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Summary 

Pollen development is a crucial step in higher plants which not only makes possible 

plant fertilization and seed formation, but also determine fruit quality and yield in crop 

species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), 

characterized by an abnormal anther development and the lack of viable pollen 

formation, which led to the production of parthenocarpic fruits. Genomic analyses and 

the characterization of silencing lines proved that pod1 mutant phenotype relies on the 

tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex 

involved in RNA polymerase II transcription machinery. The loss of SlMED18 function 

delayed tapetum degeneration, which resulted in deficient microspore development and 

scarce production of viable pollen. A detailed histological characterization of anther 

development proved that changes during microgametogenesis and a significant delay in 

tapetum degeneration are associated with a high proportion of degenerated cells and 

hence, should be responsible for the low production of functional pollen grains. 

Expression of pollen marker genes indicated that SlMED18 is essential for the proper 

transcription of a subset of genes specifically required to pollen formation and fruit 

development, revealing a key role of SlMED18 in male gametogenesis of tomato. 

Additionally, SlMED18 is able to rescue developmental abnormalities of the 

Arabidopsis med18 mutant indicating that most biological functions have been 

conserved in both species. 
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Introduction 

Pollination and fertilization of angiosperms are coordinated processes which allow the 

conversion of gynoecium into a seeded fruit and therefore, are essential events to ensure 

species survival and fruit yield (Gillaspy et al., 1993; Ozga and Reinecke, 2003; 

Carbonell-Bejerano et al., 2010, Lora et al., 2011). Thus, pollen development and 

maturation comprises multiple cellular changes mediated by a precisely orchestrated 

gene expression regulation (Honys and Twell, 2004; Pina et al., 2005; Wilson and 

Zhang, 2009; Feng et al., 2012; Rutley and Twell, 2015). Male gametogenesis takes 

place in anthers, where diploid archesporial cells divide into two cell layers with 

different fates: i) the primary parietal layer, which gives rise to four different cell layers 

by successive divisions, to form concentric layers of pollen sac wall, i.e. epidermis, 

endothecium, middle layer and tapetum; and ii) the primary sporogenous layer, which 

undergoes a small number of divisions to produce pollen mother cells (PMCs). These 

undifferentiated cells undergo meiosis leading to the formation of tetrads of haploid 

cells, which are released as free microspores. Finally, uninucleate microspores mature 

after an asymmetric mitotic division to produce pollen grains, which in turn enclose the 

vegetative and the generative cells (Scott et al., 2004).  

Significant progress in understanding the genetic and molecular basis of pollen 

development has been made from the study of mutants in the model species Arabidopsis 

thaliana. Thus, mutations affecting several stages of pollen ontogeny have been 

identified, which have led to the isolation and functional analysis of several genes 

involved in pollen development. For instance, sporocyteless/nozzle (spl/nzz) mutant 

fails to form sporogenous tissue during early anther development. SPL/NZZ encodes a 

MADS-box transcription factor that plays a central role in regulating anther cell 

differentiation (Schiefthaler et al., 1999; Yang et al., 1999; Liu et al., 2009). In the case 

of switch1 (swi1) mutant, male gametogenesis is affected during meiosis of PMCs. 

SWI1 encodes a novel protein involved in sister chromatid cohesion and meiotic 

chromosome organization during both male and female meiosis (Mercier et al., 2003). 

Likewise, during microgametogenesis, the programmed cell death of the tapetum tissue 

is essential for proper pollen development, as it supplies nutrients to the microspores, as 

well as for regulating microspores release (Pacini, 2010). Consequently, mutations that 

disrupt tapetum ontology and promote aborted microgametogenesis causing male 

sterility have been reported, mainly extra sporogenous cells/excess microsporocytes1 

(ems1/exs), tapetal determinant1 (tpd1), aborted microspores (ams) and male sterility1 
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(ms1) mutations. EMS1/EXS and TPD1 genes encode a putative LRR receptor kinase 

and a small putatively-secreted protein, respectively, both required for specifying 

tapetal identity (Canales et al., 2002; Zhao et al., 2002; Yang et al., 2003). On the other 

hand, AMS gene encodes a transcription factor belonging to the MYC subfamily of 

bHLH genes, which is required for tapetal cell development in Arabidopsis (Sorensen et 

al., 2003). Similarly, ms1 mutant pollen degenerates after microspore release due to an 

abnormal vacuolization of the tapetum (Wilson et al., 2001). Therefore, MS1, which 

encodes a PHD-finger class of transcription factors, is a key gene required for correct 

tapetum degradation (Yang et al., 2007). 

In tomato, pollen development and the predetermined tapetum degeneration 

processes are quite similar to that of Arabidopsis (Polowick and Sawhney, 1993a,b; 

Brukhin et al., 2003; Wilson and Zhang, 2009). Tomato male sterility has been the 

subject of genetic research since it was first described by Crane (1915), whereupon 

more than 50 tomato male sterile mutants have been reported (Gorman and McCormick, 

1997); however, in contrast to Arabidopsis, a small number of pollen development 

related genes have been identified so far. Among them, the tomato homologue to the 

Arabidopsis ECERIFERUM6 (CER6) gene, which encodes a β-ketoacyl-coenzyme A 

synthase, is involved in the regulation of timely tapetum degradation (Smirnova et al., 

2013). Recently, it has been demonstrated that Male sterile 10
35

 (Ms10
35

) gene encodes 

a basic helix-loop-helix transcription factor, which participates in regulating both 

meiosis and programmed cell death of the tapetum during microsporogenesis (Jeong et 

al., 2014). Likewise, the glycine-rich protein LeGRP92 is essential for normal pollen 

function and survival as it facilitates the outer cell wall (or exine) formation (McNeil 

and Smith, 2010). Similarly, the LATE ANTHER TOMATO 52 (LAT52) gene, encoding 

a heat-stable glycosylated protein, plays a crucial role in pollen hydration and 

germination (Muschietti et al., 1994). 

Given the relevance of male sterility and fruit set for tomato breeding, a 

collection of tomato T-DNA insertion lines generated by an enhancer trap was screened 

(Pérez-Martín et al., 2017) aiming to identify new regulators involved in male fertility. 

This work describes the characterization of a tomato T-DNA mutant, pollen deficient1 

(pod1), which displayed a significant reduction of pollen viability that yielded 

parthenocarpic fruits. Functional analyses demonstrated that the loss of MEDIATOR 

COMPLEX SUBUNIT 18 (POD1/SlMED18) function is responsible for the observed 

pod1 phenotypic alterations. MED18 is a subunit of the MEDIATOR COMPLEX that 
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binds RNA Polymerase II, an evolutionarily conserved transcriptional regulatory 

complex of class II genes in all eukaryotes (Kornberg et al., 2005; Bourbon, 2008). 

Depending on the species, MEDIATOR is a large multimeric protein comprising 25-34 

subunits (Allen and Taatjes, 2015; Samanta and Thakur, 2015), which are organised in 

four modules: head, middle, tail and CDK/Cycline (Chadick and Asturias, 2005; 

Conaway et al., 2005). Each subunit seems to be a specific regulator for defined gene 

sets related to different functions involved in gene transcription mediated by RNA 

Polymerase II, including transcription, initiation, and elongation, as well as RNA 

processing, chromatin spatial conformation and enhancer-promoter interaction 

(Buendía-Monreal and Gillmor, 2016). 

