

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/147429

Iserte Agut, S.; Mayo Gual, R.; Quintana Ortí, ES.; Beltrán, V.; Peña Monferrer, AJ. (2018).
DMR API: Improving cluster productivity by turning applications into malleable. Parallel
Computing. 78:54-66. https://doi.org/10.1016/j.parco.2018.07.006

http://doi.org/10.1016/j.parco.2018.07.006

Elsevier

DMR API: Improving Cluster Productivity by Turning

Applications into MalleableI

Sergio Isertea,∗, Rafael Mayoa, Enrique S. Quintana-Ort́ıa, Vicenç Beltranb,
Antonio J. Peñab

aUniversitat Jaume I (UJI), Castelló de la Plana, Spain
bBarcelona Supercomputing Center (BSC)

Abstract

Adaptive workloads can change on–the–fly the configuration of their jobs, in
terms of number of processes. To carry out these job reconfigurations, we
have designed a methodology which enables a job to communicate with the
resource manager and, through the runtime, to change its number of MPI
ranks. The collaboration between both the workload manager—aware of the
queue of jobs and the resources allocation—and the parallel runtime—able
to transparently handle the processes and the program data—is crucial for
our throughput-aware malleability methodology. Hence, when a job triggers a
reconfiguration, the resource manager will check the cluster status and return
the appropriate action: i) expand, if there are spare resources; ii) shrink, if
queued jobs can be initiated; or iii) none, if no change can improve the global
productivity. In this paper, we describe the internals of our framework and
demonstrate how it reduces the global workload completion time along with
providing a more efficient usage of the underlying resources. For this purpose,
we present a thorough study of the adaptive workloads processing by showing
the detailed behavior of our framework in representative experiments.

Keywords: MPI Malleability, Job Reconfiguration, Dynamic Reallocation,
Smart Resource Utilization, Adaptive workload

IThis is an extended version of a previous work presented in the ICPP’17 workshop
P2S2 [1].

∗Corresponding author
Email addresses: siserte@uji.es (Sergio Iserte), mayo@uji.es (Rafael Mayo),

quintana@uji.es (Enrique S. Quintana-Ort́ı), vbeltran@bsc.es (Vicenç Beltran),
antonio.pena@bsc.es (Antonio J. Peña)

Preprint submitted to Parallel Computing July 13, 2018

1. Introduction

In production HPC facilities, applications run on shared computers where
hundreds or thousands of other applications are competing for the same re-
sources. In this scenario, applications are submitted to the system with the
shape of parallel jobs that conform the current workload of a system. Adapt-
ing the workload to the infrastructure can render considerable improvements
in resource utilization and productivity. A potential approach to obtain the
desired adaptivity consists in applying dynamic job reconfiguration, which
devises resource usage to be potentially changed at execution time.

Adapting the workload to the target infrastructure brings benefits to both
system administrators and end users. While administrators would like to see
the throughput rate increased and a smarter resource utilization by the appli-
cations, end-users are the direct beneficiaries of the dynamic reconfiguration,
since it removes strict resource requirements at submission time. Although
this may prevent the application from being executed in the shortest time,
users generally experience a faster completion time (waiting plus execution
time).

In order to adapt a workload dynamically to the infrastructure, we need
two main tools: (1) a resource manager system (RMS) capable of reallocating
the resources assigned to a job; and (2) a parallel runtime to rescale an appli-
cation. In our solution, we have connected these components by developing
a communication layer between the RMS and the runtime.

In this work we enhance the Slurm Workload Manager [2] to achieve
fair dynamic resource assignment while maximizing the cluster throughput.
We select Slurm1 because it is open-source, portable, and highly scalable.
Moreover, it is one of the most widely-adopted RMSs in the Top500 List.2

To exploit a collection of distributed resources, the vast majority of the
scientific applications that run on high performance clusters use the Message
Passing Interface (MPI), either directly or on top of programming models
or libraries leveraging MPI underneath. Reconfiguration is possible in MPI
applications via the MPI spawning functionality.

1http://slurm.schedmd.com
2http://www.top500.org

2

The direct use of MPI to handle migrations, however, requires consider-
able effort from skilled software developers to manage the whole set of data
transfers among processes in different communicators. For this purpose, we
benefit from the recently-incorporated offload semantics of the OmpSs pro-
gramming model [3] to ease the malleability and data redistribution process.
In addition, we adapt the Nanos++ OmpSs runtime to interact with Slurm.
We improve the Nanos++ runtime to reconfigure MPI jobs and establish a
direct communication with the RMS. For that, applications will expose “re-
configuring points” where, signaled by the RMS, the runtime will assist to
resize a job on–the–fly. We emphasize that, although we benefit from the
OmpSs infrastructure and semantics for job reconfiguration, our proposal
may well be leveraged as a specific-purpose library, and applications using
this solution are free to exploit on-node parallelism using other programming
models such as OpenMP.

In summary, the main contribution of this paper is a mechanism to ac-
complish MPI malleability, based on existing components (MPI, OmpSs, and
Slurm), which enhances resource usage to produce higher global through-
put in terms of executed jobs per unit of time. Our solution, the dynamic
management of resources (DMR) API, targets MPI applications and is im-
plemented leveraging the OmpSs programming model. OmpSs provides an
OpenMP-like syntax which does not interfere with other OpenMP directives
or functions that may be used in the code. To that extent, we propose (1) an
extension of the OmpSs offload mechanism to deal with dynamic reconfigu-
ration; (2) a reconfiguration policy for the RMS to decide whether a job must
be expanded or shrunk; and (3) a communication protocol for the runtime to
interact with the RMS, based on application-level Application Programming
Interface (API) calls. Last, (4) we also provide an extensive evaluation of the
framework that demonstrates the benefits of our workload-aware approach.

