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Abstract The problem studied in this paper takes as input data a set of
lines forming a railway network, and an origin-destination (OD) matrix. The
OD pairs may use either the railway network or an alternative transportation
mode. The objective is to determine the frequency/headway of each line as
well as its number of carriages, so that the net profit of the railway network is
maximized. We propose a mixed integer non-linear programming program for
this problem. Because of the computational intractability of this model, we
develop four algorithms: a mixed integer linear programming (MIP) model, a
MIP-based iterative algorithm, a shortest-path based algorithm, and a local
search. These four algorithms are tested and compared over a set of randomly
generated instances. An application over a case study shows that only the local
search heuristic is capable of dealing with large instances.

Keywords Railway line planning · Mathematical programming · Heuristics

1 Introduction

The sequential railway planning process is based on the knowledge of travel
patterns, and mainly consists of four stages: network design, line planning,
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timetabling, and vehicle and crew scheduling [8]. Network design consists of
choosing, possibly from an underlying network, the stations and the lines con-
necting them. Line planning aims at selecting, for each line, the two terminal
stations, the itinerary, the size of the trains, and the frequency of services [12].
Rapid transit systems have characteristics belonging to both railway networks
and public transit ([2], [4]). In public transit, and particularly in rapid transit,
the first step of the line planning process is to determine the locations of the
lines, which implies the construction of the infrastructure (stations and tracks).
The frequencies of trains are chosen in the second step. These two problems
are often solved jointly but, since the demand is time-dependent and elastic,
the second problem also needs to be solved for the different periods of the
day, days of the week, seasons, or whenever the demand changes. Because of
these demand changes, it is sometimes necessary to modify the frequency and
the composition of the trains. In this paper we will assume service regularity,
which is an important quality characteristic of transit systems [9]. Frequency
and fleet size settings are two intertwined problems, and their joint resolution
seems reasonable. [1] discusses how making headways flexible and adapting
capacity of the lines makes railway networks more attractive.

The objective functions in line planning can be grouped into two classes:
customer oriented and cost oriented [13]. The objectives of the first class are
based on the number of direct travelers, the traveling and riding time, and the
number of transfers. Cost oriented objectives include fixed and variable costs.
However, for operating companies costs are not the only factor to consider since
minimum requirements about mobility are imposed by governments. Moreover,
in recent years we have witnessed an increasing concern for sustainability in
transport planning. Thus, the relationship between cost and revenues becomes
relevant in decisions regarding transportation projects. One way of evaluating
this relationship is the net profit, defined as the difference between the revenue
and the total cost. Moreover, since revenue depends on ridership, maximizing
profit usually contributes to increasing the ridership, which is one of the most
common efficiency indicators in transportation networks [14]. The demand
is given by an origin-destination (OD) matrix, and we also assume that a
competing mode is available. This is one of the features that distinguishes
our work from most of the line planning papers. Indeed, we do not assume
that the demand is captive, but that it depends on the utility of the railway
network relative to that of the competing modes. In other words, ridership
depends on the level of quality of the service offered. This competition between
transportation modes has previously been addressed. For example, [6] design
infrastructure railway networks competing with other transportation modes,
and [10] locate new stations on a railway network, also competing with a road
mode.

The revenue depends on the number of trips captured by the railway sys-
tems, which is a function of the frequencies of the lines through the utility
function of the railway and its comparison with that of the alternative mode.
The cost depends both on the frequency of the lines and on the composition
of the trains. In general, the higher the frequency the lower the number of
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carriages of the trains, but this relationship between both variables is not lin-
ear. Therefore, in order to evaluate the profit we have to consider both the
frequencies and the number of carriages of the trains as variables. This is one
of the reasons why it is interesting to jointly optimize the frequency and size
of trains.

In this paper we consider that a set of lines is given. The objective is to
assign train frequencies as well as the number of carriages of each line, so
that the net profit of the operator is maximized. In the net profit we consider
a number of terms, such as ticket fares, locomotive and carriage acquisition
costs, crew costs, etc. The set of feasible frequencies/headways is given. We
also consider that the number of carriages that a train can have is unlimited,
as often railway lines are planned to cover all the demand forecasted in a
usual day or period of time, even at peak times. This way, no congestion is
possible. This problem is called the uncapacitated frequency and size setting
problem (UFSP). We here assume that all passengers of the same OD pair
follow the same path. Assuming passengers may take other routes to reach
their destination is an even more complex problem, recently treated in [11].

The remaining of this paper is structured as follows. Section 2 formally
describes our line frequency and size setting problem. Section 3 models the
problem as a mixed integer non-linear program (MINLP), which is intractable
even for small instances. In Section 4, four approaches to more efficiently
solve this problem are proposed: a unique MIP model, a sequence of smaller
MIP models, a heuristic algorithm based on shortest paths, and a local search
heuristic (HLSA). All of them are tested and compared in Section 5, including
a case study. This is followed by conclusions in Section 6.

2 Description of the problem

In this section, we present the input data needed to define the uncapacitated
frequency and size setting problem.

– We are given a set of connected lines L = {ℓ1, . . . , ℓ|L|} in the railway
network RN. Let N = {v1, . . . , vn} be the set of nodes corresponding to
the stations that constitute the lines in L. For the sake of readability, node
vi will be denoted by its subscript i whenever this creates no confusion.

– Let A ⊂ {(i, j) : i, j ∈ N, i 6= j} be a (directed) arc set, and let E =
{{i, j} : (i, j) ∈ A, or (j, i) ∈ A} be the set of (undirected) edges defined
from A.

– From these sets, we describe a RN as triplet (N,E,L). In this paper we
assume that (N,E) is a connected graph.

