
 
 

 

UNIVERSITAT POLITÈCNICA DE 

VALÈNCIA 
 
 

DEPARTAMENTO DE BIOTECNOLOGÍA 

 

 

 
 
 

CHARACTERIZATION OF CANCER STEM CELLS  

FROM NON-SMALL CELL LUNG CANCER 

 
TRABAJO FIN DE MÁSTER EN BIOTECNOLOGÍA BIOMÉDICA 

 

ALUMNO: ALEJANDRO HERREROS POMARES 

 

TUTORA: ELOISA JANTUS LEWINTRE 

 

COTUTORA: SILVIA CALABUIG FARIÑAS 

 

 

Curso Académico: 2014/2016 

 

VALENCIA, 4 DE MARZO DE 2016 

 

 



 

 
 

Universitat Politècnica de València 
Departamento de Biotecnología 
Edificis 3J bajo. Camí de Vera, s/n, 46022 València 
Tel. +34 96 387 74 20 • Fax +34 96 387 74 29 
depbtc@upv.es 

 

 

 

 

DATOS DEL ALUMNO/A - Dades de l'alumne/a - Student’s identification 

 
TÍTULO DEL TRABAJO FIN DE MÁSTER - Títol del Treball Fi de Màster - Title of the Final Master’s degree thesis  

 

 

 

 

 

Considero que el TFM está finalizado y se puede aceptar para la defensa del mismo              SI 
Considere que el TFM està finalitzat i es pot aceptar la defensa d’aquest  
I consider that the TFM is completed and can accept for the defense 
 
Evaluación de la calidad del TFM y la labor del estudiante. 
Avaluació de la qualitat del TFM i la labor del estudiant. 
Evaluation of the quality of the Final Master’s degree thesis and the work of the student 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEPARTAMENTO DE BIOTECNOLOGÍA  

INFORME TUTOR TRABAJO FIN DE MÁSTER (para cualquiera de las modalidades) 
Informe del tutor (per a qualsevol de les modalitats del treball fin de master) 

TUTOR’s REPORT (for any type of final Master’s degree thesis) 

CURSO - Curs - Academic year 2015-2016 

Máster (Màster –Master's degree): Biotecnología Biomédica 

Apellidos (Cognoms - Surname(s)): Herreros Pomares Nombre (Nom – Name): 

633704095 Teléfono (Telèfon - Phone nr.): DNI (ID card nr.): 

 

21010490J 
Correo electr. (Correu electr. – email): 

 

alherpo@etsiamn.upv.es 

Alejandro 

CARACTERIZACIÓN DE CÉLULAS MADRE TUMORALES EN CÁNCER DE PULMÓN NO MICROCÍTICO 

Tutor/a (Tutor): 

Cotutor/a (Co-Tutor): Silvia Calabuig Fariñas 
Eloísa Jantus Lewintre 

En este trabajo se han caracterizado tumoresferas obtenidas a partir de líneas celulares y tumores primarios de 
pacientes con cáncer de pulmón, las cuales expresan mayores niveles de marcadores específicos de CSC. Además, 
genes pertenecientes a las rutas de señalización de Notch y Wnt están mayoritariamente expresados en los 
esferoides, sugiriendo estas vías de señalización como dianas potenciales contra las CSC en cáncer de pulmón. La 
novedad de este proyecto radica en trabajar con muestras de tumores primarios, lo que hace posible que algunos 
de los marcadores analizados puedan ser usados como biomarcadores en el contexto clínico. 

mailto:depbtc@upv.es


 

 
 

 

 

DEPARTAMENTO DE BIOTECNOLOGÍA 
      ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA 

                                      AGRONÓMICA Y DEL MEDIO NATURAL 

 

 

AUTORIZACIÓN DEL COTUTOR PARA PRESENTACIÓN DEL TRABAJO FIN DE MÁSTER 

DE BIOTECNOLOGÍA BIOMÉDICA 

 

DEPARTAMENTO DE BIOTECNOLOGÍA.E.T.S.I.A.M.N 

Camino de Vera, s/nº.46022VALENCIA●Tel.+34963877420●Fax+34963877429 

 

LA COTUTORA: 

D.ª SILVIA CALABUIG FARIÑAS                                                               Adscrita al organismo FUNDACIÓN PARA 

LA INVESTIGACIÓN DEL HOSPITAL GENERAL UNIVERSITARIO DE VALENCIA (FIHGUV) donde se ha realizado 

el Trabajo Fin de Máster titulado: 

CARACTERIZACIÓN DE CÉLULAS MADRE TUMORALES EN CÁNCER DE PULMÓN NO MICROCÍTICO 

 

 

Del que es AUTOR: 

D. ALEJANDRO HERREROS POMARES                                                              

 

AUTORIZA la presentación del TRABAJO FIN DE MÁSTER para su defensa. 

Valencia, Marzo 2016 

 

 

 

 



 

 
 

 

 

RESUMEN PARA PRESENTACIÓN DEL TRABAJO FIN DE MÁSTER DE BIOTECNOLOGÍA 
BIOMÉDICA 

 

EL ALUMNO: D. Alejandro Herreros Pomares 

Autor Del Trabajo Fin de Máster titulado:  

CARACTERIZACIÓN DE CÉLULAS MADRE TUMORALES EN CÁNCER DE PULMÓN NO 

MICROCÍTICO 

Aporta el siguiente RESUMEN: 

Introducción: A pesar de los avances en la caracterización molecular del cáncer de pulmón, la 

resistencia a la quimioterapia, la progresión tumoral y la metástasis hacen del mismo la 

primera causa de muerte debida a cáncer a nivel mundial. Las células madre tumorales (CSC) 

son pequeñas subpoblaciones de células con capacidad de autorenovación, diferenciación y 

tumorigenicidad que constituyen una diana terapéutica prometedora, pero cuya 

caracterización es aún un campo poco explorado. El objetivo de este trabajo es aislar y analizar 

la expresión génica de CSCs procedentes de líneas celulares de cáncer de pulmón y de tejido 

tumoral de pacientes con cáncer de pulmón no microcítico (CPNM) en estadios resecables. 

Material y Métodos: El estudio se realizó en líneas celulares (H1650, H1993, A549 and PC9) y 

en muestras tumorales de pacientes resecados con CPNM crecidas en monocapa y en placas de 

baja adherencia con medio sin suero (tumoresferas). La expresión de marcadores de CSC 

(CD133, EPCAM1, ALDH1A1, CD166, ABCG2, CD44, MUC1, BMI1), genes de pluripotencia (KLF4, 

OCT4, NANOG, SOX2, MYC, CCND1), genes reguladores del ciclo celular (CDKN1A, CDKN2A, 

MDM2, WEE1), genes asociados a metástasis (CDH1, VIM, SNAI1, MMP2, MMP9, CEACAM5); y 

genes de las vías de señalización Notch (NOTCH1, NOTCH2, NOTCH3, DLL1, DLL4, HEY1, HES1); 

Wnt (WNT1, WNT2, WNT3, WNT5A, CTNBB1, DKK1, FZD7) y Hedgehog (SMO, PTCH1, SHH, 

GLI1) fue analizada mediante PCR cuantitativa a tiempo real (qPCR), normalizándose frente a la 

expresión de tres genes controles seleccionados: ACTB, CDKN1B y GUSB , utilizados para el 

cálculo de la expresión relativa. 

Resultados: Las tumoresferas de pulmón presentan una expresión incrementada de EPCAM1, 

CD44, ALDH1A1 y CDKN1A (p= 0.028, p= 0.021, p= 0.043 and p= 0.021, respectivamente) 
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comparadas con sus correspondientes células crecidas en adherencia. Además, el inductor de 

la transición epitelio-mesenquimal (EMT), SNAI1, está sobreexpresado (p= 0.011) en 

tumoresferas. Los genes de la vía Notch: DLL4, NOTCH1 y NOTCH2 también muestran mayor 

expresión en esferoides (p= 0.028, p= 0.038 and p= 0.036, respectivamente) que en células 

crecidas en monocapas. En cuanto a los genes de la ruta de Wnt, se observan mayores niveles 

de expresión de WNT3, CTNBB1 and GSK3B (p= 0.021, p= 0.008 and p= 0.021, 

respectivamente) en esferoides, mientras que el activador de la vía no canónica de Wnt, 

WNT5A, tiende a estar menos expresado en las células cultivadas en suspensión frente a las 

células cultivadas en adherencia. No se encontraron diferencias significativas en el resto de 

genes analizados. 

Conclusiones: Las tumoresferas de pulmón obtenidas a partir de líneas celulares y tumores 

primarios de pacientes muestran mayores niveles de marcadores de CSC. Además, genes 

pertenecientes a las rutas de señalización de Notch y Wnt están mayoritariamente expresados 

en tumoresferas, sugiriendo estas vías de señalización como dianas potenciales contra las CSC 

en cáncer de pulmón.  

Palabras Clave: Células Madre Tumorales, Cáncer de Pulmón No Microcítico, Expresión génica, 

Ruta Notch, Ruta Wnt, Ruta Hedgehog. 
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SUMMARY FOR MASTER’S DEGREE IN BIOMEDICAL BIOTECHNOLOGY FINAL PROJECT 
PRESENTATION  

 

STUDENT: Mr., Alejandro Herreros Pomares 

Author of the Master’s Degree Project entitled:  

CHARACTERIZATION OF CANCER STEM CELLS FROM NON-SMALL CELL LUNG CANCER 

Presents the following SUMMARY: 

Background: Despite the advances in the molecular characterization of lung cancer, 

chemoresistance, tumor progression and metastasis make of lung cancer the first cause of 

death cancer-related worldwide. Cancer stem cells (CSCs) are small subpopulations of stem-like 

cells with self-renewal, differentiation and tumorigenic properties that constitute a promising 

target, but remain largely unknown. The aim of this study was to isolate and analyze gene 

expression of CSCs from lung cancer cell-lines and tumor-tissue from resectable NSCLC 

patients. 

Methods: This study was performed on cells from NSCLC tumor samples and cell lines (H1650, 

H1993, A549 and PC9) grown in monolayer and as spheroids. The expression of: CSC-markers 

(CD133, EPCAM1, ALDH1A1, CD166, ABCG2, CD44, MUC1, BMI1); pluripotency (KLF4, OCT4, 

NANOG, SOX2, MYC, CCND1); cell cycle (CDKN1A, CDKN2A, MDM2, WEE1); invasiveness (CDH1, 

VIM, SNAI1, MMP2, MMP9, CEACAM5); Notch pathway (NOTCH1, NOTCH2, NOTCH3, DLL1, 

DLL4, HEY1, HES1); Wnt pathway (WNT1, WNT2, WNT3, WNT5A, CTNBB1, DKK1, FZD7) and 

Hedgehog pathway (SMO, PTCH1, SHH, GLI1) were analyzed by quantitative real-time PCR 

(qPCR). Housekeeping genes ACTB, CDKN1B and GUSB were used as endogenous controls for 

relative expression calculation. 

Results: Lung tumorspheres had increased expression of EPCAM1, CD44, ALDH1A1 and 

CDKN1A (p= 0.028, p= 0.021, p= 0.043 and p= 0.021, respectively) when compared to their 

paired-adherent cells. In addition, epithelial to mesenquimal transition (EMT) inducer SNAI1 

was overexpressed (p= 0.011) in tumorspheres. Regarding Notch pathway, DLL4, NOTCH1 and 

NOTCH2 showed higher expression in spheroids (p= 0.028, p= 0.038 and p= 0.036, 

respectively). In Wnt pathway, we found higher expression levels of WNT3, CTNBB1 and GSK3B 
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(p= 0.021, p= 0.008 and p= 0.021, respectively) in lungspheres, whereas the activator of the 

non-canonical Wnt pathway, WNT5A, tended to be less expressed in spheroids compared to 

adherent-cultured cells. No significant differences were found in other analyzed genes. 

Conclusions: Lung spheroids from cancer cell lines and primary tumors showed increased 

levels of CSC-markers. Genes related to Notch and Wnt were found to be more expressed in 

tumorspheres, suggesting these pathways as interesting lung-CSC targets. 

Key Words: Cancer Stem Cells, Non-Small Cell Lung Cancer, Relative Gene Expression, Notch 

Pathway, Wnt Pathway, Hedgehog Pathway. 
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1. INTRODUCTION 

1.1.CONCEPT OF CANCER 

According to the World Health Organization (WHO) and the National Cancer Institute 

(NIH), cancer is a generic term that defines a large group of diseases that can affect almost any 

part of the body. Indeed, there are more than 100 types of cancer, and subtypes of tumors can 

be found in each specific organ as well. In cancer, abnormal cells have defects in their 

regulatory mechanisms that control normal cells, making them able to grow uncontrolledly 

and spread into surrounding tissues. In addition to this reductionist view of cancer, there are 

two other dimensions of complexity. Firstly, tumors are complex tissues in which cancer cells 

can recruited normal cells types to serve as active collaborators, creating ‘tumor 

microenvironments’ in which proliferation and invasion are favored (Hanahan & Weinberg, 

2000). Secondly, the genetic diversity in populations of tumors cells is an unavoidable 

consequence of the genome instability, which is caused by defects affecting components of 

the DNA-maintenance machinery in combination with the large numbers of cell divisions 

required for the formation of macroscopic tumors (Marusyk et al. 2012). 

1.1.1 MOLECULAR BIOLOGY OF CANCER 

In the past decade, Hanahan and Weinberg suggested that all cancers have in common six 

characteristics, which are acquired during multistep tumorigenesis: self-sufficiency in growth 

signals, insensitivity to growth-inhibitory signals, evasion of programmed cell death 

(apoptosis), limitless replicative potential, sustained angiogenesis, and tissue invasion and 

metastasis (Hanahan & Weinberg, 2000). However, the manner of acquisition of these features 

as well as the order in which they are acquired varies significantly across cancer types and 

subtypes. Several years later, in 2011, Hanahan and Weinberg proposed two enabling 

characteristics that make possible the acquisition of the six acquired capabilities of cancer 

described before: the genome instability and the tumor-promoting inflammation. Moreover, 

two emerging hallmarks of cancer consequence of new research facts were defined: the 

deregulation of cellular energetics and the breakout of the immune destruction, constituting 

the ten hallmarks of cancer (Figure 1, Hanahan & Weinberg, 2011). 
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Figure 1. The ten Hallmarks of Cancer. Adapted from (Hanahan & Weinberg 2011). 