This article extends our previous work in [1] by providing an extensive
overhead study of the scheduling and resize times for reconfiguring jobs.
Furthermore, we have improved the workload execution analysis with a job–
to–job comparison when these have been launched fixed and malleable. We
focus our attention on how each job behaves when studying its individual
waiting, executing and completing times.

The rest of this paper is structured as follows: Section 2 discusses related
work. Section 3 presents an overview of the proposed methodology. Sec-
tions 4 and 5 present the extensions developed in the Slurm RMS and the
Nanos++ runtime that support our programming model proposal discussed

3

in Section 6. Section 7 evaluates and analyzes malleability in a production
environment. Finally, Section 8 outlines the conclusions.

2. Related Work

In general, a job (application) may be classified in one of the following
types: rigid, moldable, malleable and evolving [4]. These classes depend on
the number of concurrent processes during the execution of a job, so that we
collapse them into two categories:

• Fixed: The number of parallel processes remains constant during the
execution (rigid and moldable applications).

• Malleable: The number of processes can be reconfigured on–the–fly, al-
lowing distinct numbers of parallel processes in different parts of the ex-
ecution (malleable and evolving applications) or job malleability. This
action is known as dynamic reconfiguration.

The first steps toward malleability targeted shared-memory systems ex-
ploiting the malleability of applications. In [5] the authors leveraged mold-
ability together with preemptive policies, such as equipartitioning (assigna-
tion of the same amount of resources to all the running jobs) and folding
(the job with more resources releases half of them in favor of a pending job
or the job with the fewest resources assigned). These policies can interrupt
active jobs to redistribute processors among the pending jobs.

Checkpointing mechanisms have been used in the past to save the appli-
cation state and resume its execution with a different number of processes,
or simply to migrate the execution to other processes. The work in [6] ex-
plores how malleability can be used in checkpoint-restart (C/R) applications.
There, a checkpoint–and–reconfigure mechanism is leveraged to restart ap-
plications with a different number of processes from data stored in checkpoint
files. Storing and loading checkpoint files, however, poses a non-negligible
overhead versus runtime data redistribution.

In [7], the authors address malleability using two different approaches:
firstly, they use a traditional C/R mechanism, leveraging the library Scalable
C/R for MPI (SCR) [8], to relaunch a job with a new number of processes
after saving the state. The second approach is based on the User Level
Failure Migration (ULFM) MPI standard proposal for fault-tolerance [9].
For this purpose, the authors cause abortions in the processes to use the

4

shrink-recovery mechanism implemented in the library, and then, resume the
execution in a new number of processes.

A resizing mechanism based on Charm++ is presented in [10]. The au-
thors of that work demonstrate the benefits of resizing a job in terms of both
performance and throughput, but they do not address the data redistribution
problem during the resizing.

The authors of [11] rely on an MPI implementation called EasyGrid AMS
to adjust automatically the size of a job. Another similar approach is found
in [12], where a performance-aware framework based on the Flex-MPI li-
brary [13] is presented. That work leverages job reconfiguration in order to
expand/shrink a job targeting execution performance. For that purpose, the
framework monitors execution, predicts future performance, and balances
the load.

In the literature we can also find several works that combine malleabil-
ity with resource management. ReSHAPE [14] integrates job reconfiguration
techniques with job scheduling in a framework that also considers the current
performance of the execution. Complementary research using this framework
analyzes its impact on individual performance and throughput in small work-
loads [15, 16]. That solution, however, requires all applications in the cluster
to be specifically-developed to be malleable under the ReSHAPE framework.
In a more recent work, they present a more in-depth study discussing the
ReSHAPE behavior with a workload of 120 jobs [17].

An additional important contribution is [18], where a batch system with
adaptive scheduling is presented. The authors in this paper enable the com-
munication between the RMS Torque/Maui and Charm++ as a parallel
runtime. Charm++ applications are presented as automatically malleable
thanks to C/R.

Compared with previous work, we present a holistic throughput-oriented
reconfiguration mechanism based on existing software components that is
compatible with unmodified non-malleable applications. Furthermore, in
contrast with previous studies, we configure our workloads not only leverag-
ing synthetic applications.

3. Overview of the Methodology

Slurm exposes an API that may be used by external software agents. We
employ this API from the Nanos++ OmpSs runtime to design the job resize

5

mechanism. Thus, Slurm’s API allows us to resize a job following the next
steps:

• Job A has to be expanded

1. Submit a new job B with a dependency on the initial job A. Job
B requests the number of nodes NB to be added to job A.

2. Update job B, setting its number of nodes to 0. This produces a
set of NB allocated nodes which are not attached to any job.

3. Cancel job B.

4. Update job A and set its number of nodes to NA+NB.

• Job A has to be shrunk

1. Update job A, setting the new number of nodes to the final size
(NA is updated).

After these steps, Slurm’s environment variables for job A are updated.
These commands have no effect on the status of the running job, and the user
still remains responsible for any malleability process and data redistribution.

Figure 1: Scheme of the interaction between the RMS and the runtime.

