95], applied at the interface

with the metal. Its equation is given by

−→uy ×
[−→uy ×−→E

]
= Z−→uy ×−→H, (5.20)

where −→uy is the unitary vector perpendicular to the interface and Z ≡
√
µ0µm/(ǫ0ǫm) ≈

[1.4 + 35i]π10−6Ω the intrinsic impedance of the silver (for µm = 1). This is a first

order in the metal refractive index boundary condition and it is valid under the as-

sumption that the complex refractive index of the metal nm ≈ √
ǫm = 0.4 − 10.17i is

such that |nm| ≫ 1. Moreover it is derived from the linear Helmholtz equation. After

it has shown to reproduced almost identical results as the simulations done with silver

domain in the 2D computation of the linear modes, it has been implemented for the

3D simulations below.
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5.4.1 Two waveguides: optimisation of the array geometry

To observe the switching in a realistic set-up, which is limited by the big metal losses,

the array parameters must be chosen to accomplish LNL < Lc < Lloss for input

powers P ≥ Pth. The first part of the inequality has been already discussed in section

5.1.1 and is automatically accomplished above Pth. However, the second inequality

requires tuning of the array geometry and the primary objective here is to achieve a

big propagation distance Lloss, big ratio R ≡ Lloss/Lc & 2, reasonably low Pth and a

small size of the device.

Thus, the optimisation of the array is as follows. For a fixed waveguide height

h = 260nm (fabrication limitations), the natural choice for w would be the one that

maximises γ in fig. 5.5a (w ≈ 120nm). Indeed, both R and Lloss are improved by

decreasing w slightly (w = 100nm), because of the bigger propagation distance (see

fig. 5.4b) and the smaller Lc, associated to the smaller effective index (mode spreads

out of the waveguide). However, this increases a bit the Pth. Note that increasing the

width from w = 120nm by an amount which leads to the same decrease of γ reduces

the propagation distance and increases Lc (because the mode with larger neff is

more confined inside the waveguide), what worsens R. This could be an option if the

starting R was big enough, since this decreases Pth (see fig. 5.5b) but the device would

also increase in size. One could think of improving R by keeping w and h constant

with γ maximised and tune d, increasing Lc and reducing Pth. However, this option

yields to an increase of the separation between waveguides, d, enlarging again the

size of the device and its smallness remains a priority. Figs.5.4b and 5.5b show that

Lc and Pth follow opposite trends as d increases. For the chosen single waveguide,

with w = 100nm and h = 260nm, separation was fixed to d = 400nm, what gives a

relatively low Pth ≈ 330W and a good ratio R ≈ 2.78.

Fig.5.8 shows the norm of the electric field, |−→E |, along a loss length (Lloss =

16.1µm) in the optimised coupler. The array is excited in the channel at x = 0nm,

with its linear mode, and oscillations of the light in the linear regime (top row of fig.

5.8) occur over the predicted coupling length Lc = 5.785µm. Just above the threshold

power, Pth = 330W, the loss less nonlinear modelling in 5.8d shows clear signatures of

the Ψs mode, plus small power transfer over a distance ∼ 3.3µm< Lc. In the presence

of loss (5.8e), the switching is expected to be survive a length zsw ≡ 1
2Lloss ln

(
P

Pth

)
;

P ≥ Pth, so power should rise up to P ≈ 2.44kW. This is too high for the modelling

conditions here, but the higher input P = 520W already shows switching over the

length of ∼ 4µm, as can be seen from plot (f), where the guided power is calculated

through the integral of the Poynting’s vector
∫
dxdyRe[

−→E ×−→H∗]ûz/2.
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Figure 5.8: Linear (up) and nonlinear (down) propagation in a two waveguides
array in the absence (a,d) and presence (b,e) of loss along 17µm. The input power for
nonlinear simulations with (without) loss is P = 520W (P = 333W) and it is launched

in the channel at x = 0nm. |~E| is plotted at the y = 0+nm plane, corresponding to the
semiconductor region in the vicinity of the interface. (c,f) Variations of the normalised
power flow in the semiconductor wires. Array dimensions are w = 100nm, h = 260nm,
d = 400nm.
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5.4.2 Three waveguides

The array of three waveguides is simply made by adding one waveguide to the di-

rectional coupler, keeping the same values of w, h and d. One important reason for

this is that the estimated Pth = 330W to be launched in one channel is enough to

excite the Γ1 modes, since fig. 5.2a (done for the specific parameters of the array

here) shows this is above the bifurcation point Σ, at P ≈ 260W.

In this case, linear modelling in figs. 5.9 and 5.10 shows good agreement with the

predicted L
(3)
c ≡ π/Re(β1 − β3) = 4µm3. Note [Lc/L

(3)
c ]2 = 2.1 ≈ 2, as the model in

section 5.1.2 predicts, thus the chosen distance d = 400nm is not only appropriate for

the existence of the three linear modes (see fig. 5.4c), but also for the suitability of

the DNLS model.

Central channel excitation with P = 333W (> Pth) in fig. 5.9d shows a light

distribution in the three waveguides according to the one of the Γ1c
00 mode. It could

be argued, in principle, that this modelling is not a clear proof of the switching, since

such mode already exists below the bifurcation Σ and the small oscillations resemble

the linear ones in fig. 5.9d. However, the side excitation with the same input P , in

fig. 5.10d, presents the Γ1s
00 profile, which does not exist at all below bifurcation and

small oscillations do not resemble any more the ones in fig. 5.10a.

Figs. 5.11 and 5.12 show in 3D the linear and nonlinear modelling with loss of

figs. 5.9 and 5.10, respectively. The input face (z = 0) shows the field distribution

corresponding to the single waveguide linear mode, used to excite the arrays in all the

modelling presented in this last section.

5.5 Conclusions

The arrays of two and three waveguides considered in this chapter represent four and

nine port systems, respectively. In the absence of losses it is evident from figs. 5.8(a,d)

and 5.10(a,d) how the output power of a fixed length device can be collected from

any of the waveguides by modifying the input power. Moreover, the plasmonic modes

supported by the waveguides due to the metal substrate permits the reduction of the

device size well below the sub wavelength scale and reducing the threshold power

to few hundred’s of Watts [Milián11]. However, the Ohmic losses introduced by the

3Note the linear modelling in fig. 5.10a does not show that all the power comes back to the initial

channel after a distance of 4L
(3)
c = 16µm. This is simply because the simulations solve the full

Maxwell equations, and hence there is a strictly nonzero second neighbour interaction, accounted
for by the coefficient κ(2) in eqns. 2.58-2.59, which leads to nonzero elements in the top-right and
bottom-left corners of the matrix in the model eq. 5.11. This is not shown explicitely here because
it is not of special relevance for the present work.
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Figure 5.9: Central channel excitation of the three waveguides system. Linear (up)
and nonlinear (down) propagation in the absence (a,d) and presence (b,e) of loss along
17µm. The input power for nonlinear simulations with (without) loss is P = 520W

(P = 333W) and it is launched in the channel at x = 0nm. |~E| is plotted at the
y = 0+nm plane, corresponding to the semiconductor region in the vicinity of the
interface. (c,f) Variations of the normalised power flow in the semiconductor wires.
Array geometry paremeters are w = 100nm, h = 260nm and d = 400nm.
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Figure 5.10: Side channel excitation of the three waveguides. Linear (up) and
nonlinear (down) propagation in the absence (a,d) and presence (b,e) of loss along
17 µm. The input power for nonlinear simulations with (without) loss is P = 520W

(P = 333W) and it is launched in the channel at x = 500 nm. |~E| is plotted at the
y = 0+nm plane, corresponding to the semiconductor region in the vicinity of the
interface. (c,f) Variations of the normalised power flow in the semiconductor wires.
Array geometry paremeters are w = 100 nm, h = 260 nm and d = 400 nm.
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Figure 5.11: Evolution of |~E| in the three waveguides array for the central excitation
case in the (a) linear and (b) nonlinear regimes. The red iso-surfaces enclose the

volume inside the semiconductor (y > 0) where |~E| ≥ 5.5×108V/m. Distances shown
are measured in microns.

Figure 5.12: The same as fig. 5.11, but when the input is sent into the edge waveguide.
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metal hinder the practical use of the arrays considered here. Note from the guided

power plots in figs. 5.8(c,f)-5.10(c,f) that the power in the initially excited channels is

kept higher than the one in the other channels for just about 10µm∼ 2Lc, where the

power is reduced so much that linear mode beating takes place again. Hence, further

work considering, e.g., the introduction of gain in the semi-conductor material to

compensate for the metal losses would be required in order to obtain a miniaturised

array for all optical switching applications [Christodoulides88]. This sort of systems

are essential elements for integrated photonic circuits [Salgueiro10].



