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ABSTRACT 

 

In the past few decades, the era of artificial intelligence has revolutionized the field of 

image analysis, reaching medical image analysis. In this line, automatic segmentation of 

regions of interest in medical images has appeared as an alternative to conventional 

segmentation methods (manually delineating the regions by an expert) with the aim of 

accelerating clinical processes. However, the need of numerous libraries and frameworks 

to run a neural network and the difficulty of handling them, difficult the implementation 

of such innovative techniques inside a real clinical workflow.  

In this bachelor’s final thesis, an intuitive user interface was created through 3D Slicer to 

automate the communication with a Docker Image that stored an already-trained neural 

network that performed the segmentation of 6 of the main organs at risk in head and neck 

CT images. Although the final setup in the Radiotherapy Service for which the application 

was designed was not accomplished, the steps and guide to do it were described. Besides, 

the deep learning based tool for automatic segmentation was proved capable of 

generalizing in other environments. 

This project constitutes an approach on how to integrate inside a clinical workflow a tool 

for automatic segmentation of very concrete images (head and neck images). 

Nevertheless, this will lay the foundations for further research in this field to reach the 

final objective, which is to shorten times of radiotherapy treatment planning to provide 

better health care for cancer patients.  
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1. INTRODUCTION 

1.1 Head and neck cancer 

Cancer continues to be one of the leading causes of morbidity in the world, with 

approximately 14 million new cases in 2012 [1] . As stated in [1], it is expected to increase 

by 70% in the coming decades, reaching up to 24 million cases by 2035, due to the 

increase in the life expectancy, among other factors. According to this, an estimation of 

315.535 new cases will be diagnosed in Spain by the year 2035.  

Head and neck cancer (HNC) includes a wide variety of malign neoplasms that arise in 

the head or neck region. Therefore, they include numerous anatomical areas with multiple 

sub-locations (Fig. 1.1), among which are: oral cavity, pharynx, larynx, paranasal sinuses, 

nasal cavity and salivary glands. Esophageal, skin and brain tumors are excluded from 

this definition [2]. 

 

Fig. 1.1 Anatomical sites and subsites for the head and neck cancer [2] 

The primary risk factors for this group of cancers are tobacco, alcohol consumption and 

human papillomavirus (HPV). The prevalence of HNC is related to frequency, intensity 

and duration of tobacco consumption, and it has a multiplicative effect when combined 

with alcohol. The HPV infection is the cause of HNCs that occur primarily in the 

oropharynx [3, 4].  

Globally, HNC accounts for approximately 6% of all cancers, being oral cavity and 

laryngeal cancers the most common head and neck cancers. From [5] it can be concluded 

that these cancers are way more common among men than they are among women, and 

that its prevalence is increased with age. The estimated number of incidences of lip and 

oral cavity cancers in 2018 for both males and females aged over 40 worldwide was 

319.220 [5] (see Table 1.1. Estimated number of incident cases worldwide, both sexes, 

ages 40+ [5] below). In Spain, this number was estimated to be 3.878 [5] .  
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Table 1.1. Estimated number of incident cases worldwide, both sexes, ages 40+ [5] 

 

Treatment decisions are very complicated as they involve many specialists and they need 

to address the specific needs of each case: the location and stage of the tumor, and the 

general status of the patient. The patient, in partnership with family or caregivers, should 

participate in the decision of treatment, after the explanation of all the alternatives with 

their risks and benefits [6, 7].  

Generally, the decisions for treatment depend mainly on the location of the tumor. 

Surgery is indicated in cases of small and easily removable lesions, like hypopharynx, 

paranasal sinuses or tongue tumors [7, 8]. Meanwhile, radiotherapy (usually with 

adjuvant chemotherapy) is mostly preferred for organ preservation, and for palliative 

treatments in patients with recurrent and/or metastatic diseases [6].   

This thesis lies in the implementation of a tool for the radiotherapy treatment process, 

specifically to accelerate the planning stage. Hence, Radiation Therapy will be treated in 

the next point.    

 

1.2 Radiotherapy 

Radiation therapy consists of the use of ionizing radiation for the treatment of diseases, 

mainly of a malign nature. It comprises the administration of a dose of high energy x-rays 

at an anatomical volume, to eliminate the neoplastic cells, trying to produce the minimum 

possible damage to healthy tissue. It deals with the treatment of more than the 60% of the 

cancers and it is also indicated in many benign nature diseases, due to its antalgic and 
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anti-inflammatory properties. Along with surgery and chemotherapy, radiotherapy 

constitutes the basis for the treatment of neoplastic diseases.  

Technically, the modalities of radiation oncology can be classified according to the 

distance of the radiation source from the patient's anatomy [9]: 

- External radiotherapy. The radiation is administered with a remote radiation 

generator. Now, linear accelerators are used for administration. 

- Brachytherapy. The source is in direct contact with the tumor. Different types of 

radioisotopes are used, depending on the therapeutic objectives.  

Radiotherapy can be indicated as an exclusive method with curative purpose, as a 

complementary method to surgery or chemotherapy to reduce the risk of local relapse, or 

with palliative intention, to control pain or improve symptoms.  

In oncology, the choice of the best treatment is based on finding the one that offers the 

patient the best quality of life with the least number of side effects, with equal efficacy in 

survival. The advantage of radiation therapy is that it preserves the organ and, sometimes, 

the function, which means the possibility of keeping the voice in a larynx cancer or 

retaining the swallowing function in a tongue cancer. In addition, most patients do not 

require hospital admission during treatment. This only happens in 5-10% of cases, mostly 

due to a poor physical condition of the patient. 

However, it is a long-lasting treatment, which is administered daily for 4-7 weeks in cases 

of curative purpose, which implies displacement and the stress of going to the hospital 

every day. 

 

1.3 Radiotherapy Service 

Once Radiation Therapy is selected as the first or next step for a cancer treatment, the 

starting point consists on basically determining where to aim radiation beams and how 

much radiation should the tumor get (treatment planning). This will shape a collimator 

for the treatment machine to direct the rays to the tumor and block the areas that do not 

need to be treated.  

The Radiation Oncology Service offers personalized clinical and therapeutic care to the 

cancer patient, through the indication, planning, control, treatment and follow-up of the 

patient treated with radiation and associated therapies. The main services are: 

Medical consultations 

The service includes first visits, successive treatment visits and post-treatment reviews. 

Simulation and immobilization  
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The first step of the treatment planning. It involves a computed tomography (CT) scan 

that will allow the doctor to locate the exact area to be treated and protect the healthy 

tissue. 

Before taking the scan, the patient is positioned in the exact same position in which he 

will receive treatment. To do so, immobilization systems are used and reference marks 

are tattooed thanks to a laser system. This will assure that the patient is right where it is 

supposed to be when the treatment is delivered.  

In head and neck cancers masks are used as immobilization systems. The patient lies 

down on the scanner bed and thanks to a thermoplastic mesh material, a mask of his face 

is made (Fig. 1.2). Reference marks are painted to assure that the position will be 

maintained during the treatment sessions.  

 

Fig. 1.2. Immobilizer for radiotherapy in head and neck cancers [10] 

After the immobilization of the patient, a CT scan will be obtained to have a three-

dimensional image of the treatment area. 

Treatment planning 

After the CT is obtained, technicians will manually delineate the organs at risk (OAR) in 

the tumor area, using a computer software. Doctors will then delineate the treatment area 

so that physicians can plan where to aim the radiation beams and where to avoid them.  

This is a crucial step that will determine the success of the treatment and usually takes 

between 15 and 20 days. 

Once the physicians have planned the dose, lead blocks are individually made so that the 

beam is shaped to irradiate the target volume and precisely deliver the dose on the volume. 

Treatment delivery 

After the planning step has finished and all the necessary tests have been carried out 

according to the dose delivery, the treatment process will begin, which is usually given 

once a day, five days a week, for five to seven weeks depending on the treatment. 



 

 5 

 

2. BACKGROUND AND STATE OF THE ART 

Segmentation of biomedical images involves the process of labeling the pixels of an 

image with the aim of highlighting regions of interest, like anatomical structures [11]. In 

Radiotherapy workflows, a medical image is manually delineated by a trained expert. 

However, this practice is labor-intensive and impractical, as it requires outlining the 

structures slice by slice. Besides, it can be inaccurate due to inter-operator’s variability.  

Research into automatic segmentation methodologies has been made on two main 

approaches [11, 12], reviewed in this chapter. Multi-atlas approach (reviewed in point  

2.1 Registration-based segmentation methods) treat segmentation as a registration1 

problem, which is limited by the great variability between subjects. To overcome these 

challenges, registration-free methods (point 2.2 Registration-free methods) rely on 

looking for invariant features (manually imposed or learned) that characterize the 

anatomy in an unregistered training data set.  

2.1 Registration-based segmentation methods  

The first atlas-guided segmentations were based on a single atlas, a single image 

manually-labeled by a specialist [11, 12]. The mapping obtained in the registration of the 

two images was used to transfer the labels from the atlas to the novel image.  

However, this technique does not consider the possible anatomical variations between 

subjects. Therefore, research on the multi-atlas registry was conducted from two 

approaches [11]. The first, based on a set of images, identified the most significant atlas 

and used it to segment the new image. However, the most popular approach was 

probabilistic segmentation based on atlas, which used a unique atlas built from the joint 

registration of the training set images. In addition, information on the likelihood of 

observing a label at a given location is derived from segmentation. The benefit of this 

method is that, once the atlas is generated, only one registration is needed to segment the 

desired image.  