In Arabidopsis, MED18 is involved in the transcriptional response to different 

physiological and cellular processes, like plant immunity (Lai et al., 2014), flowering 

time and floral organ identity (Zheng et al., 2013). Recently, Wang et al. (2018) have 

reported the function of tomato MED18 in regulating the development of leaf and stem. 

However, little is known about the role of MED18 in reproductive development. This 

study reports a key function of MED18 in pollen ontogeny, which is required to ensure 

a proper differentiation and maturation of pollen grains and tapetum degradation in 

tomato. 

 

RESULTS 

Phenotypic and genetic analysis of the pollen deficient 1 (pod1) mutant 

The pod1 mutant was isolated from the screening of a collection of enhancer trap lines 

in the tomato cv. Moneymaker. Mutant plants were mainly affected in flower 

development. At anthesis stage, flowers showed a significant decrease in the length of 

petals, stamens and pistils of pod1 flowers (Figure 1b; Table S1). About 10% of pod1 

flowers displayed different degrees of homeotic changes, from near to wild-type (WT) 

to aberrant phenotypes, which affected floral organs of the second and mainly the third 

whorls, indicating incomplete penetrance and variable expressivity of pod1 mutation. 

Indeed, scanning electron microscopy (SEM) analysis showed the development of 

trichomes on the adaxial surface of some petals, a feature never observed in WT petals, 

as well as increased size of epidermal cells (Figure S1a,b). Moreover, a range of 

homeotic phenotypic alterations was observed from normal stamens to full conversion 

of stamens into carpels in the third whorl (Figure S1c,d), where the latter ones showed 

dramatic changes in size and shape of their epidermal cells compared to WT ones 
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(Figure S1e,f). Thus, both types of pod1 stamens, with full and without any homeotic 

conversion, were subjected to qRT-PCR analysis. Three tomato B-class identity genes 

were assessed, i.e, STAMENLESS (SL), TOMATO MADS6 (TM6) and TOMATO 

PISTILLATA (TPI), and significant down-regulation of all of them was observed in 

pod1 stamens showing homeotic changes (Figure S1g). However, the expression of 

TOMATO AGAMOUS 1 (TAG1), a C-class identity gene, was not altered in stamens of 

pod1 plants (Figure S1g). 

Stamens developed by pod1 flowers showed a significant reduction in the 

amount (~5-fold) and viability (~20-fold) of pollen grains as compared to WT ones 

(Figure 1c,d; Table S1). An in vivo pollen germination assay was also performed 

through reciprocal crosses, which showed that WT pollen grains germinated and 

developed normal pollen tubes on stigmas of pod1 flowers (Figure 1e); however, pod1 

pollen grains were unable to form pollen tubes on WT stigmas (Figure 1f). WT pollen 

was used in cross-pollination assays which yielded normal-seeded fruits, indicating that 

pod1 mutation did not affect ovule functionality. However, selfing of pod1 plants gave 

rise to small and parthenocarpic fruits, which showed reduced axial and equatorial 

diameters as well as decreased fresh weight compared to WT fruits (Figure 1g; Table 

S1).  

In addition, vegetative developmental traits were also altered in pod1 mutant 

plants, mainly a significant reduction in fresh weight and leaf length compared to WT 

plants, as well as a decreased development of secondary and tertiary leaflets, and 

reduced length of petioles (Figure 1a; Table S1). Such alterations coincide with those 

reported by Wang et al. (2018). 

A genetic analysis of pod1 mutant phenotype was performed on 411 segregating 

plants from two different progenies, 96 T2 and 315 T3 plants. The mutant phenotype 

was observed in 25 out of 96 T2 plants (26.04%) and 81 out of 315 T3 plants (25.71%). 

The Chi-square statistic test confirmed that segregation ratios were consistent with a 

monogenic autosomal recessive mode of inheritance for the pod1 mutant phenotype (χ
2
 

= 0.14, P = 0.71). 

 

Cloning and molecular characterization of the pod1 mutant locus 

Southern blot hybridization indicated that a single copy of T-DNA was inserted in the 

pod1 genome (Figure 1h). Afterwards, with the aim to isolate the gene harbouring pod1 

mutation, anchor-PCR assays were performed to clone the genomic regions flanking the 
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T-DNA insertion. Results revealed that T-DNA was located on chromosome 06 (at 

position 1,860,352 bp; ITAG2.50), in the promoter region of two adjacent genes 

transcribed in opposite direction, the MEDIATOR COMPLEX SUBUNIT 18 (SlMED18) 

gene (Solyc06g008010) and a tomato member of the Zinc Finger HIT-type (ZNHIT) 

transcription factor family (Solyc06g008020). Specifically, the T-DNA was inserted 482 

bp upstream of the 5´-untranslated region of the SlMED18 gene and 203 bp upstream of 

the translation start codon of the ZNHIT gene. The T-DNA insertion produced a 

deletion of 160 bp which affected the promoter region of both SlMED18 and ZNHIT 

genes (Figure 1i).  

To establish a possible correlation between the T-DNA insertion site in the 

genome with the pod1 phenotype, a co-segregation analysis was performed by PCR in 

411 plants from T2 and T3 progenies, which revealed that a total of 106 mutant plants 

(25.80%), 25 from T2 and 81 from T3, were homozygous for the T-DNA insertion, 

whereas 201 of the 305 WT plants (48.90%) were hemizygous and the remaining 104 

WT plants (25.30%) were azygous for the T-DNA insertion (Figure 1j). Therefore, 

results of co-segregation analysis supported that the pod1 phenotype was linked to the 

T-DNA insertion.  

Given the genomic position of the T-DNA insertion, qRT-PCR experiments 

were carried out in pod1 and WT plants to determine whether the pod1 mutation 

affected the expression of SlMED18 and ZNHIT genes. Results showed that both 

SlMED18 and ZNHIT genes were down-regulated in all pod1 tissues here analysed, i.e. 

root, stem, leaf, apex and flower at anthesis (Figure 1k,l). 

 

Phenotype of SlMED18 silencing plants resembles pod1 mutant  

To conclude which of the two candidate genes affected by the T-DNA insertion was 

responsible for pod1 mutant phenotype, single and double RNAi silencing lines for 

SlMED18 and ZNHIT genes were generated, being the latter ones used to evaluate the 

hypothesis that simultaneous down-regulation of both genes could be responsible for 

pod1 mutant phenotype. qRT-PCR analysis proved that gene silencing specifically 

affected the gene (or genes) targeted in each type of RNAi line (Figure 2d; Figure S2a-

c). Phenotypic characterization of representative RNAi lines revealed that 

developmental alterations of both RNAi SlMED18 and double RNAi transgenic plants 

were similar to those of pod1 plants (Table S1). Indeed, these transgenic flowers were 

also smaller displaying shortened stamens and narrow petals as occurred in pod1 mutant 
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(Figure 2a). In addition, some flowers of SlMED18 silenced lines showed homeotic 

alterations in the second and the third floral organ whorls similar to those observed in 

pod1 flowers (Figure S3). Likewise, a small amount of non-viable pollen grains was 

developed from SlMED18 repressed lines (Figure 2b). Regarding the fruits, there was a 

strong similarity among RNAi SlMED18, double RNAi and pod1 plants, as all of them 

yielded parthenocarpic fruits with a decreased fresh weight (Figure 2c). On the contrary, 

RNAi ZNHIT transgenic plants displayed a similar phenotype to WT plants with no 

obvious alteration in reproductive developmental traits (Figure 2a-c). Moreover, 

offsprings of RNAi ZNHIT lines also showed a WT phenotype, supporting the 

hypothesis that pod1 mutant phenotype was caused by the loss of function of SlMED18. 

