
J. reine angew. Math. 743 (2018), 213–227 Journal für die reine und angewandte Mathematik
DOI 10.1515/crelle-2015-0097 © De Gruyter 2018

Asymptotic estimates on the von Neumann
inequality for homogeneous polynomials

By Daniel Galicer at Buenos Aires, Santiago Muro at Buenos Aires and
Pablo Sevilla-Peris at Valencia

Abstract. By the von Neumann inequality for homogeneous polynomials there exists a
positive constant Ck;q.n/ such that for every k-homogeneous polynomial p in n variables and
every n-tuple of commuting operators .T1; : : : ; Tn/ with

Pn
iD1 kTik

q � 1 we have

kp.T1; : : : ; Tn/kL.H/ � Ck;q.n/ sup

´
jp.z1; : : : ; zn/j W

nX
iD1

jzi j
q
� 1

µ
:

For fixed k and q, we study the asymptotic growth of the smallest constant Ck;q.n/ as n (the
number of variables/operators) tends to infinity. For q D1, we obtain the correct asymptotic
behavior of this constant (answering a question posed by Dixon in the 1970s). For 2 � q <1
we improve some lower bounds given by Mantero and Tonge, and prove the asymptotic behav-
ior up to a logarithmic factor. To achieve this we provide estimates of the norm of homogeneous
unimodular Steiner polynomials, i.e. polynomials such that the multi-indices corresponding to
the nonzero coefficients form partial Steiner systems.

1. Introduction

A classical inequality in operator theory, due to von Neumann [30], asserts that if T is
a linear contraction on a complex Hilbert space H (i.e. its operator norm is less than or equal
to one), then

kp.T /kL.H/ � sup¹jp.z/j W z 2 C; jzj � 1º;

for every polynomial p in one (complex) variable. Note that, as a direct consequence of von
Neumann’s inequality, we can define a functional calculus on the disk algebra. There are many
other consequences of this important inequality in functional analysis; we refer the reader
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to [25, Chapter 1] and the references therein for a fuller treatment of this inequality and its
applications.

For some time, it was very natural to ask whether the von Neumann inequality could be
extended to polynomials in two or more commuting contractions. For polynomials in two con-
tractions Ando [2], using “dilation theory” (see [28]), provided a positive answer. However, in
the mid seventies, Varopoulos [29] showed that von Neumann’s inequality cannot be extended
to three or more contractions. For this, he used the metric theory of tensor products together
with probabilistic tools to construct a polynomial and operators that violate the inequality. The
work of Varopoulos has since been simplified and extended by several authors [5,9,15,21,22].

It is an open problem of great interest in operator theory (see [6, 25]) to determine
whether there exists a constant K.n/ that adjusts von Neumann’s inequality. More precisely, it
is unknown whether or not for every n there exists a constant K.n/ such that

(1.1) kp.T1; : : : ; Tn/kL.H/ � K.n/ sup¹jp.z1; : : : ; zn/j W jzi j � 1º;

for every polynomial p in n variables and every n-tuple .T1; : : : ; Tn/ of commuting contrac-
tions in L.H /.

Dixon in [15] gave lower estimates for the optimal K.n/ and showed that, if such
a constant verifying (1.1) exists, then it must grow faster than any power of n. He did this
by considering the problem in the smaller class of k-homogeneous polynomials. More pre-
cisely, he studied the asymptotic behavior (as n, the number of variables/operators, tends to
infinity) of the smallest constant Ck;1.n/ such that

(1.2) kp.T1; : : : ; Tn/kL.H/ � Ck;1.n/ sup¹jp.z1; : : : ; zn/j W jzi j � 1º;

for every k-homogeneous polynomial p in n variables and every n-tuple of commuting con-
tractions .T1; : : : ; Tn/. In [15, Theorem 1.2] he showed that

(1.3) n
1
2

�
k�1
2

�
� Ck;1.n/� n

k�2
2 ;

where Œx� denotes the integer part of x. For the lower bound Dixon used probabilistic tech-
niques (the Kahane–Salem–Zygmund theorem) and combinatorial ideas (Steiner systems)
along with an ingenious construction of the operators and the Hilbert space involved.