Later, the multi-atlas segmentation methods (MAS) appeared, which, instead of grouping 

all atlas into one model, register the new image with each of the atlas images. Then, the 

most repeated tag is selected in each voxel (known as “majority vote”) [11]. 

 

2.1.1. Multi-atlas Segmentation methods 

The main steps of a general MAS algorithm are represented as in the form of blocks in 

the figure below (Fig. 2.1). From there it can be seen that the first step is generating the 

atlases, which are a set of labeled images, typically obtained by an expert. As stated in 

 

1 Image registration is the process of aligning two or more images, by designating one of 

them as the reference image, and applying geometric transformations to the others so that 

they align with the reference [14].  
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[11], depending on the case of study, the atlases can be pre-processed to improve 

performance, or select only the high-quality images. Alternatively, one can exploit the 

variability of segmentations by selecting only images segmented by non-experts.  

 

Fig. 2.1. Blocks for generating a MAS method. Dashed blocks are optional [11] 

Optionally, before performing the registration, one can proceed with what is known as 

“Offline Learning” [11], a modern tool that consists of processing the atlases with no 

prior knowledge about the image to be segmented. Such pre-processing tools can be 

related to the weight assignment for the label fusion step. For example, co-registering the 

set of images and comparing the propagated labels can determine the atlases that better 

predict the rest of labels and assign them the higher weights [11].  

The core step of the algorithm is the Registration, which has three main components: the 

deformation model, the objective function and the optimizer [11]. The deformation model 

involves type of transformations that will be made to one or more images to maximize an 

objective function. This function is typically related either to spatial distance between 

landmarks (manually or automatically detected) or to image intensities. The optimizer is 

usually an iterative method, such as gradient descent.  

Normally, a registration is performed between the new image and each of the images in 

the atlas, which is a computationally expensive practice. To reduce run time, atlas 

selection may be implemented. Reducing the number of atlases improves both 

computational efficiency and segmentation accuracy, as irrelevant atlases may be 

removed.  

Once the registration is performed (spatial correspondences between images are 

achieved), these methods proceed to transmit the labels from the atlases to the novel 
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image to acquire segmentation. One of the most popular method is the nearest neighbor 

interpolation, where each label of the novel image will correspond to that of the closest 

voxel in the atlas space [11].  

Label fusion is the step of combining propagated atlas labels, which can be achieved by 

best-atlas selection methods or majority voting, among many others [11]. In best atlas 

selection, a single atlas is chosen based on, for example, the match in intensities between 

the registered atlas and the new image. Meanwhile, in majority voting, the most frequent 

label at each location is chosen. This can be improved with weighted voting, where each 

atlas is associated to a weight depending on its similarity to the novel image.  

Post processing can be applied to the label fusion outputs in a wide variety of ways, from 

starting an active contour method or fitting a contour into a bounding box, to comparing 

the intensities with the expected ones, among many others [13, 14, 15, 12].  

MAS provides very precise segmentation algorithms, as they take into consideration all 

the images in the data set. Nevertheless, it is computationally expensive and time and 

memory consuming. This may be the main reason why it has not been widely adopted in 

clinical fields. In addition, the core of these methods is registration, which is highly 

conditioned by variations between subjects. That’s why the most common application for 

MAS algorithms has been brain images, where good alignments are achieved even with 

the simplest algorithms [16, 11]. 

 

2.2 Registration-free methods 

Recent advances in artificial intelligence, computational power and data availability, have 

enabled the training of more complex registration-free methods, which base their 

challenges on finding invariant features that optimally represent the anatomy in a training 

data set [12]. This concept lies at the basis of many Deep Learning algorithms: a set of 

processed algorithms based on Neural Networks that attempts to model high-level 

abstractions in data using architectures composed of multiple layers that transform input 

data into output. 

Artificial Neural Networks (ANN) have been developed based on the structure and 

behavior of the nervous system [17]. They are information processing systems capable of 

generalizing and learning from experience, and in many biomedical applications they can 

reach better decisions than even doctors.  

In a neural network, nodes are placed in the layers, where the leftmost layer is called the 

input layer, the layer in the right is the output layer, and the layers in the middle are known 

as hidden layers [17, 18]. Besides the input nodes, each node in the ANN has one or more 

inputs and only one output, as can be seen below in Fig. 2.2. 
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                 Fig. 2.2. Architecture of an Artificial Neural Network, here with two hidden layers [18] 

Each node has specific parameters to compute its output as in Equation 2.1, where 𝑥𝑖 are 

the inputs to the node, 𝜔𝑖  are the weights associated to the node, 𝑏 is the bias of the node, 

and 𝑓(𝑥) is the activation function [17].  

𝑓(𝜔𝑖 ∗ 𝑥𝑖 + 𝑏)                                                      (2.1) 

The most extended activation function is the sigmoid function, whose output with inputs, 

weights and biases is: 

                
1

1+𝑒𝑥𝑝⁡(−∑ 𝜔𝑗𝑥𝑗−𝑏)𝑗
                                                   (2.2) 

This activation function has a smooth shape when plotted, which means that small 

changes in weights and biases produce small changes in output. This is the basis of the 

learning of a network.  

Given a set of inputs and the desired outputs, the goal of the training process is to find the 

weights and biases that minimize the difference between the desired outputs and outputs 

that the network gets. Such process is achieved with an error measurement.  

The learning of a network is achieved by modifying the weights and biases of the nodes 

until the desired outputs are obtained. The network learns to perform certain functions 

through training with examples (modifying the weights in order to reduce the error). 

Gradient descent is the most widely used optimization algorithm, where the weights and 

biases are first initialized to a random point and they are adjusted iteratively to decrease 

the error with a backpropagation algorithm.    

In backpropagation, for each iteration of the network, the output of each neuron is 

computed and the results are compared with the desired ones. Then, the error of each 

neuron is calculated backwards and the weights are adjusted so that it decreases. The 

training ends when the sum of the errors is below a threshold.  

Several Deep Learning architectures, such as Convolutional Neural Networks (CNN) 

have been applied to biomedical fields proving to produce excellent results. They are 

characterized by applying techniques that allow avoiding the so-called "gradient 
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vanishing" which makes it possible to effectively train very deep networks (more than 2 

hidden layers).  

 

2.2.1 Convolutional Neural Networks 

A CNN is a type of neural network used in image recognition and classification where 

neurons are very similar to the ones in the primary visual cortex. In [19] it is explained 

how to use a CNN to classify an input into four categories: dog, cat, boat and bird (Fig. 

2.3). As evident, given the input in the image below, the net should obtain the highest 

probability for boat among all four categories.   

 

   Fig. 2.3. Architecture of a convolutional neural network [19] 

CNN usually have three types of layers: convolutional, pooling and fully connected 

layers.  

Convolutional layers use kernels (filters) to extract information from inputs by 

performing convolutional operations. That is, given an input, the kernel will slide over 

the image computing the dot product to obtain what is called “Feature Map” or 

“Activation Map”. CNN usually use ReLU activation function to generate these feature 

maps. This activation function stands for “Rectified Linear Unit” and it performs a non-

linear operation and replaces all negative values in the feature map by zero. For positive 

inputs, the ReLU function grows to infinite [19]. 

Next, the main purpose of the pooling layer is to reduce the number of parameters, which 

helps reduce overfitting and computational cost and, at the same time, extracts 

representative features from the input. Spatial pooling can be of different types: max, 

average, sum, etc. In case of max pooling, the max value for each kernel position is taken 

and put in the corresponding position in the output matrix. In case of average pooling, the 

average is taken for every position.  

In the example in [19], we can appreciate that after the convolution and ReLU step, 

several feature maps are obtained. Pooling is then applied separately to each of them. 

Right after this step, we have another set of convolutions + pooling, which computes 

convolution with 6 types of filters, obtaining 6 different feature maps and performing max 

pooling to the 6 of them. After these steps, the net has managed to extract the most 

relevant features of the image and to reduce feature dimension.  
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Fully connected layers are the last few layers in the network, and their aim is to use the 

features obtained in the previous steps to classify the image into the classes, based on the 

training dataset. The sum of output probabilities in the output layer is 1.  

Finally, the overall training process in a CNN is as follows: filters and weights are 

initialized randomly, the network takes a training image and follows all the steps forward 

to find the output probabilities for each class. Then, the error is obtained by computing 

the difference between the target probabilities and the output probabilities, and the 

backpropagation algorithm together with the gradient descent is used to adjust weights. 

When the error is lower than a threshold, the backpropagation algorithm ends, which 

means that the network learnt to classify that particular image [19].  

All those steps are repeated with all the images in the training data set using the weights 

and parameters calculated in the previous step. If the training set is large enough, the 

network will generalize well to new images and classify them correctly [19]. 

Convolutional Neural Networks have proven to get optimal results concerning image 

analysis and classification, which make these methods the state-of-the-art of image 

segmentation and object recognition. They have been applied to many applications, such 

as digit or face recognition. Their great performance in these fields has placed CNN in 

the top of automatic methodologies for medical image segmentation.   
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3. PROJECT JUSTIFICATION AND OBJECTIVES 

 

3.1 Project justification 

Medical image segmentation refers to the process of labeling the anatomical structures of 

an image by a trained expert so that they are easily recognized by an observer. In a 

Radiotherapy Service, one of the main steps of treatment planning is the segmentation of 

the OARs, right after the CT scan has been obtained. The OARs are the structures closed 

to the tumor where radiation should be avoided so as not to damage healthy tissue, and 

they are different depending on the location of the tumor.  