To further confirm that down-regulation of SlMED18 is responsible for the pod1 

phenotype, a molecular complementation assay was performed by overexpressing 

SlMED18 in pod1 plants under the control of a 35S constitutive promoter. Reproductive 

development of 35S::SlMED18 pod1 lines were similar to WT controls (Figure 2a-c; 

Table S1), indicating that the overexpression of SlMED18 gene was able to rescue the 

pod1 mutant phenotype. 

 

Expression patterns of SlMED18 during tomato reproductive development 

SlMED18 is expressed from floral buds to mature fruits, although the highest level of 

SlMED18 transcripts was detected in flowers at anthesis, and the lowest one was found 

in fruits at immature green stage (Figure 3a). In situ hybridization analysis of SlMED18 

in developing flower buds showed that SlMED18 mRNA was located in the two inner 

whorls of floral buds at stage 5 (according to Brukhin et al., 2003), where stamen and 

carpel primordia were initiated (Figure 3b,c). Later, expression of SlMED18 was 

strongly detectable in pollen and ovules at stage 8 of flower development (Figure 3d). 

Additionally, as the binary vector pD991 used for generating the enhancer trap lines 

contained a minimal promoter fused to the uidA reporter gene, a histochemical GUS 

assay was performed assuming that GUS expression is due to the activity of endogenous 

regulatory elements that promote the transcription of the uidA gene. In pod1 flowers, 

GUS staining was detected in stamens, stigma and ovules (Figure 3e), supporting that 

SlMED18 gene is specifically expressed in the two innermost floral organs. 

In addition, given the homeotic conversion of stamens into carpel organs found 

in a low number of pod1 flowers, expression of SlMED18 was analysed in the floral 

organs developed in the third whorl of pod1 mutant flowers. All pod1 mutant flowers 
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showed down-regulation of SlMED18 regardless of the existence of stamen to carpel 

homeotic conversion (Figure S1g), suggesting that such developmental alterations may 

correspond to pleiotropic effects of pod1 mutation rather than being a direct 

consequence of the loss of SlMED18 function.  

 

Down-regulation of SlMED18 affects microgametogenesis and tapetum 

degradation 

Flowers of pod1 and SlMED18 silenced lines developed a small proportion of viable 

pollen (Figure 2b); thus, a detailed study at the cellular level was performed to detect 

changes in pollen ontogeny promoted by the down-regulation of SlMED18 function 

(Figure 4). To rule out any effect of ZNHIT down-regulation, RNAi SlMED18 lines 

were used for this study instead of pod1 mutant. PMCs prior to meiosis did not differ in 

their morphological features when observed in thin tissue sections. Indeed, the 

characteristic polyhedral shape, slightly stained cytoplasm, and visible nuclei with 

densely stained nucleolus were observed both in WT and RNAi SIMED18 plants 

(Figure 4a,d). Meiocytes at telophase I stage were also similar in shape, size and 

cytological characters, as well as the features of callose layer, and cytoplasm and 

chromatin staining properties (Figure 4b,e). These results pointed out to an equally 

canonical meiosis occurring during pollen development of the SlMED18 silenced plants. 

Callose-embraced microspores within the tetrad also showed no differences between 

both WT and silenced lines, thus, tetrad walls appear well defined and microspores 

show stained nuclei with nucleoli (Figure 4c,f). Moreover, at meiocyte and tetrad stages 

no appreciable differences were detected in the size and morphological features of the 

tapetum and the remaining layers of the anther wall (Figure 4a-f). 

Subsequent stages of pollen development were also analysed and DAPI staining 

of squashed anther samples was performed in order to assess the corresponding 

microgametogenesis stage engaged, based on the presence and the position of nuclei. 

Vacuolated microspores showed a typical cytoplasmic distribution in WT anthers, with 

the occurrence of cytoplasmic vacuoles and a single nucleus clearly stained by DAPI 

(Figure 4g,j). However, RNAi SIMED18 flowers developed some microspores which 

were smaller in size and displayed lower DAPI staining (Figure 4m,p), likely reflecting 

symptoms of chromatin disorganization. Differences between the WT and the RNAi 

SIMED18 plants increased at the stages of young and mature pollen, with a progressive 

larger proportion of pollen grains with altered morphology, mainly small size, 
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differential cytoplasmic density, and the presence of empty pollen grains (Figure 

4h,i,n,o). DAPI staining analysis of RNAi SIMED18 anthers showed a reduced amount 

of apparently normal pollen grains with both the vegetative and the generative nuclei. 

Instead, a higher proportion of abnormal pollen grains either bearing degenerated nuclei 

or completely lacking nuclei were observed in anthers where SlMED18 was silenced 

(Figure 4k,l,q,r). 

Developmental differences in the timing and completion of tapetum 

degeneration were found throughout microgametogenesis of WT and RNAi SIMED18 

anthers (Figure 5). Although histological features and relative size of the tapetum layer 

until the tetrad stage were identical in both types of plants, the subsequent tapetal 

degeneration that begins at the microspore stage in the WT plants (Figure 5a-c) was 

delayed in SIMED18 silenced plants (Figure 5d-f). Indeed, while tapetum tissue showed 

evident degradation symptoms and had almost disappeared at mature pollen stage in 

WT anthers (Figure 5c), it remains intact in RNAi plants (Figure 5f,g). Taken together, 

these observations indicated that the lack of SlMED18 function provoked significant 

changes during pollen ontogeny, which affected mainly tapetum degradation and pollen 

maturation. Such developmental abnormalities correlated with the lower percentage of 

pollen yielded by RNAi SlMED18 plants. 

 

Silencing of SlMED18 modifies expression of genes involved in anther and pollen 

development 

To investigate how the lack of SlMED18 affects the expression of genes involved in 

anther and pollen ontogeny, a comparative qRT-PCR analysis was carried out in floral 

buds at five pivotal stages of anther development, i.e. PMCs, tetrads (Tds), young and 

vacuolated microspores (Mcs), young pollen (YP) and mature pollen (MP) (Figure 6). 

Thereby, the expression pattern of SlMED18 and seventeen additional genes previously 

described as key regulators involved in tomato pollen and anther development was 

evaluated (Jeong et al., 2014, Gómez et al., 2015). Given that the asynchrony in the 

degradation timing of the tapetum suggested an abnormal RNAi SlMED18 pollen 

formation, the considered genes were divided into two groups according to their 

functions in WT anthers: genes related to tapetum degradation and moreover, genes 

associated to pollen formation and maturation. In addition to SlMED18, the first group 

included SlSPL/HYDRA, MS10
35
, AMS-like, AtMYB103-like, MS1-like, TGAS100, 

bHLH89/91, TA29, Cysteine protease, Aspartic proteinase and Arabinogalactan protein 
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(Figure 6), while the second one comprised Sister chromatid cohesion, TomA108, 

LeGRP92, Endo-1,3-beta-glucanase, AtTDF1-like and pLAT52 (Figure S4). Most of the 

tapetum development related genes here analysed were down-regulated at some stage of 

pollen development in RNAi SlMED18 lines (Figure 6c-f,i-l). However, SlSPL/HYDRA 

and bHLH89/91 were expressed without significant differences between WT and RNAi 

SlMED18 anthers in all stages analysed (Figure 6b,h). In the case of TGAS100, the 

relative expression was up-regulated at PMCs stage, while it was down-regulated at YP 

stage (Figure 6g).  

