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Abstract

The Windy Postman Problem consists of finding a minimum cost traversal of all the
edges of an undirected graph with two costs associated with each edge, representing the
costs of traversing it in each direction. In this paper we deal with the Windy General
Routing Problem (WGRP), in which only a subset of edges must be traversed and a subset
of vertices must be visited. This is also an NP-hard problem that generalizes many important
Arc Routing Problems (ARP’s) and has some interesting real-life applications. Here we study
the description of the WGRP polyhedron, for which some general properties and some large
families of facet-inducing inequalities are presented. Moreover, since the WGRP contains
many well-known routing problems as special cases, this paper also provides a global view
of their associated polyhedra. Finally, for the first time, some polyhedral results for several
ARP’s defined on mixed graphs formulated using two variables per edge are presented.

Keywords: Arc Routing Problems, Windy General Routing Problem, polyhedra, facets.
AMS subject classifications: 90C27, 90C57, 90B06.

1 Introduction

Arc Routing Problems (ARP’s) have their origin in the celebrated Königsberg Bridge Problem
solved by Euler. They basically consist of finding a traversal on a graph satisfying some con-
ditions related to the links of the graph. ARP’s have been studied in depth during the last 40
years due to the large number of real situations that can be modelled in this way: collection or
delivery of goods, mail distribution, network maintenance (electrical lines or gas mains inspec-
tion), snow removal, garbage collection, etc. The book edited by Dror [2000] summarizes the
state of the art and real-life applications of the ARPs. Other interesting papers are those by
Assad & Golden [1995] and Eiselt, Gendreau & Laporte [1995a, 1995b].

The first ARP presented in the literature is the well-known Chinese Postman Problem (CPP,
Guan 1962). It consists of finding a shortest tour (closed walk) traversing all the links of a
given graph G. Since then, this problem has been generalized in several aspects. Orloff (1974)
proposed the Rural Postman Problem (RPP), in which not all the links of the graph have to be
traversed by the tour but only those in a given subset of ‘required’ links. Orloff also proposed
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the General Routing Problem (GRP), in which the graph has a given set of ‘required’ links to be
traversed and a given set of ‘required’ vertices to be visited. The GRP can also be considered as
a generalization of the Graphical Traveling Salesman Problem (GTSP), studied by Cornuèjols
et al. (1985), Fleischmann (1985) and Naddef & Rinaldi (1991). The GTSP consists of finding
a shortest tour visiting all the vertices of a given graph G at least once. All these problems were
defined on undirected graphs, where all the links are edges that can be traversed in both directions
with the same cost. These four problems are shown in figure 1 (box labeled ‘undirected’), where
an arc between two problems means that the first one is generalized by the second one.

Alternatively, the CPP can be defined on a directed graph, where all the links are arcs that
must be traversed in a given direction. This problem is known as the Directed Chinese Postman
Problem (DCPP, Edmonds & Johnson 1973). Obviously the RPP and the GRP can also be
defined on a directed graph to obtain their ‘directed’ versions, the DRPP (Christofides et al.
1986, Savall 1990 and Gun 1993) and the DGRP. The GTSP on a directed graph is known as
the Graphical Asymmetric TSP (GATSP, Chopra & Rinaldi 1996). These four problems are
also represented in figure 1 (box labeled ‘directed’).

A graph G is called a mixed graph if it has edges and arcs simultaneously. The CPP
on a mixed graph, the Mixed Chinese Postman Problem (MCPP, Edmonds & Johnson 1973,
Christofides et al. 1984, Grötschel & Win 1992, Nobert & Picard 1996) is then a generalization
of both the CPP and the DCPP. Note that any routing problem defined on a mixed graph
generalizes the corresponding problems defined on undirected and directed graphs. This is the
case for the Mixed RPP (MRPP, Romero 1997 and Corberán, Romero & Sanchis 1997) and for
the Mixed GRP (MGRP, Corberán, Mej́ıa & Sanchis 2005). Note that since the GTSP is a pure
Node Routing Problem, the GTSP defined on a mixed graph is equivalent to the GATSP. These
four ‘mixed’ problems are also shown in figure 1 (box labeled ‘mixed’). An arc between two
‘boxes’ means that each problem in the first box is generalized by the corresponding problem in
the second box.

Finally, we have the Windy Postman Problem (WPP), proposed by Minieka (1979) and also
studied by Guan (1984), Win (1987) and Grötschel & Win (1988, 1992). This problem consists
of finding a minimum cost traversal of all the edges of an undirected graph in which the cost
of traversing an edge (i, j) in a given direction, cij , can be different to the cost of traversing
it in the opposite direction, cji. Obviously, the WPP generalizes the undirected CPP (when
cij = cji), but also the DCPP (each arc (i, j) with cost c can be modelled as an edge with costs
cij = c and cji = ∞) and therefore the MCPP. As before, windy routing problems are also
represented in figure 1 (box labeled ‘windy’). As for the mixed case, the windy version of the
GTSP is equivalent to the GATSP.

In this paper we deal with the Windy General Routing Problem (WGRP). This is the most
general routing problem among those represented in figure 1 and contains all the other problems
as special cases. Consequently, most of the theoretical results obtained for the WGRP and the
algorithms designed for its approximate or exact resolution can be applied to many other ARP’s.

