

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/146878

Zhu, J.; Li, X.; Ruiz García, R.; Xu, X. (2018). Scheduling Stochastic Multi-Stage Jobs to
Elastic Hybrid Cloud Resources. IEEE Transactions on Parallel and Distributed Systems.
29(6):1401-1415. https://doi.org/10.1109/TPDS.2018.2793254

https://doi.org/10.1109/TPDS.2018.2793254

Institute of Electrical and Electronics Engineers

1

Scheduling Stochastic Multi-stage Jobs to
Elastic Hybrid Cloud Resources
Jie Zhu, Xiaoping Li, Senior Member, IEEE, Rubén Ruiz, Xiaolong Xu

Abstract—We consider a special workflow scheduling problem in a hybrid-cloud-based workflow management system in which tasks
are linearly dependent, compute-intensive, stochastic, deadline-constrained and executed on elastic and distributed cloud resources.
This kind of problems closely resemble many real-time and workflow-based applications. Three optimization objectives are explored:
number, usage time and utilization of rented VMs. An iterated heuristic framework is presented to schedule jobs event by event which
mainly consists of job collecting and event scheduling. Two job collecting strategies are proposed and two timetabling methods are
developed. The proposed methods are calibrated through detailed designs of experiments and sound statistical techniques. With the
calibrated components and parameters, the proposed algorithm is compared to existing methods for related problems. Experimental
results show that the proposal is robust and effective for the problems under study.

Index Terms—Multi-stage job scheduling, Linearly dependent tasks, Stochastic, Deadline-constraint, Elastic, Cloud computing.

F

1 INTRODUCTION

IN this paper, we consider a multi-stage job scheduling
problem in a hybrid-cloud-based workflow management

system (HCWMS). Computational tasks are massive, lin-
early dependent, stochastic, compute-intensive, deadline-
constrained and are executed on elastic and distributed
cloud resources. The considered problem involves the exe-
cution of massive tasks on multiple cloud platforms, where
each task takes a short time (a few seconds) to execute. Tasks
are linearly dependent and each set of dependent tasks is
taken as a multi-stage job with the same linear processing
route. These multi-stage jobs arrive stochastically, which
means the arrival and processing times are not known be-
forehand. Jobs are compute-intensive and data transferring
times inside the cloud are negligible. The data transferring
latency from one cloud to another cloud however, is not
negligible and is studied in this paper. Each job is assigned
a hard deadline. Multiple computing resources (e.g., virtual
machines, VMs) are provisioned for processing each stage
of the involved jobs and computing resources can scale
elastically across multiple cloud platforms at run time.

• Jie Zhu works at the department of Computer Science & Technology,
Nanjing University of Posts & Telecommunications, China, 210048;
Institute of Big Data Research, Nanjing University of Posts &
Telecommunications, Yancheng, China; and Jiangsu Key Laboratory of
Big Data Security & Intelligent Processing, Nanjing University of Posts
and Telecommunications, China, 210023.
E-mail: zhujie@njupt.edu.cn

• Xiaoping Li works at the School of Computer Science and Engineering,
Southeast University, Nanjing, China, 211189; and also at the Key
Laboratory of Computer Network and Information Integration (Southeast
University), Ministry of Education, Nanjing, China, 211189.
E-mail: xpli@seu.edu.cn

• Rubén Ruiz is with Grupo de Sistemas de Optimización Aplicada,
Instituto Tecnológico de Informática, Ciudad Politécnica de la Innovación,
Edifico 8G, Acc. B. Universitat Politècnica de València, Camino de Vera
s/n, 46021, València.
E-mail: rruiz@eio.upv.es

• Xiaolong Xu works at the department of Computer Science & Technology,
Nanjing University of Posts & Telecommunications,China,210048.
E-mail: xuxl@njupt.edu.cn

Manuscript revised December 16, 2017.

These workflows are widespread in many real-time
workflow applications [1], [2]. For example, in real-time
image processing, object recognition contains five stages.
Each stage is a task. All tasks (Gray scale, sobel, Gaussian
blur, fast corner and SAD matching) are processed sequen-
tially [3]. These tasks are compute-intensive. Each end user’s
request for the application is regarded as a 5-stage job in the
HCWMS. Users’ requests arrive stochastically. To improve
user experience, the HCWMS assigns a deadline to each job
in terms of [4]. To avoid bottlenecks, the HCWMS deploys
the application on 5 virtual clusters to deal with these 5
tasks separately. Each cluster initially contains multiple on-
premise VMs. Clusters scale up at run time by renting
VMs from public clouds only when on-premise VMs cannot
handle the workload.

There are many studies on scheduling problems in
cloud computing. Such problems are NP-hard most of the
time [5]. However, the considered problem is different
from the traditional ones in several aspects: (i) Usually
resources are assumed to be fixed in quantity [6] and in
this paper we consider that they are scalable in hybrid
cloud platforms. (ii) Traditional cloud scheduling problems
usually involve soft deadlines within limited resources of
physical clusters [7]–[9] in which a penalty is charged
for tardiness. The trade-off between penalty and renting
costs is to be balanced. In practice, users prefer on-time
applications rather than a compensation, i.e., hard deadlines
result in a better user experience. Scalable resources in
hybrid clouds make it possible to meet hard deadlines by
renting necessary resources from public clouds. Therefore,
we consider hard deadlines in this paper. (iii) Time delay
[10], costs [11], makespan [12], time-cost trade-off [13]
and energy consumption [14] are commonly optimized.
The objective to optimize in this paper is relative to
the renting cost of VMs. There are many VM pricing
structures on public cloud platforms, for example, on-
demand instance pricing and reserved instance pricing.
With the same pricing structure the prices of VMs are

2

different on different cloud platforms. In order not to bind
the considered problem to a specific pricing, we do not
optimize renting cost directly. Three metrics are employed
to evaluate the proposed methods: the total usage time, the
number and the utilization of rented VMs.

Since batches of jobs arrive at HCWMS stochastically,
dynamic amounts of resources are required in order to carry
out the tasks (which can be up to millions). Existing meth-
ods, such as round robin, Random-Neural-Network based
reinforcement learning [15], sensible decision [16], adaptive
dispatching [17], max-min cloud algorithm [18], linear-
programming-based affinity scheduling [19], the PSO-based
algorithm [20] and the genetic algorithm [21], are pro-
posed for either static or special dynamic task scheduling
problems. It is desirable to develop effective and efficient
scheduling methods for massive tasks with precedences and
dynamic resource requirements.

Stochastically arriving jobs imply that the required
workload may exceed the capacity of the currently available
VMs. In order to meet the hard deadlines, the HCWMS
scales applications up to public clouds automatically, i.e.,
rented VMs are added to alleviate the overloaded virtual
clusters. It is assumed that on-premise VMs are free of
charge in the HCWMS and the rented ones are not. There-
fore, it is necessary to propose scheduling methods for the
considered problem in the HCWMS trying to fully utilize
on-premise VMs and pay for rented VMs as little as possible.
However, it is difficult to develop scheduling methods for
massive tasks with hard deadlines and minimal operating
costs.

In practical environments, the workloads of applications
are usually unpredictable and differ in time requirements.
Adaptive algorithms [22] offer robust schemes with the
potential to perform better for some workload scenarios.
However, no single algorithm is effective for all possible
workload scenarios. A more reasonable and resilient way is
to execute scheduling algorithms adaptively. As the gateway
of applications, the HCWMS monitors realtime workload re-
quirements and selects the most suitable scheduling method
from a set of candidates in response to the dynamic
workload requirement. For such an adaptive HCWMS,
it is necessary to evaluate the performance of different
scheduling methods in possible workload scenarios and to
calibrate the involved parameters over massive experimen-
tal instances.

The primary aim of the paper is to provide an efficient,
effective and adaptive method for the stochastic multi-stage
job scheduling problem in HCWMS. The main contributions
of this paper are summarized as follows.

(i) A new multi-stage job scheduling problem is investi-
gated for workflows in hybrid clouds in which mas-
sive, linearly dependent, stochastic, compute-intensive
and hard deadline-constrained tasks are scheduled to
elastic and distributed cloud resources. The considered
problem is more realistic than previously studied
settings.

(ii) A dynamic event scheduling algorithm is developed
which periodically schedules newly arriving tasks by
a greedy method. A re-schedule strategy is introduced
to optimize the global objective.

(iii) Idle time slots of VMs are maintained using balanced
search trees in which time slots can be quickly al-
located to ready tasks. The priorities of ready tasks
are dynamically sorted by a min heap to speed up
calculations.

The rest of the paper is organized as follows. Related
works are reviewed in Section 2. Section 3 describes and
formalizes the problem under study. A heuristic is proposed
for the considered problem in Section 4. Section 5 evaluates
the performance of the proposal under different workload
scenarios followed by conclusions in Section 6.

2 RELATED WORK

With the development of hybrid cloud and PaaS (Platform
as a Service), cloud workflow management systems deploy
applications not only to on-premise VMs but also to VMs
rented from multiple public cloud platforms. Through
web service APIs (provided by public cloud platforms or
cloud brokers), the HCWMS provisions scientific/business
applications automatically on rented VMs and obtains
peak load capacity by outsourcing the workload on these
VMs [23]. Many frameworks (broker-based, agent-based,
etc.) have been proposed to support the execution of
workflow management in hybrid clouds [24]–[27]. The
considered special workflow scheduling problem is the core
of the HCWMS framework. Workflow scheduling problems
with different constraints and objectives have been widely
studied in the literature. Both static and dynamic workflow
scheduling problems have been solved by heuristics and
meta-heuristics.

Many meta-heuristic scheduling algorithms have been
applied to workflow scheduling problems, such as PSO
(Particle Swarm Optimization), GA (Genetic Algorithm),
SA (Simulated Annealing) and ACO (Ant Colony Opti-
mization). Tao et al. [28] proposed a rotary chaotic PSO
to optimize trustworthy workflow scheduling in a multi-
dimensional complex space. Jena [29] used a multi-objective
nested PSO to optimize energy and processing time. Liu
et al. [30] improved the basic PSO with a variable neigh-
borhood for security-constraint and data-intensive work-
flow scheduling. Cui et al. [31] proposed the GA based
data replica placement strategy for data related workflow
scheduling with the objective of minimizing data transmis-
sions. Ahmad et al. [32] enhanced the GA by modifying
genetic operators and by including an efficient heuristic
which adapted a heuristic to generate the initial population.
The proposed algorithm can optimize the load balancing
during the execution to utilize resources at maximum
capacity. Lopez-Garcia et al. [33] combined GA with a
Cross Entropy (CE) method. The algorithm divided the
population into two sub-populations in order to apply GA
in one sub-population and CE in the other. Eawna et al.
[34] proposed a hybrid algorithm combining PSO and SA,
and showed that resource provisioning based on the PSO-
SA algorithm is much faster than the PSO algorithm and
the SA algorithm. Kianpisheh et al. [35] employed an ant
colony system to minimize an aggregation of reliability and
constraints violation. Three novel heuristics were proposed
which are adaptively selected by ants. Two of them were
employed to find feasible schedules and the other was

3

used to enhance reliability. Most of these meta-heuristics
perform well on static workflow scheduling. However, they
need considerable amounts of CPU time to provide high
quality solutions, and this is hardly acceptable in real cloud
computing settings.