This problem was taken up by Mantero and Tonge in [21]. Among other problems, for
each 1 � q <1 they consider Ck;q.n/, the smallest constant such that

(1.4) kp.T1; : : : ; Tn/kL.H/ � Ck;q.n/ sup

´
jp.z1; : : : ; zn/j W

nX
jD1

jzj j
q
� 1

µ
;

for every k-homogeneous polynomial p in n variables and every n-tuple of commuting con-
tractions .T1; : : : ; Tn/ with

Pn
iD1 kTik

q

L.H/
� 1. They give upper and lower estimates for the

growth of Ck;q.n/ (see [21, Propositions 11 and 17]) (here q0 denotes the conjugate of q; see
below):

n
k�1
q0
� 1
2

�
k
2

�
� Ck;q.n/� n

k�2
q0 for 1 � q � 2;(1.5)

n
k
2
� 1
2

��
k
2

�
C1
�
� Ck;q.n/� n

k�2
2 for 2 � q <1:(1.6)

It is worth noting that the upper bounds here hold for every n-tuple .T1; : : : ; Tn/ satisfyingPn
iD1 kTik

q � 1 (and even a weaker condition), not necessarily commuting. If we do not ask
the contractions to commute, this bound is shown to be optimal in [21, Proposition 15].
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Based on the combinatorial methods from [15] (i.e. considering polynomials whose
monomials are determined by Steiner blocks) we change the construction of the Hilbert space
and the operators given there to find the exact asymptotic growth ofCk;1.n/, answering a ques-
tion that was explicitly posed by Dixon.

On the other hand, by applying some probabilistic tools used by Bayart in [3], we are able
to control the increments of a Rademacher process and in this way we in this way we manage
to narrow the range in (1.6), showing that the exponent in the power of n is indeed optimal. We
collect this in our main result.

Theorem 1.1. For k � 3 and 1 � q � 1, let Ck;q.n/ be the smallest constant such
that

kp.T1; : : : ; Tn/kL.H/ � Ck;q.n/ sup¹jp.z1; : : : ; zn/j W k.zj /j kq � 1º;

for every k-homogeneous polynomial p in n variables and every n-tuple of commuting con-
tractions .T1; : : : ; Tn/ with

Pn
iD1 kTik

q

L.H/
� 1. Then:

(i) Ck;1.n/ � n
k�2
2 ,

(ii) for 2 � q <1 we have

log�
3
q .n/n

k�2
2 � Ck;q.n/� n

k�2
2 :

In particular,
n
k�2
2
�"
� Ck;q.n/� n

k�2
2

for every " > 0.

The proof of this result will be given in Section 3.

2. Steiner unimodular polynomials

The systematic study of norms of random homogeneous polynomials started with the
Kahane–Salem–Zygmund theorem [17, Chapter 6], which is found very useful in Fourier anal-
ysis. More recently, applications of norms of random polynomials with unimodular coefficients
were found in complex and functional analysis (see for example [3, 7, 8, 13]).

The philosophy in this problem and in many others of the same kind (e.g. to compute the
Sidon constant for polynomials [11, 23]) is to find polynomials which have “big” (or “many”)
coefficients, but whose maximum modulus on the unit ball is “small”.

In this section we are going to relax the number of terms appearing in the polynomials,
by allowing them to have some zero coefficients. In this way we will find a special class of
tetrahedral unimodular polynomials having many terms, but keeping the maximum modulus
quite small.

Let us first start with some notation and preliminaries. As usual we will denote `nq for Cn

with the norm

k.z1; : : : ; zn/kq D

 
nX
iD1

jzi j
q

! 1
q

if 1 � q <1;

k.z1; : : : ; zn/k1 D max
iD1;:::;n

jzi j for q D1.
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A k-homogeneous polynomial in n variables is a function p W Cn ! C of the form

p.z1; : : : ; zn/ D
X
˛2Nn

0

j˛jDk

a˛z
˛1
1 � � � z

˛n
n D

X
JD.j1;:::;jk/

1�j1�:::�jk�n

cJ zj1 � � � zjk ;

where a˛ 2 C and j˛j D ˛1 C � � � C ˛n. Given ˛ we have

a˛ D cJ ;

where J D .1; ˛1: : :; 1; : : : ; n; ˛k: : :; n/. We will write z˛11 � � � z
˛n
n D z

˛ and zj1 � � � zjk D zJ . For
1 � q � 1 we denote by P .k`nq/ the Banach space of all k-homogeneous polynomials on n
variables with the norm

kpkP .k`nq/ D sup¹jp.z1; : : : ; zn/ W k.z1; : : : ; zn/kq � 1º:

It is a well-known fact (see e.g. [14, Chapter 1]) that for every k-homogeneous polynomial there
is a unique symmetric k-linear form L on Cn such that p.z/ D L.z; : : : ; z/ for all z 2 Cn.
Also for each 1 � q � 1 and k � 2 there exists a constant �.k; q/ > 0 such that

kpkP .k`nq/ � sup¹L.z.1/; : : : ; z.k// W kz.j /kq � 1; j D 1; : : : ; kº(2.1)

� �.k; q/kpkP .k`nq/:

In general,

�.k; q/ �
kk

kŠ
;

but improvements in concrete cases include

�.k; 2/ D 1 and �.k;1/ �
k
k
2 .k C 1/

kC1
2

2kkŠ

(see [14, Propositions 1.44 and 1.43]).
If .an/n and .bn/n are two sequences of real numbers, we will write an � bn if there

exists a constant C > 0 (independent of n) such that an � Cbn for every n. We will write
an � bn if an � bn and bn � an.