Chapter 6

Existence, stability and

dynamics of soliplasmons:

soliton-plasmon supermodes

Optical solitons have been considered in this thesis, mostly in the temporal domain,

where dispersion is compensated by nonlinearity (chapters 2-4). The discrete diffrac-

tion compensation in the spatial domain (removal of mode beating) has been the

subject of chapter 5, in the context of SPP waveguide modes. In this chapter, we

consider the hybrid modes resulting from the coupling between a soliton and a plas-

mon in the spatial domain, where each of them propagates in its own channel. They

are then called soliplasmon supermodes. In this case, coupling between the two chan-

nels occurs through the strongest electric field component, whereas in chapter 5 the

channels where coupled through the weak one.

The success in previous chapter comparing full 3D simulations of the nonlinear

Maxwell equations with the scalar NL oscillator model, motivates us to reduce the

dimensionality of the current problem to 2D, relying on a modified NL oscillator

model.

Our aim here is to proof existence of stationary solutions and their stability, which

qualitatively agrees with the Vakhitov-Kolokolov (VK) criterion. Instability generates

a rich dynamics that depends on the relative phases between the two components

(soliton and SPP). Rigorous understanding of this dynamics is not provided by the

model developed here.

The chapter consists on the following parts. Section 6.1 introduces the spatial

NLSE and its 1D bright soliton solution. The matching between Solitons and linear

plasmons in metal-dielectric-Kerr (MDK) 1D structures is considered in section 6.2

89
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and the corresponding NL oscillator model is introduced in 6.3. Stationary solutions

and their properties are derived in section 6.4 and their stability is analysed in 6.5,

by means of numerical propagation simulations.

6.1 The spatial solitary wave

As it was discussed in chapter 2, eq. 2.20 assumes a well defined linear polarisation

state for the light. When applying the field decomposition
−→E ω =

−→
Aeiβz and using

the permittivity tensor in eq. 2.53,
−→Dω = ǫ0ǫ̂

−→E ω and the resulting paraxial equation

is

2iβ∂z
−→
A + ∇2

⊥
−→
A + O

(
∂2

zA
)

=

[
β2 − ω2

c2
ǫ̂

]−→
A = −k2ǫ̂NL

−→
A, (6.1)

where ǫ̂NL is the nonlinear part of ǫ̂, k ≡ ω/c and β ≡ k
√
ǫL. In the 1D problem,

the transverse component y is assumed to be irrelevant, meaning that no net flux

is to propagate in this direction and hence Ay ≡ 0. Moreover, if |A| ≫ |Az|, then

A ≈ Ax and eq. 6.1 reduces to the well known spatial Nonlinear Schrödinger Equation

(NLSE),

i∂zA+
1

2β
∂2

xA+ γ|A|2A = 0, (6.2)

where the spatial nonlinear coefficient1 γ ≡ k2χ(3)

2β , χ(3) = ǫLǫ0cn2 and n2 =

2.6 × 10−20m2/W for silica glass. The analytical solution of eq. 6.2 in self-focusing

media is the so called spatial bright soliton given by [Kivshar06]

A(x, z) = cssech(
√
γβ|cs|x)eizγ|cs|2/2. (6.3)

As in temporal solitons (see, e.g., eqns. 3.3, 3.6, 3.7 and 4.1), the amplitude cs

parametrises the width and the propagation constant, which in our paraxial2 approach

is

βs = β +
γ|cs|2

2
= β

[
1 + g|cs|2

]
, (6.4)

where g ≡ ǫ0cn2/4 and g|cs|2 is dimensionless.

1Note the different physical meaning of the nonlinear coefficients, γ, introduced in the context of
temporal optics in chapter 2 and the one of eq. 6.2. In the former context, the waveguide modulates
the light spatial mode profile and defines the nonlinear coefficient from it. In the latter case, the
spatial mode is to be self induced at a given power so γ depends only on the bulk properties of the
material and the corresponding plane wave.

2Spatial soliton of the non-paraxial non-linear Helmholtz equation can be also found and it has
a slightly different wave number. However, non-paraxial propagation is beyond the scope of this
chapter.
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Figure 6.1: Dispersion relations of linear SPP (black) and spatial soliton (grey) in
the single interface between silica glass, with ǫL = 2.08, and dispersive silver (as in
section 5.3.1). Circles enclose the monochromatic matching points in the (β, ω) plane
and the dashed grey marks the light cone ω = βc/

√
ǫL.

6.2 Weak coupling between linear SPP’s and spatial

solitons

The single interface geometry considered here between the dielectric (x > 0) and

metallic (x < 0) media imposes the nonzero electromagnetic components of the SPP

(TM) are Hy, Ex and Ez, which propagation constant, given in chapter 5 (section 5.2),

can be written as

βp ≡ β
√
ǫm/(ǫm + ǫL). (6.5)

By comparing eqns. 6.4, 6.5 it is obvious that a feature shared by a spatial soliton

and a SPP is that their effective indices are always bigger than that of the bulk

dielectric material and their propagation constants are thus above the dielectric light

cone3, what makes possible the intersection between their dispersion relations, what

in principle means they can couple. Note, this property is related to the fact that they

are not radiation modes, thus having decaying tails along x. Therefore, when they

propagate along parallel lines and are far away enough so their tail overlap remains
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small (weak coupling), the matching condition, βs = βp, is given by

|cs|2 =
2kǫL
γ

[√
ǫm

ǫm + ǫL
− 1

]
, (6.6)

and is controlled only by the soliton amplitude. Fig. 6.1 shows the dispersion

relations of the SPP and soliton. The peak power of the latter shifts its propagation

constant away from the light cone, and hence the wavelength for the matching de-

creases. It is our purpose here to focus on the SPP, so resonances above ω ≈ 5× 1015

are disregarded.

6.3 Coupled oscillator model for Metal-Dielectric-

Kerr media

In this section it is derived an oscillator model for the linear plasmon and soliton in

1D. SPP is located at the metal-dielectric interface (x = 0) and the soliton is hosted

by a Kerr type nonlinear material and is centred at x = a. Thickness of the linear

medium d ∼ kd ≡
√
β2

p − k2ǫd ≪ a and the nonlinear index n2(x) = n2H(x − d),

where H is the Heaviside function. Thus, the linear permittivity takes the values

ǫL(x < 0) = ǫm, ǫL(0 ≤ x < d) = ǫd, ǫL(x ≥ d) = ǫk. Because the spatial soliton

self-induces its own waveguide and it is not a linear mode of a crafted one with well

defined geometry, eq. 2.63 (used in chapter 5) is not of use here. Instead, a variational

approach is adopted below.

The nonlinear propagation of electromagnetic monochromatic light in our geome-

try is obtained by combining eqns. 2.7, 2.52 and 5.16,

(
∂2

z + ∂2
x

)−→E w + k2ǫL
−→E w = −−→∇

[
ǫ−1
L

−→∇ǫL
−→E ω

]
− k2χ(3) 1

3

{
2|−→E ω|2

−→E ω +
−→E 2

ω

−→E
∗
ω

}
,

(6.7)

which contains both the (non-paraxial) spatial soliton and the SPP, noting that

the former obeys it without the first term in the RHS, and the latter without the

second term in the RHS. Thus, the variational ansatz is

−→E ω(x, z) = [cp(z)
−→e p(x) + ûcs(z)fs(x− a)] eiknkz, (6.8)

where cp,s are the amplitudes of the SPP and soliton, respectively, which are

3this is strictly true in 1D only, in 2D geometries this occurs below a threshold wavelength. See
fig. 5.3 in section 5.3.1 for the case of linear SPP waves.



6.3. Coupled oscillator model for Metal-Dielectric-Kerr media 93

the only parameters allowed to be z-dependent. The SPP field is given in eq. 5.15

after interchanging the x, y coordinates. cp ≈ Ey0 and epx ∼ exp(−ki|x|), ki ≡√
β2

p − k2ǫi and i = m(x < 0), d(0 ≤ x < d), k(x ≥ d). The soliton field is

fs(x − a) = sech(
√
γβ|cs|[x − a]), which polarisation is fixed in the direction of the

unitary vector û. Substitution of eq. 6.8 into the paraxial version of eq. 6.7, i.e.