In the second group, analysed genes were involved in different functions linked 

to pollen formation (Figure S4), i.e. pollen meiosis (Sister chromatid cohesion and 

TomA108), callose degradation (Endo-1,3-beta-glucanase and AtTDF1-like), exine 

formation (LeGRP92) and pollen germination (pLAT52). All these genes showed 

significant down-regulation in RNAi SlMED18 lines, except for Sister chromatid 

cohesion, which was up-regulated at PMC stage and down-regulated at Tds and MP 

stages (Figure S4a). Considering the alterations in gene expression due to the silencing 

of SlMED18, altogether these results showed that the lack of SlMED18 function 

promoted a significant down-regulation of genes mainly related to anther and pollen 

development, which correlated with the defects observed in tapetum and pollen 

formation. 

 

SlMED18 complements the phenotypic defects of Arabidopsis med18-1 mutant 

In Arabidopsis, mutations at the MEDIATOR SUBUNIT 18 (AtMED18) cause 

pleiotropic phenotypic alterations affecting inflorescence structure, flower morphology, 

silique size, and flowering time (Figure 7a-d), indicating an essential role for AtMED18 

in the control of these developmental processes. Besides, Arabidopsis med18 plants also 

showed alterations in stamen development and pollen maturation (Zheng et al., 2013). 

To assess whether SlMED18 could complement the developmental defects observed in 

med18-1 mutants, several Arabidopsis transgenic plants overexpressing the tomato 

MED18 orthologue were generated by using a 35S constitutive promoter (Figure 7, 

Figure S5a). Under long-day conditions, med18-1 mutants displayed a late flowering 

phenotype that was fully rescued by the overexpression of SlMED18 (Figure 7a,d,e). 

Indeed, expression of FLOWERING LOCUS T (FT), SUPPRESSOR OF CONSTANS 

OVEREXPRESSION 1 (SOC1) and FLOWERING LOCUS C (FLC) genes was restored 

to similar transcriptional levels, or even higher than those showed by WT plants (Figure 
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S5b). Furthermore, the altered floral organ number and the decreased silique size 

observed in med18-1 were complemented by the expression of tomato MED18 

orthologue in the Arabidopsis mutant (Figure 7b,c,f). Thus, flower identity genes such 

as SEPALLATA 3 (SEP3), PISTILLATA (PI) and AGAMOUS (AG), which were down-

regulated in Arabidopsis med18-1 mutant flowers, showed transcriptional levels similar 

to WT when SlMED18 was over-expressed in med18-1 plants (Figure S5c). These 

results indicated that SlMED18 fulfil the functional roles exerted by the Arabidopsis 

MED18 gene.  

 

DISCUSSION 

Transcriptional activity of SlMED18 is essential for tapetum degradation and 

pollen development  

The pod1 tomato T-DNA mutant is severely affected in flower and pollen development. 

Molecular cloning of the tagged gene proved that POD1 encodes the Mediator of RNA 

polymerase II transcription subunit 18 (MED18) supporting a functional role for this 

gene in reproductive development of tomato. GUS expression was detected in the 

stigma and pollen sacs (Figure 3e), which agrees with the spatial expression pattern 

detected by in situ hybridization (Figure 3c,d). These results support that transcriptional 

activity of SlMED18 is required during male gametogenesis. Although no 

morphological alterations were observed at early stages of pollen development of plants 

lacking POD1/SlMED18, microscopy analysis revealed changes during 

microgametogenesis (Figure 4), which involved a significant delay in tapetum 

degeneration as compared to WT (Figure 5). Moreover, from microspore stage onwards, 

defective anthers yielded a low amount of mature pollen grains, most of them being 

degenerated cells (near to 83%). Adequate sporophytic cell layer development is 

necessary to give rise to functional mature pollen in plants (Ma, 2005; Yuan et al., 

2009; Zhou et al., 2011), being the tapetum the most important layer, since it supplies 

nutrients required for pollen development. Indeed, male sterility is normally associated 

with abnormal tapetum development, as occurs in the Arabidopsis ems1/exs and tpd1 

mutants (Canales et al., 2002; Zhao et al., 2002; Yang et al., 2003), as well as in the 

tomato mutants affected either in SlCER6 or Ms10
35

 genes (Smirnova et al., 2013; 

Jeong et al., 2014). All of these mutants showed early tapetum degradation, the opposite 

effect to that observed in RNAi SlMED18 plants where tapetum degenerated later than 

in WT plants. However, the consequence in both cases was an abnormal pollen 
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formation, which corroborates that timely coordinated degradation of the tapetum is a 

crucial step during microgametogenesis, and that this process requires the SlMED18 

function. Therefore, SlMED18 may act as a link between sporophytic (tapetum tissue) 

and gametophytic (pollen development) tissues, an hypothesis that would be in 

agreement with the expression pattern of SlMED18, whose transcript levels were mainly 

found in anther primordia and pollen grains. 

Recently, a genetic pathway including DYT1-TDF1-AMS-bHLH89/91-MYB80 

transcriptional cascade has been proposed to regulate tapetum ontogeny in Arabidopsis 

(Li et al., 2017). In addition, MS10
35

, the tomato DYT1 homologue, has been suggested 

as an upstream regulator of that transcriptional cascade, whose function is necessary for 

proper meiosis and tapetum development (Jeong et al., 2014). MS10
35 

was significantly 

repressed in RNAi SlMED18 anthers suggesting that SlMED18 may promote tapetum 

development and degradation through direct or indirect regulation of MS10
35

. In 

accordance with this, several tapetum development-related genes were down-regulated 

in RNAi SlMED18 plants as occurred with AtTDF1-like, AMS-like, Cysteine protease, 

Aspartic proteinase, TA29 and MS1-like, which support that tapetum functionality 

should be compromised by the lack of SlMED18.  

Together, the results reported here provide strong evidence about the function of 

SlMED18 in the transcriptional regulation of a subset of genes specifically required to 

develop mature pollen properly. In addition, hormones play a central role in male 

gametogenesis, and the function of SlMED18 in the modulation of genes involved in 

hormonal pathways cannot be ruled out. Nevertheless, further research is required to 

better understand the hierarchical and functional relationships among the genes 

integrating the regulatory pathway involved in pollen development and their link with 

hormone pathways. 

 

Functional divergence of SlMED18 gene 

The Mediator complex is recognised as a central player in eukaryotic gene regulation. 