– Each line ℓ ∈ L can be represented by a set of arcs {(i1, i2), (i2, i3), . . . ,
(inℓ−1, inℓ

)}, where i1, inℓ
are the terminal stations of the line, and {i1, i2, i3,

..., inℓ
} and {inℓ

, inℓ−1, . . . , i1} define the two directed maximal paths of
this line, nℓ being the number of stations of line ℓ.

– Let dij be the length of arc (i, j) ∈ A. The parameter dij can also represent
the time needed to traverse arc (i, j), transforming distances in times by
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means of the parameter λℓ, which represents the average distance traveled
by a train of line ℓ in a hour (commercial speed of the trains of this line).
We assume the same value of λℓ for all trains of line ℓ. We consider a
parameter νℓ representing the cycle time of line ℓ, measured as the time
needed for a train of line ℓ to go from the initial station to the final station
and returning to the initial station. Thus, νℓ = 2 · Lℓ/λℓ, where Lℓ is the
length of line ℓ.

– Let ∆ℓℓ′

i be the average time spent by a traveler transferring at station i
from line ℓ to line ℓ′.

– Let W = {w1, . . . , w|W |} ⊆ N × N be the set of ordered OD pairs, w =
(ws, wt). For each OD pair w ∈ W , gw is the expected number of passengers
per hour for an average day and uALT

w is the travel time associated to w
using the alternative transportation mode, respectively.

– The ticket fare plus the passenger subsidy (the price that the government
pays to the operator company for each trip) constitute the revenue per trip,
and is denoted by η. The total number of hours that a train is operating
per year is denoted by ρ. The analysis will be done assuming a time horizon
of ρ̂ years.

– The cost of operating one locomotive is cloc, and the cost of operating one
carriage is ccarr, both per unit of length. The crew cost per train and year
is also given, and denoted by ccrew.

– The purchase cost of one locomotive is Iloc, and that of one carriage is
Icarr. We consider a minimum number ymin of carriages for each train.

– The capacity of a carriage is given by parameter Θ, measured in number
of passengers.

– A finite set of possible headways H ⊂ Z+ for lines of the RN is given,
measured in minutes.

– We assume that all costs refer to the same planning period and are dis-
counted to the beginning of the time horizon.

3 A mixed integer non-linear programming model

In this section we model the problem as a mixed integer non-linear program
(MINLP). The following decision variables are needed:

– xℓ ∈ H is an integer variable representing the headway of line ℓ (time
between two successive services, expressed in minutes). Here we note the
correspondence between headway and frequency (number of services per
unit of time). For this reason, along the paper we use both headway and
frequency, depending on which is the most convenient.

– yℓ ≥ ymin and integer is the number of carriages used by each train of line
ℓ.

– uRN
w > 0 represents the travel time of pair w using the RN.

– pRN
w ∈ [0, 1] is the proportion of passengers of OD pair w using the RN,

which depends on the travel time using the RN (variable uRN
w ) and on the

travel time using the alternative mode (parameter uALT
w ).
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– fwℓ
ij = 1 if the OD pair w traverses arc (i, j) ∈ A using line ℓ, 0 otherwise.
Note that these variables are set to zero whenever (i, j) /∈ ℓ, to reduce the
size of the problem.

– twℓℓ′

k = 1 if OD pair w transfers at station k from line ℓ to line ℓ′, 0
otherwise. Note that these variables are set to zero whenever k does not
belong to the two lines, or when k is the origin or destination of pair w, in
order to reduce the size of the problem.

– Bℓ ≥ 0 and integer is the required fleet of line ℓ, measured in number of
trains.

Some of these variables can be explicitly described:

pRN
w =

1

1 + e(α−β(uALT
w

−uRN
w

))
, w ∈ W, (1)

uRN
w =

∑

ℓ∈L

∑

j:{ws,j}∈ℓ

xℓf
wℓ
wsj

2
+
∑

ℓ∈L

∑

{i,j}∈ℓ

fwℓ
ij dij(60/λℓ)

+
∑

ℓ∈L

∑

ℓ′:ℓ′ 6=ℓ

∑

k∈ℓ∩ℓ′

twℓℓ′

k (
xℓ′

2
+∆ℓℓ′

k ), w = (ws, wt) ∈ W, (2)

Bℓ = ⌈120 · Lℓ/xℓλℓ⌉, ℓ ∈ L. (3)

Equation (1) represents the modal split, which uses the travel time described
in (2). The modal split is described through a logit function, with α, β two
positive parameters that need to be calibrated. This function assumes that if
the travel time using the RN is much higher than the travel time using the
alternative mode, then the proportion of users who choose the RN is close to
zero. On the other hand, this proportion is close to one if the travel time using
the RN is much lower than the travel time using the alternative mode. This is
depicted in Figure 1. Equation (2) defines the travel time of OD pair w using
the RN, which is the sum of the average waiting time at the origin station, the
in-vehicle time, and the average transfer time between lines. Note that since
we assume that passengers arrive at stations following uniform distributions,
the average waiting time at the origin station is half of the time between the
services (the headway). Equation (3) defines the required fleet as a function
of the headway, for each line, where ⌈ · ⌉ is the ceiling function.

The objective is the maximization of the net profit zNET , defined as

Maximize
[

ρρ̂η
∑

w∈W

gwp
RN
w (4)

− ρρ̂
∑

ℓ∈L

λℓBℓ(cloc + yℓ · ccarr)

−
∑

ℓ∈L

Bℓ(Iloc + Icarr · yℓ)

− ρ̂ ccrew
∑

ℓ∈L

Bℓ

]

.
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Fig. 1 Representation of the logit function and a polygonal curve to approximate it by a
piecewise linear function, for uALT

w = 3, α = 0 and β = 0.5. On the horizontal axis, the
difference between the travel time using the RN and the travel time using the alternative
mode. On the vertical axis, the proportion of users taking the RN.

