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HIGHLIGHT  1 

 2 

Arabidopsis α2-COP is required for plant growth, Golgi structure and subcellular 3 

localization of the p24 family protein p24δ5. Loss-of-function of α2-COP causes a 4 

strong up-regulation of the COPII subunit SEC31A. 5 

 6 

ABSTRACT 7 

COP(Coat Protein)I-coated vesicles mediate intra-Golgi transport and retrograde 8 

transport from the Golgi to the ER. COPI-coated vesicles form through the action of the 9 

small GTPase ARF1 and the COPI heptameric protein complex (coatomer), which 10 

consists of seven subunits (α-, β-, β´-, γ-, δ-, ε- and ζ-COP). In contrast to mammals 11 

and yeast, several isoforms for coatomer subunits (except γ and δ) have been identified 12 

in Arabidopsis. To understand the role of COPI proteins in plant biology, we have 13 

identified and characterized a loss-of-function mutant of α2-COP, an Arabidopsis α-14 

COP isoform. The α2-cop mutant displayed defects in plant growth, including small 15 

rosettes, stems and roots and mislocalization of p24δ5, a protein of the p24 family 16 

containing a C-terminal dilysine motif involved in COPI binding. The α2-cop mutant 17 

also exhibited abnormal morphology of the Golgi apparatus. Global expression analysis 18 

of the α2-cop mutant revealed altered expression of plant cell wall-associated genes. In 19 

addition, a strong up-regulation of SEC31A, which encodes a subunit of the COP(Coat 20 

Protein)II coat, was observed in the α2-cop mutant that also occurs in a mutant of an 21 

upstream gene of COPI assembly, the ARF-GEF GNL1. These findings suggest that 22 

loss of α2-COP affects the expression of secretory pathway genes.  23 

 24 

 25 

Key words: α1-COP, α2-COP, COP(Coat Protein)I, COP(Coat Protein)II, SEC31, 26 

Arabidopsis, p24 family protein, Golgi apparatus    27 
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INTRODUCTION 28 

The conventional secretory pathway in plants involves the transport of newly 29 

synthesized proteins from the endoplasmic reticulum (ER) to the Golgi apparatus and to 30 

the cell surface or to the vacuole. The so-called “early secretory pathway” involves 31 

bidirectional transport between the ER and the Golgi apparatus, which is mediated by 32 

COP(Coat Protein)I and COPII vesicles (Brandizzi and Barlowe, 2013). COPII vesicles 33 

are involved in protein export from the ER, whereas COPI vesicles are involved in 34 

intra-Golgi transport, although their directionality is still a matter of debate, and in 35 

retrograde transport from the Golgi to the ER. Coat proteins are involved in selective 36 

capture of cargo proteins within the donor compartment, including the fusion machinery 37 

to ensure vesicle delivery, and the generation of membrane curvature to drive vesicle 38 

formation. COPI vesicles are formed at the Golgi apparatus and facilitate retrieval of ER 39 

resident proteins from the Golgi to the ER and cycling of proteins between ER and the 40 

Golgi apparatus. Many type I transmembrane proteins transported by COPI vesicles 41 

bear a C-terminal dilysine-based motif which has been proved to be recognized by the 42 

COPI coat (Jackson et al. 2012). 43 

The key component of the COPI coat is the coatomer complex, which is essential in 44 

eukaryotes and is recruited en bloc onto Golgi membranes (Hara-Kuge et al., 1994). It 45 

is composed of seven subunits (α/β/β’/γ/δ/ε/ζ) that have been conceptually grouped 46 

into two subcomplexes, the B- (α/β�/ε) and F-subcomplex (β/δ/γ/ζ). The B-47 

subcomplex has been proposed to function as the outer layer and the F-subcomplex as 48 

the inner layer of the vesicle coat (Jaskson, 2014). However, recent structural studies 49 

revealed that the subunits are highly connected to each other, indicating that COPI 50 

structure does not fit with the adaptor F-subcomplex and cage B-subcomplex structure 51 

described for other coats (Dodonova et al., 2015). Following recruitment by the small 52 

GTPase ARF1, in its GTP-bound conformation, and cargo, COPI polymerizes on the 53 

membrane surface in such a way that COPI coat assembly depends on both membrane 54 

and cargo binding. Several studies indicate that the β´-COP and α−COP subunits are 55 

involved in cargo binding  (i.e. proteins with a dilysine motif)  through their N-terminal 56 

WD repeat domains. It has also been reported that the γ subunit interacts with ARF1 and 57 

that ζ-COP is required for the stability of γ-COP  (Jackson, 2014).  58 
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Genes encoding the components of the COPI machinery have been identified  in plants 59 

(Robinson et al., 2007; Gao et al., 2014; Ahn et al., 2015; Woo et al., 2015). In 60 

Arabidopsis, several isoforms of all the coatomer subunits, except for γ-COP and δ-61 

COP subunits, have been identified. This is in contrast to mammals, where only γ-COP 62 

and ζ-COP subunits have more than one isoform, and yeast, that contains only one 63 

isoform for every subunit. Interestingly, electron tomography studies in Arabidopsis 64 

have identified two structurally distinct types of COPI vesicles (Donohoe et al., 2007; 65 