This task is performed manually by trained physicians, what makes this practice slow, 

prone to human error and difficult to reproduce. Once the delineation of the OARs has 

been performed, a doctor will review the segmentation and will proceed with the 

delineation of the tumor. This whole practice is time-consuming and, considering the 

large number of new cases that a hospital hosts in one day, impractical for Radiotherapy 

workflows, where time is a critical matter.  

In the past few decades, research was carried out into automatic segmentation tools, 

motivated by the drawbacks mentioned above. From those, we can conclude that Multi-

Atlas Segmentation methods offer high-quality segmentations, as they can accurately 

capture anatomical variations. However, this comes at a high computational and time 

cost, which has motivated to run investigations towards registration-free methods. In this 

way, deep learning models are the most extended tool for automatic segmentation, being 

the CNNs the state-of-the-art. 

However, implementing deep learning models requires the installation of numerous 

libraries and frameworks which makes it very difficult to integrate them in the clinical 

workflow, causing a gap between the state-of-the-art and the real praxis.  

The aim of this thesis is to integrate a deep-learning-based tool in the Radiotherapy 

Service of the HGUGM (Hospital General Universitario Gregorio Marañón) for the 

automatic segmentation of OARs in head and neck tumors. The student will be given an 

already-trained deep learning model with the goal of integrating it into the service 

providing an intuitive user interface. Specifically, the neural network is trained to perform 

the segmentation of six structures: left and right eye, brain stem, spinal cord and left and 

right parotid. For that purpose, this project is supported by the 3D Slicer environment, the 

Docker Container Platform and the already-built convolutional neural network that 

performs the segmentation.  

In this way, this project constitutes an approach on how the process of planning a 

radiotherapy treatment could be accelerated, so that faster attention is given to patients. 

Besides, it is a demonstration of how to integrate a deep-learning based model for image 

segmentation into a real clinical workflow, which will bring the latest techniques in 

automatic segmentation to the real environment.  



 

 12 

 

3.2 Objectives 

The overall objective of the project is to accelerate the planning process of the 

Radiotherapy treatment by integrating a tool for automatic segmentation of the OARs in 

head and neck cancers. Specific objectives of the project are: 

1. Create a Docker repository to host the deep learning model 

2. Develop a module in Slicer that runs the model by calling the Docker container 

3. Validate the module with a set of training images 

4. Design the new workflow that images will follow from its obtaining in the CT   

scan to its segmentation in the planning room 

5. Implement the new workflow in the service 
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4. TIMELINE AND WORKING METHODOLOGY 

In this section, the activities to perform by the student will be presented (Fig. 4.1), as well 

as the working methodology and the way the results will be evaluated.  

In stages 1 to 4, the student underwent a series of tutorials and courses to learn 

programming in Python, to deeply understand neural networks and to study how Docker 

works and learn to containerize an application.  

Once accomplished, the student started the programming stages to achieve the objectives 

of this project: creating an application for the radiotherapy service of the HGUGM to 

automatically segment the OARs of a given image. It should be highlighted that along the 

first stages of the process, the student performed a professional internship in the 

radiotherapy service of to get to know the way it worked, the workflow of the images, the 

whole process of treatment, etc. This way, the student could ascertain how to integrate 

such a tool into the service, considering the distribution of the working stations and the 

point of view of the physicians working there. These actions were performed in the last 

weeks of June. And from that stage onwards, the student underwent an improvements 

stage, were corrections were made to the Slicer module, remotely from Valencia. 

 

  Fig. 4.1. Timeline of the project 

 

The student underwent through all the stages with the help of her supervisor Manuel 

Concepción Brito. The overall working methodology basically consisted on the following 

steps: 

1. Problem understanding. Along the student’s internship, she was able to 

understand the needs of the service and the importance of automatizing the 

treatment planning process.  
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2. Solution research. Once the problem was understood the student started a 

research on how to give a solution to the problem, taking into consideration the 

materials available for the project (described in the following point,  

MATERIALS).   

3. App programming. The programming stage consisted on performing the solution 

established, with the guidance and feedback of the supervisor.   

4. App evaluation. The final steps consisted on performing the evaluation methods 

described in 6.2 Evaluation methods point.  

Along the last steps of the study, the student performed several tests on the software to 

check the adequacy of the results obtained and execute the changes required. 
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5. MATERIALS  

5.1 3D Slicer 

3D Slicer is a free open source software platform to analyze and visualize medical images, 

supporting multi-modal imaging (CT, MRI, PET). It is available on numerous operating 

systems and includes several tools like segmentation and registration [20, 21]. From the 

perspective of a biomedical engineer or computer scientist, 3D Slicer is a platform for 

development and delivery of algorithmic programs. 

5.1.1 Hardware requirements 

3D Slicer package that can be run on Mac, Linux and Windows with graphics capabilities 

and memory enough to hold the original image data and process results. Besides, a 64-bit 

system is required [20]. 

There are two available versions to download for each operating system. The nightly 

version has the newest releases, as it is updated every night with changes that group of 

developers make. The stable version has older releases, but they are more carefully tested. 

5.1.2 Application overview 

Slicer offers an intuitive user interface that allows the implementation of several tools and 

modules for specific tasks delivery in clinical research applications. The user interface is 

divided into six components: the Application menu, the Toolbar, the Module panel, the 

Data probe panel, the 3D Viewer and the Status bar (Fig. 5.1). 

 

 Fig. 5.1. 3D Slicer application main view [20] 

Toolbar offers quick access to commonly used tasks, such as modules list and 

loading/saving data.  
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Module panel provides all the options and features that the selected module offers to the 

user.  

Slicer saves all the loaded images in the Slicer Scene and represents the data as a node in 

the scene. When moving the mouse over the image the information at each point is shown. 

 

5.1.3 Data loading and saving 

There are two main types of data that can be loaded into Slicer, accessible from the 

leftmost side of the Toolbar: 

- DICOM2, which can be loaded from the DICOM browser once it’s been imported 

to the data base.  

- Non-DICOM, covering both conventional image formats(JPG, TIFF…) and 

medical field specific formats (NIfTI…), which can be loaded with drag and drop 

on the Slicer window, or by using the button Data in the Toolbar. 

The data loaded in the Scene is available through the Data module, which can be found 

in the Toolbar or the Modules list. There, the node hierarchy can be modified to create 

subjects, studies and so on.  

Saving can be accessed through the button Save in the Toolbar. The node can be exported 

in all image formats. Hence, with Slicer we can create a DICOM image from a nifty image 

(or nrrd), and vice versa.  

5.1.4 Slicer architecture 

Slicer is composed mainly of three structural levels (Fig. 5.2). The lowest one includes 

fundamental libraries that the operating system provides to allow the use of windowing 

and graphics resources of the host system. In the intermediate level, there are the 

languages (such as python or C++) and libraries like Qt (for GUI framework), DICOM 

Toolkit (used to interact with DICOM data and services) and jqPlot (provides charting 

capabilities) [21] 

 

   Fig. 5.2. Slicer architecture [21] 

The highest level, the application itself, consists of the application core, Slicer modules 

and Slicer extensions. The core deals with data visualization and developer interfaces that 

support extension of the application with new plugins. Slicer modules are those internal 

 

2 DICOM is a widely-used set of standards for digital radiology [15] 
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plugins dependent on the core to implement new functionalities. Meanwhile, Slicer 

extensions are modules that are not packaged as part of Slicer distribution, they are freely 

installed by the user through the Extensions Manager [21].  

Slicer modules allow the implementation of different tasks for clinical research 

applications, such as segmentation, registration, volume rendering, etc. A wide variety of 

modules are available to the user through the interface. Furthermore, the developer can 

create its own extensions and modules by implementing a python program based on the 

templates that Extension Wizard delivers.  

The Extension Wizard is a module that allows the user to select an extension (directory) 

and add a module that provides template functionalities. After that, changes can be made 

in the program using Python language to add the buttons and functionalities desired and 

obtain a module with a user interface that performs whatever function wanted.  

In this thesis, a module will be created to deliver the segmentation of the OARs in a head 

and neck CT image.  

 

5.2 Docker 

Docker is a tool for deploying and running applications in an isolated environment by 

using containers. This device makes sure that different resources are isolated so that there 

is no clash in any environment by using a build-once deploy-everywhere concept: 

basically, write the code once and deploy it everywhere, without going to the hassle of 

version collisions [22, 23]. 

It is similar to running an application inside a Virtual Machine (VM), but without the 

difficulty of setting up and managing a VM. Instead, in Docker the code and environment 

are wrapped inside a container that runs on the host operating system. 

5.2.1 Docker containers vs Virtual Machines 

Virtual Machines import a guest Operating System on top of a host Operating System 

(OS). In Fig. 5.3 there are three guest OS (which are the three VMs) over a host OS. This 

architecture will lead to poor performance and will take a big amount of system resources, 

because each guest will have its own libraries [22, 24]. 