The framework we leverage consists of two main components: the RMS
and the programming model runtime (see Figure 1). The RMS is aware of
resource utilization and the queue of pending jobs. When an application is
in execution, it periodically contacts the RMS, through the runtime, commu-
nicating its rescaling willingness (to expand or shrink the current number of
allocated nodes). The RMS inspects the global status of the system to decide
whether to initiate any rescaling action, and communicates this decision to
the runtime. If the framework determines that a rescale action is beneficial

6

and possible, the RMS, runtime and application will collaborate to continue
the execution of the application scaled to a different number of nodes (MPI
processes).

4. Slurm Reconfiguration Policy

We designed and developed a resource selection plug-in responsible for
the reconfiguration decisions. This plug-in realizes a node selection policy
featuring three modes that accommodate three degrees of scheduling freedom.

4.1. Request an Action

Applications are allowed to “strongly suggest” a specific action. For in-
stance, to expand the job, the user could set the “minimum” number of re-
quested nodes to a value that is greater than the number of allocated nodes.
However, Slurm will ultimately be responsible for granting the operation
according to the overall system status.

4.2. Preferred Number of Nodes

One of the parameters that applications can convey to the RMS is their
preferred number of nodes to execute a specific computational stage. If the
desired size corresponds to the current size, the RMS will return “no action”.
If a “preference” is requested, and there is no outstanding job in the queue,
the expansion can be granted up to a specified “maximum”. Otherwise, if
the desired value is different from the current allocation, the RMS will try
to expand or shrink the job to the preferred number of nodes.

4.3. Wide Optimization

The cases not covered by the preceding methods are handled as follows:

• A job is expanded if there are sufficient available resources to fulfill the
new requirement of nodes and either (1) there is no job pending for
execution in the queue, or (2) no pending job can be executed due to
insufficient available resources. By expanding the job, we can expect it
to finish its execution earlier and release the associated resources.

• A job is shrunk if there is any queued job that could be executed by
taking this action. More jobs in execution should increase the global
throughput. Moreover, if the job is going to be shrunk, the queued job
that has triggered the shrinking event will be assigned the maximum
priority to foster its execution.

7

5. Framework Design

We implemented the necessary logic in Nanos++ to reconfigure jobs in
tight cooperation with the RMS. In this section we discuss the extended API
and the resizing mechanisms.

5.1. The Dynamic Management of Resources (DMR) API

We designed the DMR API with two main functions: dmr check status

and its asynchronous version dmr icheck status. These routines instruct
the runtime (Nanos++) to communicate with the RMS (Slurm) in order to
determine the resizing action to perform: “expand”, “shrink” or “no action”.
The asynchronous counterpart schedules the next action for the following
execution step, at the same time that the current step is executed. Hence,
by skipping the action scheduling stage, the communication overhead in that
step is avoided.

In case an action is to be performed, these functions spawn a new set of
processes and return an opaque handler. This API is exposed by the runtime
and it is intended to be used by applications. Both functions need informa-
tion about the scalability of the job, which has to provide the following input
arguments:

• Min: Minimum number of processes to be resized to.

• Max : Maximum number of processes. This sets the maximum number
of processes that the job can be scaled to. Minimum and maximum
values define the limits of malleability.

• Factor : Resizing factor (e.g., a factor of 2 will expand/shrink the num-
ber of processes to a value multiple/divisor of 2).

• Pref : Preferred number of processes.

The output arguments return the new number of nodes and a handler to be
used in subsequent operations.

An additional mechanism implemented to attain a fair balance between
performance and throughput is the “scheduling inhibitor”. This introduces a
timeout during which the calls to the DMR API are ignored. This knob is in-
tended to be leveraged in iterative applications with short iteration intervals.
The inhibition period can be tuned by means of an environment variable.

8

5.2. Automatic Job Reconfiguration

The runtime will perform the following actions which leverage the Slurm
resizing mechanisms (see Section 4) by means of its external API.

5.2.1. Expand

A new resizer job (RJ) is first submitted requesting the difference between
the current and total amount of desired nodes. This enables the original
nodes to be reused. There is a dependency relation between the RJ and the
original job (OJ). In order to facilitate complying with the RMS decisions,
RJ is set to the maximum priority, facilitating its execution.

The runtime waits until RJ moves from the “pending” to the “running”
status. If the waiting time reaches a threshold, RJ is canceled and the ac-
tion is aborted. This situation may occur if the RMS assigns the available
resources to a different job during the scheduling action. This is more likely
to occur in the asynchronous mode because an action can then experience
some delay during which the status of the queue may change. Once OJ
is reallocated, the updated list of nodes is gathered and used in a call to
MPI Comm spawn to create a new set of processes.

5.2.2. Shrink

The shrinking mechanism is slightly more complex than its expansion
counterpart because Slurm kills all processes running in the released nodes.
To prevent premature process termination, we need a synchronized workflow
to guide job shrinking. Hence, the RMS sets a management node in charge of
receiving an acknowledgment (ACK)from all other processes. These ACKs
will signal that those processes completed their tasks and the node is ready
to be released.

After a scheduling is complete, the DMR call returns the expand–shrink
action to be performed and the resulting number of nodes. The application
is responsible for performing the appropriate actions using our programming
model as described in Section 6.

The spawning and termination of processes is managed by Nanos++
through the #pragma directive, which hides and triggers all the internal
mechanisms for resource reallocation, process resize, data redistribution and
resume of the execution.