1.2  LUNG CANCER 

1.2.1 EPIDEMIOLOGY 

Cancer is the second leading cause of death worldwide with 14.1 million new cancer cases 

and 8.2 million deaths occurred in 2012 and it is expected to exceed heart diseases as the 

principal cause of death in the next few years (Torre et al. 2015; Siegel et al. 2016). Currently, 

lung cancer is the most frequently diagnosed and is the leading cause of cancer-related death 

around the world, with more than 1.8 million estimated new cases and more than 1.5 million 

estimated deaths in 2012 (Figure 2, Torre et al. 2015). Furthermore, although cancer mortality 

has moderately declined across Europe in the last decade, female lung cancer is an exception 

in most European countries, including Spain (Bosetti et al. 2013). This persistent increase in 

lung cancer mortality reflects the women’s pattern of tobacco consumption in countries of 

western Europe (Bosetti et al. 2013; Ferlay et al. 2015) . 

In addition, despite the advances in biomedical research and the improvements in 

diagnosis and therapies of the past decades, five-year survival for lung cancer after diagnosis 

remains 9.5% (de Groot & Munden 2012; Bosetti et al. 2013; Malvezzi et al. 2014; Lortet-

Tieulent et al. 2014). The main reason why five-year survival has such a low percentage is that 

lung cancer is mainly diagnosed in advanced states, when patients have developed 

symptomatic manifestations and curative surgery is no longer possible. 
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Figure 2. Estimated new cancer cases and deaths worldwide by sex in 2012. Adapted from 
(Torre et al. 2015). 

1.2.2 RISK FACTORS 

Tobacco smoking is the principal cause of lung cancer due to toxic compounds contained in 

its smoke and is responsible for 85-90% of these tumors (Freedman et al. 2008; de Groot & 

Munden 2012). About 4000 chemical substances, 60 of which are carcinogenic, are present in 

cigarette smoke, triggering the accumulation of a large number of mutations. It has been 

observed that in lung cancer, an average of 200 mutations are accumulated per tumor, while 

in other frequent tumors, such as breast or prostate cancer, this number goes from 25 to 50 

mutations on average (Fry et al. 2013). 

Other factors associated with lung cancer development are environmental or occupational 

exposures to carcinogenic pollutants such as radon gas, arsenic and polycyclic hydrocarbons, 

diet type, alcohol consumption, infectious agents and other diseases such as diffuse cystic 

fibrosis (Sawyers et al., 2013). 

1.2.3 CLASSIFICATION 

Based on clinical expression, lung cancer is classified into two major groups: small cell lung 

carcinoma (SCLC: 15% of cases) and non-small cell lung carcinoma (NSCLC: 85% of cases). 

Nevertheless, histological and pathological techniques allow dividing the latter into three 

subtypes: squamous cell carcinoma (SCC, 30% of cases), originated in the squamous epithelium 

of the lung or bronchi and highly related to tobacco smoking, adenocarcinoma (ADC, 40% of 

cases), originated in broncho-alveolar cells and classified into different patterns (lepidic, 

acinar, papillary, micropapillart and solid), and large carcinoma (LCC, 10% of cases), with a 

neuroendocrine origin (Travis 2002; Travis et al. 2013; Gridelli et al. 2015). 
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In the last decades, due to the development of a new generation of sequencing 

techniques, substantial advances in the knowledge of cancer genomes has been made. These 

advances have allowed to develop new treatment strategies based on molecular targets and to 

renew the classical histological classification for a molecular one. Indeed, NSCLC is one of the 

most genomically diverse tumors and there are a great variety of molecularly defined subsets 

of patients characterized by specific driver mutations, such as EGFR, ALK or KRAS (Ladanyi 

2008; Hirsch et al. 2010; Pao & Girard 2011). 

EGFR (Epidermal Growth Factor Receptor) encodes a transmembrane tyrosine kinase with 

an extracellular binding domain and an intracellular component with a tyrosine kinase domain. 

Binding to its ligand leads to receptor homo- or heterodimerization with other members of the 

EGFR family and activation of the tyrosine kinase domain (Scagliotti et al. 2004). EGFR 

alterations are implicated in many cancer types, including lung cancer, where overexpression 

or aberrant activation is present in approximately 60% of cases (Hirsch et al. 2003; Li et al. 

2008). 

KRAS (Kirsten Rat Sarcoma viral oncogene homolog) is a proto-oncogene from RAS family 

(KRAS, NRAS and HRAS in humans), that encodes a G-protein with a key role in controlling 

signal transduction pathways involved in cell proliferation, differentiation and survival. It plays 

a crucial role in downstream signal transduction induced by several growth factor receptors, 

included EGFR. KRAS-activating mutations in codons 12 and 13 are the most frequent 

oncogenic alteration identified in lung ADCs, occurring in about 25-40% of cases (Downward 

2003; Karnoub & Weinberg 2008). 

ALK (Anaplastic lymphoma kinase) can also be oncogenic by forming a fusion gene with 

any of several other genes. In NSCLC, EML4 (Echinoderm microtubule-associated protein-like 

4)-ALK fusion gene is responsible for approximately 3-5% of cases. This rearrangement occurs 

in chromosome 2p, among intron 13 of EML4 and intron 19 of ALK, which results in the fusion 

of the intracellular kinase domains, causing a constitutive oligomerization that produces a 

continuous mitogenic signal and, as a last resort, a malignant transformation (Soda et al. 

2007). More recently, different partner genes have been identified in a small subset of ALK 

rearrangements with a low frequency in NSCLC (less than 1% of cases), including KIF5B (kinesin 

family member 5b), TFG (TRK-fused gene) and KLC-1 (kinesin light chain 1; Peters et al. 2013). 

In addition to the driver mutations mentioned before, there are many somatic mutations 

in all types of lung cancers, such as chromosomal rearrangements or copy-number alterations, 

compared with other tumor types, being lung cancer among the most mutated forms of 
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cancers (Gridelli et al. 2015). This diversity and complexity of the somatic mutational processes 

underlying carcinogenesis are currently being revealed and will be further detailed later due to 

their implications in cancer therapy. 

1.2.4 DIAGNOSIS AND PROGNOSIS 

Routine screening for lung cancer presents several limitations and risks, including a high-

rate of false-positive results, cumulative radiation exposure from multiple CT scans, and 

unnecessary lung biopsy and surgery. These potential harms together with economic 

difficulties trigger that the development of risk models or biomarkers for predicting became a 

necessity (Torre et al. 2015). Nowadays, lung cancer is commonly detected because 

symptomatic manifestations such as pain, hemoptysis, dyspnea or weight loss, are developed 

by patients. 70-75% of patients with NSCLC present advanced disease at the time of diagnosis, 

with no curative surgery possible and a 40% of patients with distant metastases (Morgensztern 

et al. 2010).  

Diverse technologies are now available for locating the primary tumor and further staging, 

including chest radiograph, low-dose chest computed tomography (CT) or fluorodeoxyglucosa 

(18F-FDG)-positron emission tomography (PET) as well as for biopsying the tumor 

(bronchoscopic techniques or endoscopic ultrasound, among others). The variables that have 

been associated with prognosis can be grouped into three different categories: a) tumor-

related, such as primary site, cell type and disease extension; b) patient-related, such as 

performance status (PS), comorbidity, and sex; and c) environmental factors, such as nutrition. 

The anatomical extent of disease, as described by the TNM (Tumor, Nodes, Metastasis) 

classification, shown in Table 1, is one of the most important prognostic factors in lung cancer 

(Goldstraw et al. 2011; Jantus-Lewintre et al. 2012). 

1.2.5 TREATMENT 

Lung cancer treatment essentially depends on anatomopathological classification, tumor 

stage and PS. Although surgery is still the standard treatment for early-stage patients with a 

good PS (25-30% of diagnosed NSCLC patients), stereotactic body radiotherapy (SBRT) has 

emerged as an alternative treatment for stage I-II patients with a borderline medical indication 

for surgery (Robinson et al. 2013). In addition, adjuvant chemotherapy with platinum salts in 

combination with vinorelbine, etoposide or docetaxel in patients who underwent surgery 

increases survival rates significantly (Felip et al. 2010). On the other hand, advanced NSCLC is 

considered incurable and the therapy aims to extend survival of patients and alleviate 

symptoms as well as possible. In these cases, standard chemotherapy is the combination of 

platinum compound with a third-generation cytotoxic agent, such as gemcitabine, vinorelbine 
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or paclitaxel. In addition, although radiotherapy can be indicated in patients with a good PS 

and non-resected disease, palliative intention is still its main use (Goldstraw et al. 2011). 

Table 1. Seventh edition of the Tumor, Node, Metastasis classification for lung cancer 
(Mirsadraee 2012). 

 

Over the last years, specific anti-target therapies have appeared, increasing NSCLC 

patients’ survival and decreasing conventional chemotherapies toxicity. Some examples of 

immunotherapeutic drugs are: tyrosine-kinase inhibitors (TKIs) such as gefitinib or erlotinib, 

which are specific treatments for patients bearing mutations in the EGFR gene; crizotinib, a 

small-molecule TKI that inhibits mesenchymal epithelial transition factor proto-oncogene, 

receptor tyrosine kinase (cMET), reactive oxygen species proto-oncogene 1, receptor tyrosine 

kinase (ROS1) and ALK; or bevacizumab, a recombinant, humanized, monoclonal vascular 

endothelial growth factor (VEGF) antibody (Soria et al. 2013). However, there is an important 

group of patients where targeted mutations are not detected and whose treatment is based 

on conventional chemotherapy.  

Currently, even having a targeted therapy available, treatment resistance to chemotherapy 

and immunotherapy is the main cause of death in lung cancer. In that sense, it is known that 

cancer cells are heterogeneous and there is strong evidence pointing out that 
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chemoresistance, tumor progression and metastasis are linked to a subpopulation of stem-like 

cells present in tumors, named cancer stem cells (CSCs, Han et al. 2013).  

1.3  HETEROGENEITY IN CANCER 

Cancers exist in an extraordinary variety of types and subtypes, making each cancer 

individually unique. Genetic and phenotypic variations are observed among tumors of different 

tissue and cell types, as well as between individuals with the same tumor type (inter-tumor 

heterogeneity). In addition, cancers evolve over time in every particular patient in terms of 

clonal structure, genotype and phenotype, complicating diagnosis, prognosis and treatment 

(Greaves & Maley, 2012; Burrell et al. 2013). In this sense, traditional diagnostic classification 

of tumors by pathologists relies on phenotypic traits such as histological subtypes, treatment 

sensitivity profiles and clinical outcomes among different patients (Marusyk et al. 2012; 

Zardavas et al. 2015). However, genetic and phenotypic diversity exists not only between 

tumors, but also within populations of cells in single tumors (intra-tumor heterogeneity). 

Similar to inter-tumor heterogeneity, intra-tumor heterogeneity of cellular phenotypes, 

resulted from genetic and non-genetic influences, can make difficult definitive diagnostics and 

obstruct therapeutic decision-making. Firstly, spatial phenotypic heterogeneity could trigger 

that a biopsy did not supply an adequate reflection of the whole tumor. Secondly, decision-

making based on scoring the dominant phenotype in a given specimen might be biased if they 

do not account for minor subpopulations with clinically and biologically important 

distinguishing features (Figure 3, Marusyk et al. 2012; Burrell et al. 2013). 

Currently, the major frameworks to explain cancer cell heterogeneity are two (Shackleton 

et al. 2009; Marusyk et al. 2012): 

The clonal evolution model, also known as the stochastic model, was proposed by Nowell 

in 1976 and holds that neoplasms arise from a single cell of origin, and tumor progression 

results from acquired genetic variability within the original clone (Nowell, 1976). As a result, 

the genetic and epigenetic changes that occur over time in individual cancer cells can confer a 

selective advantage in a Darwinian-like way, allowing individual clones to generate other 

clones and leading to genetic heterogeneity and phenotypic and functional differences among 

the cancer cells within a single patient (Greaves & Maley 2012; Wang et al. 2014; Landau et al. 

2014). In this model, the frequency of cancer cells with tumorigenic potential is high, the 

tumor organization is not necessarily hierarchical and the rational approach to therapy has 

been to target most or all cells. 
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Figure 3. Inter-tumor and intra-tumor heterogeneity (Burrel et al. 2013). 

The cancer stem cell model, also known as the deterministic model, proposes that the 

growth and progression of many cancers are driven by small subpopulations of stem-like cells 

with self-renewal and differentiation properties, named cancer stem cells (CSCs). It was 

developed in the late 1990s, when researchers began to address the possible relationship 

between hematopoietic stem cells and human leukaemias via transplantation experiments of 

hematological tumor cells into immunodeficient mice (Dick 2008; Greaves & Maley 2012; 

Sourisseau et al. 2014). The CSC concept was coined in 1997, when Bonnet and Dick 

demonstrated that human acute myeloid leukaemia is organized as a hierarchy that originates 

from a primitive hematopoietic cell (Bonnet & Dick, 1997). Since then, CSCs have been 

identified in several solid tumors, including brain (Singh et al. 2003), breast (Smalley & 

Ashworth, 2003), lung (Kim et al. 2005), colon (Ricci-Vitiani et al. 2007) and pancreas (Li et al. 

2007). In this model, the frequency of cancer cells with tumorigenic potential varies from rare 

to moderate, the tumor organization is always hierarchical and the therapy approach enables 

to target only tumorigenic cells. 

Even at first, these two models were considered mutually exclusive (Cheng et al. 2009), 

nowadays clonal evolution and CSC models are proposed as a unified model by some authors 

(Figure 4; Meacham & Morrison, 2013; Kreso & Dick, 2014). In the integrated model, the 

acquisition of favorable mutations can result in clonal expansion of the founder cell. In parallel, 

another cell may gain a different mutation that allows it to form a new subclone. Over time, 

genetic mutations accumulate and subclones evolve in parallel. CSCs are considered as not 

static entities, they can evolve over their lifetime and genetic changes can influence the CSC 

frequency. Some subclones may contain a steep developmental hierarchy, where only few self-

renewing CSCs exist among a large number of non-CSCs. Other subclones may contain an 

intermediate hierarchy, where the number of CSCs is relatively high but a hierarchy still exists. 
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Some subclones may have the genetic alterations that confer high-renewal potential, where 

most cells are tumorigenic (Kreso & Dick, 2014). 

 

Figure 4. Unified model of clonal evolution and Cancer Stem Cells (CSCs). 

1.4 CANCER STEM CELLS 

1.4.1 PROPERTIES 

CSCs and normal stem cells share many similarities in terms of self-renewal, production of 

differentiated progeny, expression of specific surface markers and oncogenes, utilization of 

common signaling pathways or the importance of the stem cell niche. However, CSCs differ 

significantly from normal stem cells in their tumorigenic activity, given that CSCs can form 

tumor when transplanted into animals (tumor initiating cells, TIC), but normal stem cells 

cannot. In general, CSCs are defined through four key features:  

A) Self-renewal: The CSCs can be serially transplanted through multiple generations, 

indicating the self-renewal capacity.  