Containerization brings the virtualization to the operating system level. Instead of 

bringing abstraction to the hardware as VMs do, containers bring abstraction to the 

software. It is more efficient because libraries and resources are shared in the host, which 

makes the process faster. Containers are lighter and faster than VMs [22, 24]. 
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     Fig. 5.3. Comparison between Virtual Machines(left) and Docker Containers (right) [24] 

The Docker containers use a Host Operating System. On the top of it there’s the Docker 

Engine, where Docker containers are formed. These containers have applications running 

on them as well as all the requirements they need (binaries and libraries). Each application 

will run on a separate container.  

5.2.2 Docker Overview 

Let us now understand the Docker system in detail, which is a client-server application 

with the following major components [24]: 

- A client, which is the command line interface 

- A server, which is a running program called Daemon 

- A rest API, used for communicating between the client and server 

 

 

Fig.5.4. Docker Engine in Linux OS (left) and Windows/MAC OS (right) [24] 

The difference between a Linux OS and a Windows/OS X is that the first one accesses 

the Daemon directly from the client (the terminal), while the other two use an additional 

component, the Docker Toolbox, to communicate with the client (Fig.5.4).  
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5.2.3 Docker Architecture 

Before going through the architecture and the way the communication is performed 

between the components, some concepts will be explained.  

Docker Images are the blocks that build containers providing the desired environment to 

create the application. They are defined using a Docker File, which is just a file with a 

list of steps to create that image. 

Docker Containers are running instances of Docker Images. They hold the entire set to 

deploy an application. 

The Docker Registry is the cloud where developers and communities upload images so 

that they can be publicly accessed by other users. 

 

         Fig. 5.5. Docker architecture and flow of the instructions [24] 

The Docker Daemon is responsible for images and containers and for processing the 

commands of the client.  

To build a Docker Image, the Docker client will call the Daemon by using the docker 

build command. The Daemon will build an Image based on the inputs that a Dockerfile 

offers and will save it in the Registry, which can be either the Docker Hub3 or a local 

repository (Fig. 5.5). 

If preferred, an already-built Image can be pulled from the Docker hub with the docker 

pull command.  

Finally, to build a container, the Docker client will call the Daemon with the docker run 

command.  

 

3 Docker Hub is a cloud registry where developers and communities upload Docker 

Images 
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5.2.4 Docker Workflow 

To fully understand how to build a containerized application, let us go through the flow 

of instructions (Fig. 5.6). 

The first step is building a Docker File, which is a file that contains a bunch of instructions 

that define the libraries and required dependencies for a particular application. To build a 

Docker Image out of this file, the docker build command will be employed.  

The image can be run to create as many Docker Containers as desired. Every time the 

application needs to run, a Docker Container is created.  

Finally, the Image can be uploaded to Docker Hub, where anyone can pull it to run the 

application. 

 

Fig. 5.6. Docker workflow for developing an application [24] 

 

5.3 Convolutional Neural Network 

The student was given an already-trained Neural Network for performing segmentation 

of 6 OARs in head and neck cancers to a given CT image.  

The Neural Network is based on an example that demonstrates the use of a NiftyNet [25] 

to train a Dense V-Net to perform multi segmentation of organs on abdominal CTs [12]. 

NiftyNet is an open-source platform intended to share CNN and pre-trained models with 

researchers to quickly give deep-learning-based solutions to image analysis problems.  

The network, provided by Manuel Concepcion, uses a V-shaped architecture showed in 

Fig. 5.7, which is mainly described in terms of 3 key features: downsamplings, 

upsamplings and convolutions. As it can be observed, after a convolution, a cascade of 

dense feature stacks and convolutions generate activation maps at three resolutions. The 

dense feature stacks constitute the downsampling stages and are basically a sequence of 

convolution blocks where the inputs are concatenated features from the preceding blocks. 

A convolution is applied to each resolution to reduce the number of features, and all 

outputs are upsampled to the initial downsampled size. If initial prior is given, it is added 

to the prediction made after the final concatenation.  
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Fig. 5.7. DenseVNet network architecture [12] 

The data used to train the network comprises a set of 59 head and neck CT images, 

manually segmented by experts, under the same criteria for the results to be the best 

possible.  

Apart from the Neural Network itself, the student was also given two files that execute 

the network. The main one, ‘predict.py’, defines the weights path and loads the models. The 

segmentations are performed individually loading one model for every organ at risk. Once 

loaded, the segmentation process is initiated by calling the other file, ‘HN_Segmenter.py’, 

which preprocesses the image and obtains segmentations. Finally, results are stored in a 

default directory. The network is trained to segment images in nifty format, and results 

are also obtained in the same format. 

From this it can be concluded that to obtain segmentations of a given image, the predict.py 

must be executed. This will be the basis of the project.  

In         Fig. 5.8 below, an overview through all the files that compose the Neural Network 

is provided.  
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        Fig. 5.8. Folder organization of the Neural Network provided  
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6. METHODS  

As already mentioned, this thesis is an approach on how to give an answer to the problems 

and needs of the Radiotherapy Service in the HGUGM in relation to improving and 

accelerating the process of the treatment planning. The solution proposed by the student 

to provide automatic segmentation of the OARs is: to create a module in 3D Slicer that 

automates the process of calling a neural network trained to segment 6 OARs for head 

and neck CT images and stored in a Docker container. This chapter demonstrates the 

methods used to implement and evaluate such solution.  

6.1 Implementation 

The three main steps for implementing this project are: creating a Docker container to 

store the provided Neural Network, creating the Slicer module to provide a User Interface 

to all the process, and integrating the designed application into the Radiotherapy Service.  

 

6.1.1 Containerization of the Neural Network 

6.1.1.1 Dockerfile guide 

First step to store an application inside a Docker container is creating a Dockerfile, which 

is a plain text file that contains all the commands a user should enter in the command line 

to create a Docker Image [26].  

The format of the Dockerfile is as follows: 

# Comment 

INSTRUCTION arguments 

Docker treats lines that begin with # as comments. Instructions are run in order and, 

although they are not case-sensitive, they are usually uppercase to make the document 

more readable.  

Hereby the main instructions that can be used to build a Dockerfile are explained, and the 

Dockerfile used for the project is shown in Fig. 6.2. This Dockerfile was based on the 

official Dockerfile for Keras [27]  and on the one used in [28] to containerize a Keras 

model.  

FROM 

FROM <image>  

FROM <image>[:<tag>] 

FROM <image>[@<digest>] 
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This is the first command of a Dockerfile. It sets the base Image for subsequent 

instructions. Every Docker image is based on a base image, which is a way to specify the 

exact configuration to start with and then one by one we specify the libraries to install on 

the top of it. Tags and digest are two ways of specifying the image versions [26]. 

There is a wide range of available images to download in the Docker Hub [29].  

ENV 

ENV <key> <value> 

ENV <key>=<value> ... 

The ENV instruction sets the environment variable <key> to the value <value>. The 

difference between the two forms is basically that with the second one more that one 

value can be set to the variable [26]. 

RUN  

RUN <command> 

The RUN instruction executes any command in a new layer on top of the current image 

and commits the results to be used for the next step in the Dockerfile. A backslash \ can 

be used to continue a single RUN instruction on to the next line [26].  

WORKDIR 

WORKDIR /path/to/workdir 

The WORKDIR instruction sets the working directory for any RUN, CMD, ENTRYPOINT, 

COPY and AND instructions that follow it in the Dockerfile.  

ADD 

ADD <src>... <dest> 

This instruction copies the files in <src> into the <dest> directory inside the filesystem of 

the image. The <dest> is an absolute path where the source will be copied inside the 

container. The <src> is a relative path, being interpreted as relative to the place of the 

Dockerfile. 
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ENTRYPOINT 

ENTRYPOINT ["executable", "param1", "param2"] (exec form, preferred) 

ENTRYPOINT command param1 param2 (shell form) 

This instruction is used when an executable is desired to be run when calling the 

container. This is, the program that the container will execute to achieve the function. It 

is the last instruction in the Dockerfile.  

 

 

CMD 

CMD ["executable","param1","param2"] (exec form, this is the preferred form) 

CMD ["param1","param2"] (as default parameters to ENTRYPOINT) 

CMD command param1 param2 (shell form) 

This instruction can be used to set some default parameters to the ENTRYPOINT 

executables. In case there is no ENTRYPOINT, the instruction will include an executable.  

6.1.1.2 Creating the Dockerfile 

As per the Docker Images provided in [27] and [28], the Dockerfile will have the 

commands shown below in Fig. 6.2. It first starts from the Ubuntu base Image and creates 

a conda environment.  

In line 11, it is created a working directory inside the image where to store the program. 

Specifically, it stores the contents of the HN_Segmenter folder, (previously mentioned) 

as per the command in line 12.   

Next, it creates a directory, which is where all the segmentation results will go, as ordered 

in predict.py file.  

Then, it runs the installation of all the packages stored inside the requierements.txt file.   

Finally, it executes the file predict.py, which provides the segmentations. This is the file 

that is desired to be executed every time the Image is run. 

The files hierarchy must be as follows in order to succeed with the creation of the file are 

shown in Fig. 6.1 below.  