The first term in (4) is the revenue zREV , which depends on the number of
passengers using the RN, times the number of years in the planning horizon,
the hours operating per year, and the benefit of the operator (ticket fare plus
subsidy) in the RN. The second term computes the rolling stock cost: the cost
of operating the trains, which depends on the number of trains and on the
number of carriages. The last two terms are the fleet acquisition cost and the
crew operating cost, respectively.

The constraints of the problem are

twℓℓ′

k ≥
∑

j:(k,j)∈ℓ

fwℓ
kj +

∑

i:(i,k)∈ℓ′

fwℓ′

ik − 1, w ∈ W, ℓ 6= ℓ′ ∈ L, k ∈ ℓ ∩ ℓ′, k 6= ws, wt,

(5)

∑

ℓ∈L

∑

i:(i,k)∈ℓ

fwℓ
ik −

∑

ℓ∈L

∑

j:(k,j)∈ℓ

fwℓ
kj =







0, k ∈ N \ {ws, wt},
−1, k = ws,
+1, k = wt,

(6)

xℓ

∑

w∈W

gwp
RN
w fwℓ

ij ≤ 60 · Θ · yℓ, ℓ ∈ L, {i, j} ∈ E. (7)

Constraints (5) ensure that if an OD pair w enters station k ∈ N using a
line, and exits from k using another line, then a transfer takes place (variable
twℓℓ′

k = 1). Constraints (6) are the flow conservation constraints to find a path
for every OD pair. Constraints (7) impose an upper bound on the maximum
number of passengers that each line can carry per hour, which depends on the
number of carriages and on the headway of this line.
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The maximization of (4), subject to constraints (1)–(3) and (5)–(7), is an
MINLP. Unfortunately, this model is intractable even in small instances. The
non-linearities of this model will be specified, as well as some ways to avoid
them, in Section 4, in order to have a more efficient model.

4 Algorithms

In this section we introduce several approaches to more efficiently solve our
problem. The first one linearizes the MINLP program of Section 3. Because
the number of new variables and constraints needed for such linearization is
enormous, an iterative process based on solving a sequence of smaller linear
models is proposed. Two other algorithms that do not rely on mathematical
programming will be proposed: one based on shortest paths, and a local search
heuristic.

4.1 MIP model

The MINLP introduced in Section 3 contains several non-linearities. In the
following, we describe these non-linearities as well as the way in which they
are linearized, in order to propose a unique MIP model to solve our problem.

1. The proportion of passengers using the RN defined by constraints (1), uses
the non-linear logit function. We avoid this non-linearity by approximating
the logit function by a piecewise linear function made up of three pieces.
Let z be the variable uRN

w representing the travel time in the RN and let
F (z) = 1/(1 + exp(α − β(uALT

w − z)) be the corresponding logit function
for z. The piecewise linear function is defined as

P(z) :=







1, z < uALT
w − 2/β,

−β/4z + (2 + βuALT
w )/4, z ∈ [uALT

w − 2/β, uALT
w + 2/β],

0, z ≥ uALT
w + 2/β.

(8)

Figure 1 depicts this approximation. The reader may note that increasing
the number of pieces improves the approximation, but this would make the
model more difficult to solve. We chose three intervals since preliminary
tests showed a good trade-off between the efficiency of the model and the
quality of the solution returned.

2. In constraints (7), the binary variable fwℓ
ij multiplies the continuous vari-

able pRN
w . This product can easily be linearized by defining a new set of

positive variables qwℓ
ij to represent it, and by adding the following set of

constraints:

qwℓ
ij ≤ fwℓ

ij , ℓ ∈ L, (i, j) ∈ ℓ, w ∈ W, (9)

pRN
w − (1− fwℓ

ij ) ≤ qwℓ
ij , ℓ ∈ L, (i, j) ∈ ℓ, w ∈ W, (10)

qwℓ
ij ≤ pRN

w , ℓ ∈ L, (i, j) ∈ ℓ, w ∈ W. (11)
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Note that constraints (9) and (11) ensure that if fwℓ
ij = 0 or pRN

w = 0, then

qwℓ
ij is also zero. From (10), if fwℓ

ij = 1 and pRN
w = 1, then qwℓ

ij = 1.
So, the capacity constraint is redefined as:

∑

w∈W

gwxℓq
wℓ
ij ≤ 60 ·Θ · yℓ.

We now express the headway xℓ ∈ Z
+ as a convex combination of binary

variables xk
ℓ , which take value one if the headway of line ℓ is the k-th in

the set of feasible headways H, denoted by Hk:

xℓ =

|H|
∑

k=1

Hk · xk
ℓ , ℓ ∈ L, (12)

|H|
∑

k=1

xk
ℓ = 1, ℓ ∈ L. (13)

Thus, we define new variables rwℓk
ij representing the products qwℓ

ij xk
ℓ , which

are linearized as follows:

rwℓk
ij ≤ qwℓ

ij , ℓ ∈ L, (i, j) ∈ ℓ, w ∈ W,k ∈ {1, . . . , |H|}, (14)

rwℓk
ij ≤ xk

ℓ , ℓ ∈ L, (i, j) ∈ ℓ, w ∈ W,k ∈ {1, . . . , |H|}, (15)

qwℓ
ij − (1− xk

ℓ ) ≤ rwℓk
ij , ℓ ∈ L, (i, j) ∈ ℓ, w ∈ W,k ∈ {1, . . . , |H|}. (16)

Therefore, the capacity constraints (7) are linearly expressed as:

∑

w∈W

gw

|H|
∑

k=1

rwℓk
ij ·Hk ≤ 60 ·Θ · yℓ, ℓ ∈ L, (i, j) ∈ ℓ.