Gao et al., 2014). These different subpopulations of COPI vesicles might be formed by 66 

different coatomer isoforms. Therefore, it is of great interest to know whether these 67 

different COPI subunits isoforms have specific biological functions in plants by means 68 

of their functional characterization. Recently, the subcellular localization, protein 69 

interaction and physiological functions of β′-, γ-, and δ-COP subunits were investigated 70 

in Nicotiana benthamiana and tobacco BY-2 cells. It was shown that the COPI complex 71 

is involved in Golgi maintenance and cell-plate formation, and that programmed cell 72 

death is induced after prolonged COPI depletion (Ahn et al., 2015). In Arabidopsis, 73 

knock-down of ε-COP subunit isoforms has been reported to cause severe 74 

morphological changes in the Golgi apparatus and mislocalization of endomembrane 75 

proteins (EMPs) containing the KXD/E COPI interaction motif (Woo et al., 2015). 76 

Here, we have used a loss-of-function approach to characterize the Arabidopsis α2-COP 77 

isoform. Two α-COP isoforms, α1-COP (At1g62020) and α2-COP (At2g21390), have 78 

been identified in Arabidopsis and both isoforms contain an N-terminal WD40 domain 79 

that may allow them to recognize C-terminal dilysine-based motifs of COPI cargo 80 

proteins (Eugster et al., 2004; Jackson et al., 2012). We found that a loss of function 81 

mutant of α2-COP showed defects in growth. In addition, in the α2-cop mutant, the 82 

subcellular localization of p24δ5, a protein with a dilysine motif that has been shown to 83 

cycle between ER and the Golgi, as well as the morphology of the Golgi apparatus was 84 

altered. A transcriptomic analysis of the α2-cop mutant showed up-regulation of plant 85 

cell wall and endomembrane system genes, like the COPII component SEC31A gene, 86 

indicating that α2-cop loss of function affects the expression of secretory pathway 87 

genes. 88 

 89 
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MATERIALS AND METHODS 90 

Plant material  91 

Arabidopsis thaliana ecotype Col-0 was used (wild type). The loss-of-function mutants 92 

α1-cop-1 (SALK_078465), α2-cop-1 (SALK_103968) and α2-cop-2 (SALK_ 93 

1229034) and gnl1 (SALK_091078C) were from the Salk Institute Genomic Analysis 94 

Laboratory ( http://signal.salk.edu/cgi-bin/tdnaexpress). α2-cop-3 (GABI_894A06) was 95 

from GABI-Kat (Kleinboelting et al., 2012). All the mutants were obtained from the 96 

Nottingham Arabidopsis Stock Centre. Arabidopsis thaliana plants were grown in 97 

growth chambers as previously described (Ortiz-Masia et al., 2007). Lines (Col-0 98 

background) containing a T-DNA insertion described above were characterized by 99 

PCR. The primers used are included in Supplemental Table S6.  100 

 101 

Recombinant plasmid production, plant transformation and transformant 102 

selection 103 

The coding sequence of α2-COP with one HA tag before the stop codon was 104 

synthesized commercially de novo (Geneart AG) based on the sequence of α2-COP 105 

(At2g21390). The coding sequence of  α2-COP-HA was cloned into the pCHF3 vector 106 

(carrying the CaMV 35S promoter) (Ortiz-Masia et al., 2007) through SmaI/SalI. To 107 

complement growth defects, α2-cop-3 plants were transformed with the α2-COP-HA 108 

construction via Agrobacterium by floral deep method according to standard procedures 109 

(Clough and Bent 1998). To estimate the number of T-DNA insertions in the transgenic 110 

plants, 40 seeds of each T1 line were plated on 1/2 xMS basal salts, 1% sucrose, 0.6% 111 

agar with 50 mg/l kanamycin. Only lines where the proportion of kanamycin resistant to 112 

sensitive plants in their progeny fitted to a 3:1 ratio were considered. Homozygous α2-113 

COP-HA T2 lines were identified by the same method.  114 

For confocal studies, α2-cop-3 and wild type plants were transformed with a ST-YFP 115 

construct (kindly provided by Dr. DG Robinson, Heidelberg, Germany) and a RFP-116 

p24δ5 construct as described above. The RFP-p24δ5 construct was obtained by 117 

subcloning the RFP-p24δ5 coding sequence (Langhans et al., 2008) in the pCHF3 118 

vector through KpnI/BamHI. The transformants were selected with antibiotic as above. 119 
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We obtained three independent ST-YFP- and RFP-p24δ5-α2-cop-3 lines that show the 120 

same confocal phenotypes, over subsequent generations.  121 

 122 

RT-PCR 123 

Total RNA was extracted from seedlings using a Qiagen RNeasy plant mini kit and 3 μg 124 

of the RNA solution were reverse-transcribed using the maxima first-strand cDNA 125 

synthesis kit for quantitative RT-PCR (Fermentas) according to the manufacturer’s 126 

instructions. Semi-quantitative PCRs (sqPCRs) were performed on 3-μL cDNA 127 

template using the kit PCR Master (Roche). The sequences of the primers used for PCR 128 

amplifications are included in Supplemental Table S6.  129 

Quantitative PCR (qPCR) was performed using a StepOne Plus of Applied Biosystems 130 

with the SYBR Premix Ex Taq TM (Tli RNaseH Plus) (Takara) according to the 131 

manufacturer's protocol. Each reaction was performed in triplicate with 100�ng of the 132 

first-strand cDNA and 0.3 µM of primers for all the genes and 0.9μM for SEC31A in a 133 

total volume of 20�μl. Data are the mean of two biological samples. The specificity of 134 

the PCR amplification was confirmed with a heat dissociation curve (from 60°C to 135 