B) Asymmetric division/ Differentiation: Pluripotent CSCs can not only form tumorigenic 

daughter CSCs by symmetrical cell division but also generate bulk populations of non-

tumorigenic cells by asymmetrical cell division.  

C)  Tumorigenicity: A small subpopulation of CSCs has tumorigenic potential when 

transplanted into animals.  

D) Specific surface markers and signaling pathways, by which the CSCs subpopulation can 

be identified and isolated from the non-stem tumor cells and can be functionally 

differentiated from tumor cells (McCaffrey & Macara 2011; Peitzsch et al. 2013; Zhang 

et al. 2015).  
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In addition, CSCs possess most of the normal stem cell properties, such as the sphere 

forming ability in non-adherent medium, dye exclusion ability because of the over-expression 

of efflux transporters or exclusive intracellular enzyme activity (Dou & Gu 2010; Alison et al. 

2011; Ghani et al. 2011; Zhang et al. 2011; Han et al. 2013). 

As mentioned before, one important characteristic of CSCs is to form spheres or grow into 

colonies in serum-free medium or in soft agar medium. To show aggregation and proliferation 

of stem cells in vitro, cells are harvested from tumor specimens and suspended at a low density 

in serum-free medium supplemented with minimum growing requirements. It has been found 

that spheroids derived from many solid tumors, including lung cancer, had increased in vitro 

drug-resistance properties and in vivo tumorigenic potentials. Even though, there are several 

limitations in the selection of cells with CSC’s features by the spheres-forming assays (Kitamura 

et al. 2009). Firstly, cells are selected under a pressure exerted by the culture conditions, 

leading to an enrichment of cell populations that are able to survive and proliferate under such 

specific conditions. Secondly, in vitro assays determine ex vivo proliferation instead of their 

true self-renewal capacity. The third point to be addressed is the ability of CSC to initiate 

tumors, which cannot be performed in vitro (Han et al. 2013). 

To overcome these drawbacks, the results of in vitro assays must be confirmed by in vivo 

assay. For this purpose, selected populations of tumor cells are transplanted into 

immunocompromised (frequently NOD/SCID) mice to confirm the TIC capacity of these cells. It 

has been reported that a large number of cancer cells, in the order of millions of cells, are 

required to initiate tumor growth when xenotransplanted into animal models (Wicha et al. 

2006; Koch et al. 2010; Alison et al. 2011). However, only miles of cancer cells sorted based on 

specific CSC-markers are able to give rise to a whole tumor (Han et al. 2013). 

1.4.2 SPECIFIC MARKERS 

The main markers used for identification and isolation of CSCs include surface cell-

adhesion molecules, as CD133 or CD44, cytoprotective enzymes, such as aldehyde 

dehydrogenase (ALDH), and transcription factors and drug-efflux pumps, for instance, ATP 

binding cassette (ABC) drug transporters or multidrug resistance transporter1, MDR1 (Mannelli 

& Gallo 2012; Qiu et al. 2012; Dou et al. 2007; Takaishi et al. 2009; Chen et al. 2009). The most 

widely used method for identifying CSCs is based on specific cell surface markers, being the 

most widely used CD133, CD24 or CD44. However, the surface markers of CSCs in one 

organ/tissue are frequently not completely shared with those markers in other organs/tissues. 

The most important markers used to identify CSCs in solid tumors are listed in Table 2. 
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It has been proposed a set of markers for the characterization of lung CSCs, which 

includes: surface cell molecules CD133, CD90, EpCAM, CD44, ALCAM and BMI1, the 

cytoprotective enzyme ALDH1A1 and the expression of the drug-efflux pump ABCG2 protein 

(Eramo et al. 2008; Zhang et al. 2012; Wang et al. 2013; Yuan et al. 2014a; Zakaria et al. 2015). 

The search of lung-CSC markers is still under development and there are controversial data 

regarding the markers listed in Table 2.  

Table 2. Examples of proposed CSCs markers in solid tumors (Medema 2013). 

 

CD133 (prominin-1, PROM1) is a pentaspan transmembrane glycoprotein overexpressed 

in both humans and mice tumors (Mizrak et al. 2008). Some evidence has suggested that 

CD133+ CSCs display strong resistance to chemotherapy and radiotherapy. Several studies 

showed that CD133+ stem-like cells survived standard chemotherapeutic treatment with 

oxaliplatin and 5-fluorouracil (5-FU). In addition, downregulation of CD133 using short hairpin 

RNAs has been associated with slower cell growth, reduced cell motility and decreased ability 

to form spheroids and metastasize (Liu et al. 2006; Todaro et al. 2007; Baumann et al. 2009; 

Mizrak et al. 2008). Furthermore, monoclonal antibodies directed against CD133 have been 

used, finding inhibition of the cells growth and cytotoxic effects in vitro (Rappa et al. 2008; 

Smith et al. 2008). This way, it is believed that CD133 is not only a potential CSC marker but 

might also be an important therapeutic target for many CD133-expressing cancer types (Han et 

al. 2013). 

EpCAM (epithelial cell adhesion molecule; CD326) is a transmembrane glycoprotein that 

plays a role in balancing cell proliferation and differentiation. In healthy tissue, high EpCAM 

levels are associated with proliferation during morphogenesis, tissue regeneration and stem 

cell maintenance (Schnell et al. 2013). High EpCAM expression has been found to promote 

tumor progression and because of its tumor-specific overexpression, it has been explored as a 

prognostic/diagnostic marker and as an anti-cancer target. In CSCs, EpCAM overexpression has 
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also been found, corresponding to a poor prognosis and more aggressive cancers (Trzpis et al. 

2007; Patriarca et al. 2012). 

ALCAM (activated leukocyte cell adhesion molecule (CD166) is a highly preserved 

transmembrane protein that belongs to the immunoglobulin superfamily. ALCAM is expressed 

in several tissues, including neural, epithelial and hematopoietic stem cells. Recently, CD166 

has been identified as a CSCs marker for NSCLC, although few data exist regarding the clinical 

relevance of CD166 expression for now (Zhang et al. 2015). Moreover, immunohistochemistry 

evaluation on a tissue microarray basis revealed no significant survival benefit of CD166+ 

NSCLC patients, so that further studies are required to investigate the functional role of CD166 

in NSCLC (Tachezy et al. 2014). 

ALDH are a group of NAD(P)+-dependent enzymes that catalyze the oxidization of 

aldehydes into carboxylic acids. ALDH1 is an isoenzyme of ALDH superfamily that not only acts 

as a marker for both normal and CSCs, but may also play important functional roles in self-

protection, differentiation and expansion. It is thought that ALDH can act as drug-detoxifying 

enzymes and be responsible for therapeutic resistance (Sun & Wang 2010; Ma & Allan 2010; 

Marcato et al. 2011). In the Aldefluor assay, ALDH-activated fluorescent substrate is used as a 

marker for measuring and isolating normal and CSCs with high ALDH activity. In addition, a 

subpopulation of stem-like ALDHhiCD44+ cells has been identified in human breast cancer 

(Croker & Allan 2011). It is demonstrated that ALDHhiCD44+ cells are more resistant to standard 

cancer therapy, and that inhibiting ALDH activity of cell populations through specific ALDH 

inhibitor diethylaminobenzaldehyde (DEAB) or all-trans retinoic acid (ATRA) sensitized these 

cells to treatment (Croker & Allan 2011). 

ABC drug transporters are overexpressed in both normal and CSCs as efflux pumps to 

protect stem cells from xenobiotic toxins. ABCG2 (also known as BCRP), an important member 

of ABC transporter family, is regarded as a potential marker of CSCs as well as a mechanism in 

multidrug resistance. It is also a determinant of the side-population (SP) phenotype. SP cells 

show many features of CSCs with regard to self-renewal, lineage capacity and tumorigenicity 

(Han et al. 2013). Xia et al. 2010 identified 12 potent high drug efflux cancer cell inhibitors 

from 1280 pharmacologically active compounds. Using in vitro and in vivo assays, they showed 

that these inhibitors were able to overcome MDR by inhibiting SP, increase the efficacy of 

chemotherapy and reduce the tumorigenicity of lung cancer cells, possibly by affecting CSCs 

(Xia et al. 2010). 
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Despite these findings, it is necessary to clarify the marker profile of lung CSCs since well-

defined CSC markers are not available in NSCLC. Further studies are needed to elucidate 

prognostic and diagnostic markers and discover anti-cancer therapy targets. In that sense, 

some signaling pathways showed increased activity in CSCs, making them interesting cascades 

to be analyzed. 

1.4.3 SIGNALING PATHWAYS 

The major difference between normal stem cells and cancer stem cells lies in their ability to 

regulate self-renewal and differentiation pathways. In normal stem cells, stemness pathways, 

including Notch, Wnt/-catenin, Hedgehog, JAK/STAT, TGF- and Hippo, are tightly controlled 

with intact genetics or epigenetics. In CSCs, deregulation of these pathways along with 

improper interactions between them may represent key events for CSC propagation and 

pathogenesis. From all of them, abnormal activity of Notch, Wnt and Hedgehog pathways are 

probably the most crucial to the tumorigenicity of CSCs, making these developmental pathways 

important therapeutic targets for blockade of CSC self-renewal and proliferation, and tumor 

progression (Takebe et al. 2015). 

Notch Signaling Pathway 

The Notch pathway is an evolutionarily conserved signaling pathway that constitutes a 

critical component in the molecular circuits that regulate a broad range of events during 

embryonic and post-natal development, including border formation, cell fate decisions, 

differentiation, migration, proliferation and apoptosis (Sjölund et al. 2005; Chiba 2006). The 

role of Notch in human cancer has been highlighted recently by the presence of activating 

mutations and amplifications of Notch genes in human cancer and by the demonstration that 

genes in the Notch signaling pathway could be potential therapeutic targets (Shih & Wang 

2007). Furthermore, it is suggested that Notch pathway function is context dependent, since 

different Notch receptors or ligands could induce different gene expression programs, 

explaining the different and even opposite outcomes that have been observed in this signaling 

pathway (Figure 5, Wilson & Radtke 2006).  

The core components of the Notch pathway comprises four transmembrane receptors 

(Notch1-Notch4) and five structurally similar ligands (Delta-Like1, -3, -4 and Jagged1 and 

Jagged2), although there is very little evidence that Delta-like3 physically binds to the Notch 

receptors or that it truly functions as a notch ligand (Ladi et al. 2005; Chiba 2006). The Notch 

signaling cascade is initiated by ligand-receptor interaction between two neighboring cells 

resulting in two successive proteolytic events as part of the activation mechanism (Figure 6, 
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Brou et al. 2000; Mumm & Kopan 2000; Sjölund et al. 2005; Wilson & Radtke 2006). The first 

cleavage is mediated by a metalloprotease of the ADAM family (TACE, tumor necrosis factor-a-

converting enzyme) in close proximity to the extracellular side of the plasma membrane. The 

release extracellular domain is then transendocytosed by the ligand-expressing cell. 

 

Figure 5. The four major pleiotropic effects of Notch cascade that are relevant within self-
renewing tissues or during tumorigenesis. (A) Gate-keeper function. Notch maintains stem cells in an 

undifferentiated state. In the intestine for example, Notch prevents crypt progenitor cells from differentiating. (B) 
Binary cell fate decisions: In the lymphoid system, it specifies the T cell lineage at the expense of the B cell lineage 
from a bi-potent early thymocyte progenitor. (C) Induction of differentiation. In the skin, Notch induces terminal 
differentiation events, and during thymocyte differentiation, NOTCH1 promotes differentiation of pro-T-cells into 
pre-T-cells. (D) Tumorigenesis: overexpression of Notch within hematopoietic bone marrow cells or in T cell 
progenitors results in T cell leukaemias and as such, Notch functions as an oncogene. However, in the skin Notch 
functions as a tumor repressor since loss of Notch signaling results in the development of basal cell carcinoma-like 
tumors (Wilson & Radtke 2006). 

The second one occurs within the transmembrane domain, mediated by a multi-protein 

complex, -secretase, consisting of presenilin, nicastrin, APH1 and PEN2, which leads to the 

release of the Notch intracellular domain (NICD, Sjölund et al. 2005; Wilson & Radtke 2006; 

Shih & Wang 2007; Fortini 2009). Upon cleavage, NICD translocates to the nucleus where it 

forms a complex with the ubiquitously expressed transcription factor CSL (CBF1 in humans). 

The translocation of NICD is counteracted by Numb, through a mechanism that is not 

completely understood (Roegiers & Jan 2004; Gonczy 2008; Westhoff et al. 2009). In the 

absence of NICD, CSL is a transcriptional repressor due to its association with co-repressors. 

When NICD associates with CSL, a number of co-activators are recruited, including 

mastermind-like (MAML1, -2 and -3), resulting in a multiprotein complex, which acts as a 

potent transcriptional activator. The most well-defined targets of the NICD-CSL complex are the 

hairy enhancer of split (HES) family, the Hes-related repressor protein (HERP, also called HEY) 

family, cell cycle regulators, such as CDKN1A, p21 and CCND1 and apoptosis regulators (Iso et 

al. 2003; Kageyama et al. 2005; Egloff & Grandis 2012). 

 



Introduction 

15 
 

The first link between Notch and human tumors was made in the late 1980s and early 

1990s in a small number of patients suffering from T cell acute lymphoblastic leukemia 

(Reynolds et al. 1987). More recently deregulated expression of members of Notch signaling 

pathway has also been reported in solid tumors including breast (Reedijk et al. 2005) and lung 

cancers (Allen et al. 2011). 

The involvement of Notch on lung cancer was experimentally proved in transgenic mouse 

model by the alveolar epithelium specific expression of activated Notch. The mice developed 

alveolar hyperplasia as early as 7 days’ after NOTCH1 induction with a Dox system and when 

crossed with mice conditionally overexpressing MYC in the alveolar epithelium, mice 

developed adenocarcinomas (Allen et al. 2011). Furthermore, using a model of lung 

adenocarcinoma with expression of oncogenic Kras and deletion of NOTCH1, it was found that 

NOTCH1 function was required for tumor initiation via suppression of p53-mediated apoptosis 

through the regulation of p53 stability (Licciulli et al. 2013). Molecular analyses defined a 

subpopulation of CD24+ ITGB4+ Notchhi cells that were capable of propagating tumor growth in 

both clonogenic assays and in serial orthotopic transplantation assays (Zheng et al. 2013). 