In Arabidopsis, several functions have been reported for the different subunits 

integrating this complex (Zheng et al., 2013; Samanta and Thakur, 2015; Fallath et al., 

2017). Although such functions must be interconnected, subunits that integrate the same 

Mediator module seem to participate in the same biological process (Davoine et al., 

2017). MED18 belongs to the head-module Mediator complex that was originally 

identified as a general transcription factor that stimulates basal RNA Polymerase II 
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transcription in yeast (Kornberg, 2005; Larivière et al., 2006). Later, yeast MED18 was 

described as a key element for proper elongation (Lee et al., 2013) and termination of 

transcription of a subset of genes (Mukundan and Ansari, 2011). In Arabidopsis, it has 

been proposed that MED18 regulates flowering time and floral organ formation through 

regulation of FLC and AG, respectively (Zheng et al., 2013). Expression levels of the 

floral repressor FLC were found up-regulated in med18-1 plants, which also agreed with 

the late flowering phenotype of these mutants. Concomitantly, decreased expression of 

FT and SOC1 floral integrators were detected in med18 (Zheng et al., 2013). In 

addition, the number of petals increased and the number of stamens decreased in med18 

plants, two features which were reminiscent of the floral phenotype of ag mutants 

(Chuang and Meyerowitz, 2000). In accordance, epistasis was observed in the med18-1 

ag-1 double mutants and AG expression was down-regulated in med18-1 plants (Zheng 

et al., 2013). Interestingly, constitutive expression of SlMED18 in Arabidopsis med18 

background rescues all the developmental defects displayed by med18-1 plants related 

to flowering time and floral organ identity. Furthermore, SlMED18 also complements 

the altered pattern of expression of the key genes involved in the regulation of these 

processes (Figure S5). Thus, expression levels of AG, PI and SEP3 increased in 

complemented med18 plants, supporting that the MED18 tomato orthologue is able to 

regulate the expression of these identity genes in Arabidopsis and rescue the defects in 

flowering time and floral organ number observed in med18 plants.  

Overall results indicated that SlMED18 shares significant biological function 

with Arabidopsis MED18. In addition to the altered floral organ number, Arabidopsis 

med18 mutants also showed a delay both in stamen development and pollen maturation, 

which led to a reduction in seed set (Zhang et al., 2013). These results indicate that 

MED18 is also involved in the genetic control of male gametogenesis for this model 

species; although a detailed study of pollen ontogeny, similar to that conducted here 

with tomato, would be necessary in Arabidopsis to draw a final conclusion on the 

maintenance or divergence of MED18 function in these species. Nevertheless, in 

contrast to Arabidopsis med18 mutants, pod1 plants and SlMED18 silenced lines 

showed no alterations in flowering time and reduced penetrance and variable 

expressivity of floral homeotic changes. As described for the Arabidopsis med18 

mutant, the occasional homeotic changes observed in the third floral whorl of pod1 and 

RNAi SlMED18 plants could be the consequence of the down-regulation of the tomato 

B-class identity key genes TPI, TM6 and SL (Figure S1g). Altogether, these 

Page 14 of 46The Plant Journal



15 

 

observations suggest certain functional divergence between tomato and Arabidopsis 

MED18 orthologues. Interestingly, a single MED18 gene has been found in the 

Arabidopsis genome (AT2G22370), whereas in tomato two paralogous MED18 genes 

have been annotated (i.e, Solyc03g046360 and Solyc03g046370) apart from the 

orthologous SlMED18 gene (Solyc06g008020) reported here (Figure S6), indicating a 

different evolution dynamics for this family gene in these species.  

 

Experimental procedures 

Plant material 

Tomato pod1 mutant was isolated from a collection of T-DNA insertion lines generated 

by the enhancer trap vector pD991 in the tomato cv. Moneymaker (Pérez-Martín et al., 

2017). All tomato plants were grown under greenhouse conditions using standard 

practices with regular addition of fertilizers. The med18-1 mutant in Columbia (Col) 

genetic background was kindly provided by Dr. David Oppenheimer (Zheng et al., 

2013). 

 

Histochemical GUS staining 

A GUS assay was carried out following the method described by Atarés et al. (2011). 

The resulting GUS-stained tissues were examined under a zoom stereomicroscope 

(MZFLIII, Leica). Three replicates of each sample were analysed. 

 

Analysis of pollen viability 

In vitro pollen viability was determined by the Tetrazolium staining method (Cottrell, 

1948). Pollen grains from more than 30 flowers of each genotype were stained with 

0.5% 2, 3, 5-triphenil tetrazolium chloride (TTC) (w/v) in 0.5 M sucrose in a wet 

chamber for 2h at 50°C in darkness (Viéitez Cortizo, 1952). Subsequently, pollen was 

visualised with a Nikon OPTIPHOT-2 optical microscope. 

To evaluate in vivo pollen viability the Johansen´s (1940) staining method for 

fluorescence microscope was assayed. Ten flowers from each WT and pod1 plants were 

self-pollinated and reciprocally crossed. Two days after pollination, these flowers were 

collected and fixed in FAE (10% formaldehyde, 5% acetic acid and 50% absolute 

ethanol) for at least 24h, washed in water over night at 4°C, softened with NaOH 0.8 N 

during 6h and washed again in water over night at 4°C. Pollen tubes were stained with 

0.1% aniline blue (w/v) in K3PO4 0.1 N for 2h in darkness. Fluorescence was visualised 
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with a Nikon OPTIPHOT-2 optical microscope associated to HB-10101AF Mercury 

Lamp (Nikon).  

 

Molecular cloning procedures 

The DNA-blot hybridization was carried out following the protocol described by Yuste-

Lisbona et al. (2016). Hybridization was performed with a chimeric probe constituted 

by the fused coding sequence of two genes, NEOMYCIN PHOSPHOTRANSFERASE II 

(NPTII) and FALSIFLORA (FA), the later was used as hybridization positive control. 

The sequences flanking T-DNA insertion sites were isolated by a modified 

anchor-PCR according to the protocol described by Pérez-Martín et al. (2017). The 

cloned sequences were compared with SGN Database (http://solgenomics.net/) to assign 

the T-DNA insertion site on tomato genome.  

Co-segregation of the T-DNA insertion site with the pod1 phenotype was 

evaluated by PCR using i) the specific genomic forward and reverse primers 

(619a_genot_F/_R) to amplify the WT allele (without T-DNA insertion) and ii) one 

specific genomic primer (619a_genot_R) and the specific T-DNA right border primer 

(RB_pD991_F) to amplify the mutant allele (carrying the T-DNA insertion). The 

sequences of anchor-PCR and genotyping primers used are listed in Table S2.  

 

Generation of transgenic lines 

An interference RNA (RNAi) approach was performed to down-regulate 

candidate genes. To generate the RNAi SlMED18 construct, a 164 bp fragment of 

SlMED18 cDNA was cloned in sense and antisense orientation into the vector 

pKannibal (Wesley et al., 2001), which was digested with NotI and the resulting 

fragment was cloned into the binary vector pART27 (Gleave, 1992) following the 

method described by Helliwell and Waterhouse (2003). Likewise, a 248 bp fragment of 

the ZNHIT cDNA was used to generate the RNAi ZNHIT construct. In addition, both 

SlMED18 and ZNHIT genes were simultaneously inhibited by a double RNAi construct. 

For this purpose, the 164 bp fragment of SlMED18 was amplified using RNAi-doble_F 

and RNAiMED18_R primers, and the RNAiZn_F and RNAi-doble_R primers were 

used to amplify the 248 bp fragment of the ZNHIT gene. Thereupon, both fragments 

were used as template in a PCR using the primers RNAiZn_F and RNAiMED18_R to 

join the PCR products resulting from the above PCR amplifications. The resulting PCR 

product was finally cloned in pART27 as described above. 
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To generate the overexpression gene construct (35S::SlMED18), the complete 

open reading frame of SlMED18 was amplified from S. lycopersicum cv. Moneymaker 

cDNA using 35S-Med_F and 35S-Med_R primers. The SlMED18 cDNA was cloned 

into the binary vector pROKII (Baulcombe et al., 1986). The overexpression construct 

35S::SlMED18 was also used for genetic complementation of pod1 plants. The 

sequences of primers used in the generation of silencing and overexpression constructs 

are shown in Table S2.  

