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Highlights 

 Structure and origin of D RNAs associated with two new TBRV isolates were 

analyzed 

 D RNAs of TBRV interfere with parental virus replication 

 The interference effect depends on the interplay between TBRV isolate and the host  

 

Abstract 

Tomato black ring virus (TBRV) is the only member of the Nepovirus genus that is known to 

form defective RNA particles (D RNAs) during replication. Here, de novo generation of D 

RNAs was observed during prolonged passages of TBRV isolates originated from Solanum 

lycopersicum and Lactuca sativa in Chenopodium quinoa plants. D RNAs of about 500 nt 

derived by a single deletion in the RNA1 molecule and contained a portion of the 5’ 

untranslated region and viral replicase, and almost the entire 3’ non-coding region. Short 

regions of sequence complementarity were found at the 5’ and 3’ junction borders, which can 

facilitate formation of the D RNAs. Moreover, in this study we analyzed the effects of D 

RNAs on TBRV replication and symptoms development of infected plants. C. quinoa, S. 

lycopersicum, Nicotiana tabacum, and L. sativa were infected with the original TBRV isolates 
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(TBRVD RNA) and those containing additional D RNA particles (TBRV+D RNA). The 

viral accumulation in particular hosts was measured up to 28 days post inoculation by RT-

qPCR. Statistical analyses revealed that D RNAs interfere with TBRV replication and thus 

should be referred to as defective interfering particles. The magnitude of the interference 

effect depends on the interplay between TBRV isolate and host species. 

 

Keywords: defective RNAs; TBRV; virus accumulation; RT-qPCR; interference 

 

1. Introduction 

Tomato black ring virus (TBRV) is the type member of Nepovirus genus within the family 

Secoviridae. Taking into account the differences in the length of RNA2, the degree of 

sequence identity and serological properties, nepoviruses were classified into three groups: A, 

B and C (Steinkellner et al., 1992; Sanfaçon, 2009). TBRV belongs to subgroup B and infects 

a wide range of economically important plants worldwide. Since 1957, there have been 

reports of significant damage caused by TBRV infection to several important hosts other than 

tomato: strawberry, potato, celery, and artichoke (Hollings, 1965; Gallitelli et al., 2004). 

TBRV is transmitted mechanically with plant sap, soil-inhabiting nematodes of Longidorus 

genus and through the seeds of some plant species (Harrison et al., 1961; Lister and Murant, 

1964). The viral genome consists of two single-stranded RNAs of about 7400 nt and 4600 nt 

in length, respectively, carrying a small covalently attached VPg protein at 5’ ends and a 

poly(A) tail at their 3’ ends. Each genomic RNA encodes for a polyprotein, which are 

proteolytically cleaved into mature functional proteins by the RNA1-encoded protease. RNA1 

is responsible for viral replication and polyprotein processing, while RNA2 encodes genes 

necessary for encapsidation and movement in plants (Mayo and Robinson, 1996; Jończyk et 

al., 2004). 

TBRV infection can be accompanied by subviral particles such as satellite RNAs 

(satRNAs) and defective RNAs (D RNAs). SatRNAs share little sequence similarity with the 

viral genomic RNAs, whereas D RNAs are derived from the viral genomic RNAs via a copy 

choice mechanism resulting in sequence deletion(s). These RNAs are called “defective” since 

they do not encode any proteins, and their replication, encapsidation and spread depend on the 

parental (helper) virus (Holland, 1991). D RNAs are synthesized by the viral RNA-dependent 

RNA polymerase (RdRp), which also replicates the parental virus genomes. D RNAs are 

often generated de novo during serial passages of viral isolates in one host (Perrault, 1981; Li 
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et al., 1989; Hasiów-Jaroszewska et al., 2012). Most of D RNAs contain parts of the non-

coding regions of their helper virus’ genome and preserve a portion of open reading frame(s) 

(ORFs) (Romero et al., 1993; Graves et al., 1996; Hernández et al., 1996; Qiu and Scholthof, 

2001; Pathak and Nagy, 2009). RNA recombination plays a major role in the production of D 

RNA particles. The errors made by the RdRp, including template switching, are likely the 

main mechanism of D RNAs formation. Additionally, highly active “hotspot regions” for 

RNA recombination, which might promote the formation of D RNAs, very often consist of 

AU-rich stretches (Kim and Kao, 2001). Pausing of the viral RdRp may be also mediated by 

the sequence and/or secondary structure of the donor or nascent RNA (Nagy and Simon, 

1997). D RNAs can modulate helper virus accumulation, symptoms observed in infected 

plants and even virus evolution (Holland et al., 1987; Li et al., 1989; Romero et al., 1993; 

Pathak and Nagy, 2009). D RNAs, which are referred to interfere with the multiplication of 

their helper viruses, are called “defective interfering RNAs” (DI RNAs). 