∂2
z (Ψeiknkz) ≈ (2iknk∂z − k2n2

k)Ψeiknkz, results in an equation containing both the

soliton and plasmon propagation,

2iknk
d

dz
cp(z)~ep +

{
∂2

x + k2
[
ǫL(x) − n2

k

]
+
−→∇
(
ǫ−1
L

−→∇ǫL◦
)}

[~epcp(z)] +

2iknk
d

dz
cs(z)ûfs +

{
∂2

x + k2
[
ǫL(x) − n2

k

]}
fsûcs + 2ûβγf3

s |cs|2cs =

−→∇
(
ǫ−1
L

−→∇ǫLcs(z)ûfs

)
+ O

(
c2scp

)
, (6.9)

where the cross phase modulation (XPM) terms ∼ O
(
c2scp

)
have been neglected.

We focus on the x component of this equation, in virtue of the quasi transversal

approximation, what implies that ep ≈ epx and û ≈ x̂. Eq. 6.9 can be solved in the

region x < d (x > d) to obtain the equation for the plasmon (soliton), taking the

effects of x > d (x < d) up to first order. When seeking an equation for the SPP, eq.

6.9 shall be rewritten as

2iknk
d

dz
cp(z)ep − k2n2

kepcp(z) +
{
∂2

x + k2ǫL(x) +
−→∇
(
ǫ−1
L

−→∇ǫL◦
)}

epcp(z) +

k2
[
ǫL(x) − n2

k

]
fscs + ˆNLS (fscs) ≈ 0, (6.10)

where the operator ˆNLS ≡ 2iknk∂z + ∂2
x + 2βγf2

s |cs|2 ≡ 0 because of eq. 6.2 and

{. . . } = β2
p +O (ep(x)ǫkH(x− d)) in virtue of the linear eigenvalue equations 2.16 and

2.17 (see section 2.2), for the x (transverse) component. Applying the same strategy

to the Kerr medium, the equation for the soliton evolution is found in the form

2iknk
d

dz
cs(z)fs +

{
∂2

x + k2
[
ǫL(x) − n2

k

]
+ 2βγf2

s |cs|2
}
fscs +

[
2knk [knk − βp] − k2nk + β2

p

]
epcp = 0, (6.11)

where it has been used that −i d
dz cp(z) = [βp − knk]cp(z), as implied by the refer-

ence wavenumber, knk, used in eq. 6.8. Assuming that ǫd ≈ ǫk and −ǫm ≫ ǫd,
d
dz cp(z)

can be neglected and the operator {. . . } = 2β [−i∂z(csfs)]+O (fs(x− a)ǫmH(−x)) ≈
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γβ|cs|2, according to eq. 6.2 with A→ csfs.

Eqns. 6.10, 6.11 are the system of coupled equations, which reads

i
d

dz
cp + µpcp + qcs = 0 (6.12)

i
d

dz
cs + µscs + q̄cp = 0 (6.13)

where,

µp ≡ 1

2knk

[
β2

p − k2n2
k

]
(6.14)

µs(|cs|) ≡
γ

2
|cs|2 (6.15)

q ≡ k

2nkNp
I (6.16)

q̄ ≡ k

2nkNs
I =

Np

Ns
q (6.17)

I ≡
∫

x

[
ǫL − n2

k

]
ep(x)fs(x− a) (6.18)

Np ≡
∫

x

|~ep|2 (6.19)

Ns ≡
∫

x

f2
s (6.20)

µs,p are a measure of the distance between the the soliton and plasmon wavenum-

bers and the light cone ω = ck/nk. In the weakly coupling scenario, the linear

dielectric region x ∈ [0, d] is reached by the soliton tail fs(x− a) ≈ 2exp(−κs[x− a]),

where κs ≡ √
γβ|cs| is the inverse soliton width. Besides, the plasmon field is assumed

small for x & d. Hence, the coefficients above may be expressed in the explicit form

I ≈ 2
ǫd [ǫm − ǫk]

ǫm [κs + km]
e−κsa + O (ǫd − ǫk) (6.21)

Np ≈ ǫd
2

[
1

kmǫm
+

1

kdǫd

]
+ O(e−2kdd) ≡ ǫd

2Br
(6.22)

Ns =
2

κs
(6.23)

q ≈ 2k

nkǫm

ǫm − ǫk
κs + km

Bre
−κsa (6.24)
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q̄ =
Np

Ns
q =

kκsǫd
2nkǫm

ǫm − ǫk
κs + km

e−κsa (6.25)

Br ≡ kmǫmkdǫd
kmǫm + kdǫd

. (6.26)

This coupled model predicts that a SPP can be excited by a soliton (see eq. 6.12),

through the driving term qcs. q ∼ e−κsa and hence it tells us that the decaying

exponential soliton tail acts as the driving field for SPP excitation4. This suggests an

original method to excite plasmons that overcomes the current technical difficulties

and would simplify the experimental set-ups [Zayats05].

6.4 Stationary solutions

In this section, the aim is to proof the existence of stationary soliplasmon solutions.

They are first obtained theoretically in section 6.4.1 and computed numerically in

6.4.2. After that, the transition to the more realistic configuration MK is proposed

and numerically seen to be qualitatively similar to the MDK one, differing mainly in

a SPP propagation constant, which is shifted by the nonlinearity.

6.4.1 Metal-Dielectric-Kerr media

Looking for stationary solutions of eqns. 6.12 and 6.13 in the form cp,s(z) = cp0,s0e
iµz

gives the eigenvalue equation

[
µp q

q̄ µs

][
cp0

cs0

]
= µ

[
cp0

cs0

]
, (6.27)

which solutions are

µδ = 〈µ〉 + eiδ
√

∆2
µ + qq̄, δ = 0, π, (6.28)

where 〈µ〉 ≡ [µp + µs]/2 is the propagation constant mean value and ∆µ ≡ [µp −
µs]/2 a detuning. For an arbitrary cs0, the eigenvectors read

4In the derivation of eq. 6.10, the vectorial term concerning the soliton,
−→
∇

“

ǫ−1
L

−→
∇ǫLcs(z)ûfs

”

,

has been neglected by considering the soliton as a scalar wave, i.e.
−→
∇E ≈ 0. The Maxwell equation

−→
∇
−→
D ≡ 0 then implies that

−→
∇ǫL ≈ 0 too (see e.g. eq. 5.16). However, if the soliton tail is to

excite an initially non existing SPP through its interaction with the metal, at least this little part of

the soliton tail must be vectorial and thus
−→
∇

“

ǫ−1
L

−→
∇ǫLcs(z)ûfs

”

6= 0. Evaluating this term at the

metal interface (x = 0) and projecting it with the plasmon field, the driving coefficient q → q + ∆,
∆ ∼ cse−κsa∂x(1/ǫL)|x=0. This term is in principle not well defined if one is limited to discrete
boundaries and quantifying it is beyond the scope of this thesis. The main reason for this is that ∆
has the same physical meaning than q, i.e., provides SPP growth throught the soliton tail e−κsa.
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Figure 6.2: Soliplasmon dispersion for soliton peak power levels (a) g|cs|2 = 0.2 and
(b) g|cs|2 = 0.4. Dashed lines correspond to dispersion of soliton and SPP, separately
(as in fig. 6.1).Grey line marks the light line ω = βc/

√
ǫd. Inset in (a) zooms in

the anti-crossing region and the intersection of the dotted lines mark the predicted
anti-crossing point.

| µδ〉 = cs0

[
q/(µδ − µp)

1

]
(6.29)

and the ansatz in eq. 6.8 takes the explicit form

Ex(x, z)

cs0
=

{
q

µδ − µp
ep(x) + sech(κs(x− a))

}
ei(knk+µδ)z, δ = 0, π. (6.30)

Note from eq. 6.28 that µ0 > µs,p and µπ < µs,p, so the relative sign between the

soliton and plasmon fields is eiδ and δ has the meaning of the soliplasmon supermode

phase. Modes with µδ=0 > µs,p are referred to as 0-soliplasmons, whereas those with

µδ=π < µs,p are π-soliplasmons, being µ = µp a phase singularity point, where the

electric field takes the form of a SPP wave with zero soliton component.

Dispersion relations of soliplasmons βsp(ω) ≡ knk + µδ(ω) (µδ given in eq. 6.28)

are plotted in fig. 6.2. The position of the resonance, the anti-crossing point, shifts

towards bigger ω with soliton peak power, as a consequence of its enhanced effective

index, which decreases its dispersion slope, c/[nk(1 + g|cs|2)].
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Figure 6.3: (a) Soliplasmon guided power in the MDK configuration, as a function
of the index contrast, µ̄ ≡ n2

si − n2
eff , where nsi = 1.4446 = nd,k. Dotted vertical

line marks the µ̄p ≡ n2
si − (βp/k)

2. (b) x (solid) and z (dashed) components of the

stationary solutions ~E ≡
√
χ(3)~E corresponding to the points A-D in (a). The vertical

lines at x = 0 and x = 2/kd ≈ 2.4µm mark the metal-dielectric and dielectric-Kerr
interfaces, respectively.