3. In the definition of the travel time (2), we need to linearize the terms
xℓ · f

wℓ
wsj

and twℓℓ′

k · xℓ′ . To this end, we include two new integer variables

zwℓ
wsj

and z̄wℓℓ′

k representing both products, respectively. Thus, we also need
to add the following new constraints:

zwℓ
wsj

≤ Hmaxfwℓ
wsj

, ℓ ∈ L, w = (ws, wt) ∈ W, (ws, j) ∈ ℓ, (17)

zwℓ
wsj

≤ xℓ, ℓ ∈ L, w = (ws, wt) ∈ W, (ws, j) ∈ ℓ, (18)

xℓ −Hmax(1 − fwℓ
wsj

) ≤ zwℓ
wsj

, ℓ ∈ L, w = (ws, wt) ∈ W, (ws, j) ∈ ℓ, (19)

z̄wℓℓ′

k ≤ Hmax · twℓℓ′

k , ℓ, ℓ′ ∈ L, w ∈ W,k ∈ N, (20)

z̄wℓℓ′

k ≤ xℓ, ℓ, ℓ
′ ∈ L, w ∈ W,k ∈ N, (21)

xℓ′ −Hmax(1− twℓℓ′

k ) ≤ z̄wℓℓ′

k , ℓ, ℓ′ ∈ L, w ∈ W,k ∈ N, (22)

where Hmax = max
k=1,...,|H|

Hk.
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4. In the constraint (3) that defines the required fleet, since Bℓ is an integer
variable, after some algebra we linearize the ceiling function as:

120 · Lℓ/λℓ ≤ xℓ · Bℓ ≤ 120 · Lℓ/λℓ + xℓ.

Since xℓ =
∑|H|

k=1 x
k
ℓ ·Hk, we can describe xℓ ·Bℓ =

∑|H|
k=1 x

k
ℓBℓ ·H

k. Each
term of this sum can be linearized by means of integer variables σk

ℓ = xk
ℓBℓ:

σk
ℓ ≤ Bℓ, ℓ ∈ L, k ∈ {1, . . . , |H|}, (23)

σk
ℓ ≤ Hmaxxk

ℓ , ℓ ∈ L, k ∈ {1, . . . , |H|}, (24)

Bℓ −Hmax(1− xk
ℓ ) ≤ σk

ℓ , ℓ ∈ L, k ∈ {1, . . . , |H|}. (25)

5. In the objective function (4) the product of two integer variables, Bℓ · yℓ,
appears twice. To solve these non-linearities we define new binary variables
ykℓ , which take value one if the number of carriages of line ℓ is equal to γ,
for γ = {ymin, . . . , ymax}, ymax being the maximum number of carriages.
These variables help describe the number of carriages for each line yℓ ∈ Z

+

as a convex combination of binary variables:

yℓ =

ymax

∑

γ=ymin

yγℓ · γ, ℓ ∈ L, (26)

ymax

∑

γ=1

yγℓ = 1, ℓ ∈ L. (27)

Thus, we include a new variable σ̄γ
ℓ representing the product Bℓ · y

γ
ℓ which

is linearized as follows:

σ̄γ
ℓ ≤ Bℓ, ℓ ∈ L, γ ∈ {ymin, . . . , ymax}, (28)

σ̄γ
ℓ ≤ ymaxxγ

ℓ , ℓ ∈ L, γ ∈ {ymin, . . . , ymax}, (29)

Bℓ − ymax(1− yγℓ ) ≤ σ̄γ
ℓ , ℓ ∈ L, γ ∈ {ymin, . . . , ymax}. (30)

The result is a unique MIP that solves our problem. As we will see in the
computational experiments section, this model is only able to handle small-size
instances. We now propose three more algorithms that aim at more efficiently
solve our problem.

4.2 Mixed integer programming-based algorithm

Due to the large number of variables needed to linearize the MINLP model
as a unique MIP, we now propose another algorithm in which the headway
variables are fixed as parameters. This way we directly avoid several of the
non-linearities presented in Section 4.1, a new drawback being that we now
have to solve a sequence of MIP models, as many as the possible number
headway combinations.
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The reader may note that if xℓ is a parameter instead of a variable, and
we add the linearizations described in constraints (8) to (11) to the MINLP
defined in Section 3, the corresponding model MIP (x1, ..., x|L|), is an integer
linear programming model.

The algorithm presented in this section solvesMIP (x1, ..., x|L|), for all fea-

sible combinations of headways (x1, ..., x|L|) ∈ H|L|, keeping as a final output
the best solution found. This solution procedure is described in Algorithm 1.

Data: Input data for the UFSP problem
for each combination of headways (x1, ..., x|L|) do

solve MIP (x1, ..., x|L|);

end

Result: arg max
(x1,...,x|L|)

MIP (x1, ..., x|L|).

Algorithm 1: Pseudo-code for the integer linear programming-based algo-
rithm for the UFSP.

This algorithm is significantly more efficient than the MINLP model pre-
sented in Section 3. Nevertheless, it has proven incapable of dealing with
medium-large instances, as will be shown in Section 5.