9

1 void main (i n t argc , char ∗∗argv) {
2 . . .
3 i n t t = 0 ;
4 MPI_Comm_get_parent(&parentComm) ;
5 i f (parentComm == MPI_COMM_NULL) {
6 init (data) ;
7 } e l s e {
8 MPI_Recv (parentComm , data , myRank) ;
9 MPI_Recv (parentComm , &t , myRank) ;

10 }
11 compute (data , t) ;
12 . . .
13 }
14
15 void compute (data , t0) {
16 f o r (t=t0 ; t<timesteps ; t++) {
17 nodeList = get_new_nodelist_somehow () ;
18 i f (nodelist != NULL) {
19 MPI_Comm_spawn (myapp . bin , nodeList , &newComm) ;
20 MPI_Send (newComm , data , myRank) ;
21 MPI_Send (newComm , t , myRank) ;
22 exit (0) ;
23 }
24 compute_iter (data , t) ;
25 }
26 }

Listing 1: Pseudo-code of how a generic malleable application may look like using bare
MPI.

6. Programming Model

In this section we review our programming model approach to address
dynamic reconfiguration coordinated by the RMS. The programmability of
our solution benefits from the OmpSs offload semantics, which presents an
OpenMP-like syntax.

6.1. Benefits of the OmpSs Offload Semantics

To showcase the benefits of the OmpSs offload semantics, we review the
specific simple case of migration. This analysis allows us to focus on the
fundamental differences between programming models because it does not
involve data redistribution among a different number of nodes (which is of
similar complexity in both models).

MPI Migration. Listing 1 contains an excerpt of pseudo-code directly using
MPI calls. In this case, we assume that some mechanism is available to
determine the set of resources in line 17.

10

1 void main (void) {
2 . . .
3 i n t t = 0 ;
4 init (data) ;
5 compute (data , t) ;
6 . . .
7 }
8
9 void compute (data , t0) {

10 f o r (t=t0 ; t<timesteps ; t++) {
11 action = dmr_check_status (. . . , &newNnodes , &handler) ;
12 i f (action) {
13 #pragma omp task inout (data) onto (handler , myRank)
14 compute (data , t)
15 } e l s e
16 compute_iter (data) ;
17 }
18 }

Listing 2: Pseudo-code of a generic malleable application using OmpSs and the DMR API.

OmpSs-based Migration. The same functionality is attained in Listing 2 by
leveraging our proposal on top of the OmpSs offload semantics. This in-
cludes a call to our extended API in line 11. At a glance, our proposal
exposes higher-level semantics, increasing code expressiveness and program-
ming productivity. In addition, communication with the RMS is implicitly
established in the call to the runtime in line 11, which pursues an increase
in overall system resource utilization. Data transfers are managed by the
runtime with the directive in line 13. Moreover, at this point, the initial pro-
cesses terminates, letting the execution of “compute()” in line 14 continue in
the processes of the new communicator identified by “handler”.

6.2. A Complete Example

The excerpt of code in Listing 3 is derived from that showcased in Sec-
tion 6.1 to discuss malleability. In this case the application must drive the
task redistribution according to the resizing action. The mapping factor

indicates the number of processes in the current set that are mapped to the
processes in the new configuration (see Figure 2). This example implements
homogeneous distributions, where we always resize to a multiple or a divisor
of the current number of processes. Our model, however, supports arbitrary
distributions.

For the “expand” action (line 8), the original processes must partition
the dataset. For instance, in Figure 2a, the processes split the dataset into

11

1 void compute (data , t0) {
2 f o r (t=t0 ; t<timesteps ; t++) {
3 action = dmr_check_status (. . . , &newNnodes , &handler) ;
4 i f (! action)
5 compute_iter (data) ;
6 e l s e {
7 i f (action == EXPAND) {
8 factor = newNnodes / worldRanks ;
9 f o r (i=0; i<factor ; i++) {

10 dest = myRank ∗ factor + i ;
11 subdata = part_data (factor , data) ;
12 #pragma omp task inout (subdata) onto (handler , dest)
13 compute (subdata , t) ;
14 } // End f o r
15 } e l s e i f (action == SHRINK) {
16 factor = worldRanks / newNnodes ;
17 sender = (myRank % factor) < (factor − 1) ;
18 i f (sender) {
19 dst = factor ∗ (myRank / factor + 1) − 1 ;
20 MPI_Isend (comm , data , dst) ;
21 } e l s e { // Rece iver
22 f o r (i=1; i<=factor ; i++) {
23 src = myRank − factor + i ;
24 MPI_Irecv (comm , &alldata , src) ;
25 } // End f o r
26 } // End i f (sender)
27 MPI_Waitall () ;
28 i f (! sender) {
29 dest = myRank / factor ;
30 #pragma omp task inout (alldata) onto (handler , dest)
31 compute (alldata , t) ;
32 } // End i f (! sender)
33 } // End i f (a c t i on == SHRINK)
34 } // End i f (a c t i on)
35 } // End f o r
36 } // End compute ()

Listing 3: Code example of how malleability is implemented in the computation function
of a generic application using OmpSs and the DMR API.

#0 #1

Comm 1

(a) Expand from 2 to 4 processes.

#0 #1
Comm 2

(b) Shrink from 4 to 2 processes.

Figure 2: Example of the communication pattern among processes and communicators in
the event of a reconfiguration.

12

two subsets, mapping each half to a process in the new communicator. The
data transfers are performed by the runtime according to the information
included in the task offloading directive (line 12).

The “shrink” action, on the other hand, involves preliminary explicit
data movement. The processes in the original set are grouped into “senders”
and “receivers”. This initial data movement within the initial communicator
(Comm 1) is illustrated in the example in Figure 2b and is reflected in
lines 17-27. Once the data is correctly placed in Comm 1, processes with
the gathered data (“receivers”) utilize the #pragma directive to determine
the inter-communicator communication pattern and the data dependencies
to perform the data transfers (line 30).