De novo generation of D RNAs was previously demonstrated during serial passages of 

chosen TBRV isolates from black locust, black elder, tomato, and zucchini. D RNAs of about 

400 - 500 nt in length derived from TBRV RNA1 were classified into two types according to 

their molecular structure. The first type containing a part of the 5’ untranslated region (UTR), 

segment located in the 5’ region of the ORF and a portion of the 3’ UTR of RNA1. The 

second type consisted of a short fragment of the 5’ UTR, a portion of the C-terminal end of 

the RdRp and the almost entire 3’ UTR of RNA1. A single deletion, which resulted in the 

formation of defective particles, covered the region corresponding to the area between 371 - 

7243 nt or 147 - 6840 nt of RNA1, respectively (nt positions refer to GenBank accession 

AY157993.1) (Hasiów-Jaroszewska et al., 2012; Rymelska et al., 2013). The role that D 

RNAs may have in the replication of TBRV is not fully understood. It was observed that the 

presence of D RNA affects the attenuation of symptoms on infected plants, suggesting its 

interference with helper virus multiplication (Hasiów-Jaroszewska et al., 2012; Rymelska et 

al., 2013; Hasiów-Jaroszewska et al., 2016). 

In this work, we report the molecular characterization of de novo generated D RNAs 

of two new TBRV isolates originated from tomato (Solanum lycopersicum L. cv. 

Moneymaker; Solanaceae family) and lettuce (Lactuca sativa L.; Asteraceae family). 

Moreover, we analyze the impact of D RNAs on the replication of the helper virus, and the 

symptoms induced on the infected plants, showing that these D RNAs are, indeed, DI RNAs. 
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2. Materials and methods 

 

2.1. TBRV isolates, plant inoculations and growing conditions 

Two TBRV isolates were used to perform the experiments. The first, designated as TBRV-Pi 

was obtained from a greenhouse tomato, while the second (TBRV-S1) was isolated from a 

lettuce. The isolates were transferred by mechanical inoculation and maintained in 

Chenopodium quinoa Willd. (Amaranthaceae family). Plants were grown under greenhouse 

conditions at a temperature of 22 - 23°C and a photoperiod of 16 h. Purified virus 

preparations were obtained in sucrose gradient as described previously (Rymelska et al., 

2013). Viral RNAs were extracted by a phenol-chloroform procedure (Green and Sambrook, 

2012) and the RNAs profile was analyzed by agarose gel electrophoresis. The concentration 

of each RNA sample was measured in a ND-1000 spectrophotometer (Thermo Fisher 

Scientific, Wilmington DE, USA) and adjusted to 1 µg/µl. 

 

2.2. Virus passages 

The long-term passing of TBRV-Pi and TBRV-S1 was performed in C. quinoa. Viral RNAs 

at a final concentration of ca. 1 μg/μl were inoculated onto Carborundum-dusted leaves of C. 

quinoa in the approximate amount of 3.3 µl per leaf. Infected plants were maintained under 

greenhouse conditions for 7 days post-inoculation (dpi). The initial virus population derived 

from infected plants was transferred to virus-free plants of the same species and passaged 15 

times over a total period of 105 - 110 days. After each passage of 7 dpi, the whole plants were 

collected, their tissues were ground in 2 ml of phosphate buffer (0.05 M, pH 7.2), and the 

resulting sap was used for mechanically inoculating new plants. After 15 passages, purified 

viral preparations were obtained, and RNA was isolated using the phenol-chloroform 

procedure. The RNA profile was analyzed in 1.5 % agarose gel. 

 

2.3. Amplification, cloning and sequencing of short RNAs 

All molecules shorter than TBRV-genomic RNAs were extracted from the gel and purified 

using Zymoclean™ Gel RNA Recovery Kit (ZymoResearch, Irvine CA, USA), according to 

the manufacturer’s instructions. Small RNAs were amplified using Transcriptor One-Step RT-

PCR Kit (Roche, Mannheim, Germany), according to the manufacturer’s instructions. In order 

to amplify short RNAs, a set of the primers complementary to the conserved 5’ and 3’ UTRs 

of both TBRV RNA1 and RNA2 was used (Hasiów-Jaroszewska et al., 2012; Rymelska et al., 
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2013). The RT-PCR products were purified using a NucleoSpin Gel and PCR Clean-up Kit 