95°C). Relative mRNA abundance was calculated using the comparative Ct method 136 

according to Pfaffl (2004). Primers used for quantitative PCR (qPCR) are listed in 137 

Supplemental Table S6. 138 

 139 

Preparation of protein extracts and Western-blotting 140 

7-day-old seedlings were ground in liquid nitrogen and homogenised in lysis buffer, 50 141 

mM TRIS-HCl pH 7.5, 150 mM NaCl, 0.5 mM DTT, 0.5% Triton X-100, and a cocktail 142 

of protease inhibitors (1:250 dilution, Sigma #P9599) for 30 min at 4 °C. Samples were 143 

centrifuged twice at 12,000g for 20 min at 4°C and supernatants were considered as 144 

protein extracts. Protein quantitation was performed with Bradford assay (Bio-Rad 145 

Laboratories GmbH, Munich, Germany). Protein samples were separated by 146 

electrophoresis on a 8% SDS-polyacrylamide gel and transferred to nitrocellulose 147 

membranes (Schleicher & Schuell). Before blotting, membranes were stained with 148 

Ponceau-S solution (Sigma) to show loading of the protein samples. Membranes were 149 



7 

 

probed with the primary antibody anti-HA High Affinity (Roche) (1:500), Anti-human 150 

GAPC (Santa Cruz) (1:1000) or anti-α-COP (1:2000) (Gerich et al., 1995); and 151 

developed by ECL (Enhanced Chemiluminescence; GE Healthcare) as previously 152 

described (Montesinos et al., 2013). Western blots were analyzed using the ChemiDoc 153 

XRS+ imaging system (Bio-Rad, http://www.bio-rad.com/). 154 

 155 

Microarrays 156 

4-day-old seedlings (α2-cop-3 and wild-type) grown in 1/2 MS plates were used. Total 157 

RNAs from 4 pools of seedlings were extracted using the RNeasy plant mini kit 158 

(Qiagen), and RNA integrity was tested by 2100 Bioanalyzer (Agilent). The four 159 

replicas of WT were pooled together to generate a unique reference sample, that was 160 

tested against each of the individual α2-cop-3 samples to generate 4 biological 161 

independent assays, in two-color assay with dye-swap. RNA labeling and microarray 162 

details were as described in Vera-Sirera et al. (2015). Half microgram of RNA per 163 

sample was amplified and labelled with the Agilent Low Input Quick Amp Labelling 164 

Kit. Agilent Arabidopsis (V4) Gene Expression 4344K Microarray were used. 165 

Hybridization and slide washing were carried out with the Gene Expression 166 

Hybridization Kit and Gene Expression Wash Buffers. Slides were scanned in an 167 

Agilent G2565AA microarray scanner at 5 µm resolution in dual scan for high dynamic. 168 

Image files were analyzed with the Feature Extraction software 9.5.1. Raw microarray 169 

data (accession number GSE81049) were deposited in the Gene Expression Omnibus 170 

(GEO). Inter-array analysis were performed with the GeneSpring 11.5 software. Only 171 

features for which the ‘r or/and gIsWellAboveBG’ parameter was 1 at least in three out 172 

of four replicas were selected. T-test analysis was carried out with Benjamin-Hochberg 173 

metrics to identify significantly expressed genes with p-value below 0.05 after 174 

correction for multiple-testing, and expression ratio was above or below two-fold 175 

difference (Log2 ±1). Features were converted into genes based in a BLAST analysis 176 

extracted from ftp://ftp.arabidopsis.org/Microarrays/Agilent/; oligo probes that that did 177 

not correspond to any gene or to more than one gene were removed for further analysis. 178 

Gene Ontology (GO) analysis of the Biological Process level was carried out with the 179 
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agriGO (http://bioinfo.cau.edu.cn/agriGO/; Du et al., 2010). Only GO terms with 180 

corrected p-value ≤0.05 were selected. 181 

 182 

Transmission electron microscopy 183 

For electron microscopy, seedlings were grown on MS medium containing 1 % agar, 184 

and the seedlings were harvested after 4 days. Chemical fixation of cotyledons was 185 

performed according to Osterrieder et al. (2010). Ultrathin (70 nm) sections were cut on 186 

a Microtome Leica UC6, stained with uranyl acetate and lead citrate and observed with 187 

a JEM-1010 (JEOL) transmission electron microscope. High-pressure freezing was 188 

performed as described previously (Tse et al., 2004; Gao et al.., 2012) and samples 189 

were analysed in a Hitachi H-7650 transmission electron microscope. 190 

 191 

Confocal microscopy 192 

Imaging was performed using an Olympus FV1000 confocal microscope 193 

(http://www.olympus.com/) with a 60× water lens. Fluorescence signals for YFP (514 194 

nm/529–550 nm) and RFP (543 nm/593–636 nm) were detected. Sequential scanning 195 

was used to avoid any interference between fluorescence channels. Post-acquisition 196 

image processing was performed using the fv10-asw 3.1 Viewer and coreldrawx4 197 

(14.0.0.567) or ImageJ (version 1.45 m) (Abramoff et al., 2004).  198 

 199 

 200 

  201 
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RESULTS 202 

α2-cop mutants display a dwarf phenotype 203 

To investigate the function of the two isoforms of the α-COP subunit in Arabidopsis, T-204 