Given a set A we will denote its cardinality by jAj.
For an index 1 < q <1 we denote by q0 its conjugate, i.e. 1 D 1

q
C

1
q0

.
Let C � Nn

0 denote any set of multi-indices ˛ with j˛j D k. Then as a consequence of
the Kahane–Salem–Zygmund theorem [17, Chapter 6] there exists a k-homogeneous polyno-
mial, with unimodular coefficients a˛ for ˛ 2 C and a˛ D 0 if ˛ … C , of small maximum
modulus on the n-polydisk. More precisely, let ."˛/˛2C be independent Bernoulli variables on
a probability space .�;†;P /; then we have

(2.2) P

²
! 2 � W

X
˛2C

"˛.!/z
˛


P .k`n1/

� D
�
n log.k/jC j

� 1
2

³
�

1

k2en
;

whereD > 0 is an absolute constant which is less than 8. In particular, there are signs .a˛/˛2C

such that the k-homogeneous unimodular polynomial

p.z/ D
X
˛2C

a˛z
˛

satisfies

(2.3) kpkP .k`n1/ � D
�
n log.k/jC j

� 1
2 :
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We are going to work with polynomials with many zero coefficients, expecting that this will
make the norm of the polynomial small enough. The presence of jC j in (2.3) is sufficient for
our needs when the norm of the polynomial is computed in `n1 but not when we consider the
norm in `np and then we need different tools. The relevant results we have to hand [3, 7, 12, 13]
do not take into account the number of nonzero coefficients, so considering our tetrahedral
polynomials does not improve these estimates. We deal with polynomials with a particular
combinatorial configuration in order to get useful estimates for our purposes. We modify some
arguments from [3], reflecting this configuration.

To achieve our goal we consider special subsets of multi-indices: partial Steiner systems
on the set ¹1; : : : ; nº. An Sp.t; k; n/ partial Steiner system is a collection of subsets of size k
of ¹1; : : : ; nº such that every subset of t elements is contained in at most one member of the
collection of subsets of size k.

Definition 2.1. A k-homogeneous polynomial of n variables is a Steiner unimodular
polynomial if there exists an Sp.t; k; n/ partial Steiner system S such that

p.z1; : : : ; zn/ D
X
J2S

cJ zJ and cJ D ˙1:

Observe that our Steiner unimodular polynomials are tetrahedral, i.e. in every term zJ
each variable zj0 appears at most once. In other words, no term in the polynomial contains
a factor of degree 2 or higher in any of the variables z1; : : : ; zn.

The first one to consider Steiner unimodular polynomials was Dixon [15], who used
Sp.Œ

k�1
2
�; k; n/ partial Steiner systems. He used this to obtain lower bounds for (1.2). The

combinatorial property was only applied to define some Hilbert space operators that violate the
inequality, but not to estimate the norm of the polynomial, which he did using (2.3) and the
number of nonzero coefficients.

In the following lemmas, in `nq , 1 � q <1, we will strongly use the fact that the multi-
indices of the nonzero coefficients form a partial Steiner system to estimate the maximum
modulus. We use an entropy argument due to Pisier to control the increments of a Rademacher
process and subsequently apply an interpolation argument.

Let us first recall some definitions and a result on regularity of random process. A com-
plete account on these can be found in [20, Chapters 4 and 11]. A Young function  is a convex
increasing function defined on Œ0;1Œ such that limt!1  .t/ D1 and  .0/ D 0. For a prob-
ability space .�;†;P /, the Orlicz space L D L .�;†;P / is defined as the space of all
real-valued random variables Z for which there exists c > 0 such that E. . jZj

c
// <1. It is

a Banach space with the norm kZkL D inf¹c > 0 W E. . jZj
c
// � 1º.

Let .X; d/ be a metric space. Given " > 0, the entropy number N.X; d I "/ is defined as
the smallest number of open balls of radius " in the metric d , which form a covering of the
metric space X .