7. Experimental Results

In this section we evaluate the implementation of the malleability frame-
work based on the DMR API via a set of workloads, fixed and malleable.

7.1. Workload Configuration

The workloads were generated using the statistical model proposed by
Feitelson [4], which characterizes rigid jobs based on observations from logs
consisting of actual cluster workloads. For our purposes, we leverage the
model customizing the following 2 parameters:

• Jobs: Total number of jobs in the workload.

• Arrival: Inter-arrival times of jobs modeled by a Poisson distribution
of factor 10, which will prevent from receiving bursts of jobs while
preserving a realistic job arrival pattern.

7.2. Platform

Our evaluation was performed on the Marenostrum III supercomputer
at Barcelona Supercomputing Center. Each compute node in this facility is
equipped with two 8-core Intel Xeon E5-2670 processors running at 2.6 GHz
and 128 GB of RAM. The nodes are connected via an InfiniBand Mellanox
FDR10 network. For the software stack we used MPICH 3.2, OmpSs 15.06,
and Slurm 15.08.

Slurm was configured with the backfill job scheduling policy. Further-
more, we also enabled job priorities with the policy multifactor. Both were
configured with default values.

13

7.3. Reconfiguration Scheduling Performance Evaluation

We next analyze the overhead of using our framework to enable malleabil-
ity. For this purpose, we used the synthetic application Flexible Sleep (FS),
configured to perform 2 steps and to transfer 1 GB of data during the re-
configuration. FS exhibits a perfectly linear scalability, hence, the minimum
and maximum number of processes is set to 1 and 20 (the quantity of nodes
used in this experiment), respectively.

The main idea of this experiment is that each job executes an iteration,
then it contacts with the RMS, and resumes the execution in the second step
with the new configuration of processes.

Figure 3 displays the temporal cost of several reconfigurations (y-axis)
divided in stages (x-axis: (a) scheduling and (b)resize). The times in Figure 3
are obtained from the average of 10 executions for each reconfiguration.

The left plot in that figure (a) shows the times taken by the RMS to
determine an action (scheduling time). From top to bottom, the first half
of the chart depicts the expansions, while the second half, the shrinks. The
chart reveals a slight increment in the scheduling time when more nodes are
involved in this process.

The right plot of the same figure (b) shows the time that is necessary to
perform the transfers among the processes. Two interesting behaviors are
appreciated in this chart:

• Increasing the number of processes involved in the reconfiguration, re-
duces the resize time. This is because the chunks of data are smaller
and the time needed to concurrently transfer them is lower (compare
the time of the reconfigurations 1 to 2 and 64 to 32).

• Apart from the data redistribution, shrinks involve a more complex
internal synchronization of processes. This complex synchronization is
necessary to handle the way in which Slurm handles the processes when
terminating. Hence, the time required to synchronize the processes
augments with their numnber.

In summary, Figure 3 seeks to highlight that the reconfiguration overhead
increases when: more processes are involved (a); or the gap between the
initial and final number of processes is greater (b).

We have also studied the overhead in a more realistic workload, con-
figuring FS to execute 25 steps instead of the 2 steps previously used for

14

⠀戀⤀ 刀攀猀椀稀攀 琀椀洀攀⸀⠀愀⤀ 匀挀栀攀搀甀氀椀渀最 琀椀洀攀⸀

Figure 3: Analysis of the reconfiguration time per stages (scheduling (a) and resize (b))
for different number of processes.

analyzing the stages of a reconfiguration. Table 1 reports the statistics col-
lected after executing a 400-job workload composed exclusively of those FS
instances. The table is divided in three parts, and shows the actions taken
and their run time during the workload execution in both synchronous and
asynchronous scheduling.

When no action is performed, the scheduling time is negligible (see aver-
age time and standard deviation of “no action”). The time increases when
the RMS performs an action because of the scheduling process itself and the
reconfiguration operations performed by the runtime.

The first two rows of actions “expand” and “shrink” provide information
about the number of reconfigurations scheduled per workload and per job.
These results show that the synchronous version schedules fewer reconfigura-
tions than the asynchronous. Since we are processing workloads with many
queued jobs, running jobs are likely to be shrunk in favor of the pending jobs.
For this reason “shrink” actions are more common.

The table also demonstrates the negative effect of a timeout during an
expansion. This effect is shown in the asynchronous scheduling column with
the maximum, average and standard deviation values. In addition to the
maximum time taken by the runtime to assert the expanding operation,
these timeouts reveal a non-negligible dispersion in the duration values for
the “expand” action. In fact, having such a high standard deviation turns
the average time little representative.

15

Table 1: Analysis of the actions performed by the framework in a 400-job workload.
Synchronous Asynchronous

No
Action

Minimum Time (s) 0.0010 0.0003
Maximum Time (s) 0.2078 0.1140
Average Time (s) 0.0094 0.0137

Standard Deviation (s) 0.0102 0.0112

Action
Expand

Quantity 50 107
Actions/Job 0.125 0.267

Minimum Time (s) 0.367 0.366
Maximum Time (s) 0.530 40.418
Average Time (s) 0.423 8.820

Standard Deviation (s) 0.146 12.688

Action
Shrink

Quantity 194 303
Actions/Job 0.485 0.757

Minimum Time (s) 0.233 0.334
Maximum Time (s) 0.541 0.555
Average Time (s) 0.425 0.422