DNA insertion mutants were identified and analyzed. A mutant of α1-COP, α1-cop-1, 205 

that had the insertion in the third coding exon, was identified in the Salk collection, 206 

corresponding to stock number SALK_078465 (Figure 1A). Although truncated 207 

transcripts were detected (Supplemental Figure S1), RT-PCR analysis confirmed that 208 

this mutant lacked the full length α1-COP transcript (Figure 1B). As it is shown in 209 

Figure 1C, α1-cop-1 mutation did not compromise plant growth under standard growth 210 

conditions  211 

Three mutants of α2-COP, α2-cop-1 (SALK_103968), α2-cop-2 (SALK_ 1229034) 212 

and α2-cop-3 (GABI_894A06) that had the insertion in different gene positions (Figure 213 

2A) were characterized. Homozygous plants were selected and RT-PCR analysis 214 

confirmed that α2-cop-1, α2-cop-2 and α2-cop-3 mutants lacked the full length α2-215 

COP transcript (Figure 2B). As it happened in the α1-cop-1 mutant, truncated 216 

transcripts were detected in the α2-cop mutants (Supplemental Figure S1).  In contrast 217 

to the normal growth of α1-cop-1, all α2-cop mutants exhibited dwarf phenotypes, with 218 

reduced rosette and leaf size and shorter stems and roots although they were all fertile 219 

(Figure 2C and Supplemental Figure S2).   220 

In this work, we focused on the characterization of the α2-cop-3 mutant for further 221 

analysis of α2-COP loss of function (Figure 2). To confirm that the developmental 222 

defects in α2-cop-3 were indeed caused by the loss of α2-COP function, we 223 

transformed it with an α2-COP cDNA containing an HA tag. As it is shown in Figure 224 

2D, the expression of α2-COP-HA in the α2-cop-3 mutant fully rescued its 225 

developmental defects. These results indicate that α2-COP may be required for normal 226 

plant growth and development.    227 

Next, the expression levels of total α-COP in α1-cop and α2-cop mutants were 228 

analyzed compared to wild type, to investigate whether the dwarf phenotype of α2-cop 229 

was due to lower expression levels of α-COP. To this end, the expression levels of total 230 
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α-COP (including isoforms α1 and α2) were analyzed  by RT-PCR using a pair of 231 

primers  (α125 and α123) common to α1-COP and α2-COP genes (Figures 1 and 2) 232 

that can therefore amplify the cDNA of both genes in wild type plants. However, these 233 

primers can only amplify the α2-COP cDNA fragment (and not the α1-COP cDNA 234 

fragment) in the α1-COP mutant due to the presence of the T-DNA insertion in the 235 

mutant. Similarly, these primers can only amplify the α1-COP cDNA fragment (and not 236 

the α2-COP cDNA fragment) in the α2-cop mutant. As it is shown in Figure 3A-C, 237 

mRNA levels of α-COP were lower in α2-cop than in α1-cop mutant, which correlates 238 

with the growth defects in α2-cop-3. On the other hand, the mRNA levels of α1-COP  239 

and  α2-COP in α2-cop-3 and α1-cop-1-1 mutants, respectively, were similar to those 240 

in the wild type (Supplemental Figure S3), indicating that there is no expression 241 

compensation between the two α-COP genes in the mutants. Therefore, these results 242 

suggest that the two α-COP isoforms are differently expressed and it is the α2-COP 243 

isoform the one that contributes more to the total of α-COP. Then, the protein levels of 244 

α-COP (α1 plus α2 isoforms) were analyzed by Western blot using an antibody against 245 

the 10 first aminoacids of cow α-COP (Gerich et al., 1995) that has been previously 246 

described to recognize Arabidopsis α-COP (Contreras et al., 2004a). As cow α-COP 247 

and both Arabidopsis α-COP isoforms share the first 9 aminoacids, this antibody should 248 

recognize both isoforms. As it is shown in Figure 3D, the antibody recognized a band of 249 

aproximately 130 kDa corresponding to the molecular weight of α-COP. Using this 250 

antibody, we found that the α2-cop-3 mutant has also lower α-COP protein levels than 251 

wild type and the α1-cop mutant (Figure 3D).  No specific bands from translation of 252 

truncated transcripts were detected in the mutants (Supplemental Figure S1). 253 

 254 

The loss of function of α2-COP affects p24δ5 trafficking and the integrity of the 255 