With this, the entropy integral of .X; d/ with respect to  is given by

J .X; d/ WD

Z diam.X/

0

 �1.N.X; d I "// d":

We are going to define a random process .Yz/z2B`n
2

and we will need to estimate the
expectation of supz Yz . To do so, we use the following theorem due to Pisier [24] (see
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also [20, Theorem 11.1]) that bounds this expectation with the entropy integral, provided that
the random process satisfies a certain contraction condition.

Theorem 2.2. Let Z D .Zx/x2X be a random process indexed by .X; d/ in L such
that, for every x; x0 2 X ,

kZx �Zx0kL � d.x; x
0/:

Then, if J .X; d/ is finite, Z is almost surely bounded and

E
�

sup
x;x02X

jZx �Zx0 j
�
� 8J .X; d/:

Let now k � 2 and let S be an Sp.k � 1; k; n/ partial Steiner system. We consider
a family of independent Bernoulli variables ."J /J2S on the probability space .�;†;P /. For
z 2 B`n2 we define the following Rademacher process indexed by B`n2 as

(2.4) Yz D
1

k

X
J2S

"J zJ :

We view it as a random process in the Orlicz space defined by the Young function

 2.t/ D e
t2
� 1:

Lemma 2.3. The Rademacher process defined in (2.4) fulfils the following Lipschitz
condition:

kYz � Yz0kL 2 � Ckz � z
0
k1;

for some universal constant C � 1 and every z; z0 2 B`n2 .

Proof. As a consequence of Khintchine inequalities (see e.g. [10, Section 8.5]), the
 2-norm of a Rademacher process is comparable to its L2-norm. Now,

kYz � Yz0kL2 D
1

k

�Z
�

ˇ̌̌̌X
J2S

"J .!/.zJ � z
0
J /

ˇ̌̌̌2
dP .!/

� 1
2

D
1

k

�X
J2S

jzJ � z
0
J j
2

� 1
2

D
1

k

 X
J2S

ˇ̌̌̌
ˇ
kX
uD1

zj1 � � � zju�1.zju � z
0
ju
/z0juC1 � � � z

0
jk

ˇ̌̌̌
ˇ
2! 1

2

�
1

k

kX
uD1

�X
J2S

jzj1 � � � zju�1.zju � z
0
ju
/z0juC1 � � � z

0
jk
j
2

� 1
2

�
1

k

kX
uD1

kz � z0k1

�X
J2S

jzj1 � � � zju�1z
0
juC1
� � � z0jk j

2

� 1
2

:

Since S is an Sp.k � 1; k; n/ partial Steiner system, given j1; : : : ; ju�1; juC1; : : : ; jk for
a fixed u, there is at most one index ju such that .j1; : : : ; jk/ belongs to S . Therefore the
sum

P
J2S jzj1 � � � zju�1z

0
juC1
� � � z0jk j

2 can be bounded by 
nX

l1D1

jzl1 j
2

!
� � �

 
nX

lu�1D1

jzlu�1 j
2

! 
nX

luC1D1

jz0luC1 j
2

!
� � �

 
nX

lkD1

jz0lk j
2

!
;
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and this is less than or equal to one (since z; z0 2 B`n2 ). This combined with the previous in-
equality concludes the proof.

We are now in a position to use Theorem 2.2 with L 2 , X D B`n2 and d D k � k1 to
bound the expectation of the supremum. For this, we are going to estimate the entropy integral
J 2.B`n2 ; k � k1/. Note that  �12 .t/ D log

1
2 .t C 1/; we use instead log

1
2 .t/, which does not

change the computation of the integral. We estimate the integral in the following result, which
is a version of [3, Lemma 2.1]; the proof is essentially the same and we include it here for the
sake of completeness.

Lemma 2.4. There exists a constant C > 0 such that for every n � 2 we have

J 2.B`n2 ; k � k1/ � C log
3
2 .n/:

Proof. We fix n and for each m we consider the number

em D inf

´
� > 0 W B`n2 �

2m[
iD1

xi C �B`n1

µ
:

By result of Schütt [27, Theorem 1] there exists a constant K, independent of n and m, such
that

(2.5) em � K �

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1 if m � log.n/; 
log.1C 2n

m
/

m

! 1
2

if log.n/ � m � 2n;

2�
m
2nn�

1
2 if m � 2n:

Let us note that Schütt’s result is stated for real spaces. Since the .2n/-dimensional real euclid-
ean space is isometrically isomorphic to `n2 , we get (2.5).