 

 26 

 

Fig. 6.1. Files hierarchy. Dockerfile must be outside the Neural Network files 
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 FROM ubuntu:16.04 

ENV CONDA_DIR /opt/conda 

ENV PATH $CONDA_DIR/bin:$PATH 

RUN mkdir -p $CONDA_DIR && \ 

    echo export PATH=$CONDA_DIR/bin:'$PATH' > /etc/profile.d/conda.sh && \ 

    apt-get update && \ 

    apt-get install -y wget git libhdf5-dev g++ graphviz bzip2 && \ 

    wget --quiet https://repo.continuum.io/miniconda/Miniconda3-4.2.12-Linux-x86_64.sh && \ 

    echo "c59b3dd3cad550ac7596e0d599b91e75d88826db132e4146030ef471bb434e9a *Miniconda3-

4.2.12-Linux-x86_64.sh" | sha256sum -c - && \ 

    /bin/bash /Miniconda3-4.2.12-Linux-x86_64.sh -f -b -p $CONDA_DIR && \ 

    rm Miniconda3-4.2.12-Linux-x86_64.sh 

ENV NB_USER Ines 

ENV NB_UID 1000 

RUN useradd -m -s /bin/bash -N -u $NB_UID $NB_USER && \ 

    mkdir -p $CONDA_DIR && \ 

    chown Ines $CONDA_DIR -R && \ 

    mkdir -p /src && \ 

    chown Ines /src 

USER Ines 

# Python 

ARG python_version=3.5 

ENV KERAS_BACKEND=tensorflow 

WORKDIR /home/Ines 

ADD ./HN_Segmenter /home/Ines 

RUN mkdir -p /home/Ines/HNSegmenter/tmp/segmentations 

Fig. 6.2. Dockerfile  
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6.1.1.3 Creating the Docker Image  

Once the Dockerfile is done, we must build the Docker Image. The line of code to be 

written in the Terminal is the following:  

docker build -t [Image name] . 

Here, the dot in the end determines that the Docker Image will be created in the current 

directory. Hence, to build the Image for this project, the directory in the Terminal should 

be the folder where the Dockerfile is (by “cd” to the desired folder).  

Once inside the right folder, the exact commands are: 

docker build –t hn-segmenter . 

Terminal starts executing all instructions in order and after several minutes it finishes and 

prints a success message. It can be verified that the image was properly created by 

checking out the images list with the command: 

docker images  

 

 

6.1.1.4 Creating the Docker Container  

To create the container, a running instance of the Image must be initiated. To do so, the 

following commands must be scripted in the Terminal: 

docker run [Image name] [args] 

In the case at hand, as per the last instruction in the Dockerfile, the Image will always run 

the commands “python predict.py”. Hence, the arguments that have to be stated in the 

command line are: “—path path/to/file”. The call results as follows: 

docker run hn-segmenter --path path/to/file 

 

In any case, this call will be made automatically by the Slicer module created.   

The current containers can also be verified by typing:  

docker ps –a  
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6.1.2 Creation of the Slicer module 

6.1.2.1 Slicer Developer Guide 

Slicer modules usually consist of a group of files, such as CMake files and source files 

that together constitute an application. An extension compresses one or more modules 

[30].  

To create and develop a module, there is a tool in Slicer that simplifies the process by 

creating template files for setting up a module: Extension Wizard [30]. 

Creating extensions 

In the module seeker in Slicer Toolbar, there is a module called ‘Developer Tools’, inside 

which it can be found the ‘Extension Wizard’. It can also be found by simply typing 

‘Extension Wizard’ in the seeker.  

By clicking on ‘Create an Extension’ a name and an empty directory can be specified. 

Then, a module can be added to that extension by clicking ‘Add Module to Extension’. 

By default, the module type is Scripted, which are the modules written in Python, and the 

ones used to build this project.  

Once it’s been created, the code can be found in the selected extension, which can be 

modified and used immediately.  

 

Scripted Modules 

With the skeleton provided by the ‘Extension Wizard’, the main structure of the scripted 

modules can be appreciated: Module Class, Widget Class and Logic Class (Fig. 6.3). The 

module creates the widget and logic, but the logic has to be instantiated in the widget 

class.  

The widget class is needed if the module has a user interface. It’s the responsible for 

creating the buttons that compose the interface and for launching processing methods 

implemented in the logic class.  

The logic class is the responsible for the processing, and it must not rely on the widget 

class, it should be independent and usable from any other module.   
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Fig. 6.3. Scripted modules implementation [31]  
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6.1.2.2 Module overview 

This automatic-segmentation tool is designed to be integrated into the Radiotherapy 

Service to replace manual delineation of OARs and accelerate the treatment planning 

process. Hence, it is intended to be used by either doctors or technicians. For this reason, 

it is required to design an intuitive application that automates all the tasks. As mentioned, 

this application will be created in Slicer by programming a Slicer module. The 

requirements of this module are: 

- Loading a head and neck CT image from a directory in DICOM format 

- Calling the Neural Network and running it with the new image to obtain a 

segmented image 

- Saving the image again so that it can be stored in the system 

- Segmentations obtained must be compatible with the workstations in the service, 

so they can be modified by doctors 

- Automatie these tasks as much as possible 

As per the requirements above, the module will have three main tasks, which will be 

accomplished with three main buttons: loading button, segmentation button and saving 

button. The main window of Slicer after loading the module HN_Segmenter, with the 

module panels and options, is shown below in Fig. 6.4.  

 

Fig. 6.4. Start window of Slicer after loading the module for segmentation. On the left-hand side, the module 

panels with the buttons for accessing principal functions 

In the next points, we will go through the three main sections of the module, related to its 

three main functions: loading, segmenting and saving. 
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6.1.2.3 Load Volume 

The Load Volume section has two buttons: one for choosing the directory of the file and 

another one for loading the volume to the scene.  

The buttons are created in the widget as in Fig. 6.5. 

 

Fig. 6.5 Piece of code for creating the buttons for Load Volume section. Two buttons are created and added 

to the layout 

Once the buttons are created, they must be linked to their functions, through the following 

piece of code (Fig. 6.6), which connects them when buttons are clicked: 

 

Fig. 6.6. Piece of code for connecting buttons to functions 

The button intended to get the directory of the file is the first one, load_button. This is 

connected to the function config_dialog_load, which is directly connected to the open_dialog 

function.  

This function gets the directory of the file and modifies the button to show the path. As 

the description of the button is ‘DICOM’, the dialog will look for a whole folder, and not 

for a single file. If the button was intended to load a nifty image, its description would be 

‘Volume’ and the dialog would look for a single file.  

The code is shown in Fig. 6.7 below. As it can be seen, the functions are connected to the 

logic (Fig. 6.8) through a function that stores the volume location for using it later to load 

it in the scene.  
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Fig. 6.7. Piece of code to add a function to the buttons for searching a volume 

 

 

Fig. 6.8. Piece of code of the logic function to store the location of the DICOM volume 

 

The button intended to load the volume to the scene is linked to the DICOM browser 

module. It is connected to the function onLoadImageButton as already shown in Fig. 6.9. 

That function gets the directory of the volume available through the button’s information 

and passes it to the logic.  

 

Fig. 6.9. Widget function connected to the second button that calls the logic to connect with DICOM 

browser 

The loadVolumes function performs two tasks: clears the scene in case there is some 

volume previously loaded and calls the function load_DICOM. This last function interacts 

with the DICOM module through the DICOMUtils function. Imports the directory previously 

stored in locations_dict and loads the first patient in the data base, which is the last patient 

loaded.  

Finally, it automatically opens the module again. The code is shown in below in  Fig. 6.10 
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Fig. 6.10. Loading the DICOM volume through the DICOM browser piece of code 

 

After loading the volume, the Slicer window results as in Fig. 6.11. 

 

Fig. 6.11. Main window after loading the volume. The value of the button for location updates with the 

directory of the volume and the volume is shown in the scene. The volume loaded is the first patient of the 

data set.  
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5.1.2.2 Segment Volume 

The Segment Volume section is the core of the module. There’s only a button, intended 

for performing the delineation of the organs in the loaded image. This button has several 

hidden sub-functions: 

- Transform the DICOM image to nifty format, so that it is readable by the Neural 

Network 

- Create a Docker container to run the Docker Image that obtains the label maps 

- Transfer the label maps from the Docker container to a local host that is deleted 

every time the module is reloaded 

- Deletes the container created to save memory 

- Import the label maps to the scene and transform them to segmentations 

- Give a different color for each segment to make it easier for doctors to check 

segmentations 

- Show segmented image in the scene.  

Let us go through all the functions that compose this button. 

Widget 

 The button is created in the same way as the buttons for loading the volume, and the 

connection of this button to its function is shown in Fig. 6.6. 

This function, onStartSegmentation, first blocks the button to avoid pressing it again and 

shows a message that states that segmentation started (Fig. 6.12). This is accomplished 

with the function delayDesplay already provided by the template that Slicer creates.  

Second, it calls onSegmentButton function, which converts the loaded image into nifty 

format to make it runnable in the Neural Network before calling the logic. To do so, it 

first creates the directory (gets the one where the volume was saved and adds the new 

image there) and uses the saveNode function to save the scene into that directory, which 

results in the conversion from DICOM to nifty.     

Secondly, it calls the logic to proceed with segmentation. 

 

Fig. 6.12. Widget functions for starting the segmentation.  
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Logic  

The run function is the core of the Segment button, and it leads with the call of all the 

sub-functions: calling Docker to execute the Neural Network, importing segmentations 

obtained,  removing the container for further segmentations and showing a message when 

finished (Fig. 6.13). Let us go through all those.  