These data supported a strong and direct role of Notch signaling in NSCLC initiation and 

proliferation. Other studies had shown that under hypoxic conditions, NOTCH1 stimulated 

NSCLC tumor growth through direct upregulation of IGF1-R and survivin, both of which 

enhanced cell proliferation and survival (Eliasz et al. 2010; Chen et al. 2011; Yuan et al. 2014b). 

 

Figure 6. Illustration of the Notch signaling pathway. 
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However, Notch pathway expression is not only tissue-dependent, but cell-dependent as 

well. While in SCLC Notch signaling is not active, in NSCLC it was found that it is active, possibly 

due to loss of Numb inhibitor expression or to the presence of gain-of-function mutations in 

Notch receptors (Westhoff et al. 2009), leading to high expression levels of Notch target genes, 

and making this tumor type susceptible to therapies based on Notch inhibition (Ball et al. 1993; 

Chen et al. 1997; Sriuranpong et al. 2001; Sjölund et al. 2005). 

Wnt Signaling Pathway 

The evolutionarily conserved Wingless-type protein (Wnt) signaling pathway is involved in 

a multitude of developmental processes and the maintenance of adult tissue homeostasis by 

regulating cell proliferation, survival, differentiation, migration and polarity, genetic stability 

and self-renewal in stem cells (Clevers & Nusse 2012). Not surprisingly, aberrant Wnt signaling 

underlies a wide range of diseases, including cancer (Porfiri et al. 1997; de La Coste et al. 

1998), fibrosis (Dees & Distler 2013; Chilosi et al. 2003) and neurodegenerative disorders 

(Inestrosa et al. 2012; Berwick & Harvey 2012; Okerlund & Cheyette 2011).  

The WNT signaling cascade is extremely complex. Firstly, there are 19 WNT ligands, which 

are glycoproteins of 40kDA in size that contain lipid modifications with many conserved 

cysteines, and more than 15 receptors and co-receptors distributed over seven protein 

families in mammals (Niehrs 2012; Franch-Marro et al. 2008; Anastas & Moon 2012a). 

Furthermore, WNT proteins can trigger a variety of responses, often gathered at two groups: 

the canonical WNT signaling pathway for the classical WNT-induced activation of -catenin-

TCF (T-cell factor) transcriptional complexes, and the non-canonical WNT signaling pathway, 

which includes the planar cell polarity (PCP) signaling pathway (Takahashi-Yanaga & Kahn 

2010), the Wnt/Ca++ flux pathway (Mazieres et al. 2005; Takahashi-Yanaga & Kahn 2010) and 

the protein kinase A pathway (Takahashi-Yanaga & Kahn 2010) and cJun N-terminal kinase 

(JNK) and small GTPase Rho, Rac and Cdc 42 signaling networks (Mazieres et al. 2005; Wang 

2009). Moreover, crosstalk from various non-WNT factors has also been reported to modulate 

nuclear -catenin accumulation (Kahn 2014). 

In the absence of Wnt proteins, canonical Wnt signaling is inhibited due to a -catenin 

degradation complex consisting of Axis inhibition protein (AXIN), adenomatous polyposis coli 

(APC), casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK-3) that phosphorylates 

-catenin, resulting in ubiquination and proteosomal destruction of -catenin, which is 

unavailable for interaction with other factors (Takahashi-Yanaga & Kahn 2010; Teng et al. 

2010; Stewart 2014). If Wnt -1, -2 or -3 is present, porcupine contributes to its secretion, 
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making it available to binds to members of the Frizzled (FZD) family of receptors (Figure 7). 

Binding of Wnt to FZD results in the formation of a stable receptor complex between Wnt, FZD, 

lipoprotein receptor-related protein 5/6 (LRP), Disheveled (Dvl) and the -catenin degradation 

complex. This new complex phosphorylates Dvl, inactivating GSK-3 as a result and reducing 

the proteolytic destruction of -catenin. Hence, cytoplasmic levels of -catenin rise, from 

where it can migrate to the nucleus to bind with members of the TCF/lymphoid enhancer-

binding factor (LEF1) family of transcription factors. Basal transcription machinery and 

transcriptional coactivators are then recruited, including cAMP response element-binding 

protein (CREB)-binding protein/E1A binding protein p300 (CBP/p300) and Pygopus 2, initiating 

transcription of multiple factors that promote cell growth and resistance to chemotherapy and 

radiotherapy, including cyclin D1 and c-Myc. The -catenin protein can also interact with E-

cadherin at the cell membrane to enhance cellular adhesion. Although the impact of increased 

-catenin on transcription may promote tumor cell growth and resistance, the interaction of -

catenin with E-cadherin could potentially decrease malignant characteristics by increasing cell 

adhesion (Stewart 2014; Clevers & Nusse 2012; Anastas & Moon 2012a; Kahn 2014). 

 

Figure 7. Simplified representation of the canonical WNT–β-catenin signaling cascade 
(modified figure from Stewart 2014). 

In addition to inhibition of the pathway by -catenin complex, canonical Wnt pathway can 

also be inhibited or promoted in other ways (Figure 8). On the one hand, secreted frizzled-

related proteins (sFRPs) compete with Wnt for binding to FZD, Wnt inhibitory factor 1 (WIF-1) 

and Cerberus bind secreted Wnt, Disabled 2 (Dab2) and the Dickkopf (Dkk) family inhibit Wnt 

signaling by binding to the LRP5/6 component of the Wnt receptor complex and the human 

homolog of Dapper (HDPR1) and Idax antagonist Dvl. On the other hand, tankyrases-1 and -2 
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promote Wnt signaling by destabilizing AXIN and EGFR promote signaling by phosphorylating 

and consequently inactivating GSK-3. 

Given the importance of WNT signaling for adult stem cell biology, it is not surprising that 

WNT pathway mutations are frequently observed in cancer. A role for WNT pathway in cancer 

was first described in the 1980s in mouse models of mammary cancer and in human and 

mouse colon cancer (Anastas & Moon 2012b). Researches showed that aberrant 

overexpression of WNT1 in mice induced by a proviral insertion at the WNT1 locus or by 

transgenesis triggers spontaneous mammary hyperplasia and tumor in mice (Nusse & Varmus 

1982; Tsukamoto et al. 1988). Other studies pointed to a crucial role for hyperactivated WNT-

CTNNB1 signaling in colorectal cancer (Korinek et al. 1997; Morin et al. 1997). Germline 

inactivating mutations in the adenomatous poluposis coli (APC) – which is a negative regulator 

of CTNNB1 stability – are found in patients with a hereditary cancer syndrome termed familiar 

adenomatous polyposis (FAP), which can progress to colorectal carcinomas following 

concomitant activating mutations in KRAS and inactivating mutations in TP53. Both APC and 

CTNNB1 are also frequently mutated in colorectal cancers of non-FAP patients (Kinzler & 

Vogelstein 1996; Segditsas & Tomlinson n.d.), and overexpression of constitutively active 

CTNBB1 or loss of APC function can result in colorectal tumorigenesis. 

 

Figure 8. Inhibition molecules of canonical Wingless-type protein (Wnt) signaling (Stewart 
2014). 

There is growing evidence that the Wnt pathway is important in the development of 

NSCLC. However, most of the researches have been developed in mice and in vitro models 

(Stewart 2014). In murine models, activation of Wnt signaling is associated with increasing 

tumor initiation potential (Vaughan et al. 2012). In cultured respiratory epithelium, cigarette 
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smoke components upregulated Wnt and Hedgehog signaling (Lemjabbar-Alaoui et al. 2006; 

Liu et al. 2010). A majority of NSCLC cell lines have active Wnt signaling (He et al. 2004; Licchesi 

et al. 2008; Teng et al. 2010). Downregulation of Wnt signaling by anti-Wnt-1 monoclonal 

antibody or small interfering RNA (siRNA) induced apoptosis in cancer cells (He et al. 2004), 

inhibited NSCLC cell line proliferation (Akiri et al. 2009), blocked xenograft growth (Lee et al. 

2012; He et al. 2004) and reduced cell motility and invasion (Lee et al. 2012).  

Wnt pathway activation and overexpression of Wnt-1, -2 or -3 are also associated with 

poor prognosis clinically. Of resected NSCLCs, 37% to 63% stained positively for Wnt ligands by 

immunohistochemistry (Nakashima et al. 2008; Xu et al. 2011; He et al. 2004), which has been 

associated with a low apoptotic index, aberrant -catenin expression, increased expression of 

c-Myc, Cyclin D1, VEGF-A , MMP-7, Ki-67, survivin and bigger intratumoral microvessel density 

(Nakashima et al. 2010; Nakashima et al. 2008; Xu et al. 2011). On the other hand, it has been 

reported that the Wnt signaling pathway helps to maintain CSCs since putative stem cell 

markers such as LGR57GRP49, CD44, CD24, EpCAM or OCT4 are Wnt targets (Takahashi-

Yanaga & Kahn 2010; Teng et al. 2010). Thus, the Wnt pathway seems to be a promising target 

in NSCLC tumorigenesis, making it worthwhile to explore Wnt signaling pathway expression as 

a therapeutical option for NSCLC patients (Stewart 2014).  

Hh Signaling Pathway 

The hedgehog (Hh) signaling pathway regulates proliferation and differentiation in a time- 

and position-dependent fashion during embryonic development (Velcheti & Govindan 2007). 

In adult tissues, Hh pathway plays a central role in tissue repair and regeneration. It has been 

reported that both mutations and deregulations of genes related to Hh pathway can 

contribute to the onset of cancer or to accelerate the rate of tumor growth (Rubin & de 

Sauvage 2006). 

Mammalian Hh signaling pathway is mainly constituted by three Hh ligands homologues 

with different spatial and temporal distribution patterns: Sonic hedgehog (SHH), Indian 

hedgehog (IHH) and Desert hedgehog (DHH), transmembrane receptor-patched homolog 1 

and 2 (PTCH1, -2), a G protein-coupled receptor, smoothened (SMO) and a cytoplasmatic 

complex that regulates the glioma-associated oncogene homolog (GLI) family. GLI1 is a 

transcription activator, and GLI2 and GLI3 are both activators and repressors of transcription. 

The Hh signaling cascade is initiated by Hh binding to the PTCH1 protein on the target cell 

(Figure 9, Kalderon 2000). In the absence of the Hh ligand, PTCH1 represses the activity of 

SMO, preventing its localization to the cell surface from intracellular endosomes, where SMO is 
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predominantly located (Denef et al. 2000). Under these circumstances, different kinases 

phosphorylate and activate repressor forms of GLI transcription factors. The active form of GLI 

is prevented from transactivating Hh-responsive genes by the serine-threonine protein kinase 

suppressor of fused (SUFU) and the atypical kinesin-like protein Costa (COS) in a manner that is 

still not completely understood. Upon binding an Hh ligand, PTCH1 is internalized, and 

apparently destabilized, so that it can no longer transport the endogenous agonist molecules 

outwards. This allows them to accumulate intracellularly and activate SMO, which sequestrate 

COS and SUFU, releasing the GLI transcription factors to exert their effects in nucleus. KIF3A 

and -arrestin are required for SMO activation (Rubin & de Sauvage 2006; Takebe et al. 2015). 

 

Figure 9. Representation of the Hedgehog signaling pathway. Adapted from (Takebe et al. 
2015). 

The first connection between aberrant Hh signaling and cancer was the discovery that the 

rare condition Gorlin syndrome is caused by a mutation in the transmembrane receptor-

patched homolog 1 (PTCH1), a key component of Hh signaling (Hahn et al. 1996; Johnson et al. 

1996). Gorlin patients develop several basal cell carcinomas during their lifetimes and are 

predisposed to other kinds of cancer. In addition, one-third or more of all human 
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medulloblastoma cases have been shown to involve increased Hh signaling, often due to 

PTCH1 and some SUFU mutations. In all these cases, it is believed that deregulated Hh 

signaling leads to increased cell proliferation and tumor formation (Rubin & de Sauvage 2006; 

Velcheti & Govindan 2007). 

Regarding lung cancer, Hh signaling is possibly inactive in the human adult lung epithelium 

except in the epithelial progenitor (stem) cells. This persistence of Hh signaling in the epithelial 

progenitor (stem) cells could help maintain these cells and play a critical role in the response to 

airway epithelial injury. Studies on animal lung airway epithelial injury/regeneration model 

suggest that persistent injury to the airway is a potent stimulus for the activation of the Hh 

signaling, and this helps the expansion of airway epithelial progenitor cells (Watkins et al. 

2003; Watkins & Peacock 2004; Velcheti & Govindan 2007). Studies on cultured cells showed 

that SCLC and NSCLC cell lines tend to express SHH protein. In fact, 70% of SCLC cell lines 

expressed both SHH and GLI1 in contrast to NSCLC, which expressed exclusively GLI1 (Watkins 

et al. 2003). Analysis of clinical samples of human lung cancer tissue demonstrated 50% of 

SCLC expressed both SHH and GLI1 compared to only 10% of NSCLC. However, it is still 

necessary to clarify the role of activation of Hh pathway in the process of carcinogenesis and 

progression in lung cancer. There have been virtually no significant advances in the systemic 

therapy of lung cancer. With the current trend toward developing targeted therapies, the Hh 

pathway modulators offer a potential new avenue in the treatment of lung cancer (Velcheti & 

Govindan 2007).  

Unfortunately, progression and treatment resistance are frequent in NSCLC. As it was 

mentioned above, CSCs population seems to be related with these facts, but there are no 

specific biomarkers available for lung CSCs, which could be used for their isolation from tumor 

tissue (Zakaria et al. 2015; Swarts et al. 2013). Therefore, it is necessary to look for lung CSCs-

markers, which could discriminate CSCs from cancer cells and deeply characterize CSCs in 

order to develop specific therapies against this population. 

In this study, we analyze the gene expression of Notch, Wnt and Hedgehog signaling 

pathways, which are known to control CSC characteristics, as well as genes that have been 

previously reported as potential lung CSCs biomarkers in early stages. The validation of these 

genes as specific CSC markers would facilitate information about disease prognosis and/or 

discover potential therapeutic targets. 
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2. OBJECTIVES 

In the current context of lung cancer research, cancer stem cells (CSCs) have been 

proposed as promising targets, but this cell population remains largely unknown. Some studies 

have been done in cancer cell-lines, but few data is available from patients’ samples. The main 

objective of this study is to analyze and characterize gene expression patterns of CSCs, using 

paired samples of tumorspheres and adherent cultured cells derived from lung cancer cell-

lines and tumor-tissue from resectable NSCLC patients. 