Fast heuristics are able to solve dynamic scheduling
problems with a low overhead. Many scheduling systems
employ fast heuristics to run millions of tasks. Ousterhout
et al. [36] adapted a good load balancing strategy with
near optimal performance using a randomized sampling
approach. Schwarzkopf et al. [37] presented three different
simple policies for allocating resources: max-parallelism,
global cap and relative job size, among which the resource
allocation solution leading to the earliest possible finish time
was selected. Rajendran et al. [38] used an adaptive job
stealing approach that makes the system highly scalable and
dynamic. Sadooghi et al. [39] developed a cloud-enabled
distributed task execution framework, in which distributed
queues were used to deliver the tasks fairly to processors.
Wang et al. [40]–[42] implemented a smart workload allo-
cation platform TAP which applies both model based and
learning based approaches, exploits measurements collected
in real time in the cloud, and dynamically make task
allocation decisions that optimize QoS. Bertin et al. [43]
applied Lagrangian optimization and distributed gradi-
ent descent for fairly scheduling concurrent Bag-of-Tasks
(BoT) applications. Benoit et al. [44] designed an optimal
algorithm for the offline BoT scheduling and adapted it
to an online scenario. In addition, some works modified
classical heuristics in order to adapt to scheduling problems
in clouds, such as round robin, Random-Neural-Network
based reinforcement learning [15], sensible decision [16],
adaptive dispatching [17], max-min cloud algorithm [18]
and linear-programming-based affinity scheduling [19], etc.
All these systems and algorithms aim to process millions of
tasks per second. They employ simple and fast approaches
for independent task scheduling and resource allocating.
However, they are not efficient for scheduling problems
with dependency. Due to the precedence constraints caused
by the tasks’s dependency, the time for computing a feasible
schedule increases significantly. Heterogeneous Earliest Fin-
ish Time (HEFT) [45] is the most popular list based heuristic
for dynamic workflow scheduling. It orders dependent tasks
based on priorities and then assigns them to suitable re-
sources to achieve high performance. In addition, Min-min,
Max-min and Critical-Path-on-a-processor (CPOP) [45] are
common heuristics for the dynamic workflow scheduling.

Recently, elastic/scalable scheduling in cloud environ-
ments has attracted more and more attention. To determine
the number of elastic resources some existing research
employs the batch-queue model [46], [47]. Delicate triggers
and thresholds have been designed and long/short-term
behaviors of elastic instances studied. Some investigations
focused on elastic workflows in hybrid clouds. Bittencourt
and Madeira [48] proposed the Time and Cost Optimiza-
tion for Hybrid Clouds (TCHC) algorithm to reduce the
execution time and costs of multiple workflows. Liu et al.
[49] proposed a multi-objective scheduling method for a
workflow on a multi-site cloud. The proposed algorithm
consisted of a Single Site Virtual Machine Provisioning
approach (SSVP) and ActGreedy, a multisite scheduling

approach. Fard et al. [50] introduced a pricing model
and a truthful mechanism considering monetary cost and
completion time objectives. Gelenbe et al. [51] studied the
optimum load sharing between a local and remote cluster
service with the objective of minimizing the average re-
sponse time and energy consumption per job, where the task
dependency is not considered. Duan et al. [52] formulated
the BoT scheduling problem as a new sequential cooperative
game and proposed a communication and storage-aware
multi objective algorithm to optimize the execution time
and the economic cost. However, the proposed method is
designed for the off-line BoT scheduling problem which
can be taken as the specific static case of the considered
problem. In our previous work [53], [54], we investigated the
static case of the considered problem and proposed a local
search heuristic. However, dynamic scheduling problems
with the network delay are much closer to reality. In another
previous work [55], we investigated the considered problem
with the objective of minimizing the number of rented VMs.
The data transfer delays are not considered.

The above mentioned problems can be classified into
three types: (i) Scheduling problems in manufacturing
in which resources are not elastic and distributed. (ii)
Dynamic non-dependent task scheduling problems in cloud
environments. (iii) Static scheduling problems considering
both elasticity and task dependency. To the best of our
knowledge, the scheduling problem jointly regarding all the
above mentioned features and the objectives has not been
studied yet.

3 PROBLEM DESCRIPTION

3.1 Problem Scenario

There are three aspects in the considered scenario: cloud
service provider (CSP), HCWMS and end users. The CSP
uploads the deployment package of its application to the
HCWMS. The deployment package includes installation
files for the application and guidelines which support the
management of the application by the HCWMS. Guidelines
are constructed based on the standards that the HCWMS
parses and understands, e.g., the TOSCA [56]. In the guide-
lines, the CSP describes the processing route of the jobs
and the hard deadline constraint, i.e., deadline misses are
strictly forbidden. Guidelines also include some instructions
which include how to deploy the application, how to scale
it and how to estimate the processing time of each task of
a job, etc. The HCWMS receives the deployment package
and deploys the application according to the guidelines.
For cost considerations, it initially deploys the application
on on-premise VMs from an owned data center. When the
application is deployed and available for end users, they
submit requests to the HCWMS for the application with
information about their demands, such as expected response
times, QoS parameters and if expedited services are needed
or not. Once the HCWMS receives requests from end users
(as depicted in Fig. 1): (i) it maps them to a set of multi-stage
linear jobs; (ii) it estimates the processing times of these jobs
and assigns deadlines to them based on end users’ demands;
(iii) it schedules jobs on available VMs feasibly, effectively
and efficiently, which is exactly the aim of this paper.

4

Clients

Requests HCWMS

End users

Mapping to multi-stage jobs

Evaluating processing times &

assigning deadlines

1 2 3 4 51 2 3 4 5

1 2 3 4 51 2 3 4 5

1 2 3 4 51 2 3 4 5

1 2 3 4 51 2 3 4 5

1 2 3 4 51 2 3 4 5

1 2 3 4 51 2 3 4 5

Scheduling

1

5

1

3

4

1

1

2

1 1

1 1

2

2

22

2 2

2

3

3 3

3

3

3 3

4 4

4 4 4

4 4

5 5 5 5

5 5 5

On-premise

VMs Rented VMs
On-premise

VMs Rented VMs
On-premise

VMs Rented VMs

Virtual Cluster 1 Virtual Cluster 2 Virtual Cluster 5

1

5

1

1

1

2
1 1

1 1
2

2

22

2 2

2

5 5 5 5

5 5 5

Time

VMs

Gantt Chart

Fig. 1. The procedure in HCWMS for processing requests

3.2 Application & Resource Model

The application model and resource model are described
as follows (important notations used for the description
are given in Table 1). A massive set of jobs arrives at the
system stochastically. In terms of [57], the set of jobs arriving
during a small time period t is called a JRE (Job-related
Real-time Event). At every time period t, the newly arriving
jobs are scheduled. Suppose there are Q JREs (denoted
by E = (E1, . . . , EQ)) arriving during the time period
[0, t × Q]. At the qth JRE Eq =< αq, Jq >, a set of jobs
Jq arrives at time αq = t × (q − 1) (actually, they arrive
in [t × (q − 1), t × q)). Suppose nq is the number of jobs
in the qth JRE, i.e., nq = |Jq|. Therefore, n =

∑Q
q=1 nq jobs

arrive at the system during [0, t × Q]. Job Jj (j = 1, . . . , n)
is composed of m tasks (or m stages) Tj,1, Tj,2, . . . , Tj,m
which are provisioned by m virtual clusters. Each task Tj,i
(i = 1, . . . ,m) is processed on one virtual cluster which
includes a set of VMs as a VM container. There are two types
of VMs in virtual clusters: on-premise VMs and rented VMs.
On-premise VMs are those deployed in the local data center
while rented VMs come from public clouds. Let Vi be the
virtual cluster processing the ith task Tj,i (i = 1, 2, . . . ,m)
of each job Jj . vki denotes the kth VM of Vi. The number of
on-premise VMs oi in Vi is constant. The number of rented
VMs ri increases with workload. All VMs in Vi are indexed
by Vi = (v1

i , v
2
i , . . . , v

oi+ri
i) where v1

i , . . ., voii are on-premise
VMs and the remaining VMs (voi+1

i , . . ., voi+rii) are rented.
Each job Jj (j = 1, 2, . . . , n) follows the same exact

processing route across all tasks starting from Tj,1 to Tj,m.
A job can be taken as a special workflow as shown in Fig. 2
(a) with the linear processing route. Jobs in the same event
can also be taken as a workflow as shown in Fig. 2 (b) if a
dummy start task and a dummy end task are added.

In this paper, each VM is an implementation of an
application execution environment such as a Java virtual
machine (JVM). Multi-tenant scenarios are not considered,
i.e., each VM can only process one task at a time. In order to

TABLE 1
Notations used for the problem description

Notation Description

t Time period for scheduling
E Set of Events
Q Number of real-time events in E
n Number of jobs arriving during [0, t×Q]
m Number of stages in a job;
j, j′ Identifier of jobs
i Identifier of stages;
k Identifier of VMs
q Identifier of events
Jj jth job, j = 1, ..., n
Eq qth event in E
αq Time that Eq takes place
Jq Set of jobs in Eq

nq Number of jobs in Eq

Tj,i ith task of Jj
Vi ith virtial cluster
vki kth VM of Vi
oi Number of on-premise VMs in Vi
ri Number of rented VMs in Vi
pj,i Processing time of task Tj,i
tj Arrival time of Jj
bj,i Start time of Tj,i
cj,i Completion time of Tj,i
dj,i Transferring delay for the intermediate

result of Tj,i
Dj Deadline of Jj
Cj,i Latest completion time of Tj,i
vj,i VM allocated to Tj,i
< Tj,i, bj,i, vj,i > Allocation of Tj,i
S Set of allocations
F1(S) Number of rented VMs in S
F2(S) Total usage time of rented VMs in S
F3(S) Metric for the rented VM utilization in S
U(vki) Utilization ratio of vki
L(vki) Usage time of vki

1 2 3 4 51 2 3 4 5

1 2 3 4 51 2 3 4 5

1 2 3 4 51 2 3 4 5

0 6

1 2 3 4 51 2 3 4 5

(a) Workflow for a job

(b) Workflow for an event

Fig. 2. Workflow for a job

facilitate the management of VMs, VMs in the same cluster
are provisioned with identical configurations, i.e., VMs are
homogeneous in the same cluster.

We use tj (tj ≥ 0) to denote the arrival time of Jj .
The processing time of task Tj,i of Jj is pj,i which can
be estimated according to guidelines from the CSP or by
employing statistical forecasting strategies (e.g.,time-series
pattern based interval forecasting strategy in [58]). The
processing time is machine-independent since all VMs are
homogeneous. bj,i and cj,i denote the start and completion
time of Tj,i respectively.

There are three types of data to transfer for a job: the
primary data, the intermediate result and the final result.
The request of a job is submitted along with the primary
data and the job is ready to be scheduled only when the
primary data has been fully received by the HCWMS. If
some stages of the job are processed in the remote cloud,

5

then the primary data should be transferred from the local
cloud to the remote cloud, which means the transferring
delay for the primary data is non-negligible. However, the
transferring delay for the primary data can be ignored by
synchronizing the primary data to the remote cloud while
the HCWMS is receiving the primary data, wherever the job
will be assigned to. dj,i is defined as the transferring delay
for the intermediate result transferred from Tj,i to Tj,i+1.
We employ a dummy task 0 with bj,0 = tj , cj,0 = tj ,
pj,0 = 0 and dj,0 = 0. Tj,i can start only when the result
from Tj,i−1 is ready, i.e., bj,i ≥ cj,i−1 + dj,i−1. Since jobs
are compute-intensive, the intermediate result to forward
between successive tasks is not very large, e.g., less than
128K (Kilobytes). Therefore, if successive tasks of a job
are assigned to VMs in the same network, dj,i is set to
zero. If successive tasks of a job are assigned to VMs in
different networks, then dj,i > 0. dj,m is taken as the
transferring delay for the final result, which is output by
the last task Tj,m. The request can be responded only when
the final result is ready in the local data center. Since jobs
are compute-intensive, the final result to forward is not very
large, e.g., less than 128K . dj,m = 0 when Tj,m is processed
in the local data center. If Tj,m is processed in the remote
cloud, then dj,m > 0. Let Dj be the deadline of Jj . Because
of the deadline constraint, the latest completion time of Tj,i
is constrained by Cj,i = Dj −

∑m+1
f=i+1 pj,f , i.e., cj,i ≤ Cj,i.