(Macherey-Nagel, Düren, Germany) and cloned into a TOPO™ TA Cloning™ Kit for 

Sequencing (Thermo Fisher Scientific, Waltham MA, USA).  The recombinant plasmids were 

transformed into One Shot™ TOP10 Chemically Competent Escherichia coli (Thermo Fisher 

Scientific, Waltham MA, USA), according to manufacturer’s instructions. Plasmid DNA was 

purified using Invisorb® Spin Plasmid Mini Two (Stratec Molecular, Berlin, Germany) and 

the presence of an insert verified by digestion with appropriate restriction enzymes. At least 

three independent plasmid DNAs were sequenced using M13F and M13R primers in an 

external company (Genomed, Warsaw, Poland). In order to determine the extent to which D 

RNAs correspond to their 5’ and 3’ fragments of parental genomic RNAs, 5’ and 3’ RACE 

Systems for Rapid Amplification of cDNA Ends (Invitrogen, Carlsbad CA, USA) and the 

following primers: 5’RACE1 5’-CAAAATCGTCAAGGACGATATC-3’ and 3’RACE1 5’-

GTGAAACCTATGCTGCC-3’ were used according to the manufacturer’s instructions. 

Furthermore, the cDNA ends were sequenced and compared with the sequences of defective 

RNAs. A recombination analysis was performed using RDP4 (Martin et al., 2015) and Recco 

softwares (Maydt and Lengauer, 2016). 

 

2.4. In vitro transcription of D RNA molecules 

Gel-purified D RNAs served as templates in RT-PCR reaction with primers DF 5’-

AAAAGAGCTCTAATACGACTCACTATAGCAAATCCTGTAACCAATCAG-3’ (T7 

promoter is underlined) and DR 5’-AAGTCGACAATCTTTTTGTGTCCAACA-3’. The RT-

PCR reaction was performed using a Transcriptor One-Step RT-PCR Kit (Roche, Mannheim, 

Germany) in 50 µl reaction volume containing 1 µl of RNA, 10 µl of 5 reaction buffer, 0.4 

µM of each primer, 1 µl Transcriptor Enzyme Mix, and 34 µl of water. Reverse transcription 

was performed at 50 °C for 30 min. The initial denaturation was performed at 94 °C for 10 

min, followed by 35 cycles of denaturation at 94 °C for 10 s, annealing at 60 °C for 30 s and 

extension at 68 °C for 1 min. A final extension at 68 °C for 5 min was also performed. The 

RT-PCR products were separated on 1% agarose gel stained with Midori Green (NIPPON 

Genetics, Düren, Germany). The obtained RT-PCR products were purified using NucleoSpin 

Gel and PCR Clean-up (Macherey Nagel, Düren, Germany) and subsequently used for 

transcription. Transcription was performed using mMESSAGE mMACHINE Kit (Ambion, 

Austin TX, USA) according to manufacturer’s instructions. 
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2.5. Impact of D RNAs on symptoms development and accumulation of the viral RNA 

To determine the impact of D RNAs on symptoms development the RNA isolated from 

original TBRV isolates, which did not posses any additional RNA particles (TBRV-PiD 

RNA and TBRV-S1D RNA) was mixed in different combinations (1:1, 1:2 and 2:1 ratios) 

with RNA transcripts corresponding to D RNAs. The concentration of each RNA sample was 

measured in a ND-1000 spectrophotometer (Thermo Fisher Scientific, Wilmington DE, 

USA). 

The RNA mixtures (at a final concentration of about 1 µg/µl) were inoculated onto 

Carborundum-dusted leaves of C. quinoa and Nicotiana tabacum L. cv. Xanthi plants, 10 µl 

per plant. Three plants for each variant were used and maintained under greenhouse 

conditions (22 – 23 °C, 16 h photoperiod). The plants infected with TBRV-PiD RNA and 

TBRV-S1D RNA served as positive controls. All plants were monitored for symptoms 

development during 28 dpi. The presence of TBRV RNA and D RNAs in infected plants was 

confirmed by RT-PCR as described above. 

Real-time quantitative RT-PCR (RT-qPCR) experiments were performed to determine 

whether the presence of D RNAs has an impact on the parental virus accumulation. The 

original TBRV isolates (TBRV-PiD RNA and TBRV-S1D RNA), as well as those obtained 

after the serial passages that contained D RNAs (TBRV-Pi+D RNA and TBRV-S1+D RNA) 

were used in these experiments. The quality and concentration of TBRV genomic RNAs and 

D RNAs was estimated using capillary electrophoresis using Qsep-100 DNA Analyzer 

(BiOptic Inc., Taipei, Taiwan). The final concentration of genomic RNAs was established of 

ca. 1 µg/µl and used to inoculate the following test plants: S. lycopersicum, C. quinoa, N. 

tabacum, and L. sativa. The RNA accumulation level was analyzed for each studied variant 

separately for five biological replicates. Each biological replicate was repeated thrice 

(technical replicates). The experiments were repeated twice. 