The specific aims of this study are: 

1. To establish NSCLC primary cultures, from surgical resections specimens, under 

adherent and non-adherent, serum-free conditions (CSCs possess the ability to 

form spheroids in serum-free medium). 

2. To isolate and assess the quality of RNA from cells grown under standard and non-

adherent culture conditions. 

3. To analyze relative gene expression of CSCs markers (EPCAM1, ALDH1A1, CD133, 

ALCAM, ABCG2, CD44, BMI1, MUC1); pluripotency genes (KLF4, OCT4, NANOG, 

SOX2, MYC, CCND1); cell cycle (CDKN1A, CDKN2A, MDM2, WEE1); metastasis-

related genes (CDH1, CEACAM5, VIM, SNAI1, MMP2, MMP9); Notch pathway 

(NOTCH1, NOTCH2, NOTCH3, DLL1, DLL4, HEY1, HES1); Wnt pathway (CTNBB1, 

WNT1, WNT2, WNT3, WNT5A, DKK1, FZD7, GSK3B) and Hedgehog pathway (SMO, 

PTCH1, SHH, GLI1). 

4. To evaluate gene expression profiles of tumorspheres in order to find out a set of 

genes that better characterize them and could act as biomarkers or therapeutic 

targets of lung CSCs. 
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3. MATERIALS & METHODS 

3.1.SAMPLES INCLUDED IN THE STUDY 

In this study, tumor cells from resected NSCLC patients from Consorcio Hospital General 

Universitario de Valencia were collected. Patients that met the eligibility criteria (resected non-

pre-treated stage I to stage IIIA cancer, according to the American Joint Committee on Cancer 

staging system) with a histological diagnosis of NSCLC were informed and invited to participate 

in the study. The most relevant demographic and clinicopathological characteristics of the 

cohort are shown in Table 3. 

Table 3. Clinicopathological characteristics of the patients included in the study. 

Primary 
culture 

Age Gender Stage Histology 
Smoking 

status 
Mutation 

Status 
Progression Growing 

301 71 Male IIB SCC Former 
Wt. EGFR, 

ALK 
NO NO 

302 74 Female IB ADC Never 
Wt. EGFR, 
KRAS, ALK 

NO YES 

303 57 Male IB ADC Current 
Wt. EGFR, 
KRAS, ALK 

YES YES 

304 48 Male IIA SCC Current 
Wt. EGFR, 

ALK 
NO NO 

305 52 Male IIB ADC Current 
Wt. EGFR, 

ALK 
NO NO 

306 50 Female IIA ADC Current 
Wt. EGFR, 

ALK 
NO NO 

307 62 Male IB ADC Former 
Wt. EGFR, 

ALK 
NO NO 

308 73 Male IIB ADC Former 
Wt. EGFR, 

ALK 
NO NO 

310 68 Male IB ADC Current 
Wt. EGFR, 

ALK 
NO NO 

315 65 Female IA ADC Never 
Wt. EGFR, 
KRAS, ALK 

NO YES 

316 43 Female IIIB ADC Current 
Wt. EGFR, 

ALK 
YES NO 

317 76 Male IIB SCC Current 
Wt. EGFR, 
KRAS, ALK 

NO YES 

320 65 Male IIIB ADC Current 
Wt. EGFR, 
KRAS, ALK 

NO YES 

321 83 Male IB SCC Former 
Wt. EGFR, 

ALK 
NO NO 

323 68 Male 
Fibrous 
Nodule 

NA Current 
Wt. EGFR, 

ALK 
NA YES 

ADC, adenocarcinoma; SCC, squamous cell carcinoma; Wt., Wildtype; NA, not applicable. 

Four commercial lung cancer cell lines (A549, H1650, H1993 and PC9) were also analyzed 

in this project. All selected cell lines were obtained from the American Type Culture Collection 

(ATCC), except for PC9 that was obtained from the European Collection of Authenticated Cell 
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Cultures (ECACC). The study was approved by the institutional ethical review board, and 

conducted in accordance with the Declaration of Helsinki, and Spanish regulatory guidelines. 

Table 4 shows the general properties of cell lines included in this study. 

Table 4. Characteristics of the lung cancer cell lines analyzed in the study. 

Cell 
Line 

Tissue Age 
 

Gender 
 

Stage Histology 
Smoking 

Status 
Mutational Status 

A549 Lung 58 Male 
Early 
stage 

ADC NS KRAS p.G12S 

H1650 

Derived 
from 

metastatic 
pleural 

effusion 

27 Male IIIB ADC 
Light 

Smoker 
EGFR 

p.E746_750del 

PC9 Lung NS Female NS ADC 
Never 

Smoker 
EGFR 

p.E746_750del 

H1993 

Derived 
from 

metastatic 
lymph node 

47 Female IIIA ADC Smoker TP53 p.C24W 

ADC, adenocarcinoma; NS, not specified. 

3.2.PRIMARY CELL CULTURE ESTABLISHMENT 

Fresh tumor tissue from NSCLC patients (n=15) who underwent lobectomy or 

pnemonectomy was washed in PBS containing penicillin-streptomycin before dissociation 

using mechanical, and enzyme-based methods. Briefly, each tumor piece was minced into 

small pieces using a scalpel and incubated in 7 mL of DMEM/F12 (Gibco, Paisley, UK) with 

0,001% DNAse (Sigma-Aldrich, St Louis, USA), 1 mg/mL collagen (Gibco, Paisley, UK), 1 mg/mL 

dispase (Gibco, Paisley, UK), 200 U/mL penicillin and 200 µg/mL streptomycin (2% antibiotics, 

Gibco, Paisley, UK) at 37oC for 3 hours in a water bath with intermittent shaking. Then, samples 

were centrifuged at 290 g for 5 minutes and the resulting suspension was sequentially passed 

through 70 µm and 40 µm cell strainers (BD Falcon, San Jose, USA) and centrifuged for a 

second time at 200 g for 5 minutes. Then, cells were resuspended in 500 µL of serum-free 

medium and 10 mL of red blood cell lysis buffer 10x (eBioscience, San Diego, USA) and 

incubated at 37ºC with intermittent shaking for 20 minutes. After erythrocytes lysis, cells were 

centrifuged at 130 g for 5 minutes and cell viability was evaluated by trypan blue (Gibco, 

Paisley, UK).  

Half of the live cells were transferred into standard 25 cm2 coated flasks and cultured in 

Defined Keratinocyte-Serum Free Medium to inhibit fibroblasts growing (Gibco, Paisley, UK). 

Once the primary cultures were established, the maintenance was performed in DMEM/F12 
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supplemented with 10% fetal bovine serum (Gibco, Paisley, UK), 2% penicillin-streptomycin 

and 1% of L-glutamine (Gibco, Paisley, UK). For spheroids formation, the rest of disaggregated 

cells were grown in serum free culture medium DMEM/F12 supplemented with 50 µg/mL 

epidermal growth factor (EGF, Gibco, Paisley, UK), 20 µg/mL basic fibroblast growth factor 

(bFGF, Gibco, Paisley, UK), insulin-transferrin-selenium (ITS, BD Biosciences), 0.4% Bovine 

Serum Albumin (BSA, Gibco, Paisley, UK) and 2% B27 (Gibco, Paisley, UK). Cells were plated in 

6-well ultra-low attachment plates (Corning, Lowell, MA, USA) at a density of 5000 cells/mL for 

7 to 10 days. Cultures were expanded by mechanical dissociation of spheroids, followed by re-

plating of both single cells and residual small aggregates in complete fresh medium. All 

cultured cells were maintained at 37ºC in 5% CO2 atmosphere and medium was replaced twice 

a week.  

3.3. CELL LINES CULTURE 

Commercial cell lines were maintained in RPMI 1640 supplemented with 10% fetal bovine 

serum (FBS), 2% penicillin-streptomycin and 0.001% non-essential amino acids (Gibco, Paisley, 

UK), at 37ºC and 5% CO2 atmosphere.  

To obtain sphere cultures, 70-80% of confluence monolayer cells were enzymatically 

dissociated into a single cell suspension using 0.5% Trypsin-EDTA 1x (Gibco, Paisley, UK). Cells 

were seeded at desired density into 75 cm2 ultra-low attachment flasks (Corning, Lowell, MA, 

USA) under serum-free medium conditions supplemented with 50 µg/mL EGF, 20 µg/mL bFGF, 

ITS, 0.4% BSA and 2% B27. Cultures were expanded by enzymatical dissociation of spheroids, 

followed by re-plating of both single cells and residual small aggregates in complete fresh 

medium. Culture medium was replaced twice a week. 

3.4. RNA/DNA ISOLATION 

For RNA/DNA isolation, cells were centrifuged at 290 g for monolayer cells and 200 g for 

tumorspheres during 5 minutes. Cell pellets were washed twice with PBS and stored at -80ºC 

until further analysis. 

RNA and DNA were isolated using a TRZol based method (Tri Reagent®, Invitrogen, USA) 

according to the manufacturer’s instructions. Briefly, 1 mL of Tri Reagent® and 200 L of 

chloroform were added to each cell pellet in order to separate the aqueous phase containing 

the RNA. Isopropanol was used to precipitate the nucleic acids and ethanol was used for 

washing. Isolated messenger RNA (mRNA) was dissolved in nuclease free water and stored at -

80ºC until further analysis. The DNA interphase was recollected in absolute ethanol and 
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washed, first with 10% ethanol/0.1 M sodium citrate buffer and then with 75% ethanol. At the 

end, it was dissolved in nuclease free water and stored at -80ºC until further analysis. RNA and 

DNA quantity and quality were assessed using a nanospectrophotometer (Nano Drop 2000C, 

Thermo Fisher Scientific, USA). 

3.5. REVERSE TRANSCRIPTION 

Reverse transcription was performed in order to transform mRNA into complementary 

DNA (cDNA) using High Capacity cDNA Reverse Transcription Kit® (Applied Biosystems). Each 

reaction comprised 2 L of reverse transcription (RT) buffer, 0.8 L of dNTPs mix, 2 L of RT 

random primers, 1 L of MultiScribe™ Reverse Transcriptase, 1 L of RNase inhibitor and a 

different volume of RNA depending on sample concentration (1000 ng of RNA per reaction), 

made up to a total of 20 L with nuclease free water. The reaction took place in a 

MasterCycler® thermocycler (Eppendorf) following the conditions described in Table 5. 

Resulting cDNA was stored at -80ºC until further analysis. 

Table 5. Cycling program for reverse transcription reaction. 

Phase Time Temperature 

1 10 minutes 25° C 

2 2 hours 37° C 

3 5 seconds 85° C 

4 ∞ 4° C 

3.6. QUANTITATIVE REAL TIME PCR 

Target gene quantification was performed by RTqPCR using hydrolysis probes labeled with 

a reporter dye linked to the 5’ end of the probe (TaqMan®, Applied Biosystems). This system 

also includes a non-fluorescent quencher (NFQ) at the 3’ end of the probe and a Minor Grove 

Binder (MGB) attached to the NFQ, which increases the melting temperature (Tm) without 

increasing the length of the probe (Figure 10). 

In this study, a total of 43 genes, selected according to their implications in the biology of 

CSCs, were analyzed (Table 6). The relevance of these genes was established from a PubMed 

database search, which revealed published information demonstrating or suggesting a role of 

these genes in CSCs maintenance, self-renewal and proliferation. 

Gene expression levels were assessed using TaqMan® Gene Expression Assays (Applied 

Biosystems) listed in Table 6. Different endogenous gene controls were tested in samples in 

order to evaluate the best internal control using GeNorm software. This software 
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automatically calculates the gene-stability measurement ‘M’ for all control genes and allows 

the worst-scoring housekeeping genes to be eliminated (Vandesompele et al. 2002a). 

 
Figure 10. TaqMan® qPCR reaction steps (Life Technologies). 

Each reaction was performed twice in 384-well plates with a final volume of 5 L 

comprising: 2.5 L of TaqMan® Gene Expression Master Mix (Applied Biosystems), 1.25 L of 

nuclease free water, 0.25 L of TaqMan® Gene Expression Assay mix (Applied Biosystems) and 

1 µL of cDNA. Non-template controls (NTCs) were included in each run, as well as positive 

reference controls: Jurkat cell line, and a commercially available reference cDNA (Clonetech). 

The reactions took place in a Light Cycler 480 thermocycler system (Roche) following the 

cycling conditions described in Table 7. 

Table 6. Genes analyzed and amplicon length of the TaqMan® Gene Expression Assays used 
for QPCR. 

Gene Full Name Assay 
Amplicon 

Length 

ACTB Actin, Beta Hs99999903_m1 171 

CDKN1B Cyclin-dependent kinase inhibitor Hs00153277_m1 71 

GUSB Glucuronidase, beta Hs01558067_m1 71 

HPRT1 Hypoxanthine phosphoribosyltransferase 1 Hs01003267_m1 72 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase Hs99999905_m1 122 

ABCG2 ATP-binding cassette, sub-family G Hs01053790_m1 83 

ALDH1A1 Aldehyde dehydrogenase 1 family, member A1 Hs00946916_m1 61 

BMI1 BMI1 proto-oncogene, polycomb ring finger Hs00180411_m1 105 
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CD44 CD44 molecule Hs01075861_m1 70 

CD133 CD133 molecule Hs01009257_m1 
Hs01009250_m1 
Hs00195682_m1 

80 
75 

107 

CD166 CD166 molecule Hs00233455_m1 70 

EPCAM1 Epithelial cell adhesion molecule Hs00158980_m1 64 

MUC1 Mucin 1, cell surface associated Hs00159357_m1 84 

OCT4 POU class 5 homeobox 1 Hs01895061_u1 130 

NANOG Nanog homeobox Hs02387400_g1 109 

SOX2 SRY (sex determining region Y)-box 2 Hs01053049_s1 91 

KLF4 Kruppel-like factor 4 (gut) Hs00358836_m1 110 

MYC V-myc avian myelocytomatosis viral oncogene homolog Hs00153408_m1 107 

CCND1 Cyclin D1 Hs00765553_m1 57 

CDKN1A Cyclin-dependent kinase inhibitor 1A Hs99999142_m1 99 

CDKN2A Cyclin-dependent kinase inhibitor 2A Hs00923894_m1 115 

MDM2 MDM2 proto-oncogene, E3 ubiquitin protein ligase Hs01066930_m1 99 

WEE1 WEE1 G2 checkpoint kinase Hs00268721_m1 66 

CDH1 Cadherin 1, type 1 Hs01023894_m1 61 

VIM Vimentin Hs00185584_m1 73 

SNAI1 Snail family zinc finger 1 Hs00195591_m1 66 

MMP2 Matrix metallopeptidase 2 Hs01548727_m1 65 

MMP9 Matrix metallopeptidase 9 Hs00234579_m1 54 

CEACAM5 
Carcinoembryonic antigen-related cell adhesion molecule 
5 

Hs00944025_m1 71 

NOTCH1 NOTCH1 Hs01062014_m1 80 

NOTCH2 NOTCH2 Hs01050702_m1 60 

NOTCH3 NOTCH3 Hs01128541_m1 81 

DLL1 Delta-like 1 Hs00194509_m1 74 

DLL4 Delta-like 4 Hs00184092_m1 78 

HEY1 Hairy ears, Y-linked Hs01114113_m1 82 

HES1 Hes family bHLH transcription factor 1 Hs00172878_m1 78 

WNT1 Wingless-type MMTV integration site family, member 1 Hs01011247_m1 
Hs00180529_m1 