The provisioning time (a few seconds in general) for
a rented VM is non-negligible. For static problems where
arrival and processing times of jobs are given, provisioning
times can be determined in advance. The deadline constraint
in dynamic problems would be violated because it is
difficult to predict when and how many VMs should be
rented. An extreme case is that all available VMs are too
busy to handle the coming Jj . Jj has to wait until a newly
rented VM is ready. If the provisioning time for that rented
VM were more thanCj,m−tj , the deadline constraint would
be violated. The trigger strategy employed in [46] and [47]
is effective for the provisioning time of a rented VM, i.e.,
VMs are rented and provisioned immediately when the
number of idle VMs in a virtual cluster is under a predefined
threshold. By adopting the trigger strategy, the provisioning
time of a rented VM becomes a non-issue.

3.3 Problem Definition

3.3.1 Problem Constraints
Suppose the assignment of the Tj,i to VM vki with start time
bj,i is represented by a 3-tuple < Tj,i, bj,i, vj,i >, where
vj,i = vki . Variable vj,i represents the VM allocated to Tj,i. A
schedule S is a set of allocations, i.e., S = {< Tj,i, bj,i, vj,i >
|j = 1, . . . , n, i = 1, . . . ,m}. S is feasible if and only if the
following constraints are satisfied.

max{bj,i, bj′,i} ≥ min{cj,i, cj′,i} (1)
j 6= j′, vj,i = vj′,i

cj,i = bj,i + pj,i (2)
cj,i−1 + dj,i−1 ≤ bj,i (3)

tj ≤ bj,i (4)
cj,m + dj,m ≤ Dj (5)

∀ < Tj,i, bj,i, vj,i >∈ S
j, j′ = 1, . . . , n, i = 1, . . . ,m

Constraint (1) guarantees no overlapping time among
tasks on the same VM. Constraint (2) indicates that once
a task starts it cannot stop until it completes. Constraint
(3) defines the precedence constraint, i.e., a task of a job
cannot start until its previous task is completed and the
intermediate result is received. Constraint (4) indicates a job
cannot start before its arrival time. Constraint (5) indicates
the deadline constraint.

3.3.2 Optimization Objectives
Suppose the first job arrives at time 0 and the last job
arrives at time T . The objective is to generate a feasible
schedule with the minimum renting cost within time period
[0, T]. There are many VM pricing structures on public
cloud platforms, e.g., on-demand and reserved instance
pricing. In order for not to bind the considered problem
to a specific pricing structure, we do not optimize renting
costs directly. For the on-demand instance pricing structure,
the best metric is the total usage time of rented VMs. For
the reserved instance pricing structure, the best metric is
the number of rented VMs. Generally, fully utilizing rented
VMs leads to less renting costs. Therefore, three metrics are
employed to evaluate a feasible schedule S: the number
of rented VMs F1(S), the total usage time of rented VMs
F2(S), and the utilization of rented VMs F3(S).

Given a feasible schedule S, the objective values F1(S),
F2(S) and F3(S) are computed by Eq. (6), Eq. (7) and Eq.
(9), respectively.

F1(S) =
m∑
i=1

ri (6)

F2(S) =
m∑
i=1

oi+ri∑
k=oi+1

L(vki) (7)

L(vki) = max{cj,i|vj,i = vki } −min{bj,i|vj,i = vki } (8)

F3(S) =
m∑
i=1

√√√√ oi+ri∑
k=oi+1

(1− U(vki))2 (9)

U(vki) =

∑
∀vj,i=vki

pj,i

max{cj,i} −min{bj,i}
(10)

∀ < Tj,i, bj,i, vj,i >∈ S
j = 1, . . . , n, i = 1, . . . ,m

Where L(vki) is the usage time of vki and U(vki) is the
utilization ratio of vki . F3(S) is computed based on
the Euclidean distance from point (1, . . . , 1) to point
(U(voi+1

i), . . . , U(voi+rii)), i = 1, . . . ,m. Point (1, . . . , 1)
indicates 100% utilization on all rented VMs. Obviously,
a higher utilization ratio on on-premise VMs implies less
of a need for rented VMs and a smaller objective value.
Furthermore, fully utilizing rented VMs leads to a smaller
objective value.

4 PROPOSED ALGORITHMS

The considered dynamic scheduling is completely reactive
[59]. No schedule can be generated in advance. Feasible sub-

6

schedules are successively generated in real time. The sub-
schedule of the qth JRE is sq = {< Tj,i, bj,i, vj,i > |Jj ∈
Jq, bj,i ≥ αq}. By integrating all sub-schedules together, a
feasible schedule represented as S = s1

⋃
s2

⋃
. . .

⋃
sQ.

All jobs are scheduled event by event. Scheduling jobs in
each event is called an event scheduling problem, for which
a Stochastic Multi-stage job Scheduling (SMS) component is
proposed. The event scheduling problem can be regarded
as a generalized flowshop. However, it is different from
the traditional one in two fundamental aspects: (i) Some
VMs are non-available at the time when an event occurs
because some jobs or tasks in previous events might still
be in processing at that moment. (ii) VMs are not fixed
during the whole scheduling process. Since some jobs in the
previous event(s) might not have finished when a new event
Eq (q = 2, . . . , Q) arrives, we propose two alternations (Job
Collecting Strategy, JCS for short) to determine the jobs to
be scheduled: keeping the jobs scheduled in the previous
event(s) unchanged, or incorporating not started jobs in the
previous event(s) into Eq .

The DES (Dynamic Event Scheduling) framework for
scheduling dynamic events is detailed in Algorithm 1. The
key idea of DES is to collect and arrange jobs periodically.

Algorithm 1: Dynamic Event Scheduling framework
(DES)
1 Initialization;
2 S ← SMS(E1);/* Calling Stochastic Multi-stage job Scheduling. */
3 for q = 2 to Q do
4 JCS(Eq);/* Calling Job Collecting Strategy */
5 S ← S

⋃
SMS(Eq);

6 return S.

As can be seen, DES relies on two main operators: the
Stochastic Multi-stage job Scheduling (SMS, Line 2) and the
Job Collecting Strategy (JCS, Line 4). The details of the SMS
and JCS procedures are introduced in the following sections.

4.1 Stochastic Multi-stage job Scheduling (SMS)
In the event scheduling problem, nq × m tasks in Eq
(q = 1, . . . , Q) and their dependencies are represented as
a Directed Acyclic Graph (DAG). Tasks are assigned to VMs
in the topological order of the DAG. A task is ready to
be assigned only if its immediate predecessors have been
assigned to a VM. Since tasks in one job have a linear
processing route, at most nq tasks are ready to be assigned at
any moment. Therefore, there are (nq!)× n

nq(m−1)
q possible

topological sequences for each Eq .
Since each job has at most one ready task at any time

and the ready task processing order changes dynamically,
we adopt minimum heaps to maintain the corresponding
job sequence ζ . i.e., the top task in the heap is processed
first. Initially, ζ contains only the first tasks (those of the nq
jobs on Stage 1). ζ is updated by a given rule (two rules
with different task removing and appending strategies will
be introduced later).

We propose an iterated heuristic framework SMS
(Stochastic Multi-stage job Scheduling) for task scheduling
in each Eq , which is detailed in Algorithm 2. The key idea
of SMS is to take the task scheduling problem in an event as
an static optimization problem and solve it by a local search

procedure. An initial job sequence is usually constructed
by a simple rule, which is evaluated by Timetabling (Line
1). Timetabling decides the way to produce the topological
sequence based on the given job sequence, and arranges
tasks in order of the topological sequence (Line 2). The
job sequence is improved by Sequencing (Line 4) followed
by Timetabling to evaluate the quality of the improved
sequence (Line 5). The improvement operation is repeated
until a termination condition is met (Line 3). There are two
termination conditions: one is that no improvement is made
by Sequencing and the other one is that the computation
time of SMS exceeds a predefined upper bound. Jobs in each
event should be scheduled within t, i.e., the computation
time of SMS should be limited otherwise the obtained
sub-schedule is invalid. We use Tmax to denote the upper
bound of the computation time of SMS. Therefore, Tmax ≤ t.

Algorithm 2: Stochastic Multi-stage job Scheduling
SMS(Eq)
1 Initial Job Sequence Construction for Eq ;
2 Evaluate the initial job sequence by Timetabling;
3 while (termination conditions not met) do
4 Improve the job sequence by Sequencing;
5 Evaluate the improved job sequence by Timetabling;

6 return obtained sub-schedule.

4.1.1 Initial Job Sequence Construction
In this paper, the Earliest Due Date (EDD) rule
[60] is adopted to construct an initial job sequence
πq = (πq[1], . . . , π

q
[nq]

) in which πq[j] ∈ Jq is the jth element
of πq for the coming Eq . The EDD rule requires that
D[j1] < D[j2] for any πq[j1] and πq[j2] with j1 < j2.

4.1.2 Timetabling Methods
Since the traditional timetabling problem for 2-stage multi-
machine flowshops [61] is already NP-hard, it follows that
the involved timetabling problem with dynamic workload
requirements is also NP-hard which drives us develop
effective and efficient heuristics for Timetabling. In this pa-
per, two timetabling methods, STM (Stage-pass Timetabling
Method) and TTM (Task-pass Timetabling Method), are
presented for allocating tasks in Eq arriving at time αq to
idle time slots according to a given job sequence πq .

After some tasks are allocated to VMs, some available
horizontal time slots might be generated on each VM. SToi
maintains idle time slots of on-premise VMs in Vi and
STri maintains those of rented VMs in Vi. < vki , [a, b] >
is used to represent the idle time slot [a, b] on vki (i =
1, . . . ,m, k = 1, . . . , oi + ri). SToi and STri are maintained
by balanced search trees for a fast search where any node
on each tree represents idle time slots with the same start
time and the key of the node is the start time of the time
slots. For simplicity, nq dummy tasks Tj,m+1 are added with
earliest feasible start times bj,m+1 = +∞. Considering the
computation time of SMS, arrival times of dummy tasks Tj,0
are set to αq + Tmax.

Either STM or TTM allocate every task Tj,i removed from
ζ to a VM using the proposed ARRANGE procedure. The
ARRANGE procedure is formally described as Algorithm 3.
The key idea of ARRANGE is to arrange the task as early as

7

possible without violating any constraints, meanwhile the
renting cost is minimal.

Firstly ARRANGE tries to find the first feasible idle
time slot with [a, b] satisfying tj ≤ max{cj,i−1, a} + dj,i ≤
min{Cj,i, b} − pj,i on SToi (Line 1) and obtains the start and
completion times of Tj,i (Line 3). SToi is updated after the
allocation (Line 4-9).

Fig. 3 gives an example for steps in Lines 1-9 in
Algorithm 3. Fig.3 (a) shows the Gantt chart on V Ci (shaded
blocks are occupied time slots) with the corresponding SToi
shown in Fig.3 (b). ARRANGE searches on SToi and arranges
Tj,i with cj,i−1 = 30, pj,i = 10, dj,i = 0 and Cj,i = 50. Since
the first feasible idle time slot is < 4, [0, 40] >, ARRANGE
assigns Tj,i to the time slot < 4, [30, 40] > as depicted in
Fig.3 (c) and updates SToi as illustrated in Fig.3 (d).