6.4.2 Numerical results: P-µ resonance and δ-soliplamons

The computation of the nonlinear modes is done from eq. 5.17, with the substitution

of ǫL by the ǫ = ǫL + χ(3)
[
|Ex|2 + |Ez|2

]
, assuming the latter in scalar form for

simplicity (the numerical method to find the stationary solutions is explained in detail

in appendix A). When projecting eq. 5.17 onto the X̂Z plane, a system of two coupled

equations for Ex and Ez is obtained. The fact that SPP waves are characterised by a

strong component of the electric field perpendicular to the metal yields to |Ez| << |Ex|,
so our attention is focused on the equation for Ex, which can be assumed to be real,

without loss of generality, by subtracting a global phase. On the other hand Ez satisfies

Ez = − i

βsp

[
ǫ−1∂x(ǫEx)

]
, (6.31)

what can be obtained from the Maxwell equation 2.1. This gives us the simple

eigenvalue equation for the Ex component

L̂1DEx = β2
spEx, (6.32)

with
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Figure 6.4: Stationary soliplasmons for MK media. Red (blue) dots in (a) correspond
to the δ = π (δ = 0) modes plotted in the top (bottom) row of (b). Dashed line in
(a) corresponds to the linear SPP, as in fig. 6.3.

L̂1D ≡ ∂2
x + ∂x

(
1

ǫ
∂xǫ◦

)
+ k2ǫ. (6.33)

Fig. 6.3a shows the soliplasmon normalised guided power, γP ≡
∫

x̂
dxSz (Sz ≡

1
2Re

{
γExH

∗
y

}
), vs the index contrast, µ̄ ≡ n2

k − n2
eff = −2nkµ/k, for several modes.

The asymptotic behaviour is insinuated and the Ex (≡
√
χ(3)Ex) profiles show the

predicted phases δ = 0, π at each side of µp, according to eqns. 6.28, 6.30.

6.4.3 Metal-Kerr media

Although more realistic (in principle), a theory based on the MK configuration would

complicate the variational approach developed in section 6.3, mainly because the NL-

SPP field profiles, which may vary substantially from the linear ones, remain unknown

to us. XPM terms could still be neglected in a weakly coupling scheme, since they are

not our primary interest in this present work. Indeed, numerical solutions of the MK

media are found using the method in section 6.4.2 for MDK. The main conceptual

implication of the MK interface is that the SPP increases its wavenumber due to

nonlinearity.

Fig. 6.4 shows soliplasmons modes, equivalently to fig. 6.3. The main difference is

the shift of the vertical asymptote towards bigger neff = np +∆np. In fact, ∆µ̄ ≈ 0.1

yields to ∆np/np ≈ 0.2%, what an expectable index shift for the SPP in silica glass.
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Figure 6.5: Stationary soliplasmons for the MDKDM waveguide.

6.4.4 A note on the soliplasmon waveguide: Metal-Dielectric-

Kerr-Dielectric-Metal structure

The most important numerical issue in the computation of soliplasmons, which is not

solved here yet, is keeping the soliton position fixed to xs = a. The small variation of

xs from one solution to another does not let us reproduce in great detail the predicted

resonant trend in eq. 6.30. To this end, the waveguide configuration MDKDM, with

the metal interfaces at x = 0, 2a, and xs = a, was considered. Assuming well defined

symmetry for the two SPP’s implies the theoretical model is only affected by the

change q̄ → 2q̄ in eq. 6.13. Fig. 6.5 plots the integrated |Ex|2 vs µ̄ curves, proving

the resonance and showing the different curvatures in a much clearer way.

6.5 Stability analysis: amplitude-phase dynamics

Four of the stationary solutions shown in fig. 6.4b are exposed numerically to con-

servative stability analysis, i.e., propagation over long distances (> 60µm) with input

noise and without ohmic losses (ǫm ∈ Re). The very well known Vakhitov-Kolokolov

(VK) stability criterion [Vakhitov73] predicts that a curvature d|E|/dβsp < 0(> 0)

(note µ̄ ∼ −βsp) corresponds to stable (unstable) stationary solutions. The great

detail provided in fig. 6.5 suggests that the (δ = π)-soliplasmons should be stable NL

solutions. Indeed, fig. 6.6a,b shows that the propagation of the δ = π solutions with

neff = 1.46000, neff = 1.464044 along 60 µm occurs in a very stationary manner.
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Figure 6.6: Propagation of the (a) neff = 1.46000 and (b) neff = 1.464044 soliplas-
mons, shown in figs. 6.4b, along 60 µm. Insets in (a) and (b) magnify |Ex| over the
area where they are placed, showing the noise is ejected away during the first 12 µm.
Second inset in (b) shows the first 12 µm of propagation in the linear regime, with
clear soliton diffraction signatures. (b) includes stream lines a flux arrows (being the
black ones magnified) to visualise the energy transfer.

Apart from being diffraction free, the input noise used for all the propagations intro-

duces fluctuations of the 20% in the amplitude and it is seen to propagate away the

soliplasmon towards x > 0 (see inset of fig. 6.6a5).

0-soliplasmons, however, lie on a curve where d|E|/dµ̄ < 0 for µ̄ ≪ µ̄p and

d|E|/dµ̄ > 0 for µ̄ . µ̄p. Fig. 6.7a shows the propagation of the neff = 1.471997 0-

soliplasmon (see fig. 6.4b), which is clearly a non-stationary evolution. Interestingly,

it is associated with the dynamics of the soliplasmon phase, φsp (fig. 6.7)b), and the

5Numerical checks to compare linear (diffractive) vs nonlinear (non-diffractive) modelling and to
observe the expulsion of the input noise have been done for all the cases, but only this representative
examples in the insets of fig. 6.6 are shown.
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Figure 6.7: Evolution along 60µm of the neff = 1.471997 0-soliplasmon. (a) norm
of the electric field |Ex|2, (b) soliton-plasmon relative phase φsp and (c) soliton and
plasmon amplitudes |cs,p|. Sharp initial jumps are due to the large input noise ∼ 20%
in amplitude. (a) includes stream lines a flux arrows (being the black ones magnified)
to visualise the energy transfer.
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Figure 6.8: Same as fig. 6.7 for the δ = 0 solution with neff = 1.484022.
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amplitudes, cs,p (fig. 6.7c,d), whereas the soliton position stays approximately steady

around xs = a (fig. 6.7a). We speculate that this soliplasmon is in the d|E|/dµ̄ > 0

unstable region (unfortunately not apparent in fig. 6.4a) so instability seems to be

associated with the soliplasmon parameters dynamics, rather than with a destruction

of the solution (at least for the distances shown here).

The amplitude-phase oscillations seem to occur in this case in the following qual-

itative way. The initial soliton tail that reaches the metal interface pumps the SPP

wave, what rises |cp|, βp, decreases |cs|, βs and a velocity miss-match is induced be-

tween the soliton and plasmon, with the corresponding increase of φsp. At z ≈ 18µm,

φsp = π and the stable π-soliplasmon can not be formed due to their different veloci-

ties. As they come back on phase, the SPP returns some of the energy to the soliton

channel and the initial parameters are approximately restored at z = 35µm. In this

particular example, the soliton is slowly attracted towards the interface, but it is not

possible to explain the dynamics further with our current knowledge.

The solution with neff = 1.484022 and δ = 0 (fig. 6.4b) is further away from

µ̄p (than the one with neff = 1.471997) and thus expected to behave in a (more)

stable manner. From fig. 6.8, we see that it needs larger propagation distances (now

z = 96µm) to develop the φsp, cs,p oscillations (the fact that these are still generated

invites us to locate it in the d|E|/dµ̄ > 0 too).

In this case, the initial SPP is very small, |cs|/|cp| ≈ 3, so the soliton needs ∼ 30−
40µm to excite it. Apart from the soliton position, the first ∼ 60µm are qualitatively

similar to those of fig. 6.7. However, in the last ∼ 40µm the interaction between the

SPP and the refracted soliton is minimised. Clear features of that are the constant

values reached by the quantities d2φsp/dz
2, d2a/dz2 ≈ 0 and |cp|. Presumably, the

prolonged lack of a SPP in the initial stages exposed the soliton too much to the metal

repulsion (reflection).

Greater neff ’s should eventually recover a purely spatial soliton solution, which

is known to be stable (see e.g. appendix A of [Biancalana05] for the formal and

equivalent proof for the case of temporal bright solitons), and thus d|E|/dµ̄ < 0

should be recovered too, in agreement with the numerical calculations of fig. 6.5.