For m � 2n, if K2�
mC1
2n n�

1
2 � " < K2�

m
2nn�

1
2 , then by (2.5) we have

N.B`n2 ; k � k1I "/ � 2
mC1
� 2

K2n

"2nnn

and Z K

2
p
n

0

log
1
2

�
N.B`n2 ; k � k1I "/

�
d" �

Z K

2
p
n

0

n
1
2 log

1
2

�
2K2

"2n

�
d"

D

Z K
2

0

log
1
2

�
2C 2

u2

�
du D K1 <1:

With the same argument, if K
2
p
n
� "K

q
log2
2n

, then

N.B`n2 ; k � k1I "/ � 2
2n

and with this we can bound the integral from K
2
p
n

to K
q

log2
2n

by some K2.
We define now

"m D

 
log
�
1C 2n

m

�
m

! 1
2

for Œlogn� � m < 2n.
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Again by (2.5), if "mC1 � " < "m, then N.B`n2 ; k � k1I "/ � 2
mC1. ThenZ "Œlog.n/�

"2n

log
1
2

�
N.B`n2 ; k � k1I "/

�
d" �

2n�1X
mDŒlog.n/�

.mC 1/
1
2 ."m � "mC1/ log

1
2 .2/:

We write

."m � "mC1/ D K

"
log

1
2 .1C 2n

m
/

m
1
2

�
log

1
2 .1C 2n

m
/

.mC 1/
1
2

C
log

1
2 .1C 2n

m
/

.mC 1/
1
2

�
log

1
2 .1C 2n

mC1
/

.mC 1/
1
2

#
and we getZ "Œlog.n/�

"2n

log
1
2

�
N.B`n2 ; k � k1I "/

�
d"

� K

 
log

1
2 .n/

2s�1X
sDŒlog.n/�

.s C 1/
1
2

s
3
2

C

2s�1X
sDŒlog.n/�

log
1
2

�
1C

2n

s

�
� log

1
2

�
1C

2n

s C 1

�!

� K3 log
3
2 .n/:

Finally, for the remaining subinterval we have that, by (2.5), if " � "Œlog.n/�, then

N.B`n2 ; k � k1I "/ � 2
log.n/:

Hence Z 1

"Œlog.n/�

log
1
2

�
N.B`n2 ; k � k1I "/

�
d" � K4

Z 1

0

log
1
2 .n/ d" � K4 log

1
2 .n/:

This completes the proof.

We can now find Steiner unimodular polynomials that have small norm in P .k`nq/, for
every 2 � q � 1 simultaneously.

Theorem 2.5. Let k � 2 and S an Sp.k � 1; k; n/ partial Steiner system. Then there
exist signs .cJ /J2S and a constant Ak;q > 0 independent of n such that the k-homogeneous
polynomial p D

P
J2S cJ zJ satisfies

kpkP .k`nq/ � Ak;q �

8<:log
3
q .n/n

k
2

�
q�2
q

�
for 2 � q <1;

log
3q�3
q .n/ for 1 � q � 2:

Moreover, the constant Ak;q may be taken independent of k for q ¤ 2.

Proof. To prove this theorem we will first find a polynomial with small norm both in
P .k`n2/ and in P .k`n1/. For this we use an interesting technique borrowed from the proof
of [8, Lemma 2.1], followed by an interpolation argument.

Note first that any Sp.k � 1; k; n/ partial Steiner system S satisfies jS j � 1
k

�
n
k�1

�
. We

use S to define a Rademacher process .Yz/z2B`n
2

as in (2.4). By Lemma 2.3, Theorem 2.2 and
Lemma 2.4 there is a constant K > 0 such that

E
�

sup
z2B`n

2

jYzj
�
� K log

3
2 .n/:
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Therefore, by Markov’s inequality we have

(2.6) P

²
! 2 � W

X
J2S

"J .!/zJ


P .k`n2/

�MkK log
3
2 .n/

³
�

1

M
;

where M is some constant to be determined. On the other hand, recall that by (2.2) we have

P

²
! 2 � W

X
J2S

"J .!/zJ


P .k`n1/

� D.n log.k/jS j/
1
2

³
�

1

k2en
;

Therefore, if M > 1C 1
k2en�1

(note that we can take M D 2 here), we have the following
inequalities for ! in a positive measure set:

(2.7)

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

X
J2S

"J .!/zJ


P .k`n2/

�MkK; log
3
2 .n/;

X
J2S

"J .!/zJ


P .k`n1/

� D.n log.k/jS j/
1
2 � D

 
log.k/
k

 
n

k � 1

!
n

! 1
2

� D

�
log.k/
kŠ

nk
� 1
2

:

There is a choice of signs .cJ /J2S such that the polynomial p.z/ WD
P
J2S cJ zJ satisfies

the inequalities in (2.7). We now use an interpolation argument to obtain a bound of the norm
of p in P .k`nq/ for 2 < q <1. We consider the k-linear form associated to p; then [4, Theo-
rem 4.4.1], together with (2.1) and (2.7), give

kpkP .k`nq/ � .MkK/2=q

 
D�.k;1/

log
1
2 .k/
p
kŠ

!q�2
q

log
3
q .n/n

k
2

�
q�2
q

�

� max¹MK;Dº

 
k
k
2 .k C 1/

kC1
2

p
log k

2kkŠ
p
kŠ

!q�2
q

k
2
q„ ƒ‚ …

Ak;q

log
3
q .n/n

k
2

�
q�2
q

�
:

Note that for q > 2, Ak;q ! 0 as k !1, and thus we may take a constant independent
of k in this case.

For q D 1, it is immediately seen that every Steiner unimodular polynomial has norm less
than or equal to one. Actually, more can be said. Let P.z/ D

P
j˛jDk a˛z

˛ be any k-homo-
geneous polynomial. Then

jP.z/j �
X
j˛jDk

ja˛z
˛
j(2.8)

� sup
j˛jDk

²
ja˛j

˛Š

kŠ

³ X
j˛jDk

ˇ̌̌̌
kŠ

˛Š
z˛
ˇ̌̌̌
D sup
j˛jDk

²
ja˛j

˛Š

kŠ

³ nX
jD1

jzj j

!k
:

In particular, the polynomial p considered above satisfies

kpkP .k`n1/
�
1

kŠ
:

Brought to you by | Universitat de Barcelona
Authenticated

Download Date | 5/2/19 4:31 PM



222 Galicer, Muro and Sevilla-Peris, Asymptotic estimates on the von Neumann inequality

Finally, proceeding by interpolation between the `n1 and `n2 cases we obtain that for 1 < q < 2,

kpkP .k`nq/ �

�
kk

.kŠ/2

� 2�q
q �
MkK log

3
2 .n/

� 2q�2
q D Ak;q log

3q�3
q .n/:

Note that also in this case, for every 1 � q < 2 we have Ak;q ! 0 as k !1.

As was already noted in [12, Corollary 6.5], the argument in (2.8) improves the estimates
given in [7] and [3, Corollary 3.2] for the q D 1 case.

Remark 2.6. It is not difficult to prove that every 2-homogeneous Steiner unimodular
polynomial has norm in P .2`n2/ less than or equal to 1

2
. It would be interesting to know if

there exists a constant C , perhaps depending on k � 3 and not on n, such that given any
Sp.k � 1; k; n/ partial Steiner system S , we can find a k-homogeneous unimodular polynomial
p.z/ WD

P
J2S cJ zJ with kpkP .k`n2/ � C . An affirmative answer to this question would in

particular give that the upper bound (by Mantero–Tonge) in (1.6) for Ck;q.n/ with 2 � q <1
is actually optimal.

The last ingredient we need for our applications is the existence of nearly optimal partial
Steiner systems, in the sense that they have many elements. This translates to many unimod-
ular coefficients of the Steiner polynomials. It is well known that any partial Steiner system
Sp.t; k; n/ has cardinality less than or equal to

�
n
t

�
=
�
k
t

�
. A conjecture of Erdős and Hanani [16],

proved positively by Rödl [26], states that there exist partial Steiner systems Sp.t; k; n/ of car-
dinality at least .1 � o.1//

�
n
t

�
=
�
k
t

�
, where o.1/ tends to zero as n goes to infinity. This bound

was improved in [1] (see also [19] for a panoramic overview of the subject), where it is proved
that there exists a constant c > 0 such that there exist partial Steiner systems Sp.k � 1; k; n/
of cardinality at least

(2.9)

8̂̂̂<̂
ˆ̂:
�
n
k�1

�
k

�
1 �

c

n
1
k�1

�
for k > 3;�

n
k�1

�
k

�
1 �

c log
3
2 n

n
1
k�1

�
for k D 3:

Taking partial Steiner systems of this cardinality in Theorem 2.5 we have the following.

Corollary 2.7. Let k � 3. Then there exists a k-homogeneous Steiner unimodular poly-
nomial p of n complex variables with at least  .k; n/ (defined in (2.9)) coefficients satisfying
the estimates in Theorem 2.5. Note that in this case  .k; n/� nk�1.