If no such time slot exists, ARRANGE searches on STri
for the first feasible idle time slot with [a, b] satisfying
tj ≤ max{cj,i−1, a} + dj,i ≤ min{Cj,i, b} − pj,i (Line 11)
and obtains the start and completion times of Tj,i (Line
13) . STri is updated after the allocation (Line 14-19). If
all time slots on both on-premise and rented VMs cannot
meet the requirement a new VM is rented to which Tj,i is
allocated (Line 21-24). Both SToi and STri are updated after
the allocation (Line 25-26).

Algorithm 3: ARRANGE(Tj,i)
1 Search SToi for the first feasible idle time slot [a, b] with

tj ≤ max{cj,i−1 + dj,i−1, a} ≤ min{Cj,i, b} − pj,i;
2 if < vki , [a, b] > is found then
3 bj,i ← max{cj,i−1 + dj,i−1, a}; cj,i ← bj,i + pj,i;
4 Remove < vki , [a, b] > from SToi ;
5 if bj,i > a then
6 Add < vki , [a, bj,i] > to SToi ;

7 if cj,i < b then
8 Add < vki , [cj,i, b] > to SToi ;

9 vj,i ← vki ;
10 else
11 Search STri for the first feasible idle time slot [a, b] with

tj ≤ max{cj,i−1 + dj,i−1, a} ≤ min{Cj,i, b} − pj,i;
12 if < vki , [a, b] > is found then
13 bj,i ← max{cj,i−1 + dj,i−1, a}; cj,i ← bj,i + pj,i;
14 Remove < vki , [a, b] > from STri ;
15 if bj,i > a then
16 Add < vki , [a, bj,i] > to STri ;

17 if cj,i < b then
18 Add < vki , [cj,i, b] > to STri ;

19 vj,i ← vki ;
20 else
21 ri ← ri + 1;
22 Rent a new VM v

ri
i ;

23 bj,i ← cj,i−1 + dj,i−1;
24 vj,i ← v

ri
i ;

25 Add < v
ri
i , [0, bj,i] > to STri ;

26 Add < v
ri
i , [cj,i,+∞] > to STri ;

27 return < Tj,i, bj,i, vj,i >.

The time complexity of ARRANGE is determined by the
time complexity of searching for the first feasible time slot
for the task, which depends on the number of nodes on SToi
and STri . Suppose nki jobs have been assigned to vki after
αq which result in at most nki + 1 idle time intervals on
vki . In other words, there are at most

∑oi
k=1(nki + 1) nodes

on SToi and at most
∑oi+ri
k=oi+1(nki + 1) idle time slots on

STri .
∑oi
k=1 n

k
i is actually the total number of tasks assigned

to on-premise VMs after αq , and
∑oi+ri
k=oi+1 n

k
i is actually

the total number of tasks assigned to rented VMs after αq .

However, the number of currently scheduled tasks is not
more than |S|, i.e., the worst time complexity of ARRANGE
is O(log |S|).

The Stage-pass Timetabling Method (STM) generates
the timetable of tasks in Eq stage by stage (Algorithm 4).
Given the job sequence πq = (πq[1], . . . , π

q
[nq]

), the ready
task sequence ζ = (ζ[1], . . . , ζ[nq]) is initialized by setting
ζ[j] = Tπq

[j]
,1, i.e., putting Stage 1 tasks into ζ in the

order of the given job sequence (Line 2-3). Tasks in ζ are
sequentially allocated to VMs by ARRANGE (Line 6-8).
Once a task of Stage i (i = 1, . . . ,m) in ζ is arranged,
it is replaced by its immediate successive task (Line 9). ζ
is updated by sequencing tasks in non-decreasing order of
their earliest feasible start times, i.e., the completion time of
their immediate predecessor tasks (Line 10).

Fig.4 depicts a detailed example for the STM procedure
given πq = (3, 1, 2). ζ is expressed in form of a queue.
Initially, there are three Stage 1 tasks in ζ : T3,1, T1,1 and
T2,1 corresponding to πq . Their earliest feasible start times
are 10. The ARRANGE procedure is called sequentially for
T3,1, T1,1 and T2,1. After ARRANGE(T3,1), T3,1 is replaced
by T3,2 and its earliest feasible start time is 50. After
ARRANGE(T1,1), T1,1 is replaced by T1,2 and its earliest
feasible start time is 25. After ARRANGE(T2,1), T2,1 is
replaced by T2,2 and its earliest feasible start time is 30. Then
tasks in ζ are updated to T1,2, T2,2 and T3,2 corresponding
to their earliest feasible start times. The above processes is
repeated until all tasks are scheduled.

The time complexity of ζ updating is O(nq log nq). Since
ζ is updated m times and ARRANGE is only called once
for each task, the time complexity of STM is O(mnq log nq+
mnq log |S|).

Algorithm 4: Stage-pass Timetabling Method STM(πq)
1 sq ← ∅;
2 for j = 1 to nq do
3 ζ[j] = Tπq

[j]
,1;

4 for i = 1 to m do
5 for j = 1 to nq do
6 Ij ← arg{ζ[j]}/* Ij is the job index of ζ[j] */
7 < ζ[j], bIj ,i, v

k
i >← ARRANGE(ζ[j]);

8 sq ← sq
⋃
{< ζ[j], bIj ,i, vIj ,i >};

9 ζ[j] ← TIj ,i+1;

10 Sort tasks in ζ in the non-decreasing order of their earliest feasible
start times;

11 return sq .

STM is inspired from the general ideas for solving
timetabling problems in the flexible flowshop scheduling
[62], in which the number of machines are fixed. Allocations
produced by STM follow a stage by stage strategy, i.e.,
a Stage i task can be scheduled only when all tasks of
Stage i − 1 have been scheduled. Actually, according to
the precedence constraint, a task is ready to be scheduled
once after its previous task has been scheduled. Generating
a timetable of the tasks in a task by task way might
produce a different timetable from the one obtained by
STM. Therefore, we propose the Task-pass Timetabling
Method (TTM, Algorithm 5). Given the job sequence πq =
(πq[1], . . . , π

q
[nq]

), the ready task sequence ζ = (ζ[1], . . . , ζ[nq])
is initialized by setting ζ[j] = Tπq

[j]
,1, i.e., putting Stage

1 tasks into ζ in the order of the given job sequence

8

10

10

80 90 10020 30 40 50 60 70

Stage iOn-Premise VMs

1
2
3
4

Time

5
45

10 60

50 90

55

350

40

< 1,[0,20] >

<2,[0,15]>

<4,[0,40]>

<5,[0,10]>

<3,[10,20]>

<3,[35,40]>

<1,[40,+]>

<5,[45,+]>

<3,[50,70]>

<2,[55,+]>

<4,[60,+]>

<1,[90,+]>

cj,i-1=30

pj,i=10

Cj,i=50

80 90 10020 30 40 50 60 70

Rented VMs

6
7
8

Time

(a) Gantt chart before arrives (b) Search on for an idle time slot to arrange

10

10

80 90 10020 30 40 50 60 70

Stage iOn-Premise VMs

1
2
3
4

Time

5

80 90 10020 30 40 50 60 70

Rented VMs

6
7
8

Time

(c) Gantt chart after is arranged to

45

10 60

50 90

55

350

40

< 1,[0,20] >

<2,[0,15]>

<4,[0,30]>

<5,[0,10]>

<3,[10,20]>

<3,[35,40]>

<1,[40,+]>

<5,[45,+]>

<3,[50,70]>

<2,[55,+]>

<4,[60,+]>

<1,[90,+]>

(d) is updated <4,[30,40]>

Fig. 3. Example of the ARRANGE procedure (Algorithm 3) for a task.

10 10 1010 10 10 50 10 1050 10 10 50 25 1050 25 10 50 25 3050 25 30 25 30 5025 30 50

45 30 5045 30 50 45 40 5045 40 50 45 40 6545 40 65 40 45 6540 45 65

UpdateUpdate

UpdateUpdate

UpdateUpdate UpdateUpdate

ARRANGE()ARRANGE() ARRANGE()ARRANGE() ARRANGE()ARRANGE() UpdateUpdate

ARRANGE()ARRANGE() ARRANGE()ARRANGE() ARRANGE()ARRANGE() UpdateUpdate

ARRANGE()ARRANGE() ARRANGE()ARRANGE()

UpdateUpdate ARRANGE()ARRANGE() ARRANGE()ARRANGE()

ARRANGE()ARRANGE() ARRANGE()ARRANGE()

Fig. 4. An example of STM (Algorithm 4) with πq = (3, 1, 2).

(Line 2-3). ζ[1] is removed and allocated (Line 5-7). The
immediate successive task of ζ[1] is added to ζ (Line 8).
ζ is adjusted immediately by sequencing tasks in non-
decreasing order of their earliest feasible start times (Line 9).
The above procedure is repeated until all tasks are allocated
by ARRANGE.

Fig.5 shows a detailed example of TTM given πq =
(3, 1, 2). ζ is expressed in the form of a binary tree and the
minimal heap adjustment is used for updating ζ . Initially,
the top task ζ[1] is T3,1 and its earliest feasible start time is
10. After ARRANGE(T3,1), ζ[1] is replaced by T3,2 and its
earliest feasible start time is 50. ζ is updated immediately
by the minimal heap adjustment. After the adjustment, the
top task ζ[1] becomes T1,1. The above procedure is repeated
until all tasks are scheduled.

ζ is updated m × nq times and the time complexity
for updating ζ is only O(log nq) by using the minimal
heap adjustment. ARRANGE is called once for each task.
Therefore, the time complexity of STM is O(mnq log nq +
mnq log |S|).

Algorithm 5: Task-pass Timetabling Method TTM(πq)
1 sq ← ∅;
2 for j = 1 to nq do
3 ζ[j] = Tπq

[j]
,1;

4 for k = 1 to m× nq do
5 I1 ← arg{ζ[1]}/* I1 is the job index of ζ[1] */
6 < ζ[1], bI1,i, v

k
i >← ARRANGE(ζ[1]);

7 sq ← sq
⋃
{< ζ[1], bI1,i, vI1,i >};

8 ζ[1] ← TI1,i+1;
9 Sort tasks in ζ in the non-decreasing order of their earliest feasible

start times;

10 return sq .

4.1.3 Variable Neighborhood Descent Methods for
Sequencing

Effective methods are desirable for the NP-hard sequencing
problem. In this paper, a variable neighborhood descent
(VND) method [63] is proposed to improve job sequences.
Two general neighborhood structures are employed: One-
Insertion N1 and Pair-wise Exchange N2 [64]. N1 chooses
two different jobs from the job sequence and the second job
is inserted just before the first one. N2 chooses two different
jobs from the job sequence and swaps them.

9

10 10 1010 10 10 50 10 1050 10 10 50 25 1050 25 10 50 25 3050 25 30 25 30 5025 30 50

25 30 5025 30 50 45 30 5045 30 50 45 40 5045 40 50 45 40 6545 40 65 40 45 6540 45 65

(a) The 1st iteration in STM

(b) The 2nd iteration in STM

UpdateUpdate

UpdateUpdate

UpdateUpdate UpdateUpdate

ARRANGE()ARRANGE() ARRANGE()ARRANGE() ARRANGE()ARRANGE() UpdateUpdate

ARRANGE()ARRANGE() ARRANGE()ARRANGE() ARRANGE()ARRANGE() UpdateUpdate

ARRANGE()ARRANGE() ARRANGE()ARRANGE()

UpdateUpdate ARRANGE()ARRANGE() ARRANGE()ARRANGE()

ARRANGE()ARRANGE() ARRANGE()ARRANGE()

Fig. 5. An example of TTM (Algorithm 5) with πq = (3, 1, 2).