Golgi apparatus 256 

As the α2-cop mutant has defects in growth, we aimed to study if retrograde transport in 257 

the early secretory pathway was impaired in this mutant. COPI vesicles have been 258 

involved in the traffic of some transmembrane proteins that constitutively cycle between 259 

the ER and the Golgi by using the COPII and the COPI systems, such as members of 260 
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the p24 family. p24 proteins constitute a family of type-I transmembrane proteins of 261 

approximately 24 kDa present on the membranes of the early secretory pathway (Pastor-262 

Cantizano et al., 2016). We have previously shown that the C-terminal cytosolic tail of 263 

Arabidopsis p24δ subfamily proteins has the ability to interact with ARF1 and coatomer 264 

subunits (through a dilysine motif) and with COPII subunits (through a diaromatic 265 

motif) (Contreras et al., 2004a,b). Using a fluorescence-tagged version of one member 266 

of the p24 family (RFP-p24δ5), we have also shown that p24δ5 localizes to the ER at 267 

steady state as a consequence of highly efficient COPI-based recycling from the Golgi 268 

apparatus and that the dilysine motif is necessary and sufficient for ER localization 269 

(Contreras et al., 2004a,b; Langhans et al., 2008; Montesinos et al., 2012). More 270 

recently, we have found that p24δ5 interacts with ARF1 and COPI subunits at acidic 271 

pH, consistent with this interaction taking place at the Golgi apparatus (Montesinos et 272 

al., 2014). Therefore, we used p24δ5 as a model protein to study COPI-dependent 273 

retrograde Golgi-to-ER trafficking in the α2-cop mutant. In wild type plants, RFP-274 

p24δ5 mostly localized to the ER network (Figure 4), as described previously (Sancho-275 

Andrés et al, 2016). In contrast, RFP-p24δ5 localized only partially to the ER and was 276 

mostly found in punctate structures, which often appeared in clusters, in the α2-cop-3 277 

mutant (Figure 4). Next, we also checked the distribution of sialyl transferase-YFP (ST-278 

YFP), a specific membrane marker for the plant Golgi (Boevink et al., 1998), in the α2-279 

cop-3 mutant. As it is shown in Figure 5, ST-YFP showed the typical punctate pattern 280 

characteristic of normal Golgi stacks in wild type plants. However, in the α2-cop-3 281 

mutant ST-YFP localized partially to the ER network and to clusters of punctate 282 

structures (Figure 5).  283 

To gain insight into the defects observed in the α2-cop-3 mutant at the ultrastructural 284 

level, we performed transmission electron microscopic (TEM) analysis of ultrathin 285 

sections using seedlings processed either by chemical fixation (Figure 6A) or high-286 

pressure freezing/freeze substitution (Figure 6B). As shown in this Figure, the α2-cop 287 

mutant showed a clear alteration in the Golgi apparatus, which in most cases had a 288 

reduced number of cisternae per Golgi stack. In addition, the α2-cop mutant also 289 

contained many abnormal vesicle clusters around the Golgi remnants. 290 

 291 
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Transcriptomic analysis of α2-cop mutant 292 

Comparative gene expression analysis were performed to gain insight of the molecular 293 

phenotype of the α2-cop-3 mutant. Global profiling analysis was carried out from 4-294 

day-old seedlings, when the mutant growth phenotype starts to be visible, to detect early 295 

changes in expression.  A median log2 ratio of 1 (2-fold difference in expression) of the 296 

four biological replicates was used as a cut-off criteria to compare the mutant with wild 297 

type plants. We identified 534 differentially expressed genes in the α2-cop-3 mutant, 298 

distributed in 353 induced (ratio > 1) and 181 repressed (ratio < 1) (Supplemental 299 

Tables S1 and S2, respectively). Confirmation of microarray data was carried by RT-300 

PCR in the α2-cop-3 (Figure 7A) as well as in the α2-cop-1 and α2-cop-2 mutants 301 

(Supplemental Fig. S4).  Gene Ontology analysis was performed by agriGO (Du et al., 302 

2010) and GO terms that were overrepresented among up-regulated genes 303 

(Supplemental Figures S5-S7 and Supplemental Table S3) and down-regulated genes 304 

(Supplemental Figure S8 and Supplemental Table S4) were selected. Interestingly, the 305 

most significantly overrepresented GO Cellular Component terms among the up-306 

regulated genes were “plant-type cell wall” and “endomembrane system” (Supplemental 307 

Tables S3 and S5). On the other hand, GO terms significantly overrepresented in 308 

Biological Process were “lipid transport” and “cell wall modification” and “oligopeptide 309 

transport activity” related to the GO of Molecular Functions (Supplemental Table S3).  310 

Interestingly, one of the genes highly upregulated was SEC31A, that encodes one 311 

subunit of the COPII coat. The Arabidopsis genome encodes two SEC31 isoforms, 312 

SEC31A (At1g18830) and SEC31B (At3g63460). Confirming the microarray data, RT-313 