Ten μl of RNA was used for mechanical inoculation of each plant (approximately 3.3 

μl per each Carborundum-dusted leaf). The plants were maintained for 28 dpi and the 

symptoms were monitored. The entire experiment was conducted under greenhouse 

conditions (22 - 23 °C, 16 h photoperiod, 50% humidity) in closed, monitored compartments. 

In parallel, mock-inoculated plants (treated only with inoculation buffer) were grown as 

negative controls. The apical part of the plants infected with the particular variant (TBRV-

Pi+D RNA, TBRV-Pi–D RNA, TBRV-S1+D RNA, and TBRV-S1–D RNA) were taken 

individually, and total RNAs were extracted using the RNeasy Plant Mini Kit (Qiagen, Hilde, 
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Germany) according to the manufacturer’s protocol. The RNAs were isolated 7, 14, 21, and 

28 dpi, measured with a ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham 

MA, USA) and diluted to the final concentration of ca. 10 ng/μl. To prepare a standard curve, 

RNA transcripts of CP gene of both isolates (TBRV-Pi and TBRV-S1) were obtained. First, 

each cDNAs of the isolates were synthesized using 1 μl of appropriate RNAs at a final 

concentration of 1 µg/µl, Oligo (dT) primer (200 nM) and Transcriptor High Fidelity cDNA 

Synthesis Kit (Sigma-Aldrich, Darmstadt, Germany), according to the manufacturer’s 

protocol. Then, the CP was amplified using TBRVCP1F 5’-

ATGAATTCTAATACGACTCACTATAGGCAGACGGGGATTTTGCCTTGG-3’ (T7 

promoter is underlined) and TBRVCP1R 5’-

GCGGCCGCTGCGGGAATAGTTAGAGGACCTGC-3’ primers, at an annealing 

temperature of 60 ˚C. The resulting PCR products were separated on a 1% agarose gel to 

verify the appropriate size of the obtained products and purified using NucleoSpin® Gel and 

PCR Clean-up (Macherey-Nagel, Düren, Germany), according to the manufacturer’s protocol. 

RNA transcripts were produced using the mMESSAGE mMACHINE Kit (Ambion, Austin 

TX, USA) according to the manufacturer’s protocol, measured and diluted to the final 

concentration of 1 µg/µl, which corresponded to 1.183·1012 copies of viral genomes. Then, 

the RNA transcripts obtained from both isolates underwent 10-fold serial dilutions from 

1.183·1012 to 1.183·106 copies of viral genomes, using appropriate RNAs from healthy plants 

as diluents. RT-qPCR reaction was performed using iTaq SYBR Green (Biorad, Hercules CA, 

USA), CPqF: 5’-CGAAGGCAACTCTGCAA-3’ and CPqR: 5’-

TCCAGTTTCCATGGTTTCTG-3’ primers. Each sample was analyzed in three technical 

replicates. The number of viral genomes in each sample at 7, 14, 21, and 28 dpi was 

calculated by comparing the obtained results to the values from the standard curve with 

LightCycler® 96 SW 1.1 software (Roche, Mannheim, Germany). 

 

2.6. Statistical analysis 

Let n(t) be the number of viral genomes quantified by RT-qPCR in a sample t dpi. Then, we 

can define a new variable N(t) as the cumulative number of genomes produced until time t dpi 

as 𝑁(𝑡) = ∑ 𝑛(𝑖)𝑡
𝑖=7 . Cumulative number of genomes data were then fitted to a fully factorial 

statistical model by generalized linear model (GLM) methods in which TBRV isolate (Pi and 

Sl), presence or absence of D RNAs and host species (C. quinoa, L. sativa, N. tabacum, and S. 

lycopersicum) were all treated as orthogonal factors. Time (dpi) was treated as a covariable. 
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The model assumed normally distributed errors and a link function (choice based in the 

lowest BIC among alternative models tested). The significance of each factor, the covariable 

and all of their interactions was evaluated by means of likelihood-ratio tests (LRT) that 

asymptotically follow a 2 probability distribution. A factor may be significant but still have 

very little effect in explaining the observations. Therefore, it is important to quantify the 

contribution of each factor to the predictive power of a model. To achieve this, the magnitude 

of the effects associated to each factor were evaluated using two different statistics, the 𝜂𝑃
2  

statistic that represents the proportion of total variability attributable to a given factor when 

controlling for the other effects (𝜂𝑃
2  < 0.05 are considered as small and 𝜂𝑃

2 ≥ 0.15 as large), 

and the percentage of total variance explained by each of the factors. All statistical analyses 

were performed with SPSS version 23 software (IBM, Armonk NY, USA). 