The proposed VND employs greedy local search pro-
cesses. Generally VND stops when no better solution can
be found. According to the above analysis, the termination
criterion is set as either no better solution can be found or
its execution time reaches Tmax.

VND is formally described in Algorithm 6. In each
iteration (Line 4-15), there are three major steps. Firstly,
the neighborhood Π is generated by Nk (k = 1, 2) (Line
4). Secondly, all neighbors in Π are evaluated by the
specified metric F ∈ {F1, F2, F3} and the current best
solution is updated accordingly (Line 5-11). Thirdly, the
neighborhood structure is changed if no better solution is
found in the iteration (Line 12-15). In each iteration, at most
nq×(nq−1) neighbors are evaluated by Timetabling, i.e., the
time complexity of each iteration of VND is O(mn3

q log nq +
mn3

q log |S|). The time complexity of VND is difficult to
determine because the number of iterations performed in
the VND loop cannot be expressed in a closed form.

Algorithm 6: Variable Neighborhood Descent
VND(πq ,sq)
1 Tstart ← Tcurrent /* Record the current time */
2 k ← 1; flag ← FALSE;
3 while k ≤ 2 do
4 Π← Nk(πq)/* Generate neighborhood by Nk */
5 for π′q ∈ Π do
6 s′q ← Timetabling(π′q);

/* The sub-schedule is evaluated by the metric
F ∈ {F1, F2, F3} */

7 if F (S ∪ s′q) < F (S ∪ sq) then
8 πq ← π′q ; sq ← s′q ;
9 flag ← TRUE;

10 if Tcurrent − Tstart ≥ Tmax then
11 return sq ;

12 if flag then
13 k ← 1;
14 else
15 k ← k + 1;

16 return sq ;

4.2 Job Collecting Strategies
A general strategy for job collection is to only collect new
tasks arriving in the last time interval t. This is intuitive
and easy to implement. However, this may result in a low

solution quality. For example, Fig. 6 (a) shows a Gantt chart
before JRE Eq =< 100, {J10, J14} >. At time point 100, Eq
arrives. Two new VMs are rented for new jobs in order to
comply with the deadline constraint as shown in Fig. 6 (b).
The sub-schedule forEq does not affect the sub-schedules of
previous events. At the time point 100, T3,2 and T13,2 have
not yet started. Fig.6 (c) shows the Gantt chart in which
T3,2 is re-scheduled. The solution only needs one new VM
to accommodate all tasks, thus it is better than the sub-
schedule in Fig. 6 (b). In other words, collecting assigned
and not started tasks from previous events besides new
tasks may lead to better solutions.

Two Job Collecting Strategies are proposed for the
general 1. JCS1 only collects tasks of jobs arriving in the last
time interval t. Sub-schedules generated by SMS for these
jobs make no change to sub-schedules of previous events.
However, JCS2 collects some old and not started tasks from
previous events along with new tasks. SMS will re-schedule
these old tasks.

At each time interval when a new event arrives, JCS2
(Algorithm 7) re-schedules not started tasks from previous
events. Dependent tasks to be rescheduled are taken as a
new artificial job. For example, at the time point when Eq
arrives, tasks from Tj,m′ to Tj,m of Jj in a previous sub-
schedule have not yet started, i.e., bj,i > αq, i = m′,m′ +
1, . . . ,m (Line 4). We construct a new artificial job Jj′ with
m′ − 1 dummy tasks (Line 6-7) and m − m′ + 1 ordinary
tasks (Line 8-10). For each dummy task, the starting time
b′j,i (i = 1, . . . ,m′−1) is set to αq+Tmax and the processing
time p′j,i (i = 1, . . . ,m′−1) is set to zero. Ordinary tasks are
tasks of Jj that have not yet begun at αq +Tmax and will be
rescheduled together with tasks from Eq . An ordinary task
Tj′,i is identical to Tj,i (m′ ≤ i ≤ m).

In addition, heavy workloads usually result in a lot of
artificial jobs which would further lead to the computation
time of SMS exceeding Tmax. Therefore, the number of
artificial jobs should be limited. In this paper, we limit the
number of artificial jobs to $ (Line 2), which are selected
from the most recent events (Line 3).

10

Stage 2

Stage 1
Stage 1

Stage 2

1
10

13

16 14
3

19

16
19

1

10

13
3

14

VM

1
2
3
4

1
2
3

Time

Time

5
1

13

16
3

19

16
19

1 13
3

VM

1
2
3
4

1
2
3
4

Time

Time

5

5

100

(a) Gantt chart before J10 & J14 arrive
(b) Gantt chart obtained by DES

with JCS1 collecting only new tasks

J10 & J14 arrive
D14 D10

Stage 2

Stage 1
10

14

10

14

1

13

16
3

19

16
19

1 13
3

VM

1
2
3
4

1
2
3
4

Time

Time

5

100

J10 & J14 arrive D14 D10 D3

(c) Gantt chart obtained by DES

with JCS2 collecting some old tasks

Fig. 6. Gantt charts obtained by DES

Algorithm 7: Job Collecting Strategy 2 JCS2(Eq)
Input: $

1 count← 0;
2 while count ≤ $ do
3 j ← arg max{bj,i| < Tj,m, bj,m, vj,m >∈

S};/* Find the job index of the assigned task
that has the latest beginning time */

4 Find m′ ≤ m satisfying bj,m′ ≥ αq + Tmax and
bj,m′−1 < αq + Tmax;

5 if (m′ exists) then
6 for i = 1 to m′ − 1 do
7 Generate dummy tasks T ′j,i with

b′j,i = αq + Tmax and p′j,i = 0;

8 for i = m′ to m do
9 Generate ordinary tasks T ′j,i with

p′j,i = pj,i;
10 S ← S − {< Tj,i, bj,i, vj,i >}/* Remove the

assignment of Tj,i */

11 Generate the artificial job J ′j consisting of
T ′j,1, . . . , T ′j,m with a linear processing
route;

12 Jq ← Jq ∪ {J ′j};
13 count← count+ 1;
14 else
15 break;

16 return

5 COMPUTATIONAL EXPERIMENTS

There are several variants for each component or parameter
of the proposed DES framework. We calibrate parameters
and components first based on which three heuristics are
compared. All tested algorithms are coded in Java and run
on an Intel Core i7 − 4790 CPU @3.60GHz with 8 GBytes
of RAM.

5.1 Parameter and Component Calibration
Since there are no comprehensive benchmarks available
for the dynamic problem under study, we generate testing
instances based on studies for the workload allocation in
cloud services [18], [42]. We consider the workload within
one hour, i.e. 3600 JREs (Q = 3600) or one JRE per second
(t = 1000ms). Two probability distributions are explored for
generating the number of jobs in JRE Eq , i.e. nq : (1) Poisson

distribution P (λ), λ ∈ {5, 10, . . . , 50} and (2) Uniform
distribution U(5, 50). The deadline of Jj is constructed by
Dj = tj + (dfj + 1)×

∑m
i=1 pj,i in which dfj is the deadline

factor obeying the normal distribution N(dfavg, σ
2), dfavg ∈

{0.5, 1, 1.5, 2}, σ = 0.1×dfavg . The processing time of a task
can be approximately taken as a function of the data size to
be processed according to [18], in which the well-known
word-count and word-median programs are tested on VMs
provided by Amazon EC2. There is no general distribution
pattern for the size of data that a user requests to process. In
order to make the instances more reasonable, the processing
time of a task is set randomly between [1, 10] seconds. Note
that the processing times should not be too small (less than
1 second), otherwise the network latency could seriously
affect the response times of the application, then deploying
the application across multiple clusters will be meaningless.
Since the application considered in the paper is not large-
scale application, e.g., the image processing application, the
processing time of a task is not set to a large value (less than
10 seconds). We assume workloads on all virtual clusters
are the same on average, then oi is initialized to be the same
for each virtual cluster. At the same time, there would be
a high probability of the ceiling effect taking place if oi
was set to a large value, i.e., it is easy to obtain optimal
solutions (in which there is no rented VM), even by a
roughly designed algorithm, because on-premise VMs were
sufficient. Therefore, we employ Eq. (11) and Eq. (12) to
determine the value of oi for the instances with nq ∼ P (λ)
and nq ∼ U(5, 50), respectively.

oi =
λ×
√
m

dfavg
(11)

oi =
25×

√
m

dfavg
(12)

The network bandwidth varies with time. In [42], the
weighted average network delay over time to the three
remote clouds are measured. Based on the measurements
in [42], the network delay dj,i obeys the uniform distri-
bution on a given interval: [10ms, 15ms], [70ms, 80ms] or
[270ms, 280ms].

The involved instance parameters are set as m ∈
{3, 5, 10}, dfavg ∈ {0.5, 1, 1.5, 2} and dj,i ∈ [10ms, 15ms],
[70ms, 80ms] or [270ms, 280ms]. For nq ∼ P (λ) (λ ∈
{5, 10, . . . , 50}), there are 3 × 10 × 4 × 3 = 360 instance
combinations, and 10 calibration instances are randomly
generated for each one of these combinations. For nq ∼

11

U(5, 50), there are 3×4×3 = 36 instance combinations, and
100 calibration instances are randomly generated also for
each possible combination. Therefore, 360×10+36×100 =
7200 instances in total are tested to calibrate the parameters
and components. Solutions are evaluated by RPD (Relative
Percentage Deviation) defined as follows:

RPD(%) =
F − FBest
FBest

× 100% (13)

where F is the objective value obtained by the correspond-
ing algorithm and FBest is the best objective value obtained.

In the DES framework, there are two variants for the
timetabling component (STM and TTM), the sequencing
component (VND or None) and the JCS strategy (JCS1 or
JCS2) respectively, and three metrics to optimize (F1, F2 and
F3). In other words, there are 2× 2× 2× 3 = 24 component
combinations. However, Tmax restricts the running time of
VND. We test 10 cases of Tmax ∈ {100, 200, 300, . . . , 1000}
milliseconds, i.e., 10 variants of VND are tested. Along
with the None case, there are 11 variants in total for the
sequencing component. In addition, $ limits the number of
artificial jobs to re-schedule in each JRE of JCS2. If $ is too
large, timetabling will spend too much time on generating
a schedule, and fewer candidates will be explored within
Tmax which leads to low quality solutions for the local
search. We test all values of $

nq
∈ {0.1, 0.2 . . . , 1}, i.e., 10

variants of JCS2 are tested. Considering the 1 JCS1 variant,
there are 11 variants for the JCS component. Therefore, the
total number of component and parameter combinations
is 2 × 11 × 11 × 3 = 726, i.e., 726 × 7200 = 5, 227, 200
experimental results are obtained.

Experimental results are analyzed by the multi-factor
analysis of variance (ANOVA) technique. First, the three
main hypotheses (normality, homoscedasticity, and inde-
pendence of the residuals) are checked from the residuals of
the experiments. All three hypotheses are acceptable from
this analysis. Since all the p-values in the experiments are
close to zero, they are not given in this paper. Greater
F -Ratios imply factors with stronger effects. Interactions
between (or among) any two (or more than two) factors are
not considered because the observed F -Ratios are small in
comparison.