4.3 A shortest path-based algorithm

In this section, we present a heuristic that solves UFSP taking into account
the passenger point of view, since all OD pairs are routed via their shortest
paths, as opposed to sections 4.1 and 4.2, which route passengers via the more
profitable paths for the operator. The idea is to iteratively check all possible
combinations of headways as in Section 4.2, and once the headways are fixed,
to assign demand in the RN taking into account the shortest path associated
with each OD pair. The reader may note that the shortest paths depend on the
frequencies. We then compute the number of passengers traveling on each line
and on each arc. For each line, the arc with the largest number of passengers
defines the minimum capacity that such line should have. Once the minimum
required number of carriages for each line has been calculated, we can easily
compute the profit of the RN. Algorithm 2 provides the corresponding pseudo-
code.

The reader may note that this algorithm does not always yield the same
solution as the previously proposed approaches. This is because we now con-
sider that all OD pairs will use their shortest path, which is not necessarily
the case of a solution maximizing the profit. Consider the following example:
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Data: Input data for the UFSP problem
for each possible combination of headways do

Compute the shortest path for each OD pair and the number of passengers
traveling on each line and arc, by using the logit function and the traveling time
by the alternative mode;
for each line ℓ do

Find the arc eℓ of ℓ with maximum load;
Find the minimum number of carriages needed to transport all passengers
traversing eℓ;

end

Compute the profit zNET and keep this solution.
end

Return the solution with the maximum net profit;
Result: The combination of headways and capacities that yield the maximum profit.

Algorithm 2: Pseudo-code for the shortest path-based algorithm.

two nodes, and only one OD-pair between these two nodes, which has three
passengers. The ticket fare is 2/3 monetary units, and the cost of moving one
carriage is one monetary unit. Each carriage can transport up to two passen-
gers. Assume that all other parameters are non-relevant. The shortest path
heuristic would propose as a solution to transport the three passengers, using
two carriages, whereas the MIP models would propose to transport two pas-
sengers in one carriage, and the third one leaves the RN system to use another
transport mode (transporting him/her would give you a revenue of 2/3, but
moving the extra carriage you need costs one m.u., so not worth it). These
two solutions are different.

4.4 A local search heuristic

The shortest path-based algorithm presented in Section 4.3 fails to solve large-
size instances, due to the exponential number of potential frequency combina-
tions to be checked. For this reason, in this section we present another heuristic
based on the local search heuristic (HLSA) introduced by [5]. Note that this
algorithm does not check all possible headway combinations, and consists of
four different phases:

1. Compute the optimal configuration of frequencies assuming all lines have
the same frequency.

2. Explore the neighborhood of the solution obtained in the first phase. We
consider that two frequency configurations are neighbors if all lines but
one have the same frequency, and the difference in the frequencies of the
different line is as small as possible. We find the best neighbor, and keep
this solution.

3. Perform another local search around the current solution. First, increase
the frequency of one line to the next feasible frequency (operation denoted
as mov+), as long as the solution improves. Then go back to the original
solution and start decreasing the frequency of the line to the next feasible
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frequency (operation denoted as mov−), as long as the solution improves.
This is repeated for all for all lines without taking into account the im-
provement obtained at the previous lines but starting at the output of
Step 2, and the best solution among those obtained moving the frequency
of each line is kept.

4. Apply a steepest ascent algorithm. First, apply mov+ and mov− to the
first line. Keep the best solution found and, for this solution, apply mov+
and mov− to the second line. Repeat this operation for all lines. The best
solution is stored.

Note the difference between phases 3 and 4. Whereas in phase 3 we change
the frequencies of the lines independently, and the solution in phase 2 and the
solution in phase 3 will only differ in the frequency of one line, after phase 4
the new solution may differ in more than one frequency with respect to the
solution after phase 3. The reader should also note that once the frequencies
(or equivalently headways) of all lines are known, so are the travel times for
OD pairs, and therefore so is the expected proportion of passengers using the
RN. Hence, the capacities of each line are easily computed as the minimum
number of carriages needed to transport all passengers. A pseudo-code of this
algorithm is presented in Algorithm 3.

The following example illustrates this algorithm. Consider two lines ℓ1, ℓ2
and four possible frequencies for each line, namely, {1, 2, 3, 4}. We now describe
the four phases of the local search heuristic applied to this example:

1. Compute the net profit of the RN assuming the following frequencies for
the two lines: [1, 1], [2, 2], [3, 3], [4, 4]. Assume that the best profit is given
by configuration [3, 3], that is, both lines have a frequency of three services
per hour.

2. In this phase, the neighbors of [3, 3] are {[4, 3], [2, 3], [3, 4], [3, 2]}. Assume
that the configuration [3, 4] yields the highest profit, so we keep this solu-
tion, and use it in the next phase.

3. From solution [3, 4], we increase the frequency of the first line (note that
[4, 4] does not have to be analyzed again, since it was computed in phase
1). We then analyze [1, 4] (since frequency 5 is not feasible), then [2, 4], and
so on, until we stop improving the profit. If at the first iteration of mov+
([1, 4]), a better profit is not obtained, we decrease the frequency of the
first line in the same way as mov+. We do the same for the second line ℓ2
and find [3,1] as the best solution obtained with movements on this line.
Then we choose between [1,4] and [3,1] the frequency combination that has
the best profit. Assume this is [3,1]. Then, the best solution in this phase
is [3, 1].