PCR analysis indicated that the expression of SEC31A in the α2-cop-3 mutant is more 314 

than ten times higher than in wild type (Fig. 7B). SEC31A expression was also slightly 315 

induced  (two fold) in the α1-cop-1 mutant. On the other hand, SEC31B expression was 316 

not up-regulated either in the α2-cop-3 or in the α1-cop-1 mutant. This strong up 317 

regulation of SEC31A in the α2-cop-3 mutant is consistent with the COPII machinery 318 

being transcriptionally regulated by the alteration in the COPI traffic. However, this up-319 

regulation of SEC31A seems to be specific for this COPII subunit, as the expression 320 

other COPII subunit genes did not change in the α2-cop3 mutant (Figure 7C and 321 

Supplemental Tables S1 and S2). Finally, we also analysed the expression of SEC31A in 322 
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gnl1 (SALK_091078C), a loss-of-function mutant of the ADP-ribosylation factor 323 

guanine nucleotide-exchange factor (ARF-GEF) GNL1 that regulates COPI formation 324 

(Richter et al., 2007; Teh and Moore, 2007; Nakano et al., 2009; Du et al., 2013). 325 

Figure 7D shows that the pattern of activation/repression of some of the genes that were 326 

used to confirm the microarray data of the α2-cop3 mutant, was similar in the gnl1 327 

mutant, including increased expression of SEC31A, suggesting a correlation between 328 

the alteration in COPI function and changes in the expression of the COPII subunit 329 

SEC31A. 330 

 331 

  332 

 333 

DISCUSSION 334 

In mammals and yeast there is only one isoform of the COPI subunit α-COP. In 335 

contrast, two α-COP isoforms, α1- and α2-COP, have been identified in Arabidopsis. 336 

In this work, we have shown that a knockout T-DNA mutant of α1-COP resembled 337 

wild type plants under standard growth conditions. However, all α2-COP T-DNA 338 

mutants characterized had defects in root, stem and leaf growth. They were all fertile 339 

but short and bushy. The two α-COP isoforms contain at their N-terminal the WD40 340 

domain, that it is required for KKXX-dependent trafficking. It cannot be ruled out that a 341 

truncated α-COP protein might  be synthesized in the mutants that could account for the 342 

difference in the phenotypes between α1-COP and α2-COP mutants, although no 343 

truncated proteins were detected with an N-terminal antibody by Western blot. On the 344 

other hand, as both isoforms showed 93% of amino acid sequence identity, the absence 345 

of growth defects in the α1-cop mutant might be explained by the relative expression 346 

levels of both α-COP isoforms. Nevertheless, it cannot be discarded that α2-COP may 347 

have specific functions that cannot be performed by α1-COP. Further studies will be 348 

required to clarify the differences between the functions of α1-COP and α2-COP. In 349 

this study we focused on the characterization of the α2-cop-3 mutant. As the expression 350 

of α2-COP-HA in the α2-cop-3 mutant fully rescued its developmental defects, the 351 

results presented here indicate that α2-COP has a role in plant growth. 352 
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COPI vesicles are involved in the retrieval of ER-resident proteins from the Golgi 353 

apparatus to the ER and also in the traffic of other transmembrane proteins found in the 354 

early secretory pathway that are continuously cycling between ER and Golgi, as it is the 355 

case of p24 family proteins. Arabidopsis p24δ proteins contain in their cytosolic C-356 

terminus both a dilysine motif in the -3,-4 position, involved in COPI interaction 357 

through α-COP and β´-COP subunits (Jackson et al., 2012; Eugster, 2004) and a 358 

diaromatic motif in the -7,-8 position involved in COPII binding (Contreras et al., 359 

2004b). At steady state, p24δ5 mainly localizes to the ER as a consequence of its highly 360 

efficient COPI-based recycling from the Golgi apparatus (Langhans et al., 2008; 361 

Montesinos et al., 2012; 2013; 2014; Sancho-Andrés et al. 2016). Here, we have found 362 

that loss of α2-COP causes obvious defects in trafficking of RFP-p24δ5, which mostly 363 

localized to clusters of punctate structures and was only partially found at the ER 364 

network. This probably reflects the inability of p24δ5 to enter standard COPI vesicles 365 

for its Golgi to ER retrograde transport. In addition, the localization of the Golgi marker 366 

ST-YFP was also altered, which might be the result of fragmentation of the Golgi 367 

apparatus, consistent with recent reports showing that silencing of ε-COP and δ-COP in 368 

Arabidopsis and β′-COP in N. benthamiana results in disruption of Golgi structure (Ahn 369 

et al., 2015; Woo et al., 2015). Indeed, the ultrastructural studies of the α2-cop-3 370 

mutant revealed severe morphological changes in the Golgi apparatus. These results 371 

confirm the role of COPI in mantaining normal cellular function and organelle 372 

morphology in the plant early secretory pathway, as previously described in mammals 373 

and yeast (Guo et al., 1994; Gaynor and Emr, 1997; Styers et al., 2008). 374 

Results from the microarray revealed up-regulation of plant cell wall and 375 

endomembrane system genes. As most of these genes encoded proteins that follow or 376 

regulate the secretory pathway, this change of gene expression could be a mechanism to 377 

compensate failures in the secretory pathway of the mutant due to the absence of α2-378 

COP. Interestingly, one of the up regulated genes in the α2-cop-3 mutant was the 379 