Fig.7 shows the means plot of Tmax factor with different
values and 95.0% Tukey HSD intervals. Recall that over-
lapping intervals indicate statistical insignificance among
the overlapped averages. From Fig.7, we can observe that
RPD decreases with an increase in Tmax, i.e., a larger Tmax

means better solutions are obtained. The differences are
statistically significant for Tmax < 800ms. However, the
differences are not statistically significant when Tmax ∈
{800, 900, 1000}ms. We set Tmax = 900ms in the following.

Fig.7 shows the means plot of $/nq with different
values and 95.0% Tukey HSD intervals. From Fig.7, it can
be observed that there is an increasing tendency of RPD
with the increase of $/nq , i.e., larger $/nq always results
in worse solutions. The differences are not statistically
significant when $/nq ∈ {0.1, 0.2, 0.3} and it seems that
RPD gets the best value when $/nq = 0.2. Therefore, $
takes 0.2nq in the following.

Fig. 8-10 shows the means plot of component settings
with 95.0% Tukey HSD intervals for the objective F1, F2 and

100 200 300 400 500 600 700 800 900 1000

3.1

3.7

4.3

R
el

at
iv

e
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 (
%

)

Tmax (ms)

4.9

1.3

1.9

2.5

 ϖ/nq

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 7. Means plot of Tmax and $/nq with 95.0% Tukey HSD intervals

F3, respectively. It shows a statistically significant difference
for the performance of different Timetabling, Sequencing
and JCS settings. TTM outperforms STM, VND outperforms
not applying VND, and JCS2 performs better than JCS1.

None VND JCS1 JCS2STM TTM

2.0

2.4

2.8

3.2

3.6

4.0

4.4

R
el

a
ti

v
e

P
er

ce
n

ta
g

e
D

ev
ia

ti
o
n

 (
%

)

Fig. 8. The mean plot of component settings with 95.0% Tukey HSD
intervals for the objective F1

R
el

a
ti

v
e

P
er

ce
n

ta
g
e

D
ev

ia
ti

o
n

 (
%

)

3.2

3.7

4.2

4.7

5.2

5.7

6.2

None VND JCS1 JCS2STM TTM

R
el

a
ti

v
e

P
er

ce
n

ta
g
e

D
ev

ia
ti

o
n

 (
%

)

3.2

3.7

4.2

4.7

5.2

5.7

6.2

None VND JCS1 JCS2STM TTM

R
el

a
ti

v
e

P
er

ce
n

ta
g
e

D
ev

ia
ti

o
n

 (
%

)

3.2

3.7

4.2

4.7

5.2

5.7

6.2

None VND JCS1 JCS2STM TTM

Fig. 9. The mean plot of component settings with 95.0% Tukey HSD
intervals for the objective F2

4.5

5.7

6.9

8.1

9.3

R
el

a
ti

v
e

P
er

ce
n

ta
g
e

D
ev

ia
ti

o
n

 (
%

)

None VND JCS1 JCS2STM TTM

4.5

5.7

6.9

8.1

9.3

R
el

a
ti

v
e

P
er

ce
n

ta
g
e

D
ev

ia
ti

o
n

 (
%

)

None VND JCS1 JCS2STM TTM

Fig. 10. The mean plot of component settings with 95.0% Tukey HSD
intervals for the objective F3

5.2 Algorithm Comparison

In terms of the above calibration, we set TTM as
Timetabling, VND as Sequencing, JCS2 as JCS, 900ms
as Tmax and 0.2× nq as $ for the proposed DES.

12

To the best of our knowledge, there is no existing algo-
rithm for the problem studied in this paper. However, the
problem studied in [45] and [53] are related to the problem
under study in this paper. In [45], a list based heuristic
(HEFT) was proposed for dynamic workflow scheduling,
in which jobs are assigned priorities according to their
deadlines. In [53], a greedy local search heuristic (LS ENG)
was presented for the static deadline-constraint flowshop
scheduling with scalable resources. In order to evaluate the
performance of the proposed DES, we adapt HEFT and
LS ENG to the considered problem. The modified HEFT
is a special DES with None for Sequencing and JCS1 for
JCS. Different from STM and TTM, in which task processing
order changes dynamically, the timetabling method used in
HEFT arranges tasks in a fixed order. The modified LS ENG
employs the same timetabling method as in HEFT. A greedy
local search is adopted for Sequencing and JCS1 for JCS. The
computation time of the modified HEFT and LS ENG for
scheduling an event is also limited to 900ms as in DES for a
fair comparison.

For each of the 360 instance combinations with nq ∼
P (λ), 10 new instances are randomly generated, i.e., in total
there are 3600 instances for the three algorithms to compare.
For each of the 36 instance combinations with nq ∼
N(5, 50), 100 new instances are randomly generated, i.e.,
in total there are 3600 instances for the three algorithms to
compare. ARPDs (Average Relative Percentage Deviation)
on all instance combinations are shown in Table 2-3. Table
2 illustrates that for the problems with nq ∼ P (λ), DES has
the smallest ARPD on all objectives (2.19%, 3.09% and 3.58%
for objectives F1, F2 and F3, respectively) and HEFT has the
largest (6.29%, 7.23% and 11.35% for objectives F1, F2 and
F3, respectively). Table 3 illustrates that for the problems
with nq ∼ U(5, 50), DES has the smallest ARPD on all
objectives (1.41%, 3.06% and 3.05% for objectives F1, F2 and
F3, respectively) and HEFT has the largest (6.32%, 6.85%
and 12.73% for objectives F1, F2 and F3, respectively). The
reasons lie in that: (i) Solutions are not improved in the
modified HEFT. (ii) DES reschedules some not started tasks
while the modified LS ENG only cares about newly arriving
tasks.

To further demonstrate the robustness of the three
compared algorithms, we analyze the influence of the
three instance parameters on the compared algorithms.
Interactions between each parameter and the compared
algorithms with 95.0% Tukey HSD intervals are depicted in
Fig. 11-Fig. 13 for the objective F1, F2 and F3, respectively.

For the problem with F1 objective, Fig. 11 shows that the
stage number m has a large influence on the performance of
LS ENG but the observed differences in RPD values are not
statistically significant for DES and HEFT in all cases. λ has
also a big influence on the performance of HEFT. However,
RPD differences are not statistically significant for LS ENG
and DES in most cases. dfavg has also a large influence
on all compared algorithms as the obtained differences in
the RPD values are statistically significant on all cases. The
interval setting of dj,i has little influence on all compared
algorithms. RPD differences are not statistically significant
for each algorithm in all cases. For the problem with the
objective of F2, Fig. 12 illustrates that the stage number m
does indeed have a great influence on the performance of all

TABLE 2
ARPDs(%) of the compared algorithms on instances with nq ∼ P (λ)

Prameter Value
F1 F2 F3

HEFT LS ENG DES HEFT LS ENG DES HEFT LS ENG DES

m

3 5.95 4.14 2.67 6.30 4.01 3.48 13.83 7.59 5.36
5 6.47 3.24 1.91 8.05 4.54 3.74 11.90 5.45 2.83
10 6.34 4.54 2.15 6.99 2.21 2.11 9.03 6.89 3.15

λ

5 4.68 4.67 3.05 5.83 3.96 3.73 9.01 6.77 4.74
10 5.71 4.15 2.81 7.15 4.26 3.88 9.40 5.96 3.82
15 7.07 3.90 3.00 8.08 4.60 3.97 11.68 6.43 4.03
20 7.77 3.32 2.53 7.98 4.34 3.54 12.57 5.98 3.61
25 7.70 3.37 2.03 7.75 3.91 3.22 12.98 5.84 3.31
30 7.21 3.54 1.73 7.48 3.42 2.86 12.57 5.73 2.91
35 6.21 3.64 1.47 7.21 3.05 2.58 11.80 6.08 3.09
40 5.59 3.99 1.54 7.04 2.67 2.38 11.23 7.05 3.15
45 5.32 4.34 1.61 6.86 2.49 2.19 11.06 7.63 3.28
50 5.31 4.63 1.84 6.77 2.45 2.07 11.22 8.19 3.81

dfavg

0.5 3.89 2.35 1.11 4.11 3.21 2.48 7.84 4.09 2.71
1 6.05 3.12 1.63 7.13 4.05 3.52 10.96 4.82 2.54

1.5 7.08 4.59 2.69 8.50 3.76 3.35 12.69 7.32 4.03
2 8.06 5.60 3.27 9.08 3.25 3.00 13.79 9.66 4.97

dj,i

[10,15] 6.26 4.04 2.23 7.32 3.70 3.20 11.38 6.42 3.43
[70,80] 6.24 3.94 2.19 7.19 3.54 3.03 11.26 6.45 3.59

[270,280] 6.38 3.83 2.14 7.18 3.46 3.03 11.42 6.65 3.72
Average 6.29 3.94 2.19 7.23 3.57 3.09 11.35 6.51 3.58

TABLE 3
ARPDs(%) of the compared algorithms on instances with

nq ∼ U(5, 50)

Prameter Value
F 1 F 2 F 3

HEFT LS ENG DES HEFT LS ENG DES HEFT LS ENG DES

m

3 6.04 3.34 1.74 6.53 4.53 3.66 15.59 7.04 4.20
5 6.74 2.41 1.27 7.50 4.62 3.71 12.51 4.72 2.15
10 6.26 3.95 1.12 6.64 1.50 1.65 9.14 5.87 2.405

dfavg

0.5 3.58 2.05 0.77 3.63 3.18 2.25 7.55 4.16 2.25
1 5.98 2.54 0.96 6.39 4.11 3.47 11.85 4.05 2.07

1.5 7.35 3.74 1.61 8.33 3.96 3.48 14.76 6.31 3.07
2 8.40 4.69 2.32 9.10 3.32 3.07 16.82 9.53 4.83

dj,i

[10,15] 6.55 3.12 1.53 7.01 4.03 3.37 13.90 6.09 3.38
[70,80] 6.20 3.40 1.40 6.64 3.35 2.84 12.34 6.17 3.09

[270,280] 6.23 3.22 1.33 6.90 3.59 3.02 12.17 5.80 2.78
Average 6.32 3.25 1.41 6.85 3.64 3.06 12.73 6.00 3.05

R
el

a
ti

v
e

P
er

ce
n

ta
g
e

D
ev

ia
ti

o
n

 (
%

)

m

2

4

6

8

10

3 5 10 5 10 15 20 25 30 35 40 45 50 .5 1 1.5 2

 dj,i

[10,15] [70,80] [270,280]

HEFT

LS_ENG

DES

HEFT

LS_ENG

DES

λ dfavg

(a)Experimental Results on Instances with nq ~ P(λ)

(b)Experimental Results on Instances with nq ~ U(5, 50)

R
el

a
ti

v
e

P
er

ce
n

ta
g

e
D

ev
ia

ti
o

n
 (

%
)

m

2

4

6

8

10

3 5 10 .5 1 1.5 2

 dj,i

[10,15] [70,80] [270,280]

HEFT

LS_ENG

DES

HEFT

LS_ENG

DES

dfavg

Fig. 11. Interactions between instance parameters and the compared
algorithms with 95.0% Tukey HSD intervals for the objective F1

13

R
el

a
ti

v
e

P
er

ce
n

ta
g
e

D
ev

ia
ti

o
n

 (
%

)

m

2

4

6

8

10

3 5 10 5 10 15 20 25 30 35 40 45 50 .5 1 1.5 2

 dj,i

[10,15] [70,80] [270,280]

HEFT

LS_ENG

DES

HEFT

LS_ENG

DES

λ dfavg

(a) Experimental Results on Instances with nq ~ P(λ)

(b) Experimental Results on Instances with nq ~ U(5, 50)