Standard Deviation (s) 0.498 0.049

7.4. Dismissing the Asynchronous Scheduling

In our previous work the asynchronous scheduling was reported to de-
liver worse performance than its synchronous counterpart [1]. This section
thoroughly evaluates and compares both methods showing the inefficiency of
the asynchronous scheduling for processing adaptive workloads exclusively
composed of FS instances. Table 2 compares both modes, synchronous and
asynchronous, in more detail, analyzing their performance at cluster and job
levels. The most remarkable aspect here is that the synchronous scheduling
occupies almost all the resources (' 94%) during the workload execution (the
low standard deviation reveals that the mean value is barely unchanged for all
sizes). The asynchronous mode still presents a higher utilization rate than
the non-malleable workload. However, the high standard deviation means
that the utilization is not as regular as in the synchronous case. In fact, this
result hides a low average utilization for small workloads compared with a
higher one for large workloads, similar to the synchronous scenario [1].

The last three rows offer timing measures: the wait-time of a job before
initiating, the execution time of the job, and the difference of time from
the job submission to its finalization (completion). Malleability provides an
important reduction of the wait-time in both modes for all the sizes. This

16

Table 2: Cluster and job measures of the 400-job workloads.

Cluster Measures Fixed Synchronous Asynchronous

Resources utilization
Avg. (%) 83.607 93.909 86.687
Std. (%) 5.353 1.012 8.735

Per Job Measures Fixed Synchronous Asynchronous

Waiting time gain
Avg. (%) - 27.980 30.575
Std. (%) - 12.124 17.282

Execution time gain
Avg. (%) - -58.482 -97.294
Std. (%) - 26.731 34.378

Completion time gain
Avg. (%) - 12.786 7.799
Std. (%) - 4.083 5.548

is because the resource manager can shrink a job in execution in favor of a
queued one.

With respect to the execution time, we experience a high degradation in
the performance of individual jobs. For the synchronous scheduling, the neg-
ative gain of around a 58% is closely related to the fact that the application
scales linearly. Thus, halving the resources produces a proportional reduc-
tion in performance. In the asynchronous scenario, the degradation is even
more pronounced. The high standard deviation means that the performance
of all the jobs is not equally impacted.

Finally, the global job time (completion time) reveals malleability as an
interesting feature, especially for the synchronous scheduling which completes
the jobs, on average, 12% earlier than the traditional scenario.

Since this test reveals no benefit from using the asynchronous scheduling,
the rest of the experiments will exclusively use the synchronous mode.

7.5. Throughput Evaluation

For our throughput evaluation we generated workloads of 50, 100, 200
and 400 jobs for both versions, fixed and malleable, all executed in 64 nodes
of Marenostrum III. Each workload is composed of a set of randomly-sorted
jobs (with a fixed seed), which instantiate one of the three non-synthetic
applications: Conjugate Gradient (CG), Jacobi and N-body. The description
of the applications and their behavior, as well as a thorough preliminary study
of all the features implemented in the DMR API can be found in [1].

In summary, Table 3 gathers the reconfiguration parameters and the ex-
ecution configuration of each application. Min, max and pref define the

17

Table 3: Configuration parameters for the applications

App Min Max Pref Sched Steps Input Data

CG 2 32 8 15 s 10K 214 doubles× 4 arrays × 1 matrix

Jacobi 2 32 8 15 s 10K 213 doubles× 2 arrays × 1 matrix

N-body 1 16 1 - 25 32768K particles

malleability parameters and sched is the scheduling period during which
reconfigurations are inhibited (described in Section 5.1). Furthermore, the
shrink-expand factor was set to 2 for all malleable jobs. It is worth noting
that the input matrices are square. Following those parameters, each job is
launched with its maximum number of processes, reflecting the user-preferred
scenario of a fast execution.

Figure 4 depicts the execution time of each workload comparing both
configuration options: fixed and malleable. The labels at the end of the
bars for the malleable workloads report the gain with respect to its fixed
version. Table 4 details the measures extracted from the executions. In
the first column, we compare the average resource utilization for fixed and
malleable workloads. This rate corresponds to the average time when a node
has been allocated by a job compared with the workload completion time.
These results indicate that the malleable workloads reduce the allocation of
nodes around 30%, offering more possibilities for jobs pending in the queue.

46.48%

49.04%

41.42%

41.97%

0 10000 20000 30000 40000 50000 60000 70000

50

100

200

400

Workload completion time (s)

N
u

m
b

er
 o

f
jo

b
s

p
er

 w
o

rk
lo

a
d

Malleable

Rigid

Figure 4: Workloads execution times (bars) and the gain of malleable workloads (bar
labels).

18

Table 4: Summary of the averaged measures from all the workloads.

#Jobs Version
Resource
Utilization
Rate

Job
Waiting
Time

Job
Execution
Time

Job
Completion
Time

50
Fixed 98.71 % 4115.02 s. 620.26 s. 4735.28 s.

Malleable 68.67 % 1359.92 s. 900.3 s. 2260.22 s.

100
Fixed 97.39 % 9750.34 s. 586.64 s. 10336.98 s.

Malleable 71.91 % 2990.6 s. 858.16 s. 3848.76 s.

200
Fixed 98.38 % 17466.2 s. 520.58 s. 17986.78 s.

Malleable 73.54 % 6856.8 s. 825.88 s. 7676.67 s.

400
Fixed 98.38 % 31788.39 s. 532.14 s. 32320.53 s.

Malleable 73.54 % 13861.03 s. 843.19 s.. 14704.22 s.