Remark 2.8. Very recently, a longstanding open problem in combinatorial design
theory was solved by Keevash [18]. A Steiner system S.t; k; n/ is a collection of subsets of
size k of ¹1; : : : ; nº such that every subset of t elements is contained in exactly one member of
the collection of subsets of size k. Keevash’s result implies the asymptotic existence of Steiner
systems, that is, that given t < k, Steiner systems S.t; k; n/ exist for every sufficiently large n
that satisfies some natural divisibility conditions. In particular, for an infinite number of n’s we
may take

 .k; n/ D

�
n
k�1

�
k

in the above corollary.
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3. Estimates on the multivariable von Neumann inequality

In this section we estimate the asymptotic failure of different versions of the multivariable
von Neumann inequality for homogeneous polynomials. Before we prove Theorem 1.1, let us
observe that we modify Dixon’s original proof of the lower bound in (1.3) in several ways.

Dixon considered partial Steiner systems Sp.Œk�12 �; k; n/, for which the number of non-
zero coefficients is of the order nŒ

k�1
2
�. This is not enough to find a good lower bound. Instead,

we use partial Steiner systems Sp.k � 1; k; n/. This allows us to have more nonzero coeffi-
cients, but also forces us to make a new construction of the Hilbert space and the operators
which we feel is closer to that given by Varopoulos in [29].

Proof of Theorem 1.1 (i). The upper bound was proved in [15, Theorem 1.2]. Thus we
only have to construct a polynomial, a Hilbert space and commuting contractions that show
that the asymptotic growth of this bound is optimal.

Let n � k � 3 and choose a partial Steiner system Sp.k � 1; k; n/, denoted by S , such
that jS j D  .k; n/ as in (2.9). By Theorem 2.5, see also (2.7), there exists a k-homogeneous
polynomial p.z/ D

P
J2S cJ zJ with cJ D ˙1 for every J 2 S and such that

(3.1) kpkP .k`n1/ � D

 
log.k/
k

 
n

k � 1

!
n

! 1
2

:

Let H be the (finite-dimensional) Hilbert space which has as orthonormal basis the following
vectors: 8̂̂̂̂

<̂
ˆ̂̂:
e;

e.j1; : : : ; jm/ for 0 � m � k � 2 and 1 � j1 � � � � � jm � n;

fi for i D 1; : : : ; n;

g:

Given any subset ¹i1; : : : ; irº � ¹1; : : : ; nº, we denote by Œi1; : : : ; ir � its nondecreasing reorder-
ing. We define, for l D 1; : : : ; n, the operators that act as follows on the basis of H ,

Tle D e.l/;

Tle.j1; : : : ; jm/ D eŒl; j1; : : : ; jm� if 0 � m < k � 2;

Tle.j1; : : : ; jk�2/ D
X
i

¹i;l;j1;:::;jk�2ºfi ;

Tlfi D ılig;

Tlg D 0;

where

¹i1;:::;ikº D

´
c¹i1;:::;ikº if ¹i1; : : : ; ikº 2 S ;

0 otherwise.

Since S is an Sp.k � 1; k; n/ partial Steiner system, we have kTlk D 1 for l D 1; : : : ; n. It is
easily checked that the operators commute. We have

p.T1; : : : ; Tn/e D
X

¹i1;:::;ikº2S

c¹i1;:::;ikºTi1Ti2 : : : Tike D
X

¹i1;:::;ikº2S

c2
¹i1;:::;ikº

g

D jS jg D  .k; n/g:
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Now, using (3.1) we get

kp.T1; : : : ; Tn/kL.H/ � kp.T1; : : : ; Tn/ekH

D  .k; n/

�
1

D

 �
n
k�1

�
nk log.k/

! 1
2

.1 � o.1//kpkP .k`n1/

� n
k�2
2 kpkP .k`n1/:

This gives the desired conclusion.

Proof of Theorem 1.1 (ii). The upper bound was proved in [21, Corollary 11]. For the
lower bound, we take the Hilbert space and the operators T1; : : : ; Tn defined in the proof of
Theorem 1.1 (i). Then

Rj D
Tj

n
1
q

for j D 1; : : : ; n

clearly satisfy
Pn
iD1 kRik

q � 1. Taking the polynomial p given by Theorem 2.5 we have

kp.R1; : : : ; Rn/kL.H/ �
1

n
k
q

kp.T1; : : : ; Tn/ekH

D
jS j

n
k
q

�
kpkP .k`nq/jS j

Ak;q log
3
q .n/n

k
2

�
q�2
q

�
nk=q

� A�1k;qCk log�
3
q .n/n

k�2
2 kpkP .k`n2/

:

This concludes the proof of the theorem.