 

Fig. 6.13. Run function piece of code, from where all the sub-functions are called 

Execute Docker 

The first task this button must accomplish is calling Docker to execute the Docker Image 

and perform the segmentation of the volume. To do so, the executeDocker function is 

called, which builds the call by joining the commands needed (Fig. 6.14). Its parameters 

are:  

- dockerPath. Global parameter, automatically obtained at the beginning of the 

program depending on the operating system of the computer  

- container_name. Global parameter, already predefined at the beginning of the 

program 

- dockerImageName. Global parameter predefined at the beginning, the name of the 

image  

- host_path. Calculated in the run function. It is the directory where the image is, the 

one in nifty format. 

- container_data_path. Global parameter predefined at the beginning of the program. 

It is the working path inside the container, according to what was stated in the 

Dockerfile 

- arg. Global parameter predefined at the beginning. Its value is ‘path’, because the 

parameter that the call must have is the path where the image to segment is.  

- volume_name. Name of the nifty image, obtained before the call to the function 

(Fig. 5.13), through the information saved in the search volume button.  
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Fig. 6.14. Function to execute the Docker call and perform the segmentation 

This function basically builds the call that the user should write on the command window 

to run the container. The call is as follows: 

/usr/local/bin/docker run --name hn-segmenter -d -v /Users/Ines/Desktop/HNSegmenter/HaN_OAR/1:/home/Ines/data inesmunoz/hn-segmenter --path 

/home/Ines/data/img.nii.gz 

This call sets a container name, hn-segmenter, which will be useful for further actions 

related to the container, and connects the two directories, the one where the file actually 

is and the working directory in the container, specified in the Dockerfile. This way, all 

the information in the host directory is transferred to the container. Thanks to this, the 

application can find the file to segment inside the container and execute the application 

to obtain the segmentations.  

This way of running a Docker Image returns the container ID immediately while running 

at the back, so a loop that checks if the container is still running is needed. This is done 

in Fig. 6.15. by calling the function inspectDockerRunning: 

 

Fig. 6.15. Function that checks if the container is running. Returns ‘true’ if it’s running and ‘false’ if 

opposite 

This function makes a call to the command window that inspects, by providing the 

container ID, if the container is running or not. The loop created inside the run function 

stops when the value returned is ‘false’.  

 /usr/local/bin/docker inspect -f '{{.State.Running}}' hn-segmenter 

Finally, the executeDocker function returns the container ID, on its short form, which is 

used in further steps.  
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Copy to Host 

The next task that the run function performs is copying the segmentations to the host so 

that they can are available to be imported into Slicer. This is achieved with a call to 

Docker (Fig. 6.16). 

 

Fig. 6.16. Piece of code to transfer the obtained segmentations to a local directory  

The call results as follows, which basically is read as “copy the file inside this directory 

of this container to this other directory in the host”.  

/usr/local/bin/docker cp fce11ab4b8c9:/home/Ines/HNSegmenter/tmp/segmentations /Users/Ines/HNSegmenter/tmp 

The directory where the segmentations are stored is removed and created again every time 

the module is reloaded to ensure that no information remains from one patient to another.  

The next step consists of importing the segmentations to Slicer. Note that the Neural 

Network obtains the segmentations as labelmaps, so they’ll have to be imported and 

transformed into segmentations.  

The code (Fig. 6.17) looks for the labelmaps in the directory where they’ve been stored 

and imports them to slicer through the sitkUtils module. After that, it converts all the 

labelmaps to segmentations and copy them under the previously created segmentation 

node. This conversion is achieved with the labelMapToSegNode function (Fig. 6.18).  

 

Fig. 6.17. Importing segmentations to Slicer piece of code 

 

Fig. 6.18. Function to convert a labelmap into a segmentation 
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Finally, the following piece of code is executed to give every segment a different color 

(Fig. 6.19). 

 

Fig. 6.19. Piece of code to set a different color to every segment 

Docker remove 

Finally, the button executes a short piece of code to remove the container (Fig. 6.20), so that it 

can be run again with the same name in further segmentations: 

 

Fig. 6.20. Function to remove the container once the actions have been finished 

The call results as follows and the Slicer window after segmentation is achieved is shown 

below in Fig. 6.21. 

/usr/local/bin/docker rm hn-segmenter 
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Fig. 6.21. Slicer window after segmentation is performed. The segment button is blocked and can only be 

able when reloading the module 

6.1.2.2 Save volume 

This last section is intended to save de segmented volume in DICOM RT format, so that 

it can be opened and read by the workstations in the service.  

The button is created as the rest of the buttons, and it is connected to onSaveImageButton 

as Fig. 6.6 shows. This function first creates a folder where to store the final volume 

inside the folder where the original data was stored, though it is optional to choose it. 

Immediately after, it calls the saveImage function with volumeNode and segmentationNode 

as parameters (Fig. 6.22).  

 

Fig. 6.22. Function to store the segmented volume. It calls the logic through the saveImage function 

This saveImage function communicates with DICOM Export module and opens the 

dialog where the nodes to export can be selected, and the metadata can be modified (Fig. 

6.23). To do so, the function gets the Study and Segment ID, through the Subject 

Hierarchy Node and pass them to the DICOM Export Dialog.  
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Fig. 6.23. DICOM Export dialog to save the volume as DICOM RT format. By default, the study is selected 

as the node to export and RT is selected as the export type. Hence, the user must select an output folder and 

modify the tags if desired 

When this dialog appears, the folder to store the data is already created, so it can be chosen 

by the user. This is because an empty folder must be chosen to store the volume.  

6.1.3 Integrating the application into the Radiotherapy Service 

Once the application is created, the last step is to integrate it inside the workflow of the 

service for which it was designed.  

The tool implemented in this thesis is intended to basically receive incoming images from 

the CT, segment them and send them to the server so they are stored and can be processed 

by radiophysicists. Let us first understand the current workflow that the images follow in 

the service (Fig. 6.24), and afterwards, discuss the way of integrating the application. 

The Radiotherapy Service in the HGUGM is managed by Elekta’s Information System 

MOSAIQ, a complete patient management information system that provides connectivity 

between any linear accelerator and treatment planning system from any vendor, to freely 

choose the best treatment solution [32].  

When a new CT image is obtained, it is sent from the CT to the DICOM server. The new 

patient can be imported from any of the workstations in the planning room, by using the 

“Import Patient” tool inside the Monaco software, which accesses the server information. 

Once imported, the new patient appears inside the local folder which contains all the 

patients and it is ready to be segmented. Every patient inside that folder can be opened 

from any of the workstations and any change is automatically saved in the server. Hence, 

when a new segmentation is performed, it is automatically saved and it can be imported 

from radiophysics department to proceed with the dose delivery planning.  
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Therefore, the ideal way to proceed with the integration of the tool is to create a DICOM 

server in the computer that hosts Slicer and the application designed, and get the CT to 

send images to that new server.  

DICOM Listener, DICOM Query/Retrieve interface, and a DICOM Send options are 

supported by Slicer. In order to exchange information between Slicer and CT, IP address, 

port and AE Title must be set up correctly on both sides.  

This way, the CT would have a node to send the images to that new server, so that Slicer 

can access new patients and import them. Once the segmentation is performed, slicer 

would send the segmented volume to Monaco Server so that it can be accessed from radio 

radiophysics department. Also, once in the server, it could be imported from any of the 

workstations through Monaco software to review the segmentations and perform the 

delineation of the tumor, as the procedure dictates. 

 

The new workflow proposed is shown below in Fig. 6.25. 

 

Fig. 6.25. Alternative workflow to integrate the designed application 

There is a simpler way to proceed with the integration of the module into the clinical 

workflow, as the folder with all the patients can be accessed through the browser. The 

thing is that it has a numerical route so as not to be intuitive and accessible from the 

computers by anyone. In any case, the folder could be accessed from the Slicer module 

and the new images could be imported. This option is feasible when testing the module, 

but not to implement it in the real workflow, since access to that folder would allow 

modifications to the hospital database, which is not allowed.  

Fig. 6.24. Current workflow in the Radiation Therapy Service of the HGUGM 
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According to the installation of the application in the workstations, the computers should 

install 3D Slicer and Docker Desktop, pull the Image that stores the deep learning model 

and install the Slicer module inside 3D Slicer. Once finished, the setup would be ready to 

start the automatic segmentation process. 

To sum up, the main steps to integrate the application into the service are the following: 

1. Install Slicer and Docker Desktop in one of the workstations 

2. Pull the docker Image available in a public repository 

3. Install the Slicer module inside the application 

4. Create a DICOM server in the computer  

5. Start sending the images from the CT to the new server 

6. Import patients from Slicer 

7. Execute the module and obtain segmentations 

8. Send the segmented volumes to the Monaco Server to close the workflow 

  

6.2 Evaluation methods 

6.2.1 Module evaluation  

The dataset used to test and evaluate the performance of the module is composed by a set 

of CT scans obtained from the Structure Segmentation for Radiotherapy Planning 

Challenge 2019, a competition of MICCAI 2019 Challenge [33]. This dataset consists of 

50 CT scans of nasopharynx cancer patients, segmented by experts and released to the 

public as training data.  