The second column of Table 4 shows the average waiting time of the jobs
for each workload. These times are illustrated in Figure 5, together with
the gain rate for malleable workloads. The reduction around 60% reduction
makes the job waiting time a crucial measure to consider from the perspective
of throughput. In fact, this time is the main responsible for the reduction in
the workload completion time.

66.95%

69.33%

60.74%

56.40%

0 5000 10000 15000 20000 25000 30000 35000

50

100

200

400

Avg. job waiting time (s)

N
u

m
b

er
 o

f
jo

b
s

p
er

 w
o

rk
lo

a
d

Malleable

Rigid

Figure 5: Average waiting time for all the jobs of each workload (bars) and the gain of
malleable workloads (bar labels).

Table 4 also presents two more aggregated measures in the 400-job work-
load: The fifth column, with the average execution time; and the sixth, with
the execution time plus the waiting time of the job, referred to as comple-

19

tion time. The experiments show that jobs in the malleable workload are
affected by the decrease in their number of processes. Nevertheless, this is
compensated by the waiting time, which benefits their completion time.

In order to understand the events during a workload execution, we have
chosen the smallest workload to generate detailed charts and offer an in-depth
analysis.

The top and bottom plots in Figure 6 represent the evolution in time of
the allocated resources and the number of completed jobs, respectively. The
figure also shows the number of running jobs for fixed and malleable work-
loads (blue and red lines respectively). These demonstrate that the malleable
workload utilizes fewer resources; furthermore, there are more jobs running
concurrently (top chart). For both configurations, jobs are launched with the
preferred number of processes (see Section 5.1); the fixed jobs obviously do
not vary the amount of assigned resources, while in the malleable configura-
tion, they are scaled-down as soon as possible. This explains the reduction of
the utilization of resources. For instance, in the second half of the malleable
shape in Figure 6 (marked area), we find a repetitive pattern in which there
are 5 jobs in execution which allocate 40 nodes. The next eligible pending
job in the queue needs 32 nodes to start. Therefore, unless one of the running
jobs completes its execution, the pending job will not start, and the alloca-
tion rate will not grow. When a job eventually terminates its execution and
releases 8 nodes, the scheduler initiates the job requesting 32 nodes. Now,
there are 64 allocated nodes (the green peaks in the chart); however, as the
job prefers 8 processes, it will be scaled-down.

At the beginning of the trace in the bottom of Figure 6, the throughput
of the fixed workload is higher than that of its counterpart: This occurs
because the first jobs are completed earlier, since they have been launched
with the best-performance number of processes. Meanwhile, in the malleable
workload, many jobs are initiated (blue line) and, as soon as they terminate,
the overall throughput experiences a notable improvement.

Figure 7 depicts the execution and waiting time of each job grouped by
application type. The execution time increases in the malleable workload for
all cases. As mentioned earlier, jobs are shrunk to their preferred number
of processes as soon as these are initiated. This implies a performance drop
because of the reduction of resources. However, there is a job that leverages
the benefits of an expansion. The last Jacobi job experiences an important
drop of its execution time, since the completed jobs have deallocated their
resources.

20

Figure 6: Evolution in time for the 50-job workload. Blue and Red lines represent the
running jobs for fixed and malleable workloads respectively.

At the beginning of the workload execution there is no remarkable differ-
ence in the waiting time of both versions: However, the emergence of new
jobs continues and resources remain allocated for the running jobs in the
fixed workload. The RMS cannot provide the means for processing faster
the queue. For this reason, queued jobs in the fixed workload experience a
considerable delay in initiating their execution.

That difference of the fixed vs. malleable executions in the start time is
crucial for the completion time of the job, as shown in Figure 8. This figure
represents the difference in execution, waiting and completion time for each
job grouped by application type. Again, the execution time remains below
zero, which means that the difference is negative and the execution of the
malleable workload is slower. Nevertheless, this small drawback is largely
compensated by the waiting time. As reported, the completion difference
time shows a heavy dependency on the waiting time, making it the main
responsible for reducing the individual completion time, and in turn, the
high throughput observed in the results.

21

Conjugate Gradient Jacobi N−body

● ●● ●● ●● ● ● ● ●● ● ● ●

● ●● ●● ● ● ● ●● ● ● ● ● ●

● ●● ● ●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ●

●

●● ● ● ●
●● ● ● ● ●●●● ●●● ●● ● ● ●

●●
● ● ● ●●●

●
●●●

●
● ●

●
●

●
●

●
●

●

50
0

10
00

E
xe

cu
tio

n
tim

e
(s

.)

Workload
●

●

Fixed

Malleable

●

●

●
●●

●● ●
●

●
●● ●

●
●

●

●●
●●

● ●
●

●●
● ● ●

●
●

●
●
● ●

●

●

●

●
●

●

●

●
●

●

●
●

● ● ●

● ●
● ●

● ●
●

●
● ●

● ●

●●

● ●

● ●

●●
● ●

●● ●●

● ●

●

●● ● ● ● ●●●● ●●● ●● ● ● ● ●● ● ● ●

0
25

00
50

00
75

00

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Job Id.

W
ai

tin
g

tim
e

(s
.)

Figure 7: Execution (top) and waiting (bottom) times of each job grouped by application
type (columns).

Conjugate Gradient Jacobi N−body

●

●
●

●
●

●
●

● ●● ●

●

●

●
●

●

●
●

●

●

● ●

●

●
●● ● ●

●●

● ●

● ●

●●

● ●

●●
●●

● ●

● ●

● ●

● ●

0
25

00
50

00

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Job Id.