3.1. Other possible extensions of the von Neumann inequality for homogeneous
polynomials: Some particular cases. Mantero and Tonge [21, Proposition 17] also obtained
lower bounds for Ck;q;r.n/, defined as the least constant C such that

(3.2) kp.T1; : : : ; Tn/kL.H/ � C sup

´
jp.z1; : : : ; zn/j W

nX
jD1

jzj j
q
� 1

µ
;

for every k-homogeneous polynomial p in n variables and every n-tuple of commuting contrac-
tions .T1; : : : ; Tn/ with

Pn
iD1 kTik

r
L.H/

� 1. Proceeding as in the proof of Theorem 1.1 (ii),
we can show the following.

Proposition 3.1. Let k � 3. Then the following hold:

(i) log�
3
q .n/nk.

1
2
C 1
q
� 1
r
/�1
� Ck;q;r.n/, for q � 2 and 1 � r � 1,

(ii) log�
3
q0 .n/n

k
r0
�1
� Ck;q;r.n/, for q � 2 and 1 � r � 1.

Remark 3.2. The above proposition improves the lower bounds for Ck;q;r given in
[21, Proposition 17] in all cases but q � 2 and k D 3.
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Another possible multivariable extension of the von Neumann inequality (also studied
in [21]) is by considering polynomials on commuting operators T1; : : : ; Tn satisfying that for
any pair h; g of norm one vectors in the Hilbert space,

(3.3)
nX

jD1

jhTjh; gij
q
� 1;

or, equivalently, that for any vector ˛ 2 Cn such that k˛k`n
q0
D 1, we have

nX
jD1

j̨Tj

 � 1:
Let Dk;q.n/ denote the smallest constant such that

(3.4) kp.T1; : : : ; Tn/kL.H/ � Dk;q.n/ sup

´
jp.z1; : : : ; zn/j W

nX
jD1

jzj j
q
� 1

µ
;

for every k-homogeneous polynomial p in n variables and every n-tuple of commuting con-
tractions .T1; : : : ; Tn/ satisfying (3.3). The upper bound obtained in [21, Proposition 20] is

Dk;q.n/�

8<:n.k�1/
�
1
2
C 1
q

�
for q � 2;

n
.k�1/

�
1
2
C 1
q0

�
for q � 2:

For k D 3 and q D 2 we show that this is optimal up to a logarithmic factor.

Proposition 3.3. We have the following asymptotic behavior:

n2

log
15
4 n
� D3;2.n/� n2:

Proof. Let p.z/ D
P
J2S cJ zJ be a 3-homogeneous Steiner unimodular polynomial

as in Theorem 2.5 and let T1; : : : ; Tn be the operators defined in the proof of Theorem 1.1 (i).
We prove first that

T1

kpk
1
2

P .3`n2/

; : : : ;
Tn

kpk
1
2

P .3`n2/

satisfy (3.3). Note that these operators are defined on a .2nC 2/-dimensional Hilbert space H

with orthonormal basis ¹e; e1; : : : ; en; f1; : : : ; fn; gº.
For ˛ 2 `n2 and h 2 H , (below we take some ˇ in the unit ball of `n2)X
j

j̨Tjh

2 DX
j

j j̨ hh; eij
2
C

X
i

ˇ̌̌̌X
j;l

j̨ hh; elia¹i;j;lº

ˇ̌̌̌2
C

ˇ̌̌̌X
j

j̨ hh; fj i

ˇ̌̌̌2

D jhh; eij2k˛k2`n2
C

�X
i

ˇi
X
j;l

j̨ hh; elia¹i;j;lº

�2
C

ˇ̌̌̌X
j

j̨ hh; fj i

ˇ̌̌̌2
� jhh; eij2k˛k2`n2

C kpkP .3`n2/
k˛k2`n2

k.hh; eli/lk
2
`n2
C k˛k2`n2

k.hh; fj i/j k
2
`n2

� kpkP .3`n2/
k˛k2`n2

khk2H :

Brought to you by | Universitat de Barcelona
Authenticated

Download Date | 5/2/19 4:31 PM



226 Galicer, Muro and Sevilla-Peris, Asymptotic estimates on the von Neumann inequality

Therefore,p
 

T1

kpk
1
2

P .3`n2/

; : : : ;
Tn

kpk
1
2

P .3`n2/

!
L.H/

� kpk
� 3
2

P .3`n2/
kp.T1; : : : ; Tn/ekH

D kpk
� 3
2

P .3`n2/
jS j

� kpkP .3`n2/
n2

log
15
4 n

;

and this concludes the proof.
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