0-soliplasmons are then thought as being conditionally stable below a critical µ̄ < µ̄p

value.

6.5.1 Effect of metal losses

Taking into account realistic metal losses is essential for practical realisations (see

chapter 5 and [Milián11]). Only to give an idea of its influence, fig. 6.9 shows the
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propagation under the same initial conditions as fig. 6.7, and comparison is made

between the two figures. The first stage of 20µm in which the soliton pumps the SPP

are very similar and losses have a small effect. However, as soon as phase reaches

φsp = π, the energy transfer is stopped and |cp| drops dramatically (∼ 80%) due to

losses. This reduces βp, SPP accelerates and φsp decreases towards the initial value

0, not 2π as in the loss less case. Again, exposure to metal repulsion bends soliton

trajectory and it goes away from the interface, leaving behind a SPP that will be

exponentially attenuated by the ohmic losses.

The fact that the energy transfer stops at φsp = π gives a qualitative reason of

why stable soliplasmons (with |cs| ≈ |cp|) are the ones with δ = π. The nodal point

in the amplitude of the strongest component Ex (see fig. 6.3b and 6.4b) frustrates an

efficient energy transfer between solitonic and plasmonic components, so φsp(z) = 0

and βs(z) = βp(z) = βsp.

6.6 Conclusions

In this chapter, the soliplasmons, a new type of hybrid nonlinear bound states, have

been presented. The properties of the stationary solutions have been well predicted

by a forced oscillator model, and their stability has been explained qualitatively.

However, many opened problems are left opened (see chapter 8), among which are

the study of the dynamics associated to the instability, considering further degrees

of freedom such as the soliton position and, of course, the dynamics close to the

resonant points, in which the effects are expected to develop over shorter lengths and

the excitation of SPP waves from a soliton is to be explored.

A crucial point to address in general in plasmonic systems is the effect of the

Ohmic losses. In this case two important points are to be mentioned. First, in this

system the spatial soliton acts as a reservoir for the plasmon as shown in fig. 6.9,

so the latter propagates for longer distances than a single SPP wave. Second, in the

single interface scenario the soliton suffers from reflections if the SPP becomes very

weak. In principle this could be solved by considering the waveguide in fig. 6.5,

although asymmetric modes could lead to soliton crashing in an interface. Again, as

in the last chapter, inclusion of gain in the dielectric to compensate for losses might

lead to interesting results.



6.6. Conclusions 105

z (µm)

x 
(µ

m
)

 

 

0 10 20 30 40 50 60
0

2

4

6

8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(a)

0 20 40 60

0

z (µm)

φ sp

π

−π

(b)

0 20 40 60
0

0.2

0.4

0.6

z (µm)

|c
s,

p|

|c
p
|

|c
s
|

(c)

Figure 6.9: Same initial conditions as in fig. 6.7 but accounting now for the meatl
losses, ǫm = −82 + i8.3.





Chapter 7

Optimisation of a fibre based

narrow-band optical source in

Grid platform

This brief chapter describes the progress made in a broad collaborative frame1 towards

the optimization of optical fibre spectra (SC related dynamics) using automated pro-

cedures based on Genetic Algorithms (GA). Large amount of computations involved in

the optimization process invite to use Grid technologies that are able to cope with the

computational requirements. Here it is described the integration of a service-oriented

Grid meta-scheduler and a Genetic Algorithm, in order to create an automated tool

which is able to find optimal solutions to our problem. The developed tool provides an

scalable solution to computationally intensive problems and enables the optimization

of other more complex fibre designs.

Section 7.1 motivates and describes the optimisation problem. Sections 7.2 and

7.3 describe the algorithm chosen for our particular application and the grid service,

respectively. Finally, the results achieved with this approach are presented in section

7.4.

7.1 Motivation and case study

Dynamics associated with nonlinear partial differential equations is usually non trivial.

In the previous chapters, several problems of this nature have been studied in detail

1Grid support and technical information in section 7.3 was provided by Germán Moltó
(gmolto@dsic.upv.es). Java code implementing the chosen algorithm was developed by Miguel
Arevalillo (miguel.arevalillo@uv.es), who also provided details for section 7.2.

107
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and in all of them there were parameters, characterising either the incident light or

the device geometry, that required to be optimised in order to obtain the desired

functionality. This was successfully achieved in a simple way through the intuition

and knowledge gained for those cases. In particular, physics underlying SC generation

in the fs regime is very well known nowadays, [Skryabin10], what opens a scope for

engineering problem proposals.

Our purpose here is to optimise the width, τ , carrier wavelength, λ0 and peak

power, P , of the input pulse, for the output of an L ≡ 1cm long fibre to produce

an output spectrum which power is maximised in a predefined interval. This type

of problems are important for applications in nonlinear microscopy of biological sam-

ples [Aviles-Espinosa11], where it is often needed to excite certain transition(s) of a

biological molecule, with a wavelength that is not efficiently provided by standard

sources. From the numerical point of view, it is important to give a solution with a

relatively fine precision.

Intuition is not expected to be in general enough for this type of problems and

an optimisation strategy should be designed. The challenge in doing so relies on

the definition of a suitable optimisation criterion, fitness function, and an efficient

algorithm to find the optimal solutions. For this purpose genetic algorithms (GA)

have been chosen.

The propagation of the pulse is assumed (at least one mk must be zero)to be

described by the NLSE plus TOD and Raman effect (see eq. 2.32),

−i∂zA(z, t) =

[
−β2

2
∂2

t − i
β3

6
∂3

t

]
A(z, t) + γA(z, t)

∫ ∞

−∞
dt1R(t1)|A(z, t− t1)|2. (7.1)

Dispersion parameters take the values β2 = −11.83ps2/Km, β3 = 0.08ps3/Km at

the reference wavelength λref ≡ 780nm, and the nonlinear coefficient γ = 0.11/W/m,

as in [Ranka00,Dudley06]. Dispersion terms ∼ βk, k ≥ 4 have been neglected because

the primary interest here is to test the optimisation tool. By changing the pump

wavelength, λ0, the GVD takes the values β2(λ0) = β2 + 2πcβ3(1/λ0 − 1/λref ),

where c ≡ 2.99792458m/s. Initial peak power of the input pulses,
√
Psech(t/τ), is

expressed as P = [1 + 63α]|β2(λ0)|/(γτ2), so α ∈ [0, 1] =⇒ a soliton order N ∈ [1, 8]

(N ≡ τ
√
γP/|β2(λ0)|).

The optimisation problem consists in finding the initial α ∈ [0, 1], λ0 ∈ [700, 900]nm

and τ ∈ [0.01, 0.050]ps, that maximise the spectral output power in the range of fre-

quencies ω ∈ [1780, 1820]THz, what corresponds to the vacuum wavelength interval

λ ∈ [1035, 1060]nm. Thus, the fitness function to minimise is defined here simply as
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Φ ≡
[∫ ω2

ω1

dω|Ã|2
]−1

, ω1 = 1780THz, ω2 = 1820THz. (7.2)

The frequency interval was intentionally located in the anomalous GVD region

(see section 7.4). For that, its width was set to the approximate expected width of a

foundamental soliton. Particular values for ω1,2 where chosen around the centre of the

spectral region covered by the solitons in the different simulations that are possible,

according to all the possible values of τ , λ0 and α.

Eq.7.1 is solved numerically by a matlab code that implements the 4th order

Runge-Kutta method to discretise the z-derivative. Fast Fourier transform routines,

FFT, IFFT, are used for the rest of the operations. They speed up the calculations

because derivative operators ∂m
t and convolution R ⋆ |A|2(t) in eq. 7.1 simplify to

direct products (ω − ω0)
m and R̃|̃A|2(ω − ω0), respectively, in the reciprocal Fourier

space (denoted by the tildes on top of the functions).

7.2 The genetic algorithm

Minimisation problems can be solved by using deterministic or meta-heuristic algo-

rithms. The latter are required when exhaustive enumeration of the search space

becomes impractical. For that, a shorter runtime is achieved by accepting solutions

which approximate a global optima, but may not exactly match it. Genetic Algo-

rithms (GA) are a class of meta-heuristic evolutionary algorithms, and consider each

genome | g〉 ≡ [g1, g2, g3]
T = [τ, λ0, α]T , representing each simulation, as an individ-

ual of the population. They place a special emphasis on the application of genetic

operators, to approach optimal solutions. These are mainly the identity operator Î,

random generation R̂, mutation M̂ and crossover X̂ .