To access the download of the images, the user must register and submit an agreement so 

as not to redistribute the database. Once downloaded, the dataset is organized in 50 

folders, each one containing both the images and the labels in nifty format.  

To proceed with the evaluation, the images will be first transformed into DICOM format 

through Slicer’s Save module to: 

1. Prove metadata conservation after segmentation  

2. Test module behavior and performance  

3. Find strengths and weaknesses  

Apart from that, the whole application will be tested in other computers to:   

1. Check installation times, portability, ease of installation 

2. Test run time 

3. Check segmentations obtained for the same patients 

 

6.2.2 Integration approach evaluation  

Student will make few visits to the service to evaluate the compatibility between Slicer 

and the workstations by: 
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1. Checking that segmentations obtained with Slicer are readable and editable in the 

Monaco Software  

2. Checking behavior when an existing patient is imported  

3. Learning if new patients can be imported from outside the hospital database and 

how 

The whole workflow setup will be tested in the service to ensure that communication 

through DICOM nodes is successfully achieved.  

 

6.3 Methods for sharing results 

6.3.1 Publishing the Docker Image  

Docker uses Docker Hub to store public and private repositories. Once an image is 

uploaded in the Docker Hub, there’s access to it from the Docker Cloud. In this way, if a 

user uploads an image to the Docker Cloud, any Docker user can pull it to load it and 

execute the program inside it, without the need of installing all the packages and 

requirements. 

The instructions to do so are: 

docker push $DOCKER_ID_USER/image_name 

With the aim of making the application easy to deploy, the Docker Image will be 

published in a public repository in Docker Hub [34], named inesmunoz. To do so the 

following commands were written in the command line: 

docker push inesmunoz/hn-segmenter 

Once the Docker Image is available in the public repository, any Docker user can pull it 

by typing the following instructions: 

docker pull inesmunoz/hn-segmenter 

 

6.3.2 Publishing the Slicer module 

Slicer extensions can be published by making them available in a public repository, such 

as GitHub [35]. Once ready, they can be added to the extensions manager by making a 

pull request in the public extension index. If approved, they appear as extensions in the 

extensions manager inside the nightly version.  

Being the application still in test stages, the code will be published in a private repository 

and access to it will be share with the lab members for further investigations in these lines. 
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This way, the application will be available for any changes or improvements that may be 

needed, before sharing it with the whole community of developers. A home web page 

will be created to show how set up the application and execute the module.  

There is this module, “Developer Tools for Extensions”, which can be installed from the 

Extensions Manager. This module is intended for loading extensions and modules from 

files. This first option allows the user to test their extensions before publishing them, 

distribute them on their own websites by distributing the archive, and also, load a module 

saved in the computer by selecting the python file. This tool will be used to distribute the 

module designed.  

Moreover, Slicer can be launched directly from a USB drive, and all the extensions 

installed are kept inside it and remain in the new location [36]. This property will be used 

to make the installation easier: by drag and dropping the application into the desired 

directory, the installation of Slicer can be achieved, automatically installing all the 

extensions desired.  

  

 

 

 

 

 

7. RESULTS AND DISCUSSION  

7.1 Containerization of the Neural Network 

Docker Hub allows developers to publish their Images so that anyone can pull them. This 

procedure was followed in the thesis development, and a public repository was created to 

store the image.   

The Docker Image is pulled from the repository by typing the instruction below, and it is 

downloaded within few minutes using 2.69 GB. Results shown in Fig. 7.1 and Fig. 7.2. 

docker pull inesmunoz/hn-segmenter 
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Fig. 7.1. Terminal screenshot after downloading the Docker Image from Docker Hub 

 

Fig. 7.2. Terminal screenshot with instruction to check docker images downloaded 

Once downloaded, a running instance of this Image can be made to perform 

segmentations to an image, for which a container will be created. As stated in the 

Dockerfile, this call will execute the ‘predict.py’ file and obtain segmentations for the 

image specified in the call after the argument ‘--path /path/to/file’.  

The command is shown below in Fig. 7.3. 

 

Fig. 7.3. Terminal screenshot with instruction to run the image 

Note that this call connects the folder where the to-be-segmented image is stored with the 

working directory of the container, already specified in the Dockerfile, so it is the same 

in any computer. This connection can be seen as copying the information of the local 

folder inside the working directory. Hence, to specify which image to segment, the path 

is no longer the local path, but the container path, which will then contain the image 

desired. Therefore, this last argument of the call should always be the same, with the 

concrete name of the image in each case.  

Apart from that, the call displays the container ID and exits the loop to be able to continue 

working while executing the segmentations.  

Creating the container with a specified container name allows to carry out several 

functions addressing to that specific container. For example, to check whether the 

container is running or not, before importing the segmentations (Fig. 7.4). 

 

Fig. 7.4. Terminal screenshot with instruction to check when the container stops running  

Here the student made the calls separated in time, but in the module, this instruction is 

executed with a loop that runs while the answer is true.  
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Once the container stops running, a similar call to the first one can be executed, but in the 

other way around. That is, to connect to the container path where segmentations are stored 

and transfer them to a desired local path.  

Again, the path where the segmentations are stored is predefined by the Dockerfile, so it 

cannot be modified. Hence, the path is always the same, and the call remains as shown in 

Fig. 7.5.  

Note that the container path is specified by giving the container ID on its short format, 

only the first 12 digits. 

The call is the following and the segmentation results can be observed in Fig. 7.6. 

 
Fig. 7.5. Terminal screenshot with the instruction to transfer segmentations to a desired folder 

 
Fig. 7.6. Screenshot to the local directory where the segmentations are stored. 

All these calls and interactions with the Docker Image are executed from the Slicer 

Module to achieve segmentations to a given image. What this module additionally does 

is to delete both the container and the directory where the results are stored. This way, the 

same code, container name and path can be reused for all the incoming images.  

7.2 Creation of the Slicer Module 

The Slicer module was successfully designed to automate the task of communicating with 

the Docker Image to execute the neural network by providing an intuitive user interface 

to make the process easy to follow by anyone.  

The user interface is composed by only 3 sections, according to the three main functions 

of the module: loading an image, obtaining segmentations and saving the new volume. 

This is possible thanks to the segmentation button, which performs few hidden functions. 

This button managed to automate the conversion of DICOM to nifty format, the 

importation of labelmaps into segmentations and all Terminal calls to execute Docker. 

Besides, with the aim of giving feedback to the user and avoiding the program to collapse, 

the module shows a message while performing segmentations and blocks the button. This 

is shown in Fig. 7.7.  
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Fig. 7.7. Screenshot of Slicer window while executing the module. Segmentation button is blocked 

and a message is shown to indicate that the process is ongoing.  

When it finishes, the button recovers its original status and the segmentations appear on 

scene (Fig. 7.8). It is of standing of that metadata of the DICOM image is preserved, as 

the only action performed is importing the segmentations obtained in the Docker Image 

into Slicer. 

 

Fig. 7.8. Screenshot of Slicer once the segmentation has been performed. 

 

Referring to the evaluation points in 6.2.1 Module evaluation, the dataset used to evaluate 

the performance of the module was obtained from the Structure Segmentation for 

Radiotherapy Planning Challenge 2019 [33]. The images in this dataset are in nifty 

format, as they must be anonymized so as not to share patient’s information.  

Therefore, prior to evaluation, the images were transformed into DICOM format to stick 

to reality and check if the metadata is maintained after the segmentation. The module was 

tested in 10 different patients and segmentations were compared to the ones offered by 
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the challenge, which were manually segmented by experts. Results obtained are 

summarized in the list below: 

- Metadata is maintained after segmentations are obtained, which is reasonable as 

the initial loaded image is not changed, segmentations resulting from the Docker 

Image are simply imported into the initial volume  

- The module failed only with one patient, as the image was cut and the entire head 

could not be seen (see Fig. 7.9 below) 

- Segmentations were similar to those of the challenge in most cases, proving that 

neural network is robust 

- In some cases, segmentations were defective (see Fig. 7.10), but failures are easy 

detect and to correct by an expert  

- Generally, segmentations obtained with this module have a smoother shape that 

the ones segmented by experts in the European challenge (see Fig. 7.10) 

- The drawback could be said to be that the module cannot be interrupted while 

running, as there are no buttons to do so 

 

Fig. 7.9. Patient #8, for which the module failed to obtain segmentations, as image was cut 

 

Fig. 7.10. Segmentation results. Segmentations obtained with the module are outlined only, over 

the other segmentations, which are color-filled. It can be observed how our segmentations are smoother in 

shape. Also, in the left-hand image, a fake part of the right parotid is wrongly segmented (red).  
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The whole setup docker + slicer was installed in another computer (MacBook Pro 13-

inch, 2017) to check the portability of the whole application and test how easy it is to 

install it. Slicer was copied from a USB, with all the extensions needed for the 

performance inside it. Execution time was measured in both computers to check if it is 

environment dependent.  