108 
77 

WNT2 Wingless-type MMTV integration site family, member 2 Hs00608224_m1 119 

WNT3 Wingless-type MMTV integration site family, member 3 Hs00902257_m1 76 

WNT5A Wingless-type MMTV integration site family, member 5A Hs00998437_m1 61 

CTNBB1 Catenin beta 1 Hs00355049_m1 67 

GSK3B Glycogen synthase kinase 3 beta Hs01047719_m1 65 

DKK1 Dickkopf WNT signaling pathway inhibitor 1 Hs00183740_m1 68 

FZD7 Frizzled class receptor 7 Hs00275833_s1 70 

SMO Smoothened, frizzled class receptor Hs01090242_m1 54 

PTCH1 Patched 1 Hs00181117_m1 72 

SHH Sonic hedgehog Hs00179843_m1 70 

GLI1 GLI family zinc finger 1 Hs01110766_m1 83 

LGALS-2 Lectin, galactoside-binding, soluble, 2 Hs00197810_m1 73 

CD45 Protein tyrosine phosphatase, receptor type, C Hs00898488_m1 61 

JUNB Jun B proto-oncogene Hs00357891_s1 89 

TGFB Transforming growth factor, beta 1 Hs00998133_m1 57 

LIN28B Lin-28 homolog A Hs01013729_m1 130 

STAT3 Signal transducer and activator of transcription 3 Hs01047580_m1 87 
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The step at 50° C is required for optimal UNG enzyme activity. The step at 95° C is required 

to activate the AmpliTaq Gold enzyme. 

The efficiency of each TaqMan® assay was evaluated by carrying out serial dilutions (50 

ng/L, 5 ng/L, 0.05 ng/L, 0.005 ng/L and 0.0005 ng/L) using the commercial reference 

cDNA mentioned above and calculated by using E=10-1/slope equation. Relative gene expression 

levels were expressed as the ratio of target gene expression to reference gene expression by 

using the Pfaffl formula (Pfaffl 2001). Herein, relative quantification determines the changes in 

steady-state mRNA levels of a target gene across multiple samples and expresses it relative to 

the levels of control RNA. The expression is normalized against a reference gene, which is 

often a housekeeping gene. 

Table 7. Cycling program for RTqPCR. 

 Step Time Temperature 

Pre-PCR 
UNG incubation 
Taq activation 

2 min 
10 min 

50° C 
95° C 

PCR 
(40 cycles) 

Denature 
Anneal/Extend 

15 sec 
1min 

95° C 
60° C 

3.7. DATA ANALYSIS 

Before statistical analyses, expression data were carefully reviewed and those values 

considered as outliers were excluded.  

The first statistical analysis was to evaluate if the analytical variables followed a normal 

distribution by using the Kolmogorov-Smirnov test. In those cases were the variables did not 

follow a normal distribution, statistical analyses were conducted by non-parametric tests. 

Continuous variables were compared using non-parametric Mann Whitney U and Kruskall 

Wallis tests. Spearman’s rank was used to test for correlations between continuous variables, 

and associations between dichotomized variables were evaluated using the Chi-square test.  

For each case, adherent cells and tumorspheres gene expression was paired and analyzed 

using Wilcoxon test. For relative gene expression comparison, commercial reference cDNA was 

used for normalization. For categorical analysis, gene expression values higher than 2 or lower 

than 0.5 were considered over- and underexpressed, respectively. Median value was used 

instead of mean because median is less affected by data variability and provides statistical 

robustness to the analysis. All the statistical analyses were performed using the Statistical 

Package for the Social Sciences (SPSS) version 15.0 (Chicago, IL), considering statistically 

significant those analyzes were p< 0.05. 

 



Results & Discussion 

30 
 

4. RESULTS AND DISCUSSION 

4.1 . TUMORSPHERES FORMATION ASSAY 

The sphere-formation in vitro assay is a well-described method of CSCs isolation, 

identification and enrichment (Han et al. 2013). Cancer cells that lack stem cells properties 

have limited sphere-forming potential due to telomere loss and cellular senescence (Patel & 

Rameshwar 2013). 

We have processed 15 biological specimens from surgical lung cancer resection 

(lobectomies or pneumonectomies) through this study. In six samples (40%), we were able to 

establish a primary culture, being possible to grow them in adherent and non-adherent 

conditions. There were several causes that influence the successful rate of primary cultures 

establishment such as excessive necrosis of tumor samples, deficient preservation of tumor 

samples before culture, fibroblast overgrown, and lack of cell viability, among others. In 

addition, one tissue sample was considered tumor-free and discarded after anatomical 

pathology evaluation. As it was mentioned before, four lung cancer cell lines (A549, H1650, 

H1993 and PC9) were included in the study. Figure 11 shows some examples of cell lines and 

primary cultures (labeled as 302, 303, 315 and 320) grown as monolayer and as spheroids. 

 

Figure 11. Cell lines and NSCLC patient’s primary cultures: adherent cultures and 
tumorspheres.  
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4.2 . RNA QUANTIFICATION AND QUALITY ASSESSMENT 

For relative gene expression analysis, RNA from cellular pellets was isolated using standard 

trizol extraction procedure. RNA concentration and quality was assessed using a 

nanospectrophotometer. Only the samples with an optimal concentration (≥ 40 ng/L) and 

quality were included in the study. The mean RNA concentration for adherent-cultured cells 

was 738.6 [108.9-2681.8] ng/L and 221.7 [97.2-565.8] ng/L for tumorspheres. Regarding the 

quality of the RNA obtained, the ratios A260/280 and A260/230 showed values from 1.8 to 2.0 and 

from 2.0 to 2.2, respectively, meaning that all samples included in this study could be 

considered optimal for further analysis. Therefore, this RNA extraction protocol from cellular 

pellets allows obtaining enough quantity of good quality RNA for gene expression analysis by 

qPCR. 

4.3 . TAQMAN ASSAYS EFFIENCIENCY CALCULATION 

As mentioned before, efficiency for each TaqMan assay was evaluated using the Ct slope 

method. Ct values for a serial dilution of the target template (triplicates of each dilution) were 

obtained. After that, a plot of Ct values versus log of target DNA concentration was 

constructed, followed by the calculation of the slope, which should be near to -3.33, value that 

represent a 100% of amplification efficiency. In Table 8, a list of the slope and efficiency values 

for all of the genes included in the qPCR expression analysis is shown.  

Table 8. Efficiency results for the gene’s assays performed in this study. 

Gene Slope Efficiency 
Percentage 
Efficiency 

ACTB -3,322 2,000 100 

CDKN1B -3,704 1,862 93 

GUSB -3,322 2,000 100 

HPRT1 -3,570 1,906 95 

GAPDH -3,322 2,000 100 

ABCG2 -3,396 1,970 99 

ALDH1A1 -3,165 2,070 104 

BMI1 -3,322 2,000 100 

CD44 -3,644 1,881 94 

CD133 -3,322 2,000 100 

CD166 -3,422 1,960 98 

EPCAM1 -3,165 2,070 104 

MUC1 -3,322 2,000 100 

OCT4 -3,322 2,000 100 

NANOG -3,541 2,000 100 

SOX2 -4,001 1,778 89 

KLF4 -3,541 1,916 96 

MYC -3,743 1,850 93 

CCND1 -3,993 1,780 89 

CDKN1A -3,623 1,888 94 

CDKN2A -3,475 1,940 97 
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MDM2 -3,617 1,890 95 

WEE1 -4,073 1,760 88 

CDH1 -3,322 2,000 100 

VIM -3,393 1,971 99 

SNAI1 -3,322 2,000 100 

MMP2 -3,899 1,805 90 

MMP9 -3,947 1,792 90 

CEACAM5 -3,322 2,000 100 

NOTCH1 -3,881 1,810 91 

NOTCH2 -3,932 1,796 90 

NOTCH3 -3,396 1,970 99 

DLL1 -3,322 2,000 100 

DLL4 -3,322 2,000 100 

HEY1 -3,743 1,850 93 

HES1 -3,322 2,000 100 

WNT1 -3,814 1,829 91 

WNT2 -3,322 2,000 100 

WNT3 -3,682 1,869 93 

WNT5A -3,710 1,860 93 

CTNBB1 -3,932 1,796 90 

GSK3B -3,322 2,000 100 

DKK1 -3,186 2,060 103 

FZD7 -3,845 1,820 91 

SMO -2,946 2,185 109 

PTCH1 -3,711 1,860 93 

SHH -3,388 1,973 99 

GLI1 -3,805 1,831 92 

LGALS-2 -3,464 1,944 97 

CD45 -3,654 1,878 94 

JUNB -3,810 1,830 92 

TGFB1 -3,617 1,890 95 

LIN28B -3,831 1,824 91 

STAT3 -3,322 2,000 100 

4.4 . RELATIVE GENE EXPRESSION ANALYSIS 

We analyzed the expression of 43 genes related to CSC maintenance, proliferation and 

self-renewal grouped in the following categories: CSCs markers (EPCAM1, ALDH1A1, CD133, 

ALCAM, ABCG2, CD44, BMI1, MUC1), pluripotency genes (KLF4, OCT4, NANOG, SOX2, MYC, 

CCND1); cell cycle (CDKN1A, CDKN2A, MDM2, WEE1), metastasis-related genes (CDH1, 

CEACAM5, VIM, SNAI1, MMP2, MMP9); Notch pathway (NOTCH1, NOTCH2, NOTCH3, DLL1, 

DLL4, HEY1, HES1); Wnt pathway (CTNBB1, WNT1, WNT2, WNT3, WNT5A, DKK1, FZD7, GSK3B) 

and Hedgehog pathway (SMO, PTCH1, SHH, GLI1). 

The expression of five endogenous genes (ACTB, GAPDH, GUSB, HPRT1 and CDKN1B) was 

also tested in all samples in order to establish the more stable internal control. For this 

purpose, we used GeNorm software (see Materials and Methods), which indicated that the 

combination of ACTB, GUSB and CDKN1B was the most reliable option. Following the 

procedure proposed by Vandesompele et al., a normalization factor based on the expression of 

these three endogenous genes was calculated using the geometrical mean (Vandesompele et 
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al. 2002b). Results for CSCs-markers and signaling pathways are presented and discussed 

below. 

4.4.1 CSC MARKERS EXPRESSION 

For CSC markers study, EPCAM1, ALDH1A1, CD133, ALCAM, ABCG2, CD44, BMI1 and 

MUC1 were analyzed, as these genes were pointed out as possible markers for identifying CSCs 

in several tumors. Relative gene expression results for these genes with respect to the 

commercial reference cDNA are shown in Figure 12.  

 

Figure 12. Relative mRNA expression of CSC markers in adherent-cultured cells and 
tumorspheres. Bars represent mean expression values   standard deviation. *p<0.05. 

Compared with the reference cDNA, both, adherent tumor cells and tumorspheres, 

showed overexpression of EPCAM, ALCAM and CD44 (> 2x), whereas ALDH1A1, MUC1 and 

BMI1 expression values were underexpressed (<0.5x).  

CSC markers gene expression was significant higher (Wilcoxon test) in tumorspheres when 

compared to adherent cells for EPCAM (7.72 vs. 4.10, p= 0.028), CD44 (9.67 vs. 2.87, p= 0.021), 

and ALDH1A1 (0.028 vs. 0.002, p= 0.043).  

EPCAM1, ALDH1A1 and CD44 are three proposed biomarkers of CSCs in different solid 

tumors. Karimi-Busheri et al. proposed the overexpression of EPCAM1 and ALDH1A1 as a 

signature of enriched CSCs in H460 NSCLC cell line (Karimi-Busheri et al. 2011). Isolated ALDH+ 

lung cancer cells were observed to be highly tumorigenic and clonogenic as well as capable of 

self-renewal compared with their ALDH- counterparts (Sullivan et al. 2010). Regarding the 

prognostic impact of this marker, a recent study on a cohort of stage I NSCLC patients, show 
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that high ALDH1 expression is associated with poor survival (Huo et al. 2015). Regarding 

EPCAM1 (also known as CD326) and CD44, our group has identified three compounds that 

alter CSCs expression of EPCAM1, CD44 and ALCAM and trigger differentiation and cell death 

in A549 and patients-derived CSCs (Soto-Cerrato et al. 2015). Previous in vivo and in vitro 

experiments suggested that CD133+/CD326+ and CD34+/CD326+ subpopulations represent CSCs 

in lung primary tumors and cell lines, including A549 (Tirino et al. 2009; Lin et al. 2012). CD44 

was evaluated as a CSC marker in colon (Sahlberg et al. 2014), breast (de Beca et al. 2013), 

prostate (Liu et al. 2011) and gastric (Takaishi et al. 2009) cancers. In NSCLC patients, CD44 

expression was significantly higher in squamous cells carcinomas (SCC), and the increased 

expression of this gene was significantly correlated with higher grade tumors and poor 

prognosis (Roudi Raheleh et al. 2014). 

We found no significant differences in the rest of the analyzed genes: ALCAM, MUC1, 

BMI1, and ABCG2, having similar levels of expression in anchorage-independent cells and in 

monolayer-cultured cells. 

Even ALCAM (also known as CD166) has been proposed as a specific CSC marker for NSCLC 

(Zakaria et al. 2015), there are few data concerning their clinical implications in this pathology. 

In fact, a recent evaluation of this gene expression using immunohistochemistry in a large 

cohort of NSCLC patients (n= 1910) on a tissue microarray basis found an inverse association 

between its expression and tumor size and lymph node status (Tachezy et al. 2014). Our results 

are in concordance with these findings, indicating the doubts regarding the functional role of 

ALCAM in NSCLC-CSC biology. MUC1 is another proposed marker for lung CSC. The detection of 

EpCAM/MUC1 mRNA-positive circulating tumor cells (CTCs) in blood before and after surgery 

is useful for predicting a poor prognosis in NSCLC patients who undergo surgery (Zhu et al. 