Random generation is regarded as

R̂ | φ〉 ≡



R1 0 0

0 R2 0

0 0 R3


 | φ〉 →| g〉, (7.3)

Rk are the random generators obeying the uniform statistical distribution. | φ〉
is the zero or vacuum state, so R̂ plays in eq. 7.3 the role of a creation operator,

resembling a† in quantum field theory (QFT), or χ̂(0) in optical media with electric

dipole moment in the absence of external field (see discussion in section 2.1.1).

The mutation process M̂ :| g〉 →| g′〉 uses the well-known polynomial mutation

[Deb01] for real coded problems (continuous valued variables), and generates the new
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genes

g′k = gk +mk∆k δ̄k; mk ≡ H(uk − 2

3
), (7.4)

where ∆k is half of the allowed interval for each variable (∆τ = 20 fs, ∆λ = 100

nm, α = 1/2), H is the Heaviside step function and uk ∈ [0, 1] a uniform random

number. The latter implies that in average, one gene is mutated per individual when

mutation is applied (a rate of one mutation per individual). δ̄k ∈ [−1, 1] satisfies the

(normalised) probability distribution Pm(δ) = 0.5[n + 1[1 − |δ|]n] and n = 20 (see

7.1a). P becomes the normal distribution for n = 0 or it is very peaked around zero

for n ≫ 1, so it is clearly distinguished from Rk. The stochastic variable is chosen

via a new random uk ∈ [0, 1]

δ̄k = δ /

∫ δ

−1

Pm(δ) = uk; uk ∈ [0, 1]. (7.5)

Cross-over is the process by which two childs | g1,2
c 〉 are generated by a combination

of two existing parents, | g1,2
p 〉, without destroying the lattes, i.e., X̂ [| g1

p〉T , | g2
p〉T , |

φ〉T , | φ〉T ]T = [| g1
p〉T , | g2

p〉T , | g1
c 〉T , | g2

c 〉T ]T . We have used SBX (Simulated Binary

Crossover) [Agrawal94] and it can be expressed as the [12 × 12] operator

X̂ ≡




Î 0̂ 0̂ 0̂

0̂ Î 0̂ 0̂

α̂+ α̂− 0̂ 0̂

α̂− α̂+ 0̂ 0̂




; (α̂±)jk ≡ xk
1 ± β̄k

2
δjk, ; xk ≡ H(uk − 0.05), (7.6)

where 0̂ ≡ 0 × Î. The crossover activators, xk, set a probability for cross over of

95% per gene and the deffinition of (α̂±)jk ensures the average value of each parameter

is preserved after the crossover operation, |g2
pk − g1

pk| = |g2
ck − g1

ck|. The stochastic

variables for crossover, β̄k (see 7.1b), are also chosen from random uk ∈ [0, 1],

β̄k = β /

∫ β

0

Px(β) = uk; Px(β) =

{
0.5(n+ 1)βn, β ≤ 1

0.5(n+ 1)β−(n−2), β > 1
(7.7)

Note the certain similarity between X̂ and the optical χ̂(3), which mediates the

interaction between two input and output fields.
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Figure 7.1: Probability distributions for the stochastic variables involved in (a) poly-
nomial mutation and (b) simulated binary crossover.

7.2.1 Steady state algorithm

Most of traditional GA are generational, i.e., start from a randomly generated popu-

lation and the most promising individuals are allowed to reproduce to determine the

next generation of individuals, according to the pre-established evolution rules (par-

ent selection method, definition of M̂, X̂ and their rates, to obtain the offspring for

the next generation). Most parent selection methods are stochastic in order to keep

the diversity of the population, preventing premature convergence to a sub-optimal

solution.

In our particular problem, no prior knowledge about the search space is assumed,

and a rugged landscape Φ(τ, λ0, α) is expected. Indeed, there exist efficient evolution-

ary algorithms for general purpose applications. As an example, CMA-ES (Covariance

Matrix Adaptation Evolutionary Strategy) [Hansen03,Hansen96] is an evolutionary

algorithm for difficult non-linear non-convex optimisation problems in rugged search

spaces. However, our interest is in problems in which the fitness function may have

a varying computational cost (ranging from minutes to several hours). Under these

circumstances, the paralleling of generational algorithms in a Grid may not be an

efficient approach. Instead, a steady state genetic algorithm has been used, changing

one member of the population at a time. This allows computation of several fitness in

parallel (after an initial population has been built) and processed once they are avail-

able. To this end, a replace the worst strategy has been adopted, which fully exploits

the processing power of the Grid, keeping it constantly computing new individuals.

In its current state, the algorithm lets a user to modify the following parameters:

- n: approximate number of computing elements simultaneously in the Grid. This

is used to determine the number of processors needed.
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Figure 7.2: Scheme of the steady state GA.
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- p: population size.

- MAX: maximum number of evaluations to perform, after which the smallest

fitness value and input parameters are returned.

- c: number of individuals which are generated before any genetic operator (se-

lection, crossover and mutation) is applied. The algorithm is then initiated with

c randomly generated seeds.

Figure 7.2 provides a flowchart of the algorithm, which in the first stage decides

what to do with the generated individuals and in the second, how to make the new

ones. In the former, a newly generated individual is added to the population (regard-

less its Φ) if the size is less than p. If the current population is already p, the new

candidate replaces the individual with the worst (biggest) Φ if any, or it is discarded.

The second stage is to generate new off-springs to be sent to the Grid for evaluation.

This is done by R̂ if population is smaller than the threshold value c (c < p), or by

the genetic operators M̂ and X̂ otherwise. In this latter case, the stochastic variables

αl
k, mk and Rk and the relative weights between M̂ and X̂ , wm and wx, play which

is probably the most crucial point of the algorythm. Whilst M̂ provides diversity to

the population, X̂ pulls the new individuals closer to the currently lowest Φ.

Generation is thus a not a well defined concept of our scheme, since an individual

survival is guaranteed untill it becomes the worst one in the population. In that

sense, the identity operator Î is always present in the system and only mutation and

cross-over are explicitly applied to generate off-springs.

7.3 The Grid service

Current Grid computing technologies [Foster05] use standard protocols for sharing

both computational power and data storage capacity among geographically distant

resources. Therefore, they are an ideal infrastructure for the execution of the high

throughput problem that lies beneath the optimization via Genetic Algorithms. We

have used an integrated computational approach, using clusters of PCs within a Grid

infrastructure (middle-ware). The usage of Grid protocols to support these executions

makes it possible to provide the GA with an scalable3 solution to its demanding

computational requirements. If additional computational resources were required to

speed up a problem, or to make it more complex (e.g., with more parameters), the Grid

infrastructure could be enlarged, remianing unchanged the applications employed to
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Figure 7.3: Interaction between the GA and GMarteGS.

submit the executions, thus reducing development efforts.

The following subsections briefly describe the GMarteGS service-oriented meta-

scheduler employed to support the evaluation of individuals.

7.3.1 GMarteGS: A Service-Oriented Meta-Scheduler

GMarteGS [Moltó08] is a service-oriented facade to the GMarte [Alonso06] meta-

scheduler. GMarte enables the reliable execution of high performance computing

applications on Grid based on the Globus Toolkit (GT) [Foster05]. It manages the

execution of the tasks by providing fault-tolerant data transfer services between the

client machines and the remote computational resources. It also monitors the applica-

tion during its lifetime to detect failures, which are silently handled by re-scheduling

the tasks on other available resources.

GMarteGS is entirely developed in Java and uses common standards like the

Web Services Definition Language (WSDL) and the Web Service Resource Frame-

work (WSRF). It introduces secure multi-user resource brokering on computational

Grids for the execution of computationally intensive applications. Its architecture al-

lows different users to simultaneously use its functionality to submit the execution of

tasks. In addition, the Grid service uses the Grid Security Infrastructure (GSI) pro-

vided by GT to achieve privacy between the client and the service, as the principal

3This is a crucial point which Cloud Computing actually solves in a more flexible way than Grid
infrastructures. However, the fact that all the information is on the internet makes the cloud security
protocols much easier to corrupt.
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communications are ciphered, as well as data integrity.

Thus, GMarteGS acts as a mediator between the users and the Grid infrastructure.

As such, it provides a high level Application Programming Interface (API), both in

WSDL and in Java, which can be easily employed to incorporate its functionality to

existing programs requiring the execution of tasks in a Grid infrastructure.

Figure 7.3 depicts the interaction between the genetic algorithm and the Grid ser-

vice. First of all, the GA creates a session and then it starts the optimization strategy,

according to fig. 7.2. When the GA requires an individual to be evaluated, it uses the

GMarteGS Client API to define a new execution task with the appropriate parame-

ters that describe the individual. This task is submitted to the Grid infrastructure

and its state can be easily monitored via high level methods that describe the state

of the task (i.e. scheduled, staged in, active, staged out, completed or failed).