 

3. Results 

 

3.1. Spontaneous generation of TBRV D RNAs 

The RNA analysis of TBRV-Pi and TBRV-S1 isolates originated from tomato and lettuce, 

respectively revealed the presence of two typical TBRV RNAs: RNA1 (7400 nt) and RNA2 

(4600 nt). No additional bands on the agarose gel were observed (Fig. 1). After 15 serial 

passages in C. quinoa, additional small RNAs of about 500 nt were observed for both TBRV 

isolates (Fig. 1). Small RNAs were amplified using primer pair P128/P2 (Hasiów-

Jaroszewska et al., 2012; Rymelska et al., 2013), cloned and sequenced. The sequences of 

particular D RNAs obtained from three independent clones were identical. Sequences of D 

RNAs associated with TBRV-Pi and TBRV-S1 were deposited in GenBank under accession 

numbers MG458222 and MG458223, respectively. Sequence comparison with the parental 

genome sequences confirmed their defective character. 

 

3.2. Structure and origin of D RNAs 

The recombination analysis revealed that both D RNAs derived from the TBRV RNA1 as a 

result of single deletion between 147 - 6862 nt (positions refer to TBRV-Pi accession number 

MG458220). De novo formed D RNAs of TBRV-S1 and TBRV-Pi shared the characteristic 

of the previously-described second type of TBRV D RNAs: a small fragment of 5’ UTR (20 

nt), a portion of the C-terminal end of RdRp and the almost entire 3’ UTR (Fig. 2A). Based on 

their structure, both D RNA particles were classified to the second type of TBRV D RNAs. D 
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RNAs of TBRV-S1 and TBRV-Pi were very similar to each other and shared 99.1% sequence 

identity.  

Analysis of the nucleotide sequences near junction sites suggest potential mechanisms 

which may operate to generate TBRV D RNAs. The sequence motif AGAAAAG within the 

RdRp coding region of TBRV-S1 and TBRV-Pi is a perfect complementary inverted repeat of 

the 5’ UTR sequence CUUUUCU (Fig. 2 B), suggesting the formation of a hairpin structure 

between these two sequences. Such hairpin structure may also play a potential role during 

replication and recombination by pausing of the polymerase following by re-initiation of 

RNA synthesis and as a consequence, in D RNAs formation. 

 

3.3. Impact of D RNAs on symptoms development 

Significant differences in symptoms development were observed between plants infected with 

the TBRV+D RNA versus those infected with TBRVD RNA. The presence of D RNAs 

decreases the symptoms severity in all TBRV/D RNAs combinations however the attenuation 

of symptoms was especially observed when a 1:2 ratio of TBRV/D RNAs was inoculated. 

Generally, the plants infected with TBRV-PiD RNA displayed more severe symptoms. On 

C. quinoa, chlorosis, leaf malformation and growth reduction were observed. On N. tabacum, 

chlorotic ringspots and mosaic were noticed. On S. lycopersicum, severe necrosis was notified 

(Fig. 3A, C, E). Plants of L. sativa were reduced in growth and leaf mosaic was observed (Fig. 

3G). When D RNAs were present, the symptoms produced by TBRV appeared one or two 

days later than normal. Plants infected with TBRV+D RNA were characterized by milder 

symptoms, single chlorotic or necrotic spots, slight ringspots and mosaics (Fig. 3B, D, F, H). 

Similar effect was observed for TBRV-S1 (data not shown), which suggests that D RNAs 

may interfere with the replication of the parental helper virus. The comparison between 

TBRV-PiD RNA and TBRV-S1D RNA revealed an interesting biological difference 

between the isolates; TBRV-S1D RNA systematically produced less severe symptoms on 

tomato. This finding is in agreement with our previous results showing that TBRV isolates 

originated from tomato cause severe necrosis on this host whereas isolates originated from 

other host species cause symptomless infection or single necrotic spots on tomato (Rymelska 

et al., 2013). 