2014). MUC1 has also been associated with EMT and self-renewal through LIN28B-LET-7 

pathway in NSCLC (Alam et al. 2015) and, current in vitro and in vivo studies have linked MUC1 

expression to chemoresistance in A549 cell line (Ham et al. 2016). Regarding BMI1 and its 

transcriptional target, ABCG2, contradictory information have been reported about their 

involvement in CSCs biology and further investigation is required (Han et al. 2013; Su et al. 

2015; Liang et al. 2015; Koren et al. 2016). 

We have used three different TaqMan Gene Expression Assays for mRNA quantification of 

CD133, but the levels of expression of this gene were below the detection limit of the assays. 

There are a number of publications that focused on CD133 as a potential lung CSC marker (Liu 

et al. 2006; Todaro et al. 2007; Eramo et al. 2008; Mizrak et al. 2008; Rappa et al. 2008; Smith 
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et al. 2008; Baumann et al. 2009). Nevertheless, some authors reported that the use of CD133 

expression to discriminate lung CSC is overstated (Zakaria et al. 2015). For example, some 

CD133- lung cancer cells also possess the ability to self-renew and generate the formation of 

xenograft when transplanted into recipient mice (Meng et al. 2009). In addition, CD133 

expression in lung cancer is not associated with patient prognosis (Howard & Boockvar 2008; 

Tirino et al. 2009; Salnikov et al. 2010) and in many lung cancer samples, it could not be 

detected (Tirino et al. 2009; Bertolini et al. 2009; Salnikov et al. 2010), as it is reported in this 

study. 

This is the first study that analysis CSC markers expression from early-stage NSCLC patient-

derived CSCs by RTqPCR, which is a highly reliable and objective method, compared to other 

methods, such as immunohistochemistry or flow cytometry. The significant overexpression of 

EPCAM1, CD44 and ALDH1A1 CSC markers observed in lungspheres confirms the success of the 

tumorspheres formation assay for CSCs enrichment. Our group has confirmed that EpCAM and 

CD44 are highly expressed in tumorspheres obtained from cell lines and primary tumors by 

flow cytometry, and EpCAM+/CD90- subpopulation are the ones able to induce tumor in 

xenotransplanted mouse model, demonstrating tumor-initiating capacity in vivo. 

4.4.2 PLURIPOTENCY AND CELL CYCLE REGULATION GENE EXPRESSION 

The genes selected in order to study pluripotency and cell cycle regulation in lungspheres 

and monolayer-cultured cells were KLF4, OCT4, NANOG, SOX2, MYC and CCND1, for 

pluripotency, and CDKN1A, CDKN2A, MDM2 and WEE1 for cell cycle control. A summary of the 

relative gene expression levels for these genes is shown in Figure 13.  

 

Figure 13. Relative gene expression for analyzed pluripotency and cell cycle regulation genes. 
Bars represent mean expression values   standard deviation. *p<0.05. 
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In general, expression values for classical pluripotency genes were lower in both 

tumorspheres and adherent cells compared with the reference cDNA used for normalization. 

On the other hand, CCND1 and MYC, show higher levels of expression when compared with 

the reference sample. Regarding cell cycle related-genes, it is remarkable the high expression 

of CDKN2A in adherent cells as well as in spheroids. 

As expected, all analyze genes had higher expression in lung oncospheres compared to 

monolayer cells. Wilcoxon analysis showed significant increased expression of CDKN1A (1.60 

vs. 0.26, p = 0.021), and the same tendency was observed for CCND1 (4.48 vs. 1.50, p = 0.051) 

and SOX2 (0.11 vs. 0.04, p = 0.066). 

In concordance with our results, elevated gene expression levels of pluripotency genes 

CCND1, MYC, OCT4, NANOG, SOX2 and KLF4 have been widely associated with CSC biology 

maintenance, tumor initiation, EMT induction, drug resistance and metastasis in many tumors, 

including lung cancer (Chiou et al. 2010; Tian et al. 2012; Liu et al. 2013; Wang et al. 2014; 

Slawek et al. 2015). 

Pointing the focus on cell cycle regulators, our findings of CDKN1A overexpression in 

lungspheres is in concordance with previously published data. It has been reported that a 

quiescent state is necessary for preserving self-renewal of stem cells and is also a critical factor 

in CSC resistance to chemotherapy and targeted therapies (Abbas & Dutta 2009; Li & Bhatia 

2011). Essers and Trumpp data revealed cytokines to be efficient agents for promoting cycling 

of leukemic stem cells and, most interestingly, such cell cycle activated stem cells become 

sensitive to killing by different chemotherapeutic agents (Essers & Trumpp 2010). In that 

sense, CDKN1A is a negative regulator of the cell cycle and it has been reported that DNA 

damage in stem cells activates CDKN1A, inhibits p53 and induces symmetric self-renewing 

divisions (Insinga et al. 2013).  

Another interesting cell cycle regulator studied, WEE1, is an inhibitor of checkpoint kinases 

currently being tested in preclinical and clinical trials for NSCLC treatment (Syljuåsen et al. 

2015). Glioblastoma stem cells studies indicate that high levels of WEE1 may be required to 

maintain a stem-like state of CSCs (Forte et al. 2013), making this gene an attractive target for 

the development of new therapeutic strategies against lung-CSCs. MDM2 oncogene has been 

reported to enhance stemness-promoting, being required for the efficient generation of 

induced pluripotent stem cells (Wienken et al. 2015). In that sense, MDM2 inhibition promotes 

cell apoptosis and differentiation of CSCs (Daniele et al. 2015) and increased MDM2 expression 

has been associated with poor clinical outcome of NSCLC patients (Javid et al. 2015). In 
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addition, several MDM2 interactions and p53 mutations have been found in lung CSCs, making 

MDM2 a potential target in order to develop new therapies in lung cancer (Gadepalli et al. 

2014). Finally, it has been found that loss of CDKN2A (p16) expression reduces the response of 

estrogen receptor-negative breast cancer chemotherapy and confers CSC properties (Arima et 

al. 2012). In addition, CDKN2A inactivation is common in NSCLC, and hypermethylation of 

CDKN2A was associated with a worse outcome in NSCLC patients with age at diagnosis of 60 

years or younger (Bradly et al. 2012). 

Our group has obtained promising expression results for genes related to pluripotency and 

cell cycle regulation by RTqPCR in concordance with some previous reported results by other 

methods. However, these results should be confirmed in a larger cohort of patients in order to 

obtain robust statistical results. 

4.4.3 CELL ADHESION AND METASTASIS GENE EXPRESSION 

Expression of genes related with cell adhesion and metastasis process were evaluated 

analyzing the following genes: CDH1, CEACAM5, VIM, SNAI1, MMP2 and MMP9. Gene 

expression results for these genes are represented in Figure 14. 

 

Figure 14. Relative gene expression results for cell adhesion and metastasis-related genes. 
Bars represent mean expression values   standard deviation. *p<0.05. 

CDH1 (also known as E-CADHERIN) and CEACAM5 expressions were higher than reference 

sample, whereas VIM and MMP9 genes were underexpressed in the analyzed samples. There 

was a tendency to higher levels of expression in tumorspheres in comparison with their paired 

adherent culture cells in genes like VIM (0.008 vs. 0.004), and MMP9 (0.27 vs. 0.08). We found 

a great degree of variation in CDH1 and CEACAM5 expression among analyzed samples.  
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Interestingly, we found that SNAI1 expression, one of the major inducer of epithelial 

mesenchymal transition (EMT) expression was significantly increased in lungspheres compared 

to monolayer-cultured cells (1.16 vs. 0.58, p= 0.011). 

In line with our results, the overexpression of SNAI1 was related with CSC-like properties 

in a number of solid tumors such as  thyroid (Yasui et al. 2013), colorectal (Fan et al. 2012), 

head and neck (Ota et al. 2016), pancreatic (Zhou et al. 2014), and lung (Wang et al. 2014) 

cancer. SNAI1 is a known transcriptional repressor of CDH1 and one of the key regulators of 

EMT. Particularly, in A549 cell line, it was reported that SNAI1 expression directly correlates 

with NANOG expression, induction of EMT, and increasing of malignancy in mice models (Liu et 

al. 2014). To the best of our knowledge, this is the first study to illustrate the increased mRNA 

expression of SNAI1 in lungspheres derived from primary NSCLC tumors, underlying its 

potential as a driver of EMT and metastasis and also as a very attractive therapeutic target in 

NSCLC. 

No significant differences were obtained for the rest of genes analyzed, although a 

tendency to higher expression in lungspheres was observed for VIM and MMP9.  

MMP9 is a matrix metalloproteinase involved in extracellular matrix degradation and, 

particularly in lung cancer, induces both tumor growth and metastasis (Li et al. 2015). 

Increased expression of MMP9 have been found in resected NSCLC patients (Liu et al. 2014), in 

A549 cell line, and in CSC-like cells with migratory capacity (Tirino et al. 2013). Regarding VIM 

expression, it has been described that cells that undergo EMT are characterized by a decrease 

in E-CADHERIN expression whereas the levels of VIM are increased (Chaw et al. 2012; 

Richardson et al. 2012; Zhang et al. 2015). 

4.4.4 NOTCH SIGNALING PATHWAY EXPRESSION 

Notch signaling pathway involvement in lung CSC was evaluated through the following key 

cascade components: DLL1 and DLL4 ligands, NOTCH1, NOTCH2 and NOTCH3 receptors and 

HEY1 and HES1 effector genes. Relative gene expression results for these genes are shown in 

Figure 15. Unfortunately, the levels of DLL1 gene expression were below the limit of detection 

of the qPCR.  

Comparisons between spheroids and monolayer cultures show that lungspheres had 

higher expression levels compared to adherent cells for the following genes: DLL4 (0.009 vs. 

0.001, p= 0.028), NOTCH1 (1.16 vs. 0.41, p= 0.028), and NOTCH2 (1.05 vs. 0.66, p= 0.036). 
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Figure 15. Relative gene expression results for analyzed Notch signaling pathway genes. Bars 

represent mean expression values   standard deviation. *p<0.05. 

These results suggest a possible activation of Notch signaling pathway in lung CSCs (Figure 

16). Notch cascade activation in tumorspheres correlates with the CDKN1A and SNAI1 

overexpression (CDKN1A-DLL4, p =0.004; SNAI1-DLL4, p = 0.005) and would explain the CSC 

phenotype seen in anchorage independent cells. The role of Notch signaling in lung cancer was 

suggested when overexpression of Notch components was first detected in NSCLC, correlating 

with poor prognosis (Dang et al. 2000; Westhoff et al. 2009). Regarding CSCs in NSCLC, Hassan 

et al. reported the decisive role of Notch signaling for sphere formation and self-renewal in 

vitro and for tumor initiation and tumor heterogeneity formation in vivo (Hassan et al. 2013). 

NOTCH1 overexpression has been significantly correlated with disease progression, metastasis 

and poorer prognosis of NSCLC patients (Zhou et al. 2015). Upregulation of NOTCH2 has been 

associated with progression of early-stage lung adenocarcinoma and aggressive phenotype at 

advanced stages (Mimae et al. 2012). Moreover, targeting Notch signaling pathway with 

NOTCH2/NOTCH3 antagonist Tarextumab inhibits tumor growth and decreases tumor-

initiating cell frequency in patient-derived xenografts (Yen et al. 2015). Furthermore, HES1 has 

been seen to enhance CSC phenotype, promoting cell proliferation, and migration by activating 

BMI1 in colorectal cancer patients (Yuan et al. 2015; Gao et al. 2015).  

There is accumulating evidence showing the importance of Notch signaling in the 

regulation of CSCs in numerous malignancies. Our results reinforce the implication of Notch 

signaling pathway in lung CSCs and highlight the potential of therapeutic targeting of this 

pathway as a strategy to abrogate the tumor initiation and metastatic capacity of lung-CSC. 
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Figure 16. Schematic representation of the main Notch signaling pathway components.  

4.4.5 WNT SIGNALING PATHWAY EXPRESSION 

CTNBB1, WNT1, WNT2, WNT3, WNT5A, DKK1, FZD7, GSK3B gene expression was 

determined in order to analyze the activation status of the canonical and non-canonical Wnt 

signaling pathways. Figure 17 shows the relative gene expression results for these genes. 

 

Figure 17. Relative gene expression results for analyzed genes from Wnt signaling pathway. 
Bars represent mean expression values   standard deviation. *p<0.05. **p<0.01. 
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Compared to the commercial reference cDNA, DKK1 and WNT5A were highly expressed in 

both, non-adherent and adherent-cultured cells. Instead, FZD7 receptor and GSK3B were less 

expressed in both of them whereas WNT3 and CTNBB1 gene expression was higher in 

lungspheres and lower in adherent cells.  

Suppressors of the canonical Wnt signaling pathway, DKK1 and WNT5A, were less 

expressed in tumorspheres than in monolayer cells, although the differences were not 

significant [3.46 vs. 17.73 and 1.19 vs. 1.21, respectively]. All the other genes showed higher 

expression in spheroids in relation to monolayer-cultured cells: barely higher for FZD7 (0.35 vs. 

0.33) and statistically significant for WNT3 (1.76 vs. 0.76, p= 0.021), CTNBB1 (1.53 vs. 0.85, p= 

0.008) and GSK3B (0.95 vs. 0.50, p= 0.021). Independently of the set of primers selected for 

amplification (2 or 3 different TaqMan® Gene Expression Assays were tested), WNT1 and 

WNT2 genes had expression levels below the limit of detection of qPCR. 

The overexpression detected in key genes of the WNT pathway suggests an activation of 

this signaling network in lung CSC and correlates with some finding already reported. 

Nakashima et al. found that WNT3 promotes tumor progression in a study including 128 

resected NSCLC patients (Nakashima et al. 2012). Additionally, an in vitro study correlates 

WNT3 expression to metastasis, cell invasion, anchorage-independent growth, EMT-like 

morphological changes and F-actin reorganization in NSCLC cells (Li et al. 2015). On the other 

hand, increased expression of CTNBB1 has been associated with OCT4 and CCND1 

overexpression and resistance to a number of chemotherapeutic drugs in sorted lung CSCs 

(Jiang et al. 2015). Furthermore, knockdown of CTNBB1 suppresses the metastatic potential of 

lung tumor xenografts (Chen et al. 2015). Regarding GSK3B, in the absence of Wnt proteins, 

GSK-3B phosphorylates -catenin, resulting in ubiquitination and proteosomal degradation of 

-catenin (Takahashi-Yanaga & Kahn 2010; Teng et al. 2010; Stewart 2014). However, when 

Wnt proteins are present, GSK3B functions remain unclear. Tivantinib has been found to target 

GSK3B and that pharmacological inhibition caused apoptosis in NSCLC cells (Remsing et al. 