7.3.2 Interfacing the Genetic Algorithm with GMarteGS

GMarteGS exposes its functionality via WSDL. Therefore, it can be accessed from

virtually every possible application, regardless of the programming language used.

However, as the Genetic Algorithm has also been implemented in Java, a lightweight

client-side Java API was developed to ease the usage of GMarteGS from a client

Java code. This includes methods and objects for defining tasks, creating sessions,

gathering the state of the meta-scheduling sessions and their tasks, destroying sessions

and transferring data between the client machine (where the GA runs) and the Grid

service machine via the GridFTP protocol.

Gathering the state of the tasks is usually done actively (the client requests this

information from the Grid service). However, GMarteGS also supports the standard

notification mechanisms available in GT version 4 so that the client is notified when-

ever the state of a session (i.e., the state of any of its tasks) has changed. The main

problem is that supporting notifications by the client requires that it deploys a GT4

container (at least the Java WS Core) to receive the incoming connections. This can

be a drawback, as the client requires a special firewall configuration and can no longer

be considered a thin client.

The application that evaluates the individuals has been implemented in Matlab.

Although it is possible to create a re-distributable application which only depends on

the Matlab runtime, this last piece of software is heavyweight and should be trans-

ferred to the remote computational resource along with the application. Therefore, to

avoid this overhead we have relied on the installation of the required Matlab libraries

in the remote computational resources. Once we have assessed the effectiveness of the
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Φc Φmin

τ λ0 N τ λ0 N

11.7705 851.8005 7.0289 10.0097 840.3179 7.9987
11.0086 866.7541 5.7297 10.1034 843.1355 7.9635
15.1166 853.9194 7.6615 10.0037 775.0495 7.9996
10.2487 894.0204 5.3020 10.6762 848.0502 7.9903

Table 7.1: Input pulse parameters for the best fitness values found (left) in the first
35 randomly generated individuals, Φc, and (right) after MAX = 1000 individuals,
Φmin. Rows 1 to 4 correspond to figs. 7.4a,b, 7.5a and b, respectively.

optimization codes, a C-based version of the code would be able to seamlessly run on

a wide variety of machines in a Grid infrastructure.

We have used a small Grid infrastructure which uses the Globus Toolkit 4.0.8 and

is composed of two clusters of PCs (20 and 55 nodes) running on Intel Xeon 2.8 Ghz

with 2.0 GBytes of RAM. A total of 12 such nodes have been used in this particular

work. The execution of this case study required 90 minutes in the Grid infrastructure

considered. Running the same GA in a single PC requires a total execution time of

over 10 hours.

7.4 Results

In the experiments, we have used a population p = 50, and evaluated a total of

MAX = 1000 candidate solutions to the problem. In order to achieve sufficient

diversity amongst the initial population, R̂ generated the first c = 35 individuals.

The particular deffinitions for n, mk that has been reported to yield good results in

a wide diversity of problems [Back93].

Figures 7.4 and 7.5 show the convergence process for 4 different optimisation runs.

Top figures plot Φ for each generated individual in chronological order and the current

smallest Φ (red line). Because the first c = 35 individuals are generated randomly,

only the best fitness of that region, Φc, is marked.

Usefulness of a GA relies in both obtaining a substantially better fitness, Φmin,

than the one found randomly, Φc, and providing a qualitative criterion for conver-

gence, which is provided by the approximately constant Φ along the last ∼ 300 indi-

viduals. The former requirement gives typical values Φc/Φmin ∈ [3, 5], as can be seen

explicitely in the plots (c) and (d). The spectral evolutions corresponding to Φmin in

each case are shown in plots (e), (f). Comparison
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Figure 7.4: (a), (b) Evolution of fitness (stars), Φ, for the 1000 individual simulations.
Dashed and full vertical lines mark cross-over threshold, c = 35, and population size,
p = 50, respectively. Red line marks the best Φ. (c), (d) show the normalised output
spectra corresponding to (red) Φc and (black) Φmin (see table 7.1 for input parameter
values). The spectral evolution of the optimum solutions are shown in figs (e), (f).
In all spectral plots, full and dashed vertical lines mark the zero GVD and the target
spectral window, respectively.
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Figure 7.5: . Same as fig. 7.4, for other two optimisation executions.
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The optimum solution found has the expected features. Indeed the narrow target

spectral window imposed in this problem is likely to select peaked spectra, such that

those of the bright solitons in the anomalous GVD regime. In this case, the GA

provides a useful tool for a fine tuning of the input pulse parameters to achieve the

required maximised spectral power.

The results presented here are the simplest possible approach towards a full opti-

mization process not predictable, in principle, just on the basis of physical grounds.

The results obtained in this section are promising and motivate the study of other

more complex problems, e.g., involving other pulse parameters (e.g., chirp) or several

fibres with different lengths and full dispersion profiles.

7.5 Conclusion

This chapter has presented the development of an automatic tool to optimize optical

fibers based on Genetic Algorithms and supported by the computational power of a

Grid infrastructure. In this case, we have used a simple genetic algorithm to find

the best combination of parameters that leads to the maximised spectral power in a

targeted window. It is believed that combining global optimization techniques with

other local optimization strategies may considerably improve the results for certain

classes of problems. Although we have used the software to solve an specific problem,

the future work would be to build a library that allows the user to easily solve other

optimization problems using Grid computing.





Chapter 8

Conclusions and future work

The work presented in this thesis belongs mainly to two different areas of photon-

ics, i.e., supercontinuum generation in optical fibres and nonlinear effects in surface

plasmon polariton SPP waves. In both areas, theoretical and numerical work has

been developed. On the one hand, the theory work had the twofold purpose of, first,

understanding the equations present in the current literature (chapter 2) and second,

studying the complex nonlinear properties of radiating dark solitons (chapter 3) and

the existence of soliplasmon solutions (chapter 6). On the other hand, the numerical

work consisted, on the first stage, in developing our own codes for temporal propaga-

tion in optical waveguides with uniform and slowly varying cross-sections (chapters 3,

4 and 7). A second and more complex stage, was the one of adapting the commercial

software Comsol for nonlinear and vector time-independent modelling (chapters 5 and

6).

All the theoretical and numerical tools developed provided us with the knowledge

to optimise several devices. Briefly, continuum spectra generation by dark solitons

(chapter 3) is critically influenced by the soliton parameters, mainly frequency and

greyness. When continuum spectra are to be generated from bright pulses with high

input power, again the input light conditions have to be properly set to obtain the

desired output spectral features (chapter 7). Such spectra can indeed also be generated

by fundamental bright solitons (chapter 4), but here the fiber cross section (device

geometry) has to vary in a very particular way together with the pulse frequency

along the propagation. As in the latter case, the geometry of waveguide arrays also

needs to be carefully adjusted for the observation of the nonlinear switching effect over

the loss length, when using metallic substrates (chapter 5). Finally, the excitation of

SPP’s waves by spatial solitons is an important effect behind the work in chapter 6.

However, because of its novelty, most of the effort was invested in the understanding

of the hybrid solutions, soliplasmons, and the resonant dynamics is left for further
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investigation.

Future work

The diversity of topics faced in the thesis left many opened problems and gave rise to

all sort of questions and research interests. Tentative titles for potential future work

arising from the thesis are motivated and listed in what follows.

Temporal solitons and supercontinuum

Generalised NLS equations and their impact in subwavelength waveguides.

The potential impact of eqns. 2.19 and 2.27 in SC modelling, specially in waveg-

uides with subwavelength dimensions is still to be explored.

Theory for perturbed dark solitons: stability and adiabatic shift of soliton pa-

rameters in the presence of TOD and Raman effect.

The results in chapter 3 suggest a better understanding of the radiation amplitude

might be required to match the theory with the modelling, what motivates an adia-

batic model for the soliton frequency and greyness shifts. Furthermore, the Raman

enhancement or suppression of the amplitude can be analysed by means of a similar

perturbation theory to that developed here, accounting for the Raman term. It is ex-

pected that accounting for the nonlinear terms associated to the perturbation would

bring insight about the little dark soliton emitted onto the tail in which there is no

radiation (see e.g., fig. 3.5). Moreover, proving the stability of dark solitons is still

an opened formal problem, even in the simpler case the NLSE.

Soliton radiation mechanisms and conservative Lagrangian formulation for dis-

sipative effects.