The results are listed below: 

- Docker took 3’20’’ to pull the Docker Image from the public repository 

- It took 58 seconds to copy Slicer from the USB to the applications folder  

- Segmentation module was already inside Slicer, so no time to install it was 

required 

- It takes less that 3 minutes to obtain segmentations, depending on the computer 

(see the comparison in Table 7.1) 

- Segmentations obtained for the same patients are always the same 

Table 7.1. Execution time comparison on two computers 

Patient # 
Execution Time MacBook 

Pro (13-inch, 2015) 

Execution Time MacBook 

Pro (13-inch, 2017) 

Patient 1 1’57” 2’53” 

Patient 2 1’52” 2’43” 

Patient 3 1’55” 2’44” 

Patient 4 1’53” 2’43” 

Patient 5 1’53” 2’41” 

 

With all these results, it can be concluded that the whole installation is fast and easy to 

perform, and segmentations are obtained in few minutes. Although the application was 

no tested in an operating system different from macos, it is designed to run in any 

environment.  

7.3 Integration into the service 

During the compatibility tests between the results of the Slicer module and the Monaco 

software, it was verified that the labelmaps were readable by the software, but could not 

be modified, which is a fundamental requirement considering that a doctor will have to 

review them and made the changes considered. Instead, the segmentations allow to save 

the volume as DICOM RT, which is readable by the software and can also be modified. 

To be able to save the volume as DICOM RT, extension Slicer RT must be installed. 
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In Fig. 7.11, it is shown how the segmented volume is opened from Monaco software. 

Segmentations can me modified, changing the colors, names and shapes, and new 

segmentations can be created.  

The relevant information here is that once the volume is imported and opened in Monaco, 

it is available in the server and it can be accessed from any of the workstations, including 

the radiophysics department, from where dose planning is performed.  

 
Fig. 7.11. Picture of Monaco main view after loading a new patient. In the left-hand side, the hierarchy of 

the images is shown 

In the clinical workflow, new patients are imported directly from a list where all new 

patients appear, which is the DICOM node where the CT sends the images. Patients can 

also be imported from a local folder with the Browse button in Fig. 7.12.This is the option 

that was followed to test the compatibility of results.  

 

 
        Fig. 7.12. Menu to import a new patient from Monaco server 
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The picture above shows the window that opens when importing a new patient. The 

browse button allows to look for a volume inside the computer, and once it is loaded it 

appears in the list with all new patients with the patient ID. It can be chosen what to load 

(images, series or study), and the folder where to store the patient (inside the server).  

In this concrete case, the same patient had been already imported to check the behavior 

with already existing patients. And what happens in these cases is that the new volume is 

stored under the same study, but in a different series, which is a good implementation 

considering that the entire patient’s history should be kept (Fig. 7.13). 

 

Fig. 7.13. Screenshot showing how the series are stored under the same study for the same patient 

 

It is to be said that the whole implementation of the application could not be installed in 

the service due to lack of time. Hence, the integration was not checked and DICOM 

communication between the CT and Slicer remains an unknown.  

In any case, the approach for integrating the tool and the steps to accomplish it were 

exposed in point 6.1.3 Integrating the application into the Radiotherapy Service. 

Therefore, it was decided to share the results obtained in relation to code, and leave this 

topic open for further investigations. Find all the information related to the shared results 

in the following point. 

 

7.4 Sharing results 

Docker Image was shared in a public repository [37], which is easy and fast to pull by 

any Docker user. Find the webpage view below in         Fig. 7.14.  

The code of the Slicer Module, which hosts the extension of the module, was shared in a 

private repository (         Fig. 7.15), which will be shared with the lab members, and which 

can turn into public at any time.  
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        Fig. 7.14. DockerHub webpage view with the hn-segmenter repository   

 

 

         Fig. 7.15. GitHub main window where the source code of the module can be seen 

Once the extension folder is inside the computer, the module can be loaded through the 

“Developer Tools for Extensions” module. Then, the module will be found under 

“Examples” category (Fig. 7.16).   

There is also a homepage of the module [38], where the main information about the 

module is found: description, setup guide, panel description, etc. Find the page overview 

in Annex 11.1 Slicer H&N Segmenter webpage view.  
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Fig. 7.16. Modules list where the HN Segmenter module can be found 

 

To conclude, the main steps to perform when installing the application in another 

environment are listed:  

1. Copy the extension file in a folder  

2. Through “Developer tools for extensions” module, select and load the module 

3. Find it under “Examples” category 

4. Assure that “Slicer RT” extension is installed 

5. Save Slicer application inside a USB 

6. Download Docker and install Docker Desktop 

7. Pull hn-segmenter Image from the public repository 

8. Drag and drop Slicer into the applications folder of the new computer  

9. Open Slicer and select the “HN Segmenter” module 

10. Run the module 

The whole setup doesn’t take longer than 10 minutes.  

This availability of results will allow the investigation to continue along the same lines in 

order to adopt the automatic segmentation tool in clinical practice in a future. 
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8. SOCIO-ECONOMIC IMPACT AND REGULATORY 

FRAMEWORK 

8.1 Socio-economic impact 

8.1.1 Social impact 

The Radiotherapy Service of the HGUGM hosts around 3.300 new cases of cancer every 

year [9], where head and neck cancers represent 2,6% of the total, which is a total of 88 

new cases every year.  

According to this, the project designed in this thesis would automatically segment the 

OARs in these incoming cases, making the treatment planning a much faster, and 

shortening waiting time for those patients.  

In addition, once this is implemented in the service, research will continue along the same 

lines to implement automatic segmentation models for other locations to get to accelerate 

treatment process for all cancers.  

Regarding this final objective, which is to implement automatic segmentation as a routine 

in the radiotherapy service, this thesis can be considered part of a project of great social 

impact, considering that the reduction of treatment planning times will give greater 

coverage to cancer patients. 

8.1.2 Economic impact 

As both Slicer and Docker are free to use, the implementation of this application in the 

service would cause no hospital expenses.  

Since this tool allows to dispense with the services of some technicians, the hospital 

would greatly contribute to reduce the costs of the hospital.  

8.1.3 Budget estimation 

The costs of this thesis can be divided into: Human resources (Table 8.1) and equipment 

costs (Table 8.2).  

Human Resources 

 

Table 8.1. Human Resources costs 

SERVICE 
Time estimation 

(hours) 
Cost (€/hour) Total (€) 

Biomedical Engineer 400 12 4800 

Senior Engineer 

(Supervisor) 
100 33 3300 
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Equipment 

Test cases have no cost, as they are imported from the European challenge database. 

Table 8.2. Equipment costs 

MATERIAL Cost/unit (€) Quantity Total Cost (€) 

Test cases 0 50 0 

 

Therefore, the total budget for the project would be: 

Table 8.3. Total costs 

SERVICE Cost per service (€) 

Human Resources 8499 

Equipment cost 0 

Total 8499 

 

Computer costs belong to amortization costs of the project. 

Table 8.4. Amortization costs 

Amortization 

Costs 
Cost/unit (€) Quantity Total Cost (€) 

Computer 1000 1 1000 

 

  

Technician 12 25 300 

Physician 3 33 99 

  Total cost 8499 
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8.2 Regulatory framework 

Since this thesis lies at the basis of designing a tool for improving a clinical workflow, 

extreme caution should be exercised when testing the whole tool or the sub-parts of it. 

Tests should be well identified to be considered as experimental and not to be confused 

with real cases. This means that, for example, when testing how segmented volumes are 

read by the software in the workstations, we must tread very carefully on the names of 

the files that are imported, so as not to interfere with clinical operations, as they will be 

saved in the server with the rest of patients.  

As a research project related with medical images, compliance with the General Data 

Protection Regulation (GDPR) must be ensured. According to it, to guarantee personal 

data protection, before facilitating images for research purposes, any personally 

identifiable information should be removed (anonymization) [39]. 

Therefore, it is not allowed to import DICOM files from the server, as they contain all 

patient and study information. DICOM files should be anonymized before using them. 

That is, removing the name of the patient and institution, the date and other text data on 

image metadata. This is the reason why in this thesis the database used to test the 

application was obtained from a European challenge, where all the patients where in nifty 

format. That is, no metadata at all. 

It is worth mentioning that, when the time to integrate the application into de service 

comes, it must be agreed with the operators of the other DICOM nodes how to manage 

configuration-related issues, such as network ports and application entity titles (AE 

Titles), so that exchange of information between CT and workstations is accomplished 

successfully.  
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9. CONCLUSION 

 

In recent decades, image analysis and classification has quickly evolved reaching the 

medical field and the medical image analysis, with truly promising results. This thesis 

constitutes an approach on how to bring the state of the art in medical image segmentation 

to a real clinical workflow.  

To do so, research was conducted on how to develop a simple and portable tool that runs 

an already-trained Neural Network provided by another intern student in the lab inside 

the Radiotherapy Service.  

Results showed that storing the Neural Network in a Docker Container and developing 

an intuitive Slicer module to interact with it, was a quite good approach in terms of 

execution time and simplicity to install. Hence, it can be concluded that the overall 

objectives of the project were positively achieved. Unfortunately, the whole application 

could not be tested or integrated in the service due to lack of time. To overcome this 

problem, results where shared with the lab members to allow simplify research in this 

field. 

Therefore, this project laid the foundations for future related research. As the student 

shared the results with the lab members, improvements and changes may be implemented 

to get the best results possible. In addition, the tool may be extended by developing new 

models for automatic-segmentation of OARs at other locations.   

This thesis is no more than a drop in the ocean in biomedical research, but it constitutes 

a great step towards improving the lifestyle of cancer patients, by providing a tool that 

shall shorten waiting times before receiving treatment, which must be a long and difficult 

struggle.   
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11. ANNEX 

11.1 Slicer H&N Segmenter webpage view  
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