Genetic transformation experiments were performed using A. tumefaciens (strain 

LBA4404) as described by Ellul et al. (2003). The ploidy levels in transgenic plants 

were evaluated by flow cytometry according to the protocol described by Atarés et al. 

(2011). Thus, diploid RNAi SlMED18 (6 lines), RNAi ZNHIT (5 lines), double RNAi (3 

lines) and 35S::SlMED18 (3 lines) transgenic plants were selected for further 

phenotypic and expression analyses. 

 

Microscopy analysis 

Anther sections at key stages of microsporogenesis in the WT and transgenic genotypes 

were processed for light microscopy according to Jimenez-Lopez et al. (2016). Sections 

(7 µm) were stained with a mix of toluidine blue/methylene blue, and observed in a 

Nikon Eclipse Ti-U microscope.  

For the study of nuclei, pollen grains were released on a slide by squash from at 

least 20 anthers at four different stages and stained with 4´,6´-diamidino-2-phenylindole 

(10 ng·ml
-1

, DAPI) in McIlvaine buffer (0.1 M citric acid, 0.2 M Na2HPO4, 1% Triton 

X-100, pH 4.0) according to the method previously described by Coleman and Goff 

(1985). Samples were incubated at room temperature for 15 min in darkness and 

examined using using an epifluorescence microscope Nikon OPTIPHOT-2 associated to 

HB-10101AF Mercury Lamp (Nikon). 

Scanning electron microscopy (SEM) analyses were carried out as previously 

described by Lozano et al. (1998). Flowers from pod1 mutant and WT were fixed in 

FAEG (10% formaldehyde, 5% acetic acid, 50% absolute ethanol and 0.72% 

glutaraldehyde) and stored in 70% ethanol. Critical point dried with liquid CO2 in a 

critical point drier Bal Tec (Liechtenstein) CPD 030 was performed after dehydration of 

samples. Gold coat was applied in a Sputter Coater (Bal Tec SCD005). Samples were 

visualised using the scanning electron microscopy Hitachi S-3500N at 10kV. 
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Gene expression analysis 

Total RNA was isolated using TRIZOL (Invitrogen) following the manufacturer’s 

instructions from flowers at 5 different stages in relation to pollen cells development: 

PMCs (floral buds of 1-2 mm); Tds (floral buds of 3-4 mm); Mcs (flowers of 5-6 mm); 

YP (flowers of 7-8 mm); and MP (flowers at anthesis). cDNA was synthesized from 

500 ng of total RNA using the M-MuLV reverse transcriptase (Fermentas Life 

Sciences) with a mixture of random hexamer and oligo(dT)18 primers. Expression 

analyses were performed with three biological and two technical replicates. qRT-PCRs 

were performed with the SYBR Green PCR Master Mix (Applied Biosystems) kit using 

the 7300 Real-Time PCR System (Applied Biosystems). The housekeeping Ubiquitine3 

gene was used as control in all gene expression analyses. Specific primer pairs for each 

evaluated gene were described in Table S3. Results were expressed using the ∆∆Ct 

calculation method (Winer et al., 1999) in arbitrary units by comparison with a data 

point from the WT samples.  

In situ hybridization assays, tissue preparation, sectioning and transcript 

detection were carried out as described by Lozano et al. (1998). A POD1/SlMED18 

probe was prepared using cDNA as template (200-pb fragment of the 3’UTR from the 

Solyc06g008010 gene). Antisense probe was synthesized using the DIG RNA labelling 

mix (Roche Applied Science). As negative control, sense RNA probe was hybridized 

with the same sections and no signals were observed under the hybridization and 

detection conditions used. 

 

Genetic complementation of the Arabidopsis med18-1 mutant  

The overexpression construct 35S::SlMED18 was transformed in the Arabidopsis 

med18-1 plants (Zheng et al., 2013) by A. tumefaciens (strain C58C1) mediated 

transformation using the floral-dip method (Clough and Bent, 1998). The resulting 

35S::SlMED18 med18-1 transgenic lines were selected on MS-glucose kanamycin-

containing media plates. At least 10 independent transformants were evaluated 

phenotypically for different reproductive traits. 

Controlled environmental conditions were provided by walk-in growth chambers 

at 22ºC and 65% relative humidity. For the in vitro experiments, seedlings were 

cultured on agar-solidified MS medium. Plants were illuminated with cool-white 

fluorescent lights (120 µmoles/m
2
/s); Long-day (LD) conditions consisted of 16h 

light/8h dark and short-day (SD) conditions were 8h light/16h dark. 
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Figure legends 

 

Figure 1. Phenotypic and molecular characterization of pod1 insertional mutant. (a,b) 

Compared to WT plants (left), both leaf (a) and flower (b) development were reduced in 

pod1 plants (right). (c,d) Stamens of WT plants yielded a normal amount of viable 

pollen stained with TTC (c), while stamens of pod1 plants produced little amount of 

viable pollen (d). (e,f) In vivo pollen germination analysis. WT pollen grains developed 

normally on pod1 stigmas allowing to complete pollination (e), however, pod1 pollen 

grains were unable to form pollen tubes on cross-pollinated WT flowers (f). (g) Tomato 

fruits yielded by pod1 plants were seedless (parthenocarpic) and displayed a significant 

reduction in size. Scales bars: 10 cm in (a); 0.5 cm in (b); 200 µm in (c) and (d); 100 µm 

in (e) and (f); and 1 cm in (g). (h) Southern blot analysis of genomic DNA digested with 

EcoRI (E) and HindIII (H) and hybridized with a chimeric probe including NPTII and 

FA genes (the latter used as hybridization positive control). (i) Genomic organization of 

the SlMED18 and ZNHIT genes. The T-DNA insertion event produced a 160 bp 

deletion (∆160) on the POD1 genomic region of the mutant. Exons of SlMED18 and 

ZNHIT are depicted as white and grey boxes, respectively. Promoter region of both 

genes is shown as a bold line between transcription start sites (ATG). (j) Co-segregation 

analysis of the T-DNA insertion and the pod1 mutant phenotype in 16 plants of the T2 

population. T2 plants heterozygous (3, 4, 6, 7, 9, 10, 14 and 16) and homozygous for 

the WT allele (2, 8, 11 and 12) showed WT phenotype, while T2 plants homozygous for 

the mutant allele (1, 5, 13 and 15) displayed pod1 mutant phenotype. Dashed circles 

indicate pod1 plants displaying mutant phenotype. (k) Quantitative real-time PCR assay 

for SlMED18 gene. (l) Quantitative real-time PCR analysis of ZNHIT gene. Asterisk 

denotes significant differences (Student's t-test, P < 0.05). 