R
el

a
ti

v
e

P
er

ce
n

ta
g
e

D
ev

ia
ti

o
n

 (
%

)

m

2

4

6

8

10

3 5 10 .5 1 1.5 2

 dj,i

[10,15] [70,80] [270,280]

HEFT

LS_ENG

DES

HEFT

LS_ENG

DES

dfavg

Fig. 12. Interactions between instance parameters and the compared
algorithms with 95.0% Tukey HSD intervals for the objective F2

dfavg

(a)Experimental Results on Instances with nq ~ P(λ)

(b)Experimental Results on Instances with nq ~ U(5, 50)

R
el

a
ti

v
e

P
er

ce
n

ta
g
e

D
ev

ia
ti

o
n

 (
%

)

m

3

6

9

12

15

3 5 10 5 10 15 20 25 30 35 40 45 50 .5 1 1.5 2

 dj,i

[10,15] [70,80] [270,280]

HEFT

LS_ENG

DES

HEFT

LS_ENG

DES

λ

HEFT

LS_ENG

DES

HEFT

LS_ENG

DES

R
el

a
ti

v
e

P
er

ce
n

ta
g

e
D

ev
ia

ti
o

n
 (

%
)

m

3.5

7.0

10.5

14.0

17.5

3 5 10 .5 1 1.5 2

 dj,i

[10,15] [70,80] [270,280]

dfavg

Fig. 13. Interactions between instance parameters and the compared
algorithms with 95.0% Tukey HSD intervals for the objective F3

tested algorithms and the RPD differences are statistically
significant between the m = 10 case and the remaining
cases. λ has a large influence on the performance of HEFT.
RPD differences are not statistically significant for LS ENG
and DES in most cases. dfavg has a measurable influence
on the performance of HEFT. RPD differences are not
statistically significant for LS ENG and DES in all cases. The
interval setting of dj,i has little influence on all compared
algorithms. RPD differences are not statistically significant
for the tested methods. For the problem with the objective
of F3, Fig. 13 shows that the stage number m has a large
effect on the performance of HEFT but the RPD values
are not statistically different for LS ENG and DES in most
of the cases. Furthermore, λ has a small influence on the
tested methods and the RPD values are shown not to be
statistically significant. dfavg has a great influence on the
performance of HEFT and LS ENG but the RPD values are
not statistically different for DES in most of the cases. The
interval setting of dj,i has a negligible influence on the RPD
values of all compared algorithms.

From the analysis of the results we can conclude that
the proposed DES is the most robust among the compared
algorithms for all instance parameters (m, λ, dfavg and dj,i)

and all optimized objectives, which implies that DES is
suitable for the considered problem.

6 CONCLUSIONS

We have considered the stochastic multi-stage job schedul-
ing problem on scalable resources in hybrid clouds to
maximize the utilization of rented VMs over a certain
period of time. For the problem under study, we proposed
the DES framework which consists of a job collecting
component (JCS) and a job scheduling component (SMS).
JCS periodically collects stochastic jobs and SMS schedules
them. In the SMS, we developed two timetabling methods
(STM and TTM) for schedule generation and a local search
method (VND) for schedule improvement. STM generates
the timetable using a stage-by-stage strategy while TTM
adopts a task-by-task strategy. When JCS collects some
not started tasks for SMS to reschedule, there is a greater
probability of DES yielding better solutions. The task-by-
task strategy generated better schedules than the stage-by-
stage strategy. VND has a positive impact on improving so-
lutions in DES. By comparing with two existing algorithms,
we have illustrated that DES statistically outperforms the
compared algorithms for the problem under study. In
addition, it is not sensitive to instance parameters.

For future research, the problem with non-linear task-
dependency is worth studying. Resource provisioning for
scenarios with fuzzy processing times and deadlines is also
worthy of consideration.

ACKNOWLEDGMENTS

This work is sponsored by the National Natural Science
Foundations of China (Nos.71401079, 61572127, 61472192),
NUPTSF (No. NY214016) and the Collaborative Innovation
Center of Wireless Communications Technology. Rubén
Ruiz is partially supported by the Spanish Ministry of Econ-
omy and Competitiveness, under the project “SCHEYARD
– Optimization of Scheduling Problems in Container Yards”
(No. DPI2015-65895-R) financed by FEDER funds.

REFERENCES

[1] X. Zhang, L. T. Yang, C. Liu, and J. Chen, “A scalable two-
phase top-down specialization approach for data anonymization
using mapreduce on cloud,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 25, no. 2, pp. 363–373, 2014.

[2] X. Li, T. Jiang, and R. Ruiz, “Heuristics for periodical batch job
scheduling in a mapreduce computing framework,” Information
Sciences, vol. 326, no. C, pp. 119–133, 2016.

[3] T. Y. Wu, C. Y. Chen, L. S. Kuo, W. T. Lee, and H. C.
Chao, “Cloud-based image processing system with priority-based
data distribution mechanism,” Computer Communications, vol. 35,
no. 15, pp. 1809–1818, 2012.

[4] M. D. D. Assuncao, C. H. Cardonha, M. A. S. Netto, and R. L. F.
Cunha, “Impact of user patience on auto-scaling resource capacity
for cloud services,” Future Generation Computer Systems, vol. 55,
pp. 41–50, 2015.

[5] M. Masdari, S. Valikardan, Z. Shahi, and S. I. Azar, “Towards
workflow scheduling in cloud computing: A comprehensive
analysis,” Journal of Network & Computer Applications, vol. 66, pp.
64–82, 2016.

[6] W. N. Chen and J. Zhang, “An ant colony optimization approach
to a grid workflow scheduling problem with various qos
requirements,” IEEE Transactions on Systems Man & Cybernetics Part
C, vol. 39, no. 1, pp. 29–43, 2009.

14

[7] K. Bochenina, N. Butakov, and A. Boukhanovsky, “Static
scheduling of multiple workflows with soft deadlines in
non-dedicated heterogeneous environments,” Future Generation
Computer Systems, vol. 55, 2015.

[8] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms
for cost-and deadline-constrained provisioning for scientific
workflow ensembles in iaas clouds,” Future Generation Computer
Systems, vol. 48, pp. 1–18, 2015.

[9] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and
meet application deadlines in cloud workflows,” in Proceedings
of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. 2011, pp.1–12.

[10] D. Yun, C. Q. Wu, and Y. Gu, “An integrated approach to
workflow mapping and task scheduling for delay minimization
in distributed environments,” Journal of Parallel & Distributed
Computing, vol. 84, pp. 51–64, 2015.

[11] E. N. Alkhanak, S. P. Lee, R. Rezaei, and R. M. Parizi, “Cost
optimization approaches for scientific workflow scheduling in
cloud and grid computing: A review, classifications, and open
issues,” Journal of Systems & Software, vol. 113, pp. 1–26, 2016.

[12] X. Wang, C. S. Yeo, R. Buyya, and J. Su, “Optimizing the makespan
and reliability for workflow applications with reputation and
a look-ahead genetic algorithm,” Future Generation Computer
Systems, vol. 27, no. 8, pp. 1124–1134, 2011.

[13] J.J. Durillo, V. Nae, and R. Prodan, “Multi-objective workflow
scheduling: An analysis of the energy efficiency and makespan
tradeoff,” in IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, 2013, pp. 203–210.

[14] A. Berl, E. Gelenbe, M.D. Girolamo, G. Giuliani, H.D. Meer,
M.Q. Dang and K. Pentikousis, “Energy-efficient cloud comput-
ing,” in Computer Journal, vol. 53, no. 7, pp. 1045–1051, 2010.

[15] E. Gelenbe and S. Timotheou, “Random neural networks with
synchronized interactions.” Neural Computation, vol. 20, no. 9, pp.
2308–2324, 2008.

[16] E. Gelenbe, “Sensible decisions based on QoS,” Computational
Management Science, vol. 1, no. 1, pp. 1–14, 2003.

[17] L. Wang and E. Gelenbe, “Adaptive dispatching of tasks in the
cloud,” IEEE Transactions on Cloud Computing, vol. 99, pp. 1–1,
2015.

[18] Z. Wang, M. M. Hayat, N. Ghani and K. B. Shanban, “Optimizing
Cloud-Service Performance: Efficient Resource Provisioning Via
Optimal Workload Allocation,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 6, pp. 1689–1702, 2017.

[19] I. Al-Azzoni and D. G. Down, “Linear programming-based affinity
scheduling of independent tasks on heterogeneous computing
systems,” IEEE Transactions on Parallel & Distributed Systems,
vol. 19, no. 19, pp. 1671–1682, 2008.

[20] X. Zuo, G. Zhang, and W. Tan, “Self-adaptive learning pso-based
deadline constrained task scheduling for hybrid iaas cloud,” IEEE
Transactions on Automation Science & Engineering, vol. 11, no. 2, pp.
564–573, 2014.

[21] Y. Xu, K. Li, T. T. Khac, and M. Qiu, “A multiple priority
queueing genetic algorithm for task scheduling on heterogeneous
computing systems,” Information Sciences, vol. 270, no. 4, pp. 639–
646, 2012.

[22] C. Delimitrou and C. Kozyrakis, “QoS-aware scheduling in
heterogeneous datacenters with paragon,” Acm Transactions on
Computer Systems, vol. 31, no. 4, pp. 879–889, 2013.

[23] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, D. Brooks, S. Campanoni, K. Brownell, T. M. Jones et al.,
“Profiling a warehouse-scale computer,” in Proceedings of the 42nd
Annual International Symposium on Computer Architecture. ACM,
2015, pp. 158–169.

[24] M. Kozlovszky, K. Karoczkai, I. Marton, A. Balasko, A. Marosi, and
P. Kacsuk, “Enabling generic distributed computing infrastructure
compatibility for workflow management systems,” Computer
Science, vol. 13, no. 3, 2012.

[25] F. Jrad, J. Tao, and A. Streit, “A broker-based framework for
multi-cloud workflows,” in International Workshop on Multi-Cloud
Applications and Federated Clouds, 2013, pp. 61–68.

[26] J. Wang, P. Korambath, I. Altintas, J. Davis, and D. Crawl,
“Workflow as a service in the cloud: Architecture and scheduling
algorithms ,” Procedia Computer Science, vol. 29, pp. 546–556, 2014.

[27] G. Papuzzo and G. Spezzano, “Autonomic management of
workflows on hybrid grid-cloud infrastructure,” in International
Conference on Network and Services Management, 2011, pp. 1–4.

[28] Q. Tao, H. Y. Chang, Y. Yi, C. Q. Gu, and W. J. Li, “A rotary chaotic
pso algorithm for trustworthy scheduling of a grid workflow,”
Computers & Operations Research, vol. 38, no. 5, pp. 824–836, 2011.

[29] R. K. Jena, “Multi objective task scheduling in cloud environment
using nested pso framework,” Procedia Computer Science, vol. 57,
pp. 1219–1227, 2015.

[30] H. Liu, A. Abraham, V. Snasel, and S. Mcloone, “Swarm
scheduling approaches for work-flow applications with security
constraints in distributed data-intensive computing environ-
ments,” Information Sciences, vol. 192, no. 6, pp. 228–243, 2013.

[31] L. Cui, J. Zhang, L. Yue, Y. Shi, H. Li, D. Yuan, H. Liu, A. Abraham,
V. Snasel, and S. Mcloone, “A Genetic Algorithm Based Data
Replica Placement Strategy for Scientific Applications in Clouds,”
IEEE Transactions on Services Computing, vol. PP, no. 99, pp. 1–1,
2015.

[32] S. G. Ahmad, C. S. Liew, E. U. Munir, F. A. Tan, and S. U. Khan, “A
hybrid genetic algorithm for optimization of scheduling workflow
applications in heterogeneous computing systems,” Journal of
Parallel & Distributed Computing, vol. 87, no. C, pp. 80–90, 2016.