 

3.4. Virus quantification and statistical analyses 
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A comparison was made of the accumulation level of the two TBRV isolates in presence and 

absence of the D RNAs and in different plant species by RT-qPCR. Data are summarized in 

Fig. 4, while Table 1 shows the results of the statistical analyses described in section 2.6. The 

statistical model fitted to the data contains three main factors and one covariable, their six 

pairwise interactions, four three-way interactions, and one four-way interaction. Such 

parameter-rich model requires of a careful analysis. We will describe the results shown in 

Table 1 starting from the second row of main effects and moving down to increasing number 

of interactions. The first noticeable result is that, overall, TBRV-Sl accumulates ~8% more 

than TBRV-Pi, regardless the other factors. Despite being significant, the contribution of this 

factor to the total observed variability is rather small (𝜂𝑃
2  < 0.05 and no contribution to 

explaining the observed variance). Next, the presence of D RNA reduces the accumulation of 

TBRV in ~26%, on average. The contribution to this factor to the predictive power of the 

model can be considered as moderate according to the 𝜂𝑃
2  value and the 3.12% of variance 

explained. Next line in Table 1 assess the overall effect of host species in TBRV 

accumulation. This factor explains, by far, most of the observed variability in TBRV 

accumulation (both 𝜂𝑃
2  and the percentage of variance explained suggest is a factor of large 

effect). On average, TBRV accumulates to the highest observed level into C. quinoa, ~38% 

less in N. tabacum, ~77% less in L. sativa, and down to ~91% less in S. lycopersicum. The 

fifth line in Table 1 simply tells that accumulation increases with time in a highly significant 

manner. This effect can be easily appreciated in Fig. 4 (notice the log-scale) for all curves. 

The next four lines in Table 1 evaluate the effect of pairwise interactions between the 

three factors and the covariable. Notice that TBRV isolate-by-presence/absence of D RNAs 

and TBRV isolate-by-time are not included in the table because they were not significant.  

The TBRV isolate-by-host species is highly significant, with moderate to large effect (𝜂𝑃
2  is 

close to 0.15 and the percentage of variance explained is 3.21%), indicating that each one of 

the TRBV isolates accumulates to different levels on different hosts. For both TRBV-Pi and 

TRBV-Sl the maximum accumulation is observed in C. quinoa (black symbols in Fig. 4) and 

the lowest in S. lycopersicum (blue symbols in Fig. 4). However, for TBRV-Pi, accumulation 

in L. sativa is similar to that observed in S. lycopersicum (~4·109 genomes) whereas TBRV-Sl 

accumulation in L. sativa is five time higher and closer to the values observed in N. tabacum 

and C. quinoa (~2·1010 genomes). Next line in Table 1 evaluates the contribution of the 

presence/absence of D RNAs-by-host to accumulation, in other words whether the observed 

negative effect of D RNAs on TBRV accumulation (see previous paragraph) depends on the 
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host species. The effect is statistically significant (P = 0.009, with strong power > 75%), 

though its contribution is small (𝜂𝑃
2  < 0.05 and with a very small percentage of explained 

variance).  Next line in Table 1 tests whether the negative effect associated to the presence of 

D RNAs in TBRV accumulation is homogeneous with time. In other words, whether the slope 

of the growth curves in presence or absence of D RNAs is equal in both cases. A significant 

effect has been detected, indicating differences in slope. However, the effect is rather small in 

magnitude (𝜂𝑃
2  < 0.05 and very small contribution to the total variance). This small yet 

significant effect can be easily understood looking back to Fig. 4. Comparing lines and 

symbols of equal colors, it is obvious that the presence of D RNAs in all cases shifts down the 

accumulation curves, although curves remain parallel, with the exception TBRV-Pi in L. 

sativa, where the presence of D RNAs dramatically changes the slope of the accumulation 

curve. This case drives the significance of this interaction. Finally, the ninth line in Table 1 

evaluates whether differences exist in the slopes of accumulation curves among hosts. A 

highly significant effect has been observed, of large effect (𝜂𝑃
2  > 0.15 and up to 10.68% of 

variance explained by it). Again, this is obvious in Fig. 4: comparing different curves of 

different color, some are flatter than others, meaning that TRBV accumulates at different rates 

in different hosts. 