4. We now apply mov+ or mov− to line ℓ1 in solution [3, 1] as in phase 3,
iteratively while the profit improves. Assume that the best solution found
is [4, 1]. We now apply mov+ or mov− to the second line ℓ2 in solution
[4, 1] while the profit improves. The solution obtained after these steps is
the final solution of the algorithm, which could be, for example, [4, 2].
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Data: Input data for the UFSP problem
Phase 1: for all possible frequencies ϕ do

Compute the value of the solution given by the combination of frequencies
(ϕ, ..., ϕ) ∈ R

|L|;

end

Let (ϕ∗, ..., ϕ∗) ∈ R
|L| be the solution with the maximum profit;

Phase 2: for ℓ = 1 to |L| do
Compute the value of the solution in which the frequency of line ℓ is
mov + (ϕ∗), and mov − (ϕ∗);

end

Keep the best solution, denoted by ϕ∗ = (ϕ∗
1, ..., ϕ

∗
|L|

);

Phase 3: for ℓ=1 to |L| do
Apply mov+ to ϕ∗

ℓ
, and compute the value of this solution;

Keep doing this until the solution stops improving;
Apply mov− to ϕ∗

ℓ
, and compute the value of this solution;

Keep doing this until the solution stops improving;

end

Keep the best solution, denoted by ϕ∗ = (ϕ∗
1, ..., ϕ

∗
|L|

);

Phase 4: for ℓ = 1 to |L| do
Modify ϕ∗ by applying mov+ to ϕ∗

ℓ
until the solution stops improving;

Modify ϕ∗ by applying mov− to ϕ∗
ℓ
until the solution stops improving;

Update ϕ∗ to the best solution found;

end

Result: Solution: frequencies given by ϕ∗ = (ϕ∗
1, ..., ϕ

∗
|L|

) and minimum capacities

to transport all passengers attracted, given the line frequencies ϕ∗.

Algorithm 3: Pseudo-code for the local search heuristic.

5 Computational experiments

We first report a computational experiment conducted over five different topolo-
gies, called 6 × 2, 7 × 3, 8 × 3, 15 × 5, and 20 × 6, where n×m stands for a
network with n nodes and m lines. These topologies are described in Figures
2 to 6.

1 3 5 6

2

4

The lines are defined as:
red line ℓ1 = {1, 3, 5, 6} and
blue line ℓ2 = {2, 3, 4}.

Fig. 2 Representation of a 6× 2 configuration.

Ten instances were randomly generated for each of the four configura-
tions, yielding 40 instances. The number of passengers of each OD pair w was
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1 4 7

2

5

6

3

The lines are defined as:
blue line ℓ1 = {2, 4, 5}, red line ℓ2 = {1, 4, 7}
and green line ℓ3 = {3, 4, 6}.

Fig. 3 Representation of a 7× 3 configuration.

1 3

4 6 82

5 7

The lines are defined as:
red line ℓ1 = {1, 3, 4, 6} ,
blue line ℓ2 = {2, 4, 5, 7},
green line ℓ3 = {4, 6, 8}.

Fig. 4 Representation of a 8× 3 configuration.

1 3 5 7

4 6 8

10

13

11

2

9 12

14 15

The lines are defined as:
red line ℓ1 = {1, 3, 5, 7},
blue line ℓ2 = {1, 4, 11, 15},
green line ℓ3 = {13, 10, 4, 6, 8},
gray line ℓ4 = {2, 9, 10, 11, 12} and brown line
ℓ5 = {5, 6, 11, 14}.

Fig. 5 Representation of a 15× 5 configuration.

obtained following a discrete uniform distribution U(5a, 15a), where a is an
integer between 140 and 300, different for each instance. To define each arc
length, the coordinates of each station were set randomly by means of another
uniform distribution defined over previously fixed cells, so both coordinates
were uniformly chosen in U(a, b) × U(c, d), where a, b, c, d are the corners of
the corresponding cell. Therefore, the arc lengths differ from one instance to
another, since the station locations are also different. The travel times uALT

w

using the alternative mode were obtained by means of the Euclidean distance
on the plane and a speed of 20 km/h, whereas the travel times in the RN were
obtained according to the Euclidean distances on the graph, assuming a speed
of 30 km/h, plus the waiting times at the origin stations, plus the transfer
times if any. Costs (both purchase and operations) are based on the specific



Frequency-Size Setting Problem 15
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5 6 7

4

2
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1
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18

11

17

2019

The lines are defined as:
red line ℓ1 = {2, 4, 6, 5, 9, 13},
brown ℓ2 = {1, 3, 6, 7, 10, 15},
blue line ℓ3 = {12, 13, 14, 15, 16},
purple line ℓ4 = {13, 17, 19, 20},
gray line ℓ5 = {8, 13, 18, 16, 11} and green
line
ℓ6 = {8, 9, 14, 15, 16}.

Fig. 6 Representation of a 20× 6 configuration.

train model Civia. as in [3]. The parameters of the logit function were set to
α = −0.3 and β = 1. (In [7], α = 0.3 and β = 1). Four possible headways
were considered for our experiments, namely: {5, 10, 15, 20}. Table 1 summa-
rizes the values given to the other input parameters. Complete data can be
obtained from the authors upon request.

All computations for Algorithm 1 were performed in GAMS/CPLEX, on
a computer with 8 GB of RAM memory and 2.8 GHz CPU and four cores.

The complete results of the other four configurations are given in Table 2.
Column “Instance” refers to the instance tested, indicating the configuration
n ×m as well as the replicate, which is the number after the hyphen. After-
wards, we show the CPU time, in seconds, of the MIP-model, in column Time.
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Parameters

Name Description Value

ρ̂ years to recover the purchase 20
ρ number of operative hours per year 6935

cloc costs for operating one locomotive per kilometer [e/km] 34
ccarr operating cost of a carriage per kilometer [e/km] 2
ccrew per crew and year for each train [e/ year] 75 · 103

Iloc purchase cost of one locomotive in e 2.5 · 106

Icarr purchase cost of one carriage in e 0.9 · 106

Θ capacity of each carriage (number of passengers) 2 · 102

xℓ possible values {5,10,15,20}
η Ticket fare + subsidy 3.5

Table 1 Input parameters for the computational experiments.