[33] P. Lopez-Garcia, E. Onieva, E. Osaba, A. D. Masegosa, and
A. Perallos, “Gace: A meta-heuristic based in the hybridization
of genetic algorithms and cross entropy methods for continuous
optimization,” Expert Systems with Applications, vol. 55, pp. 508–
519, 2016.

[34] M. H. Eawna, S. H. Mohammed, and E. S. M. El-Horbaty, “Hybrid
algorithm for resource provisioning of multi-tier cloud computing
,” Procedia Computer Science, vol. 65, pp. 682–690, 2015.

[35] S. Kianpisheh, N. M. Charkari, and M. Kargahi, “Reliability-
driven scheduling of time/cost-constrained grid workflows,”
Future Generation Computer Systems, vol. 55, pp. 1–16, 2015.

[36] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
distributed, low latency scheduling,” in Twenty-Fourth ACM
Symposium on Operating Systems Principles, 2013, pp. 69–84.

[37] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: flexible, scalable schedulers for large compute clusters,”
in ACM European Conference on Computer Systems, 2013, pp. 351–
364.

[38] I. R. A. Rajendran, “Matrix: Many-task computing execution fabric
for extreme scales,” Department of Computer Science, Illinois
Institute of Technology, MS Thesis, 2013.

[39] I. Sadooghi, S. Palur, A. Anthony, I. Kapur, K. Belagodu,
P. Purandare, K. Ramamurty, K. Wang, and I. Raicu, “Achieving
efficient distributed scheduling with message queues in the cloud
for many-task computing and high-performance computing,” in
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, 2014, pp. 404–413.

[40] L. Wang and E. Gelenbe, “Experiments with Smart Workload
Allocation to Cloud Servers, ” IEEE, Symposium on Network Cloud
Computing and Applications IEEE Computer Society, pp. 31–35, 2015.

[41] E. Gelenbe and L. Wang, “Tap: A task allocation platform for the
EU FP7 PANACEA project, ” Advances in Service-Oriented and Cloud
Computing: Workshops of ESOCC, vol. 567, pp. 425, 2016.

[42] L. Wang, O. Brun and E. Gelenbe, “Adaptive workload
distribution for local and remote Clouds, ” IEEE International
Conference on Systems, Man, and Cybernetics, pp. 3984–3988, 2017.

[43] R. Bertin, S. Hunold, A. Legrand, C. Touati, “Fair scheduling of
bag-of-tasks applications using distributed lagrangian optimiza-
tion,” in Journal of Parallel & Distributed Computing, 2014, vol. 74,
no. 1, pp. 1914–1929.

[44] A. Benoit, L. Marchal, J. F.. Pineau, Y. Robert, F. Vivien,
“Scheduling concurrent bag-of-tasks applications on heteroge-
neous platforms,” in IEEE Transactions on Computers, 2009, vol. 59,
no. 2, pp. 202–217.

[45] H. Topcuouglu, S. Hariri, and M. Y. Wu, “Performance-
effective and low-complexity task scheduling for heterogeneous
computing,” IEEE Transactions on Parallel & Distributed Systems,
vol. 13, no. 3, pp. 260–274, 2002.

[46] M. D. De Assunçao, A. Di Costanzo, and R. Buyya, “Evaluating
the cost-benefit of using cloud computing to extend the capacity of
clusters,” in Proceedings of the 18th ACM international symposium on
High performance distributed computing. 2009, vol. 13, pp. 141–150.

[47] C.-T. Lu, C.-W. Chang, and J.-S. Li, “Vm scaling based on hurst
exponent and markov transition with empirical cloud data,”
Journal of Systems and Software, vol. 99, pp. 199–207, 2015.

[48] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost optimization
algorithm for workflow scheduling in hybrid clouds,” Journal of
Internet Services & Applications, vol. 2, no. 3, pp. 207–227, 2011.

15

[49] J. Liu, E. Pacitti, P. Valduriez, D. De Oliveira, and M. Mattoso,
“Multi-objective scheduling of scientific workflows in multisite
clouds,” Future Generation Computer Systems, vol. 63, no. C, pp.
76–95, 2016.

[50] H.M. Fard, R. Prodan, and T. Fahringer, “A truthful dynamic
workflow scheduling mechanism for commercial multicloud
environments,” IEEE Transactions on Parallel & Distributed Systems,
vol. 24, no. 6, pp. 1203–1212, 2013.

[51] E. Gelenbe and R. Lent, “Energy-QoS trade-offs in mobile service
selection,” Future Internet, vol. 5, no. 2, pp. 128–139, 2013.

[52] R. Duan, R. Prodan and X. Li, “Multi-objective game theoretic
schedulingof bag-of-tasks workflows on hybrid clouds,” IEEE
Transactions on Cloud Computing, vol. 2, no. 1, pp. 29–42, 2014.

[53] J. Zhu and X. Li, “Scheduling for multi-stage applications with
scalable virtual resources in cloud computing,” International
Journal of Machine Learning & Cybernetics, vol. 8, no. 5, pp. 1633–
1641, 2017.

[54] J. Zhu and X. Li, “Elastic and flexible multi-stage task scheduling
with deadline-constraint in clouds,” The 20th IEEE International
Conference on Computer Supported Cooperative Work in Design, pp.
286–291, 2016.

[55] J. Zhu and X. Li, R. Ruiz, X. Xu, and Y. Zhang, “Scheduling
Stochastic Multi-stage Jobs on Elastic Computing Services in
Hybrid Clouds,” IEEE International Conference on Web Services, pp.
678–681, 2016.

[56] [Online]. TOSCA Specification, Available: http://docs.oasis-open.
org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

[57] G. E. Vieira, J. W. Herrmann, and E. Lin, “Rescheduling
manufacturing systems: a framework of strategies, policies, and
methods,” Journal of scheduling, vol. 6, no. 1, pp. 39–62, 2003.

[58] X. Liu,Z. Ni, D. Yuan, Y.. Jiang, Z. Wu, J. Chen,Y. Yang, “A novel
statistical time-series pattern based interval forecasting strategy
for activity durations in workflow systems,” Journal of Systems &
Software, vol. 84, no. 3, pp. 354–376, 2011.

[59] D. Ouelhadj and S. Petrovic, “A survey of dynamic scheduling in
manufacturing systems,” Journal of Scheduling, vol. 12, no. 4, pp.
417–431, 2009.

[60] H. M. Goldberg, “Analysis of the earliest due date scheduling rule
in queueing systems,” Mathematics of Operations Research, vol. 2,
no. 2, pp. 145–154, 1977.

[61] E. Figielska, “A heuristic for scheduling in a two-stage hybrid
flowshop with renewable resources shared among the stages,”
European Journal of Operational Research, vol. 236, no. 2, pp. 433–
444, 2014.

[62] B. Naderi, S. Gohari, and M. Yazdani, “Hybrid flexible flowshop
problems: models and solution methods,” Applied Mathematical
Modelling, vol. 38, no. 24, pp. 5767–5780, 2014.

[63] J. Brimberg, P. Hansen, N. Mlandinovic, and E. D. Taillard,
“Improvement and comparison of heuristics for solving the
uncapacitated multisource weber problem,” Operations Research,
vol. 48, no. 3, pp. 444–460, 2000.

[64] J. Zhu, X. Li, and Q. Wang, “Complete local search with limited
memory algorithm for no-wait job shops to minimize makespan,”
European Journal of Operational Research, vol. 198, no. 2, pp. 378–386,
2009.

[65] E. Taillard, “Benchmarks for basic scheduling problems,” European
Journal of Operational Research, vol. 64, no. 2, pp. 278–285, 1993.

Jie Zhu received her B.Sc. degree in Computer
Science & Technology from Nanjing University
of Post & Telecommunication, Nanjing, in 2005.
Then she entered the MS and Ph.D integration
program and received Ph.D. degree in Applied
Computer Science from School of Computer
Science and Engineering, Southeast University,
Nanjing, China, in 2011. From November 2008
to November 2009, she was with Department of
Electrical and Computer Engineering, University
of Western Ontario, London, Ontario, Canada

and Centre for Computer-assisted Construction Technologies National
Research Council, London, Ontario, Canada, as a Visiting Student.
She joined Nanjing University of Post & Telecommunication, Nanjing,
China, in 2014, and is currently a lecturer at the School of Computer.
She is the author or co-author over more than 20 academic papers,
some of which have been published in international journals such as
IEEE Transactions on Automation Science and Engineering, European
Journal of Operational Research, International Journal of Production
Research. Her research interests include Machine Scheduling, Project
Scheduling, Workflow Optimization and Cloud Computing, among which
Task Scheduling and Resource Provisioning in Clouds are her current
core research areas.

Xiaoping Li (M09-SM12) received his B.Sc. and
M.Sc. degrees in Applied Computer Science
from the Harbin University of Science and Tech-
nology, Harbin, China, in 1993 and 1999 respec-
tively. He obtained his Ph.D. degree in Applied
Computer Science from the Harbin Institute of
Technology, Harbin, China, in 2002. He joined
Southeast University, Nanjing, China, in 2005,
and is currently a professor at the School of
Computer Science and Engineering. From Jan.
2003 to Dec. 2004, he did postdoctoral research

at the Department of Automation at Tsinghua University, Beijing, China.
From Mar. 2009 to Mar. 2010, he was a visiting professor at the National
Research Council, London, Ontario, Canada. He is the author or co-
author over more than 100 academic papers, some of which have
been published in international journals such as IEEE Transactions
on Services Computing, IEEE Transactions on Automation Science
and Engineering, IEEE Transaction on Systems, Man, and Cyber-
netics: Systems, Omega, European Journal of Operational Research,
Information Sciences, International Journal of Production Research,
Expert Systems with Applications and Journal of Network and Computer
Applications. His research interests focus on Scheduling in Cloud
Computing, Scheduling in Cloud Manufacturing, Machine Scheduling,
Project Scheduling, Terminal Container Scheduling, Learning Effects in
Scheduling, and Manufacturing Software Interoperability.

Rubén Ruiz is full professor of Statistics and Op-
erations Research at the Universitat Politècnica
de València, Spain. He is co-author of more
than 60 papers in International Journals and
has participated in presentations of more than
a hundred papers in national and international
conferences. He is editor of the Elseviers journal
Operations Research Perspectives (ORP) and
co-editor of the JCR-listed journal European
Journal of Industrial Engineering (EJIE). He is
also associate editor of other important journals

like TOP or Applied Mathematics and Computation as well as member
of the editorial boards of several journals most notably European
Journal of Operational Research and Computers and Operations Re-
search. He is the director of the Applied Optimization Systems Group
(SOA, http://soa.iti.es) at the Instituto Tecnolgico de Informtica (ITI,
http://www.iti.es) where he has been principal investigator of several
public research projects as well as privately funded projects with
industrial companies. His research interests include scheduling and
routing in real life scenarios.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

16

Xiaolong Xu received his B.Sc. in Computer
Science & Technology, M.Sc. in computer soft-
ware and theories and Ph.D. degree in com-
munications and information systems at Nanjing
University of Posts & Telecommunications, Nan-
jing, China, in 1999, 2002 and 2008, respec-
tively. From 2011 to 2013, he did postdoctoral
research at the the School of Computer, Nanjing
University of Posts & Telecommunications. He is
currently a professor at the School of Computer,
Nanjing University of Posts & Telecommunica-

tions. He is a senior member of China Computer Federation. His
current research interests include cloud computing, mobile computing,
intelligent agent and information security.