Next, we will discuss the three-way interactions. Out of the four possible cases, only 

two are significant. The interaction TRBV isolate-by-presence/absence of D RNAs-by-host 

species is perhaps the most interesting one as it provides information about the nature of this 

biological system. The interaction is significant (P = 0.002) and with strong power (> 75%), 

indicating it is a robust conclusion. However, the magnitude of the effect is small (𝜂𝑃
2  < 0.05 

and less than 1% of contribution to explain the observed variation). Nonetheless, this 

interaction indicates that the negative effect of the presence of D RNAs in the accumulation of 

the different TRBV isolates indeed depends on the species of the infected host. This can be 

seen in Fig. 4. The very large effect of the presence of D RNAs in the accumulation of 

TBRV-Pi in L. sativa (green lines and symbols) can be compared with the very small effect 

on TBRV-Sl in the same host. These differences can be collated with the situation in N. 

tabacum (red lines and symbols), in which the effect of the D RNAs is smaller for both TBRV 

isolates but the shape of the curves is different. These two cases can be also compared with 

the situation in S. lycopersicum (blue lines and symbols), in which the negative effect of 

adding D RNAs is slightly larger for TBRV-Sl than for TBRV-Pi. The last line in Table 1 

tests whether the previously discussed interaction TBRV isolate-by-host changes along time. 
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Indeed, the effect is also highly significant though of small magnitude (𝜂𝑃
2  < 0.05 and only 

1.39% of contribution to explain the observed variance).  

In conclusion, rigorous statistical analyses support the notion that the presence of D 

RNAs interfere with TBRV accumulation, and that this interference depends both on the viral 

isolate being considered and on the host species being infected. 

 

 

 

4. Discussion 

 

Defective RNA particles are deletion/and/or rearrangement variants of the viral genomes 

created during replication. Most of D RNAs contain parts of non-coding regions of their 

helper virus’ genome and preserved a portion of ORF(s) (Romero et al., 1993; Graves et al., 

1996; Qiu and Scholthof, 2001; Pathak and Nagy, 2009). D RNAs are often generated de 

novo as a result of prolonged passages in one host (Perrault, 1981; Li et al., 1989; Holland, 

1991; Pogany et al., 1995; Hasiów-Jaroszewska et al., 2012). It has been also shown that both 

host and environmental factors strongly affected the size and formation of the de novo 

generated D RNAs (Llamas et al., 2004). Most of them suppress virus accumulation and 

attenuate symptoms in virus-infected plant. D RNA particles, which are reported to interfere 

with multiplication of their helper viruses, are called “defective interfering RNAs” (DI 

RNAs). The phenomenon of D RNA interference with the replication of helper virus has been 

previously reported for many plant viruses, including Carmovirus, Potexvirus, Bromovirus, 

Tospovirus, and Cucumovirus (Graves et al., 1996). D RNAs have been also found to be 

associated with TBRV representing Nepovirus genus (Jończyk et al., 2004; Hasiów-

Jaroszewska et al., 2012; Rymelska et al., 2013). 

In this study, we confirmed that TBRV D RNAs might be generated spontaneously (de 

novo) from TBRV genome during serial of passages in one host. The observed D RNAs of 

TBRV-Pi and TBRV-S1 isolates resemble the previously characterized TBRV D RNAs of 

second type, since they derived by internal deletion in the RNA1 molecule and preserved a 

small portion of the C-terminal end of the RdRp gene. This type of D RNAs have been 

previously described for TBRV isolates from zucchini, black elder and tomato (Hasiów-

Jaroszewska et al., 2012; Rymelska et al., 2013). It suggests that D RNAs structure is rather 

correlated with the presence of particular motifs in helper virus genome promoting their 
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formation than with the host. On the other hand, D RNAs of second type are being prevalent 

in TBRV population as only two D RNAs associated with the isolates from black locust were 

classified as a first type. The preservation of the RdRp open reading frame suggest its role in 

the accumulation of D RNAs in plants. D RNAs formation might be promoted by the 

presence of highly active hotspot regions for RNA recombination, which consist of AU-rich 

stretches or a stable secondary structure. Analysis of the sequences flanking the 

recombination sites in TBRV RNA1 revealed the presence of a U-rich regions and short 

complementary sequences which may lead to the formation of heteroduplex. Such hairpin 

structure may also play a potential role during replication and recombination by the pausing 

of the polymerase following by re-initiation of RNA synthesis and, as a consequence, in D 

RNA formation (Pathak and Nagy, 2009). All TBRV D RNAs described to date derived 

exclusively from the RNA1 component which suggests that this particular sequence 

complementarity and/or secondary structures formed between complementary regions can 

facilitate D RNA formation. The other possibility is that D RNAs derived only from RNA1 

because the RNA polymerase-encoding RNA1 component has some preferences during viral 

replication. 