2014). Additionally, in a lung xenograft model, astrocyte elevated gene-1 (AEG-1) behaved as a 

critical protein in the activation of EMT by directly targeting GSK3B (He et al. 2015). 

About inhibitors of the canonical Wnt pathway, the role of DKK1 and WNT5A in NSCLC are 

not fully understood. Firstly, recombinants DKK1 and WNT5A inhibited and increased, 

respectively, mice mammospheres formation (Many & Brown 2014). However, differential 

expression of DKK1 has been found among cancer cells from 98 NSCLC patients (Xiang et al. 

2015), and the overexpression of DKK1 promoted migratory and invasive activity of in lung 



Results & Discussion 

42 
 

cancer cell lines, suggesting an oncogenic role of DKK1 in lung cancer (Li et al. 2013). 

Remarkably, loss of WNT5A in hepatocellular carcinoma has been associated with poor 

prognosis (Geng et al. 2012), but overexpression has also been correlated with unfavorable 

prognosis and angiogenesis promotion in NSCLC patients (Yao et al. 2014; Lu et al. 2015).  

On our behalf, DKK1 has proved tendency to overexpression in anchored cells compared 

to tumorspheres. The high variability between lungspheres would explain the lack of statistical 

significance. In contrast, WNT5A did not present appreciable differences between cell cultures. 

As it was mentioned above (see Introduction), canonical Wnt pathway can be inhibited in 

multiple ways. For instance, sFRPs compete with Wnt for binding to FZD, WIF-1 and Cerberus 

bind secreted Wnt, Dab2 and Dkk family inhibit Wnt signaling by binding to the LRP5/6 

component of the Wnt receptor complex and HDPR1 and Idax antagonist Dvl. Our results 

suggest other pathway(s) as the main controller(s) of canonical Wnt pathway in NSCLC and 

agree with authors pointing out alternative roles of WNT5A in non-canonical Wnt pathways for 

NSCLC. 

4.4.6 HEDGEHOG SIGNALING PATHWAY EXPRESSION 

Activity of Hedgehog pathway was evaluated through core components of this signaling 

cascade: SHH, SMO, PTCH1, GLI1 genes. Relative gene expression results for hedgehog 

pathway genes are shown in Figure 18. 

Relative gene expression analysis revealed a reduced expression of SMO and PTCH1 in 

both tumorspheres and adherent cells. In addition, both genes were less expressed in 

lungspheres than in monolayer-cultured cells: 0.11 vs. 0.21, for SMO and 0.15 vs. 0.19, for 

PTCH1, but differences were not significant. As it was observed with other genes included in 

the present study, the expression of SHH and GLI1 were below the limit of detection of our 

RTqPCR assays. These results are in concordance with previous results in which NSCLC cell lines 

were negative for SHH expression but positive in the case of GLI1 (Watkins et al. 2003). In 

addition, analysis of clinical samples of human lung cancer tissue demonstrated that 50% of 

SCLC expressed both SHH and GLI1 compared to only the 10% found in NSCLC (Velcheti & 

Govindan 2007). In the same line, less than 9% of lung cancers have been found to have at 

least 2 hedgehog signaling-related genes expressed and immunohistochemistry in NSCLC 

metastases identified only a 10% of PTCH1 protein positive staining, suggesting that activation 

of hedgehog pathway is not specifically associated with NSCLC (Chi et al. 2006). 

Many cancer types have been linked to aberrant hedgehog signaling in CSCs, including oral 

cancer, esophageal cancer and SCLC (Varjosalo & Taipale 2008; Cochrane et al. 2015), but in 

the case of lung CSC, the role of HH pathways remains unclear (Giroux Leprieur et al. 2015). 
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Thus, further studies are required in order to determine the real potential of targeting this 

pathway in NSCLC. 

 

Figure 18. Relative gene expression results for analyzed genes from Hedgehog signaling 
pathway. Bars represent mean expression values   standard deviation. 

In summary, spheroids are excellent models for the study of CSC biology. The possibility to 

isolate oncospheres from patients’ samples is particularly valuable due to the possible clinical 

implications in the generation of new therapeutic and personalized approaches. The results of 

this study are in concordance with our data for flow cytometry and in vivo assays (Soto-Cerrato 

et al. 2015), and reveal potential genes for CSCs targeting. Our results propose three specific 

lung CSC markers and add important data for a major role of Notch and Wnt pathways in 

regulating proliferation, survival, self-renewal and tumorigenicity of CSCs from NSCLC (Figure 

19). To our knowledge, this is the first time that isolated CSCs from early-stage NSCLC patients 

have been analyzed by a highly reliable and objective method like RTqPCR. 

 

Figure 19. Schematic representation of the main results obtained in this study. 
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5. CONCLUSIONS 

1. The non-adherent, serum-free in vitro culture was a satisfactory method for CSCs 

isolation and enrichment, permitting to obtain oncospheres from lung cancer cell 

lines and from resected NSCLC tumors as well.  

2. Spheroids are suitable in vitro models for CSC analysis, that allow isolating RNA 

samples of excellent quality to perform extensive expression analysis and profiling.  

3. Characterization of oncospheres derived from lung cancer cell lines and patients’ 

samples reveals a significant overexpression of the CSC markers EPCAM1, ALDHA1 

and CD44 in these cells compared with their paired monolayer cultures.  

4. Lung tumorspheres had significant overexpression of genes related to WNT 

(WNT3, CTNBB1 and GSK3B), NOTCH (DLL4, NOTCH1 and NOTCH2) pathways, 

quiescent state (CDKN1A) and EMT (SNAI1) when compared to adherent cells, 

suggesting the involvement of them in lung CSC biology and maintenance. In 

consequence, these genes would be interesting therapeutic targets for CSCs and 

biomarkers in NSCLC. 
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7. APPENDICES 

7.1. COMMUNICATIONS DERIVED FROM THIS STUDY 

1. V Meeting of Young Researchers (RTICC). Pamplona, Spain 2015. 

Comparison of gene expression profile between lung tumorspheres and adherent cells in 

non-small cell lung cancer (NSCLC) 

Alejandro Herreros-Pomares, Silvia Calabuig-Fariñas, Ester Munera, Andrea Palomar, Ricardo 

Guijarro, Eloísa Jantus-Lewintre, Carlos Camps 

Background: Chemoresistance, tumor progression and metastasis have made of lung cancer 

the first cause of mortality cancer-related worldwide. These characteristics seem to be linked 

to a subpopulation of stem-like cells, cancer stem cells (CSCs). Thus, it is essential to 

understand the molecular mechanisms that regulate CSCs self-renewal and differentiation 

properties and the alterations in gene expression involved in pathways that participate in 

tumor growth. Here, we have analysed genes of Notch and Wnt signaling pathways and 

several CSCs and pluripotency markers in turmorspheres and adherent cells. 

Methods: RNA from monolayer cells and tumorspheres from 6 patients and 4 cell lines (A549, 

H1650, H1993 and PC9) was isolated. QPCR was performed to analyze the expression of 

NOTCH1, NOTCH3, WNT5A, DKK1, FZD7, MYC, CCND1, ALDH1A1, EPCAM, CD44, KLF4, OCT4 

and NANOG genes. Relative expression was normalized by ACTB and CDKN1B endogenous 

genes using Pfaffl formulae. 

Results: Gene expression analysis revealed an activation of the canonical Wnt pathway in 

tumorspheres when compared to monolayer cultured cells. High expression levels of effector 

genes CCND1 and MYC, along with a strong repression of DKK1 inhibitor was found. Moreover, 

the non-canonical Wnt pathway, which inhibits the canonical Wnt pathway, was more 

inactivated, since WNT5A activator ligand had lower expression in spheroids. Likewise, Notch 

signaling pathway, associated with maintenance and proliferation of CSCs, seemed to be more 

activated in tumorspheres than in adherent cells. NOTCH1 and NOTCH3 showed high gene 

expression levels, which correlates with the elevated levels of CCND1 and MYC mentioned 

above. Lastly, CSCs markers, ALDH1A1, EPCAM and CD44 as well as pluripotency genes, KLF4, 

OCT4 and NANOG exhibited increased expression levels in lung tumorspheres. 

Conclusions: Lung tumorspheres, like CSCs, possess stem-like properties, making them a 

potential platform to test targeted CSCs therapies. 
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2. American Association for Cancer Research (AACR). Louisiana, USA 2016. 

Characterization of lung-tumorspheres by gene expression and flow cytometry. Differential 

expression in CSC-related markers and signaling pathways. 

Alejandro Herreros Pomares, Ester Munera Maravilla, Alicia Martínez Romero, Sandra 

Tejedor, Silvia Calabuig, Eloisa Jantus Lewintre, Rut Lucas, Eva Escorihuela, Rosa Farràs, Carlos 

Camps. 

Chemoresistance, progression and metastasis have made of lung cancer the first cause of 

cancer mortality. These features were linked to a subpopulation of cells, named cancer stem 

cells (CSCs), which remain largely unknown. The aim of this study was to isolate and 

characterize CSCs from lung cancer cell-lines and tumor-tissue from resectable non-small cell 

lung cancer (NSCLC). 

Methods: Tumor cells from resected NSCLC and cell lines (H1650, H1993, A549, and PC9) were 

grown in monolayer and as spheroids. QPCR was performed to analyze the mRNA expression 

of CSCs-related genes: CSC-markers (EPCAM1, ALDH1A1, CD166, ABCG2, CD44, CD133); 

pluripotency genes (KLF4, OCT4, NANOG, SOX2, MYC, CCND1); Notch pathway (NOTCH1, 

NOTCH3, HEY1); Wnt pathway (WNT1, WNT5A, DKK1, FZD7) and Hedgehog pathway (SMO, 

PTCH1, SHH, GLI1). ACTB and CDKN1B were used as endogenous controls for relative 

expression calculation. The expression of lung stem cell markers EpCAM, CD166, E-cadherin, 

CD90, CD44, CD34, CD133 and ABCG2 was assessed by flow cytometry. The tumor-initiating 

cell capacity of selected lung-spheres was tested in vivo to confirm tumorigenicity.  

Results: Lung-tumorspheres had increased expression of EPCAM, CD44 and ALDH1A1 (p= 

0.028, p= 0.021 and p= 0.043, respectively) when compared to cells grown in adherence. 

Likewise, NANOG, KLF4 and OCT4 tended to be more expressed in tumorspheres. Relative 

gene expression of NOTCH1 was also higher in spheroids than in monolayer cells (p= 0.028), in 

concordance with the same tendency observed in NOTCH3. Similarly, QPCR analysis revealed a 

possible activation of the canonical Wnt pathway in tumorspheres, with high expression levels 

of the downstream effector gene CCND1 (p = 0.05), along with a repression of DKK1 inhibitor. 

Regarding to the non-canonical Wnt pathway, its activator WNT5A showed lower expression 

levels in spheroids compared to monolayer-culture cells. Concerning the expression levels of 

Hedgehog pathway`s genes, we found that SMO and PTCH1 were underexpressed in lung-

tumorspheres compared with their paired adherent-cultured cells (p = 0.028 and p=0.069). 

Flow cytometry revealed that EpCAM and CD44 were highly expressed in lungspheres obtained 
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from cell lines and primary tumors. The expression of CD166 differed among the cell lines. 

Furthermore, EpCAM+/CD90- subpopulation were the ones able to induce tumor in 

xenotransplanted mouse model demonstrating tumor-initiating capacity in vivo. 

Conclusions: Lung-tumorspheres derived from cancer cell lines and primary tumor tissues 

show increased levels of EpCAM and others CSC markers. Genes related to Notch and Wnt 

signaling pathways were more expressed in spheroids compared to the cells grown in 

adherence, suggesting both pathways as interesting lung-CSC targets. 
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3. European Lung Cancer Congress (ELCC). Geneva, Switzerland 2016.  

Expression analysis of tumorspheres from non-small cell lung cancer show significant 

differences in CSC-markers and signaling pathways 

A. Herreros-Pomares, E. Munera, S. Calabuig-Fariñas, B. Lafuente, A. Blasco, R. Guijarro, R. 

Farrás, E. Jantus, C. Camps 

Background: Despite the advances in the molecular characterization of lung cancer it remains 

as the leading cause of cancer death worldwide. Cancer stem cells (CSCs) are small 

subpopulations of stem-like cells with self-renewal and differentiation properties that 

constitute a promising target, but remain largely unknown. The aim of this study was to isolate 

and characterize gene expression of CSCs from lung cancer cell-lines and tumor-tissue 

obtained from resectable NSCLC patients. 

Methods: This study was performed on cells from NSCLC tumor samples and cell lines (H1650, 

H1993, A549 and PC9) grown in monolayer and as spheroids. The expression of: CSC-markers 

(EPCAM1, ALDH1A1, CD166, ABCG2, CD44); pluripotency (KLF4, OCT4, NANOG, SOX2, MYC, 

CCND1); cell cycle (CDKN1A, CDKN2A, MDM2, WEE1); invasiveness (CDH1, CEACAM5, VIM, 

MMP2, MMP9); Notch pathway (NOTCH1, NOTCH2, NOTCH3, HEY1); Wnt pathway (CTNBB1, 

WNT1, WNT5A, DKK1, FZD7) and Hedgehog pathway (SMO, PTCH1, SHH, GLI1) were analyzed 

by QPCR. ACTB, CDKN1B and GUSB were used as endogenous controls for relative expression 

calculation. 

Results: Lung tumorspheres had increased expression of EPCAM1, CD44, ALDH1A1 and 

CDKN1A (p= 0.028, p=0.021, p= 0.043 and p=0.021, respectively) when compared to their 

paired-adherent cells. Regarding the expression of Notch-pathway genes, NOTCH1 and 

NOTCH2 showed higher expression in tumorspheres (p= 0.028 and p = 0.038, respectively) and 

NOTCH3 also showed the same tendency. We found higher expression levels of CTNBB1 (Wnt 

pathway) (p=0.008) in lungspheres whereas the activator of the non-canonical Wnt pathway, 

WNT5A, tended to be less expressed in spheroids compared to adherent culture cells. Our 

results show that SMO was underexpressed (p = 0.028) in tumorspheres, whereas no 

significant differences were found in other analyzed genes.  

Conclusions: Lung spheroids from cancer cell lines and primary tumors showed increased 

levels of CSC-markers. Genes related to Notch and Wnt were found to be more expressed in 

tumorspheres, suggesting that these pathways as interesting lung-CSC targets. 

 