Cherenkov radiation, Airy waves and cascaded effects are known types of solitonic

radiation. New or modified mechanisms of radiation emission (such as Hawking’s

radiation) might arise when accounting for higher order terms in the GNLSE. A pos-

sibility to explore this is through the local phase invariance applied on the Lagrangians

of the GNLS-type equations (see e.g., eq.2.41).

Non radiative solitonic corrections: kinks and shock waves.
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Higher order effects do not only induce emission of radiation, but also modifications

to the soliton profile [Karpman93]. The contribution to the standard shock term

[Agrawal07] appears in section 2.3.3 (see eq. 2.43) in a modified way. Although

introduced in a rather artificial way it can be actually found as in [Tran09]. The

two different ways of accounting for shocks are conceptually different, since the latter

conserves the Hamiltonian and the former does not. Further studies of shock and

kinks (see e.g., [Frantzeskakis97]) should clarify the proper way to describe and the

physical consequences in bright and dark solitons.

Variational theory for soliton propagation under power consuming and Hamil-

tonian dissipative effects.

Eq. 2.46 motivates the development of models which describe the dynamics of

solitons with decreasing power along propagation in uniform or tapered fibers. Such

models could provide, e.g., support to the results presented in chapter 4 and general-

isation of well-known results, such as [Gordon86].

Optimisation of soliton red-shift in tapered fibres.

Optimising a soliton red-shift around the second zero GVD wavelength of a fiber,

keeping small the Cherenkov radiation and big the SSFS ratio is still an opened

problem which could find applications in UV generation.

Polychromatic IR extended Cherenkov radiation in tapered fibres.

Radiation trapping across the second GVD wavelength by a single soliton is only

possible in a tapered fiber. Tapering can provide control on further red-shifting of the

radiation.

Coupled systems

Bifurcation theory for characterising the NL modes of waveguide arrays.

Results in chapter 5 showed that bifurcations appear in the system of three waveg-

uides at a lower power than for the two waveguides. Together with the shorter beat

length, arrays of a large amount of waveguides my offer a good alternative for low

power nonlinear switching over shorter propagation distances.

Spin model for amplitude-phase dynamics for on resonance soliplasmons.
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Description of the phase-amplitude dynamics observed in the modelling of chap-

ter 6 requires further development of the model. A promising approach is the spin

(Maxwell-Bloch) model introduced through the density matrix formalism.

Attractive and repulsive intra soliplasmon forces.

On and off phase between plasmon and soliton, plus the exposure to reflections

with the metal, motivate the inclusion of the soliton position as a free parameter in

the model developed in chapter 6.

A temporal equation for soliplasmon supermodes.

Temporal dynamics associated to soliplasmons is motivated by the stable set,

with δ = π, having anomalous dispersion (dβ2/dω2 < 0) for frequencies around the

crossing-point and above (see fig. 6.2).

Two colour soliplasmons and UV generation.

Fig. 6.1 shows that the coupling between a soliton and a plasmon (βs = βp)

indeed occurs when they have different frequencies too, what could originate two

colour soliplasmons. Besides, further matching with the radiation in the metal above

plasma frequency might provide a method for UV generation. Similar ideas matching

several colour nonlinear modes through their group indices have been explored in

[Skryabin04].



Appendix A

Numerical method to

compute stationary

soliplasmons

The numerical solutions in section 6.4.2 are compute numerically by solving the equa-

tions

L̂1DEx = β2Ex, L̂1D ≡ ∂2
x + ∂x

(
1

ǫ
∂xǫ◦

)
+ k2ǫ (A.1)

ǫ = ǫL + χ(3)
[
|Ex|2 + |Ez|2

]
, Ez = − i

β

[
ǫ−1∂x(ǫEx)

]
, (A.2)

as a self-consistent linear problem, using eq. A.2 as a constrain and keeping β as

close as possible to the desired propagation constant, βsp. Because the transversal

derivatives are performed using the fast Fourier transform (FFT) and its inverse,

periodic boundary conditions are required, so the numerical domain is defined by a

large nonlinear dielectric region surrounded by metal ends.

The algorithm is sketched in fig. A.1 and works as follows. In first place Ex is

given as a Gaussian with certain norm
∫
dx|Ex| and at a certain distance to the target

metal interface, being the effect of the second interface negligible. This introduces a

self-modulated profile of the refractive index (n =
√
ǫ) since the very beginning and

hence forces the algorithm to keep the soliton component relatively close to the one

metal interface, what in turn prevents from convergence to the modes of the large

dielectric waveguide. With this, the eigenvalues (β2) and eigenvectors (Ex(x)) of the

operator L̂1D are computed as if the problem was a linear one. The eigenvector which

qualitatively resembles more the targeted profile is chosen. However, the numerical
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method returns the eigenvector normalised as
∫
dx|Ex| ≡ 1, so it needs to be rescaled

in order to have a propagation constant β ≈ βsp. This scaling is done as follows. The

operator L̂1D is regarded to as

L̂1D = Ô1 + Ô2, Ô1 ≡ ∂2
x + ∂x

(
1

ǫ
∂xǫ◦

)
, Ô2 ≡ k2ǫ, (A.3)

and we need to find ex = NEx such that L̂1D(ex)ex = β2
spex, so

β2
sp =

〈ex | L̂1D(ex) | ex〉
〈ex | ex〉

=
〈ex | Ô1(ex) | ex〉

〈ex | ex〉
+

〈ex | Ô2(ex) | ex〉
〈ex | ex〉

=

〈Ex | Ô1(NEx) | Ex〉 +N2〈Ex | Ô2(NEx) | Ex〉,

what leads to the transcendent equation for the normalisation factor

N2 =
β2

sp − 〈Ex | Ô1(NEx) | Ex〉
〈Ex | Ô2(NEx) | Ex〉

, (A.4)

which, together with ǫ = ǫL + χ(3)
[
|Ex|2 + |Ez|2

]
, is solved iteratively inside the

code (iterative processes are symbolised by the circular arrows in fig. A.1). After this,

the estimate of Ez is done, with eq. A.2. The new values of Ex and Ez initialise the next

iteration and the process carries on until the change between two subsequent solutions,∫
x

[
|E(1)

x |2 − |E(0)
x |2

]
, does not experience a change bigger than the tolerance, which

is usually 10−6 in the propagation constant.

The biggest issue of this method is that the soliton possition can not be kept at

a strictly fixed distance from the interafce. An alternative is to restrict to the study

of the waveguide MDKDM only (see section 6.4.4), which not only is favorable from

the numercal point of view, but seems to be the best experimental set-up, since the

soliton can not be sent away by the metal reflections (see sections 6.5 and 6.5.1).
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Figure A.1: Scheme of the algorithm used to find stationary soliplasmon solutions.





Appendix B

Papers, conferences and

workshops

Papers published

C. Milián, D. V. Skryabin and A. Ferrando, Continuum generation by dark

solitons, OL (34) 14, pp. 2096 (2009).

C. Milián and D. V. Skryabin, Nonlinear switching in arrays of semiconductor

on metal photonic wires, APL (98) 11, pp. 111104 (2010).

Paper submitted

C. Milián, A. Ferrando, D. V. Skryabin, Polychromatic Cherenkov radiation and

supercontinuum in tapered optical fibers, submitted to JOSAB (with results from

section 4.3).

Paper in preparation

A Maxwell equation approach to nonlinear excitations of surface plasmon po-

laritons, with all the results presented in chapter 6.

Selected workshop and conference contributions

C. Milián, D. V. Skryabin, A. Ferrando, Continuum generation by dark solitons

in optical fibers Oral presentation Localized Excitations in Nonlinear COmplex

Systems (LENCOS 09) Sevilla (Spain), 14-17/07/2009
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G. Moltó, M. Arevalillo-Herráez, C. Milián, M. Zacarés, V. Hernández, A.

Ferrando Optimization of Supercontinuum spectrum using genetic algorithms

on service-oriented grids, ISBN 978-84-9745-406-3 (IBERGRID 09) Valencia

(Spain), 20-22/05/2009

A. Ferrando, C. Milián, D. Ceballos, and D.V. Skryabin Stability of soliplasmon

excitations at metal/dielectric interfaces (invited talk) International Workshop

on NONLINEAR PHOTONICS (NLP*2011) Kharkov (Ukraine), 06/09/2011

A. Ferrando, C. Milián, N. González, G. Moltó, P. Loza, M. Arevalillo-Herráez,

M. Zacarés, I. Torres-Gómez, and V. Hernández Designing supercontinuum spec-

tra using Grid technology ISBN 9780819483607 (and invited talk) 2nd Workshop

on Specialty Optical Fibers and Their Applications (WSOF-2) Oaxaca (Méx-

ico), 10/2010
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