For the iterated MIP-algorithm, we show the CPU time in column “Time”. For
the Shortest-Paths algorithm we show the percentage deviation with respect
to the best solution found (in all cases this is achieved by the MIP model) and
the CPU time (in columns “Gap” and “Time”), and the same information is
shown for the HLSA algorithm. We note that the gap is computed as:

gap = 100
V alueMIP − V aluealg

V alueMIP

,

where V alueMIP is the optimal value found by the MIP model, and V aluealg
is the value of the solution returned by the corresponding algorithm.

These results are summarized by configuration in Table 3. In this table we
also show the number of possible headway combinations in column “Number”,
as an indication of how difficult it would be for the MIP-iterative and shortest
path algorithm to check all such possible headway combinations. Interesting
aspects to note are the following:

– Although both algorithms yield the same solutions, solving the MIP model
is much more efficient than applying the MIP iterative algorithm. As a
matter of fact, the MIP iterative approach fails to solve the instances cor-
responding to the largest configuration within the given time limit of one
hour. On average, only 45 combinations out of the 1024 potential ones
were solved within this time limit. On the other hand, the MIP model
solves these instances to optimality in 1587.08 seconds on average.

– The algorithms that do not rely on mathematical programming, namely
shortest path algorithm and HLSA, obtain solutions much more efficiently
than the other two. The gaps of these two algorithms are quite small.
For the smallest sets of instances, they both yield the optimal solutions.
Only in the 8× 3 (HLSA) and 20× 6 (HLSA and shortest path algorithm)
configurations they present strictly positive gaps. Even in such cases, these
gaps are quite small, on average 0.89 % and 1.36% for the shortest path
algorithm and for the HLSA, respectively. Out of these two algorithm, the
HLSA is by far the most efficient.

Another interesting aspect of the MIP-based algorithm is how close are the
optimal travel times of the OD pairs using the railway network, with respect to
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Table 2 Complete computational results over random instances.

MIP-Model MIP-Iterative Shortest-Paths HLSA

Instance Time Time Gap Time Gap Time
6× 2-01 0.27 2.35 0.00 0.04 0.00 0.03
6× 2-02 0.27 1.94 0.00 0.02 0.00 0.01
6× 2-03 0.25 1.96 0.00 0.01 0.00 0.01
6× 2-04 0.24 1.88 0.00 0.02 0.00 0.01
6× 2-05 0.26 1.88 0.00 0.01 0.00 0.01
6× 2-06 0.28 1.85 0.00 0.05 0.00 0.01
6× 2-07 0.26 2.65 0.00 0.01 0.00 0.01
6× 2-08 0.27 2.27 0.00 0.01 0.00 0.01
6× 2-09 0.33 1.93 0.00 0.01 0.00 0.01
6× 2-10 0.29 2.34 0.00 0.01 0.00 0.00
7× 3-01 0.40 11.92 0.00 0.90 0.00 0.09
7× 3-02 0.38 10.33 0.00 0.22 0.00 0.03
7× 3-03 0.38 10.36 0.00 0.23 0.00 0.07
7× 3-04 0.38 10.53 0.00 0.88 0.00 0.03
7× 3-05 0.42 10.59 0.00 0.24 0.00 0.03
7× 3-06 0.45 10.45 0.00 0.20 0.00 0.03
7× 3-07 0.37 10.41 0.00 0.87 0.00 0.03
7× 3-08 0.39 11.60 0.00 0.19 0.00 0.03
7× 3-09 0.45 10.52 0.00 0.22 0.00 0.03
7× 3-10 0.42 11.60 0.00 0.19 0.00 0.03
8× 3-01 0.72 18.88 0.00 0.47 4.52 0.06
8× 3-02 0.69 17.41 0.00 0.11 1.87 0.02
8× 3-03 0.82 18.09 0.00 0.12 6.71 0.03
8× 3-04 0.95 18.44 0.00 0.11 3.11 0.02
8× 3-05 0.73 18.10 0.00 0.11 0.00 0.02
8× 3-06 0.74 17.67 0.00 0.11 0.00 0.02
8× 3-07 0.76 17.93 0.00 0.11 0.00 0.02
8× 3-08 0.77 17.52 0.00 0.11 7.10 0.02
8× 3-09 0.69 17.91 0.00 0.11 0.00 0.02
8× 3-10 0.85 17.71 0.00 0.11 0.00 0.02

15× 5-01 62.62 3026.82 0.00 25.52 0.00 0.55
15× 5-02 56.83 2831.12 0.00 25.43 0.00 0.50
15× 5-03 78.29 2778.12 0.00 25.49 0.00 0.50
15× 5-04 45.66 2759.19 0.00 25.47 0.00 0.50
15× 5-05 20.81 2741.67 0.00 25.85 0.00 0.51
15× 5-06 80.22 2808.74 0.00 25.13 0.00 0.50
15× 5-07 44.54 2781.74 0.00 25.77 0.00 0.51
15× 5-08 85.42 2882.96 0.00 25.45 0.00 0.51
15× 5-09 65.95 2861.29 0.00 25.50 0.00 0.50
15× 5-10 163.10 2895.27 0.00 25.33 0.00 0.49
20× 6-01 1514.95 3600.00 8.27 335.89 8.27 2.04
20× 6-02 1600.01 3600.00 4.81 337.57 4.81 2.00
20× 6-03 2219.47 3600.00 3.21 333.59 3.21 1.97
20× 6-04 1322.53 3600.00 5.27 332.66 5.27 1.97
20× 6-05 1072.00 3600.00 1.53 335.41 1.53 2.05
20× 6-06 1569.84 3600.00 8.50 331.73 8.50 1.96
20× 6-07 1468.50 3600.00 3.03 337.19 3.03 2.00
20× 6-08 1739.32 3600.00 4.49 335.06 4.49 1.98
20× 6-09 1362.42 3600.00 5.61 338.98 5.61 2.02
20× 6-10 2001.76 3600.00 0.00 335.51 0.00 1.94
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Table 3 Average results by configuration, and global averages.