 

Figure 2. SlMED18 silencing plants phenocopy the pod1 mutant phenotype. (a-c) 

Phenotypic variation of reproductive traits observed in transgenic plants. Morphological 

features of flowers (a), pollen grains (b) and fruits (c) developed by RNAi SlMED18 

and double RNAi silencing lines were similar to those of pod1 plants. In contrast, no 

differences were observed in RNAi ZNHIT silencing lines and in pod1 plants 

overexpressing SlMED18 (35S∷SlMED18 pod1) compared to wild-type (WT) ones. (d) 

Comparison of the average relative expression of SlMED18 and ZNHIT genes in leaves 

from WT and transgenic lines. Scale bars: 1 cm in (a) and (c); and 100 µm in (b). 
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Figure 3. Expression of SlMED18 in reproductive floral organs. (a) Time-course of 

SlMED18 gene expression during flower and fruit development. (b-d) In situ 

hybridization assay of the SlMED18 gene in tomato flower buds. While no signal was 

found with sense probe hybridization (b), transcript accumulation signals were found in 

the two inner whorls of early developed flowers (stage 5, according to Brukhin et al., 

2003) (c); later, SlMED18 transcripts were mainly detected in pollen and ovules in 

flower buds at stage 8 (d). (e) GUS expression was found in stamens, stigma, ovules and 

at the bottom of petals and carpel of pod1 flowers, but not in WT ones. S, sepal 

primordium; P, petal primordium; St, stamen primordium, C, carpel primordium; Ov, 

ovules; Pg, pollen grains. Scale bars: 100 µm in (b), (c) and (d); and 1 mm in (e). 

 

Figure 4. Microscopy analysis of microsporogenesis and microgametogenesis in wild-

type and RNAi SlMED18 plants. (a-f) Morphological and histological features of anther 

sections during microsporogenesis of wild-type (a-c) and RNAi SlMED18 (d-f) plants. 

No differences were detected at the following developmental stages: pollen mother cells 

prior to the onset of meiosis (a,d), meiocytes at telophase I stage (b,e), and tetrads (c,f). 

(g-r) Morphological and histological features of anther sections during 

microgametogenesis of wild-type (g-l) and RNAi SlMED18 (m-r) plants; tissue sections 

were stained either with aniline blue (g-i and m-o) or DAPI (j-l and p-r). Comparative 

analyses were performed at the following developmental stages: vacuolated microspores 

(g,j versus m,p), young pollen grains (h,k versus n,q), and mature pollen grains prior to 

anther dehiscence (i,l versus o,r). Aw, anther wall; Ca, callose; Chr, chromatin; dN, 

degenerated nucleus; GN, generative nucleus; N, nucleus; PMC, pollen mother cell; T, 

tapetum; V, vacuole; VN, vegetative nucleus; asterisk, degenerated/altered microspore 

or pollen grain. Scale bars: 10µm. 

 

Figure 5. Tapetum development is altered during microgametogenesis of RNAi 

SIMED18 plants. (a-f) Morphological and histological features of anther sections 

focused on the tapetal layer at three stages before to anther dehiscence, i.e. vacuolated 

microspore (a,d), young pollen (b,e) and mature pollen (c,f). (g) Morphometric 

quantification of the tapetum tissue area (measured as a percentage of the whole anther 

locule) indicated a higher area of tapetum tissue RNAi SlMED18 plants. Asterisks 
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denote significant differences (Student's t-test, P < 0.05). Aw, anther wall; T, tapetum. 

Scale bars: 10µm. 

 

Figure 6. Expression of tapetum marker genes in wild-type and RNAi SlMED18 plants. 

qRT-PCR assay for SlMED18 (a), SlSPOROCYTLESS/HYDRA (b), MS10
35

 (c), AMS-

like (d), AtMYB103-like (e), MS1-like (f), TGAS100 (g), bHLH89/91 (h), TA29 (i), 

Cysteine protease (j), Aspartic proteinase (k), and Arabinogalactan protein (l) genes. 

The results show the averages and standard errors of three independent biological 

experiments and three technical replicates. Asterisks denote significant differences 

(Student's t-test, P < 0.05). 

 

Figure 7. Expression of the tomato SlMED18 rescues the phenotype defects displayed 

by Arabidopsis med18-1 plants. Compared to wild-type plants (Columbia), no visible 

differences were found in the Arabidopsis med18-1 plants overexpressing tomato 

SlMED18 (35S::SlMED18 med18-1) with respect to flowering time (a), identity and 

number of floral organs (b), fruit size (c,f), and number of leaves before flowering (d,e). 
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Significance statement 

 

Pollination is a key development process in the life cycle of flowering plants. Genetic 

and molecular characterization of a tomato mutant have led to the identification of 

POD1 gene encoding the Mediator complex subunit MED18 whose function is required 

for tapetum tissue degeneration, a crucial step for pollen development. Furthermore, we 

show that MED18 fulfils an essential role in tomato, ensuring proper gene regulation 

during pollen ontogeny. 
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Table S1 

 

Values are expressed as the mean ± standard deviation. Values followed by the same letter (
a
, 
b
, or 

c
) are not statistically different (Least 

significant difference test, P<0.01). 

  

Category Wild-type pod1 RNAi ZNHIT RNAi SlMED18 Double RNAi 
35S::SlMED18 

pod1 

Fresh weight of leaf (g) 54.31 ± 12.92
a
 19.68 ± 5.97

b
  50.98 ± 11.03

a
  21.33 ± 7.01

b
 20.16 ± 6.45

b
 55.12 ± 9.14

a
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Length of leaf (mm) 491.83 ± 39.54
a
 347.5 ± 46.58

b
 477.91 ± 42.22

a
  360.1 ± 37.11

b
 355.8 ± 54.22

b
 489.25 ± 

41.69
a
 

Length of petiole (mm) 58.40 ± 1.08
a
 37.77 ± 3.20

b
  56.16 ± 2.23ª  36.16 ± 3.84

b
 38.01 ± 2.99

b
 54.10 ± 1.56

a
 

Length of secondary petiole (mm) 27.01 ± 2.40ª 12.50 ± 1.20
b
 25.94 ± 3.56ª  11.85 ± 3.72

b
  14.31 ± 3.02

b
  24.98 ± 3.11ª 

Length of sepal (mm) 9.81 ± 0.55
a
 9.46 ± 2.04

a
 9.47 ± 1.26

a
  9.77 ± 1.85

a
  9.97 ± 2.05

a
  9.63 ± 1.67

a
 

Length of petal (mm) 14.80 ± 1.30ª 13.16 ± 1.57
b
 14.56 ± 0.73ª  12.85 ± 1.60

b
  13.04 ± 1.16

b
  14.80 ± 1.30ª 

Length of stamen (mm) 8.46 ± 1.60ª 6.64 ± 1.30
b
 8.50 ± 0.49ª  7.71 ± 1.03

c
  7.67 ± 0.83

c
  8.18 ± 1.00ª 

Length of pistil (mm) 7.18 ± 0.55ª 5.26 ± 0.50
b
 7.68 ± 0.83ª  6.07 ± 1.09

c
  6.19 ± 1.31

c
  7.34 ± 0.91ª 

Diameter of peduncle (mm) 0.71 ± 0.06ª 1.20 ± 0.20
b
  0.75 ± 0.23ª  1.00 ± 0.16

c
  0.96 ± 0.20

c
  0.68 ± 0.15ª 

Diameter of carpel (mm) 1.63 ± 0.24ª 1.63 ± 0.26ª 1.58 ± 0.32ª   1.60 ± 0.22ª  1.66 ± 0.27ª  1.59 ± 0.28ª 