SEC31A gene, that encodes one of the two COPII SEC31 isoforms of Arabidopsis. No 380 

changes in COPII subunits other than SEC31A have been detected. SEC31A shows 381 

61% amino acid sequence identity with SEC31B and according to public microarray 382 

data (Zimmermann et al., 2004), they are differently expressed in Arabidopsis tissues, 383 
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being SEC31B expression about ten times higher than that of SEC31A. It has been 384 

reported that SEC31B is not able to complement the secretion defect of the sec31-1 385 

mutant in yeast (De Craene et al., 2014). In that study, SEC31A was not tested and the 386 

authors concluded that SEC31A could be the one that complements the secretion defect 387 

of the sec31-1 mutant. In mammals, two SEC31 isoforms have also been identified but 388 

their specific roles have not been defined yet. On the other hand, there is evidence that 389 

SEC31 interacts directly with SAR1 (the small GTPase that controls COPII vesicle 390 

biogenesis) to promote SEC23 GAP activity (Bi et al., 2007). It has been proposed that 391 

differences in affinity for SEC31 between mammalian paralogs of SAR1 together with 392 

changes in the stimulated rate of GTP-hydrolysis may cooperate with the intrinsic 393 

flexibility of the outer cage in determining COPII vesicle size during the dynamic 394 

process of assembly and disassembly of the coat on a growing bud (Zanetti et al., 2011). 395 

There is increasing evidence that indicates that specific expression patterns in COPII 396 

subunit isoforms in Arabidopsis may reflect functional diversity (Chung et al, 2016). 397 

Since the expression of SEC31A was highly increased in the α2-cop mutant, SEC31A 398 

could compete with SEC31B for SAR1 binding resulting in changes in the process of 399 

assembly and disassembly of the coat that could adapt ER export machinery under these 400 

conditions. The induction of SEC31A might enable efficient packaging of specific 401 

cargo proteins into anterograde vesicles or simply increase the overall capacity of 402 

anterograde transport to compensate the effects of the inhibition of retrogade transport 403 

in the α2-cop mutant. Interestingly, SEC31A is also up-regulated in the unfolded protein 404 

response (UPR), mediated by the inositol requiring enzyme-1 (IRE1), a response that is 405 

known to result in a specific remodeling of the secretory pathway (Nagashima et al., 406 

2011; Song et al. 2015). Finally, we also found that SEC31A is also strongly up-407 

regulated in gnl1, a mutant of the ARF-GEF GNL1 involved in COPI assembly. These 408 

data suggests that the increase in SEC31A expression might be part of a general 409 

response to alterations of the secretory pathway.   410 

 411 

  412 
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SUPPLEMENTARY DATA 413 

 414 

Supplemental Figure S1. sqRT-PCR and Western blot analysis of α1-cop and α2-cop 415 

mutans to detect truncated transcripts and proteins, respectively. 416 

Supplemental Figure S2. α2-cop mutants show the same growth phenotype.  417 

Supplemental Figure S3. RT-qPCR analysis of α1-COP and α2-COP expression in 418 

α2-cop-3 and α1-cop-1 mutants, respectively.  419 

Supplemental Figure S4. Confirmation of the α2-cop-3 microarray data in the other 420 

two  α2-cop mutans  421 

Supplemental Figure S5. Hierarchical view of Gene Ontology (GO) categories 422 

significantly over-represented among the up-regulated genes in the α2-cop-3 mutant. 423 

Biological Process terms. 424 

Supplemental Figure S6. Hierarchical view of Gene Ontology (GO) categories 425 

significantly over-represented among the up-regulated genes in the α2-cop-3 mutant. 426 

Cellular component terms. 427 

Supplemental Figure S7. Hierarchical view of Gene Ontology (GO) categories 428 

significantly over-represented among the up-regulated genes in the α2-cop-3 mutant. 429 

Molecular function. 430 

Supplemental Figure S8. Hierarchical view of Gene Ontology (GO) categories 431 

significantly over-represented among the down-regulated genes in the α2-cop-3 mutant.  432 

Supplemental Table S1. List of upregulated genes in the α2-cop-3 mutant.  433 

Supplemental Table S2. List of downregulated genes in the α2-cop-3 mutant.  434 

Supplemental Table S3. Non-redundant Gene Ontology (GO) categories significantly 435 

overrepresented among up-regulated genes in the α2-cop-3 mutant. 436 

Supplemental Table S4. Non-redundant Gene Ontology (GO) Biological Process 437 

categories significantly overrepresented among the down-regulated genes in the α2-cop-438 

3 mutant. 439 
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Supplemental Table S5. Plant cell wall and endomembrane up regulated genes in the 440 

α2-cop-3 mutant. 441 

Supplemental Table S6. Primers used in this study. 442 

  443 
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FIGURE LEGENDS 

 

Figure 1. Characterization of α1-cop-1 mutant.  

A. Diagram of the α1-COP gene and localisation of the T-DNA insertion (triangle) in 

the α1-cop-1 mutant. Black boxes represent coding regions and grey boxes represent 5'-

UTR and 3'-UTR regions.The positions of RPα1, LPα1, α125 and α123 primers are 

shown.  