As of now, the significance of D RNAs in a TBRV replication cycle remains 

unknown. However, it was proposed that D RNA may play a role in symptom attenuation and 

virus accumulation (Hasiów-Jaroszewska et al., 2012; Hasiów-Jaroszewska et al., 2016). The 

results from the studies here reported showed that D RNAs was a factor significantly affecting 

development of symptoms and virus accumulation in infected plants. The presence of D 

RNAs resulted in decreasing of disease severity and a reduction in parental virus 

accumulation in all tested plant species and thus they should be properly referred to as DI 

RNAs. The presence of DI RNAs has a major effect on symptom attenuation which is not 

directly related to a reduction of viral RNA accumulation levels. Slight differences between 

particular hosts and isolates were observed, which suggests that DI RNA formation and its 

implication for viral replication is triggered by many host factors. Three major mechanisms of 

interference by DI RNAs have been described: (i) competition for viral and host resources, 

which impairs virus replication and attenuates the symptoms; (ii) DI RNAs-triggered 

posttranscriptional gene silencing (PTGS gene-silencing response); and (iii) modulation of the 

functions of viral factors (Holland et al., 1987; Szittya et al., 2002; Pathak and Nagy, 2009; 

Lukhovitskaya et al., 2013). Our studies also revealed that the dynamics of TBRV 

accumulation were different for each host, that they were affected in different manner by the 
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presence of DI RNAs and that this effect is host-dependent. The biologically active TBRV 

cDNA clone have been recently obtained (Zarzyńska-Nowak et al., 2017) which allows us to 

do further studies of the interference phenomenon of TBRV DI RNAs. 

DI RNAs are useful tools for analyzing the processes and mechanisms of 

recombination, studying viral replication and discovering host factors which affect this 

phenomenon (Pathak and Nagy, 2009). DI RNA sequence-based constructs are also 

frequently used for gene silencing and the expression of heterologous proteins. DI RNA 

particles represent a major controlling element of virus replication. The understanding of 

mechanism involved in the D RNA formation, knowledge about interaction and competition 

between DI RNAs and the helper virus is a step toward new, innovative strategies to protect 

plant against viruses. 
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Figure Captions 

 

Fig. 1. Electrophoretic separation of TBRV RNA obtained from purified viral preparations 

line 1, 6 – RiboRuler High Range RNA Ladder (Thermo Scientific), line 2 – original TBRV-

Pi isolate, line 3 – TBRV-Pi after 15 passages in C. quinoa, line 4 – original TBRV-S1 

isolate, line 5 – TBRV-S1 after 15 passages in C. quinoa. 

 

Fig. 2. A) Structure of D RNAs derived from RNA1 of TBRV-Pi and TBRV-S1. The arrows 

indicate the position of primers used to amplify 5’ and 3’ ends of RNA1. B) Sequences near 

both deletion junctions of TBRV-Pi and TBRV-S1. The arrows indicate the recombinant sites 

and number under the arrows indicate the nucleotide adjacent to the recombination sites. The 

sequence marked in red of RdRp appears to be an inverted repeated of 5’UTR. 

 

Fig. 3. Plants infected with TBRV-PiD RNA (left column) and TBRV-Pi+D RNA (right 

column). A, B) C. quinoa; C, D) N. tabacum; E, F) S. lycopersicum; G, H) L. sativa. 

 

Fig. 4. Comparison of the accumulation of the viral RNA in plants infected with TBRV-Pi+D 

RNA/TBRV-PiD RNA and TBRV-S1D RNA/TBRV-S1+D RNA at 7, 14, 21, and 28 dpi. 
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Fig 1 
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Fig 2 
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Fig 3 
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Fig 4 
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Table 1. Results of the GLM analysis of the cumulative number of genomes. Only significant 

factors are included 

. 

 

Source of variation LRTa d.f. P 1  b 𝜼𝑷
𝟐  % variancec 

Intersection 1450.536 1 < 0.001 1 0.896  

TBRV isolate (I) 8.211 1 0.004 0.777 0.013 0 

Presence D RNA 

(D) 

86.288 1 < 0.001 1 0.126 3.12 

Host species (H) 1100.280 3 < 0.001 1 0.821 56.53 

dpi (t) 386.861 3 < 0.001 1 0.454 10.16 

I  H 89.688 3 < 0.001 1 0.131 3.21 

D  H 11.602 3 0.009 0.782 0.018 0.04 

D  t 10.142 3 0.017 0.719 0.016 0.37 

H  t 267.144 9 < 0.001 1 0.341 10.68 

I  D  H 14.524 3 0.002 0.874 0.022 0.82 

I  H  t 32.392 9 < 0.001 0.985 0.049 1.39 

a Likelihood-ratio test. 

b Power of the test. 

c The fraction of observed variance explained by pure noise was 13.67%. 
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