Axial diameter of fruit (mm) 47.97 ± 2.82
a
 28.75 ± 2.06

b
 52.50 ± 1.32

a
 27.12 ± 1.30

b
  28.68 ± 2.10

b
  50.07 ± 3.05

a
 

Equatorial diameter of fruit (mm) 59.44 ± 4.28
a
 31.40 ± 5.83

b
 62.33 ± 2.88

a
  30.88 ± 1.52

b
  32.03 ± 1.79

b
  61.28 ± 3.87

a
 

Fresh weight of fruit (g) 130.75 ± 19.09
a
 18.90 ± 5.90

b
 134.59 ± 17.92

a
  19.61 ± 1.95

b
 20.07 ± 1.89

b
 133.05 ± 

18.51
a
 

Relative amount of pollen (%) 98.30 ± 5.20
a
 17.60 ± 9.10

b
 98.20 ± 7.30

a
  14.30 ± 6.20

b
 16.30 ± 6.40

b
 93.90 ± 5.80

a
 

Pollen viability (%) 97.60 ± 3.60
a
 28.70 ± 12.40

b
 96.20 ± 4.10

a
  18.70 ± 8.80

b
 15.70 ± 9.90

b
 96.50 ± 3.60

a
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Table S2 

 

    (a)   Primers used for anchor-PCR 

 

Primer name Primer sequence 5`-3` 

 

Ad1  CTAATACGACTCACTATAGGC 

   

 

Ad2  CTATAGGGCTCGAGCGGC 

   

 

Ad3  AGCGGCGGGGAGGT 

   

 

ARB-1  ACAGTTTTCGCGATCCAGAC 

   

 

ARB-2  GGTCTTGCGAAGGATAGTGG 

   

 

ARB-3  CTGGCGTAATAGCGAAGAGG 

   

 

ALB-1  TTGGCGTGTCAGCGTATCTA 

   

 

ALB-2  ATCGGTCTCAATGCAAAAGG 

   ALB-3  ATAATAACGCTGCGGACATCTAC 

    (b)   Primers used for PCR genotyping analysis 

Primer name Primer sequence 5`-3` 

619a_genot_F TCAACAGTAAAAACGAGCCAAA 

619a_genot_R GGATGAAGCAATTGGGACAC 

RB_pD991_F TACAACGTCGTGATGGGAAA 

    (c)   Primers used for generation of transgenic lines 

Primer name Primer sequence 5`-3` 

RNAiMED18_F tctagactcgagTTCTTTGGCTCGTTGTTATCG 

RNAiMED18_R atcgatggtaccTTGAACAGTTGAAGCAATCTCA 

RNAiZn_F tctagactcgagTGGAGAAGTTCAACAGGATACG 

RNAiZn_R atcgatggtaccAATGGAAGCAGAAGCAGAGG 

RNAi-doble_F gctagtcgcgaggcTTCTTTGGCTCGTTGTTATCG 

RNAi-doble_R gcctcgcgactagcAATGGAAGCAGAAGCAGAGG   

35S-Med_F ggtaccAAAAATCTCTCTTTGGCTCGTTT 

35S-Med_R gagctcCTGCTGTGCTTTGTTTTTCG 

* In lowercase is shown the endonuclease site introduced in the primer sequence 
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Table S3 

 

Locus Forward primer sequence 5’- 3’  Reverse primer sequence 5’- 3’ SGN id 

SlAMS-like TGCAGAGATGTTATGTTTCAGCATC TCGTCTCTGTCTCTTTCTCCTTCTG Solyc08g062780 

SlMS1-like TTGTGTCAATGGATCATTGGAAAC AACCTCTTGCCTAGACACCCATC Solyc04g008420 

Slendo13bGl GATCCAATGTGGGGAAGAAA CCACAAATCAAAGCACCTCA Solyc03g046200 

SlpLAT52 AAGGTGTGACTGATAAAGATGGC AACCCAACTCATCAAGAGCTTC Solyc10g007270 

SlbHLH89/91 TCCATGGATGGTAGTGATGC TCGACAATCCGAACATCAAC Solyc01g081100 

SlCysProt ATTGGTGTCGATTGGAGGAAG CAAATGCACTTTCCATAAACCC Solyc07g053460 

SlAspProt GTGATATTAATTGGCTTCAATGTGAACC ATACTCGCCGGAACCTGTAACATC Solyc06g069220 

SlTA29 AAGATTTTAACCATGAACTTCTTC ACATTCTTCAGTGTCACATACATC Solyc02g078370 

SlTomA108 ATGCAATTAGGAGCCTTGATTC CAGTTCCAGTTCCTGTTCCG Solyc01g009590 

SlTGAS100 TATATAGACATGGCAATGAAATGGC AGTCAAGACAACGATCAAGAATGC Solyc06g064480 

SlSisterCC CATTGGCTTTCAGAGCTTCC GCAGCAGAAAGCGAAATTCT Solyc03g116930 

LeGRP92 ATGCAATTAGGAGCCTTGATTC CAGTTCCAGTTCCTGTTCCG Solyc02g032910 

SlMS10-35 AGATCTCTCTGATTCGATTAGCTTCAG TCTTGAAATGGAAGCAACTCAGG Solyc02g079810 

SlTDF1-like GGTAATTGGGCAACCATGTC TTGAGGCGTAAAGCTGTCCT Solyc03g113530 

SlMYB103-like TGCTGAGGAAGATGCAAAAA GGTCCATCTCAGCCTACAGC Solyc03g059200 

SlArabinogalProt CCTTTTCATTCTGGGGTGAC CGTCACTAACAACCTTTGAACG Solyc11g072780 

619a_ZFinger AGCTGTGTAAGGCGTGCTCT ACAGCTATATCGATACACTTCGTTT Solyc06g008020 

SlMED18 TCTCTGATGTCTGATGGTGGA GAAGGAGAATGGCGAAATAC Solyc06g008010 

AtMED18 CGAACCCACATGGACGGTTAAA AGATGAAACAGCAGCAGCGACT AT2G22370 

FT CATCGTGTCGTGTTTATATTGTTTCG CCTCCGCAGCCACTCTCC AT1G65480 

SOC1 ACTCTTGGGAGAAGGCATAGGA TGGGCTACTCTCTTCATCACCT AT2G45660 

FLC TCACCTTCTCCAAACGTCGCAA TGAGTTCGGTCTTCTTGGCTCT AT5G10140 

SEP3 ACGCCTTACAGAGAACCCAAAGGA TTTGTCTCAGTCAGCATGCGTTCC AT1G24260 

PI ACCAATGCTCCTCTTCTTGTTCTTC ACTCTGTTGTTTGCGTTCTCTATCC AT5G20240 

AG CGAGTATAAGTCTAATGCCAGGAG GAGTAATGGTGATTGTTAGGTTGC AT4G18960 

TM6 GGAAAAATTGAGATCAAGAAG TCAGGAGAGACGTAGATCAC Solyc02g085480 

TPI TGGGGAGAGGTAAAATAGAG GTAGATTTGGCTGCATTGGC Solyc06g059970 

SL (AP3) ATGGCTCGTGGTAAGATCCAG TCAACCTAGAGCAAAAGTAG Solyc04g081000 

UBC21 CTTGGACGCTTCAGTCTGTG TGAACCCTCTCACATCACCA AT5G25760 

Ubiquitine3 CACACTTCACTTGGTCTTGCGT TAGTCTTTCCGGTGAGAGTCTTCA Solyc01g056940 
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