D
iff

er
en

ce
 ti

m
e

(s
.)

Job time of: ● Completion Execution Waiting

Figure 8: Completion, execution and waiting time difference of the fixed vs. malleable
executions for each job.

22

8. Conclusions

This paper improves the state–of–the–art in dynamic job reconfiguration
by targeting the global throughput of a high performance facility. We benefit
from already-existing, first-class software components to design our novel
approach that introduces a dynamic reconfiguration mechanism for malleable
jobs, composed of two modules: the runtime and the resource manager.
Those two elements collaborate to resize jobs on–the–fly to favor the global
throughput of the system.

As we prove in this paper, our approach can significantly improve resource
utilization while, at the same time, reducing the waiting time for enqueued
jobs, and decreasing the total execution time of workloads. Although this
is achieved at the expense of a certain increase in the job execution time,
we have reported that, depending on the scalability of the application, this
drawback can be negligible.

The malleability framework can be downloaded from:
https://bitbucket.org/account/user/ompssmalleability/projects/FS

The malleable applications can be downloaded from:
https://bitbucket.org/account/user/ompssmalleability/projects/MA

Acknowledgments

The authors would like to thank the anonymous reviewers for their valu-
able and insightful comments that improved the quality of this paper. This
work is supported by the projects TIN2014-53495-R and TIN2015-65316-P
from MINECO and FEDER. This project has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme under the
Marie Sk lodowska Curie grant agreement No. 749516

References

[1] S. Iserte, R. Mayo, E. S. Quintana-Ort́ı, V. Beltran, A. J. Peña, Ef-
ficient scalable computing through flexible applications and adaptive
workloads, in: 10th International Workshop on Parallel Programming
Models and Systems Software for High-End Computing (P2S2), Bristol,
UK, 2017.

[2] A. B. Yoo, M. A. Jette, M. Grondona, SLURM: Simple Linux utility for
resource management, in: 9th International Workshop on Job Schedul-
ing Strategies for Parallel Processing (JSSPP), 2003, pp. 44–60.

23

[3] F. Sainz, J. Bellon, V. Beltran, J. Labarta, Collective offload for het-
erogeneous clusters, in: 22nd International Conference on High Perfor-
mance Computing (HiPC), 2015.

[4] D. G. Feitelson, L. Rudolph, Toward convergence in job schedulers for
parallel supercomputers, in: Job Scheduling Strategies for Parallel Pro-
cessing, Vol. 1162/1996, 1996, pp. 1–26.

[5] J. Padhye, L. Dowdy, Dynamic versus adaptive processor allocation poli-
cies for message passing parallel computers: An empirical comparison,
in: Job Scheduling Strategies for Parallel Processing, 1996, pp. 224–243.

[6] K. El Maghraoui, T. J. Desell, B. K. Szymanski, C. A. Varela, Malleable
iterative MPI applications, Concurrency and Computation: Practice
and Experience 21 (3) (2009) 393–413.

[7] P. Lemarinier, K. Hasanov, S. Venugopal, K. Katrinis, Architecting mal-
leable MPI applications for priority-driven adaptive scheduling, in: Pro-
ceedings of the 23rd European MPI Users’ Group Meeting, 2016.

[8] A. Moody, G. Bronevetsky, K. Mohror, B. R. de Supinski, Design, mod-
eling, and evaluation of a scalable multi-level checkpointing system, in:
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC10), 2010.

[9] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, J. Dongarra, Post-
failure recovery of MPI communication capability: Design and ratio-
nale, International Journal of High Performance Computing Applica-
tions 27 (3) (2013) 244–254.

[10] A. Gupta, B. Acun, O. Sarood, L. V. Kalé, Towards realizing the po-
tential of malleable jobs, in: 21st International Conference on High Per-
formance Computing (HiPC), 2014.

[11] F. S. Ribeiro, A. P. Nascimento, C. Boeres, V. E. F. Rebello, A. C. Sena,
Autonomic malleability in iterative MPI applications, in: Symposium on
Computer Architecture and High Performance Computing, 2013.

[12] G. Mart́ın, D. E. Singh, M. C. Marinescu, J. Carretero, Enhancing the
performance of malleable MPI applications by using performance-aware
dynamic reconfiguration, Parallel Computing 46.

24

[13] G. Mart́ın, M. C. Marinescu, D. E. Singh, J. Carretero, FLEX-MPI: an
MPI extension for supporting dynamic load balancing on heterogeneous
non-dedicated systems, in: Euro-Par Parallel Processing, 2013.

[14] R. Sudarsan, C. J. Ribbens, ReSHAPE: A framework for dynamic re-
sizing and scheduling of homogeneous applications in a parallel environ-
ment, in: International Conference on Parallel Processing, 2007.

[15] R. Sudarsan, C. Ribbens, Scheduling resizable parallel applications, in:
International Symposium on Parallel & Distributed Processing, 2009.

[16] R. Sudarsan, C. J. Ribbens, D. Farkas, Dynamic resizing of parallel
scientific simulations: A case study using LAMMPS, in: International
Conference on Computational Science (ICCS), 2009, pp. 175–184.

[17] R. Sudarsan, C. J. Ribbens, Combining performance and priority for
scheduling resizable parallel applications, Journal of Parallel and Dis-
tributed Computing 87 (2016) 55–66.

[18] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, A. Gupta, L. V. Kale,
A batch system with efficient adaptive scheduling for malleable and
evolving applications, in: IEEE International Parallel and Distributed
Processing Symposium, 2015, pp. 429–438.

25