MIP-Model MIP-Iterative Shortest-Paths HLSA

Config Number Time Time Gap Time Gap Time
6× 2 16 0.27 2.11 0.00 0.02 0.00 0.01
7× 3 64 0.40 10.83 0.00 0.42 0.00 0.04
8× 3 64 0.77 17.97 0.00 0.15 2.33 0.03

15× 5 1024 70.34 2836.69 0.00 25.49 0.00 0.50
20× 6 4096 61587.08 – 4.47 335.36 4.47 1.99

Total Average – 331.77 – 0.89 72.29 1.36 0.51

the closest change point in the approximation of the logit function defined by
(8). This somehow measures the robustness of the MIP models with respect to
the linearization chosen for the logit function. Note that this distance is defined
as the minimum percentage change in the travel times, so that the new travel
time is in another sector of the piecewise linear approximation defined in (8).
We note that significant changes in the travel times would be needed in order
to jump to the next (or previous) sector defined in (8), which on average would
be an 85 % change in the travel times.

5.1 A case study

We now show our insights into a case study over the suburban Madrid com-
muter network, depicted in Figure 7. The input data for this case-study are
based on real data: the OD demand is provided by the operator and the rest of
parameters are based on the specific train model Civia, used for regional rail-
ways in Madrid. In our study, we have considered an average OD matrix over
all time intervals. This network has 87 stations (nodes), 90 links (edges), form-
ing 12 lines. As for the potential headways, we assumed two different cases: like
in the random experiments the potential frequencies are the set {5,10,15,20},
yielding a total of 412 = 16, 777, 216 possible headway combinations and we
also increased this set assuming eight possible headways are possible, namely
{3,4,5,6,10,12,15,20}, yielding a total of 812 ∼ 6.8 · 1011 possible headway
combinations.

Since the MIP problems to be solved are far too large, neither the MIP-
iterative algorithm, nor the MIP model, were able to return a feasible solution.
We actually tried solving the case study with these two solver-dependent algo-
rithms, but after one hour we had to stop the computation because the models
had not been built. Therefore, we only show the performance of the path-based
algorithm and the local-search heuristic. We first remark that the shortest
path-based algorithm was not able to check all possible headway combina-
tions within three days of computational time because of their huge number.
Table 4 reports the number of headway combinations checked, and the average
time to obtain the solution of each iteration, when running the shortest-path
algorithm for three days.
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Fig. 7 The Madrid commuter system.

Table 4 Results of the shortest path-based algorithm after three days.

Number of iterations Average time (seconds)

Four headways 19781 13.10
Eight headways 19725 13.14

In contrast, the local search heuristic was able to find a solution within a
relatively short amount of time. We now elaborate on the solutions obtained
by the local search heuristic. The frequencies and number of vehicles for each
of the 12 lines, for the two instances solved, are as follows:
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– Four possible frequencies: frequencies: [12, 4, 4, 4, 12, 12, 4, 4, 4, 4, 3, 3],
number of carriages: [10,4,9,1,6,8,9,5,8,2,1,1].

– Eight possible frequencies: frequencies: [12, 4, 4, 6, 15, 10, 4, 4, 4, 3, 4, 3];
number of carriages: [10,4,9,1,6,8,9,5,8,2,1,1]

Table 5 Results of the HLSA algorithm over the case study.

Profit Trips Seconds

Four frequencies 23824255498 183223.27 1168.91
Eight frequencies 24148849723 182506.06 2238.63

Table 5 shows the profit, the ridership (measured as the number of expected
trips attracted by the railway network), and the CPU time of the solutions to
the two problems proposed for this case study. We first note that the compu-
tational time to solve the 8-frequency case is roughly twice the computational
time needed to solve the 4-frequency case. Second, these CPU times are under
one hour, which is highly satisfactory, in view of the fact that the other three
algorithms failed to find a solution within three days of CPU time. Third,
we note that the second solution has a higher profit (as expected, since the
set of potential frequencies of the second instance contains the set of poten-
tial frequencies of the first one), but a lower number of attracted trips. A
characteristic of our problem is that it may be beneficial to attract fewer pas-
sengers, since the extra cost needed to transport them may exceed the revenue
generated by the ridership.

6 Conclusions

We have introduced the railway line frequency and size setting problem, in
which the frequency of the lines and their number of cars are simultaneously
determined, with the objective of maximizing the net profit of the network.
We have assumed competition between modes, and therefore the network has
to provide shorter trip durations in order to attract ridership. This problem
was first modeled as an MINLP. Because of the intractability of this model,
an MIP model that linearizes the MINLP originally proposed is introduced.
In an attempt to reduce the size of the MIP model, an algorithm based on
solving a sequence of smaller MIP models is also presented. Besides, a shortest
path-based algorithm and a local search heuristic were proposed. Experimen-
tal results on small random instances have shown that the the local search
heuristic shows a good tradeoff between efficiency and solution quality. We
have also solved an instance derived from a case study based on the Madrid
commuter network. The local search heuristic was able to find solutions within
less than one hour, whereas the other three algorithms proposed in this paper
could not find a solution within 72 hours.
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