B. sqRT-PCR analysis to show the absence of α1-COP mRNA in the α1-cop-1 mutant. 

Total RNA from 7-day-old seedlings of the mutant and wild type (Col-0) were used for 

the RT-PCR. In the PCR, RPα1/LPα1 α1-COP gene specific primers and 36 cycles 

were used. ACT7 was used as a control (22 cycles).  

C. α1-cop-1 mutant did not show a phenotype different from that of wild type. 

 

Figure 2. Characterization of α2-cop mutants.  

A. Diagram of the α2-COP gene and localisation of the T-DNA insertion (triangles) in 

the α2-cop mutants. Black boxes represent coding regions and grey boxes represent 5'-

UTR and 3'-UTR regions.The positions of RPGα2, LPGα2, α125 and α123 primers are 

shown. 

B. sqRT-PCR analysis to show the absence of α2-COP mRNA in the α2-cop mutants. 

Total RNA from 7-day-old seedlings of the mutants and wild-type (Col-0) were used for 

the RT-PCR. In the PCRs, gene specific primers and 36 cycles were used (Table S6). 

ACT7 was used as a control (22 cycles). 

C. Phenotype of 4-week-old (left) and 7-day-old (right) seedlings of wild type and α2-

cop-3 mutant. 

D. Rescue of the growth phenotype of α2-cop-3 by transformation with a HA tagged 

α2-COP cDNA construct. Phenotypes of 7-day-old seedlings (left) and 50-day-old 

plants (middle) of wild-type (Col-0), α2-cop-3 and α2-cop-3 complemented with α2-

COP-HA. Western blot analysis with a HA antibody of the two independent lines of α2-

cop-3 transformed with α2-COP-HA shown in the middle. 
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Figure 3. Expression levels of α-COP in α1-cop-1 and α2-cop-3 mutants.  

sqRT-PCR analysis of α-COP with α125 and α123 primers. Total RNA was isolated 

from 7-day-old seedlings of wild type (Col-0), α1-cop-1 and α2-cop-3 mutants. ACT7 

was used as a control (22 cycles).  

A. Total α-COP expression in wild type and α1-cop-1 mutant. 

B. Total α-COP expression in wild type and α2-cop-3 mutant. 

C. Quantification of the experiments shown in A and B from three biological samples. 

Values were normalized against the α-COP fragment band intensity in wild type that 

was considered as 100%. Error bars represent SE of the mean.  

D. Western blot analysis of total protein extracts from 7-day-old seedlings of wild type, 

α1-cop-1 and α2-cop-3 mutants with an N-terminal α-COP peptide antibody to detect 

both isoforms. 10 μg of total protein was load in every lane. GAPC was used as loading 

control. 

 

Figure 4.  α2-cop-3 mutant shows abnormal distribution of RFP- p24δ5.  

CLSM of epidermal cells of 4.5-DAG cotyledons. RFP-p24δ5 mainly localized to the 

ER network in wild-type plants (Col-0). In contrast, it  was mostly found in punctate 

structures, which often appeared in clusters, in the α2-cop mutant. Scale bars: 10 µm. 

 

Figure 5. α2-cop-3 mutant shows abnormal distribution of the Golgi marker ST-YFP.  

CLSM of epidermal cells of 4.5-DAG cotyledons. The Golgi marker ST-YFP partially 

localised to the ER network and to clusters of punctate structures in the a2-cop-3 

mutant. Scale bar is 10 µm. 

 

Figure 6. Alteration of Golgi morphology of cotyledon cells in the α2-cop-3 mutant.  

A. Chemically fixed cotyledon cells from 4 days old wild-type (Col-0) or α2-cop 

mutant seedlings. Scale bars: 200 nm. 
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B. High-pressure frozen cotyledon cells from from 4 days old α2-cop mutant seedlings. 

G, Golgi; V, vesicle; MVB, multivesicular body. Scale bars: 500 nm. 

 

Figure 7. Expression of specific genes in α1-cop-1, α2-cop-3 and gnll1 mutants.  

A. sqRT-PCR validation of the microarray data performed for four genes whose 

expression changed in the α2-cop-3 mutant. Total RNA was extracted from 4 day-old 

seedlings. Specific primers were used and ACT7 was used as a control. 

B. RT-qPCR analysis of SEC31A and SEC31B expression in α1-cop-1 and α2-cop-3 

mutants. Total RNA was extracted from 7-day-old seedlings. The mRNA was analysed 

by RT-qPCR with specific primers and normalized to UBQ10 gene expression. Results 

are from two biological samples and three technical replicates. mRNA levels are 

expressed as relative expression levels and represent fold changes of mutant/wild type. 

Values represent mean ± SE of the two biological samples. 

C. sqRT-PCR analysis of COPII subunit genes in the α2-cop-3 mutant. Total RNA was 

extracted from 4-day-old seedlings. Specific primers were used and ACT7 was used as a 

control. 

D. sqRT-PCR analysis of SEC31A, BIP3 and PILS4 (genes that show altered expression 

in α2-cop-3) in gnl1 (SALK_091078C). Total RNA was extracted from 4-day-old 

seedlings. Specific primers were used and ACT7 was used as a control. The pattern of 

expression of the three genes is similar in both α2-cop-3 and gnl1. 

All specific primers are shown in Supplemental Table S6. 

 
