Except for the CPP and the DCPP, which can be solved in polynomial time, all the other
problems in figure 1 are NP -hard problems and therefore the WGRP is also NP -hard. The
most successful approach to optimally solving these difficult routing problems is the Polyhedral
Combinatorics. It is based on the description of the polyhedron defined by the convex hull of
all the solutions associated with a formulation of the problem. This approach has recently been
used in Corberán, Plana and Sanchis (2005b) to optimally solve WGRP instances of large size
and its success is mostly due to the partial description of the WGRP polyhedron we present
here. This description is the subject of this paper.

On the other hand, all the formulations proposed in the literature for ARP’s defined on
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Figure 1: Relationship among routing problems

undirected or directed graphs use only one variable per link. This variable represents, in the
directed case, the number of times its associated arc is traversed (in the fixed direction) while,
in the undirected case, it represents only the number of times the edge is traversed in any of the
two possible directions. All windy problems are formulated using two variables associated with
each edge, representing the number of times the edge is traversed in each direction. However,
ARP’s defined on mixed graphs can be formulated using one variable per edge (Nobert & Picard
1996 and Corberán et al. 2003 and 2005) or two (Christofides et al. 1984 and Ralphs 1993).
And although the polyhedra associated with ARP’s defined on mixed graphs and formulated
using only one variable per edge have already been studied (Corberán et al. 2003 and 2005),
this is not the case when these problems are formulated using two variables per edge. Then, as
a by-product of the polyhedral study of the WGRP presented here, we also obtain some results
on the polyhedra associated with ARP’s defined on mixed graphs whose formulation uses two
variables per edge.

Although the facet inducing inequalities presented in this paper are associated with a for-
mulation with 2 variables per edge, they can be easily transformed into facets of the polyhedra
of the ARP’s shown in figure 1. Hence, a final contribution of this work is that it also gives a
global view of the polyhedra associated with many well-known ARP’s.

More specifically, the WGRP is formally defined and some notation is presented in section 2.
Section 3 introduces the WGRP polyhedron and presents some results characterizing its facet
defining inequalities. In section 4 several families of valid inequalities and their facet defining
property are described. Section 5 discusses the application of these results to mixed ARP’s
formulated with 2 variables per edge. Finally, section 6 presents the conclusions.
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2 Problem definition and notation

The Windy General Routing Problem can be defined as follows. Let G = (V, E) be an undirected
and connected graph with two non-negative costs, cij and cji, associated with each edge (i, j) ∈
E, corresponding to the costs of traversing it from i to j and from j to i, respectively. Given
a subset ER ⊆ E of ‘required’ edges and a subset VR ⊆ V of ‘required’ vertices, the problem is
to find a minimum cost tour (closed walk) on G traversing each required edge and visiting each
required vertex at least once.

Note that the vertices incident with required edges can also be considered as required vertices
and then included in VR. Without loss of generality, we will assume that the original graph
has been transformed to satisfy V = VR. This is not a serious restriction as it is easy to
transform WGRP instances which do not satisfy the assumption into equivalent instances which
do. Hence, we will assume, in what follows, that we are working with a connected graph
G = (V,E) := (VR, ER ∪ ENR).

If we remove all the non required edges from graph G = (V, E), the resulting graph GR =
(V, ER) is, in general, not connected. Let p be the number of connected components of graph
GR and let V1, V2, . . . , Vp denote the vertex sets of these connected components, which will be
called R-sets. We will call the subgraphs G(Vi) of G R-connected components. Note that each
isolated required vertex itself defines an R-set.

If S1 and S2 are two vertex sets, (S1, S2) represents the set of edges with an endpoint in S1

and another endpoint in S2, while (S1, S2)R and (S1, S2)NR represent, respectively, the sets of
required and non-required edges in (S1, S2). Given a vertex subset S, δ(S) denotes the cutset
(S, V \S) i.e., the set of edges with an endpoint in S and another endpoint not in S, while E(S)
denotes the set of edges with both endpoints in S. A vertex is called R-even (R-odd) if it is
incident with an even (odd) number of required edges and a subset of vertices S ⊆ V is R-even
(R-odd) if it contains an even (odd) number of R-odd vertices.

A tour for the WGRP is a closed walk on the edges of G traversing each required edge and
visiting each required vertex at least once. Each tour is represented by an incidence vector
x ∈ R2|E| with two variables xij , xji associated with each edge e = (i, j) ∈ E representing the
number of times e is traversed in each direction. Given an edge set F ⊆ E, x(F ) denotes the sum
of the variables in x corresponding to the edges in F , i.e. x(F ) :=

∑
(i,j)∈F (xij +xji). Moreover,

a tour for the WGRP can be represented by a directed graph (V, A), where A contains as many
copies of arc (i, j) as the number of times the original edge (i, j) has been traversed from i to
j. In a similar way to that given in Benavent et al. (2005) for the WRPP, the WGRP can be
formulated as:

Minimize
∑

(i,j)∈E

(cijxij + cjixji)

s.t.: xij + xji ≥ 1, ∀(i, j) ∈ ER (1)∑

(i,j)∈δ(i)

(xij − xji) = 0, ∀i ∈ V (2)

∑

i∈S, j /∈S

xij ≥ 1, ∀S =
⋃

k∈Q

Vk, Q ⊂ {1, . . . , p} (3)

xij , xji ≥ 0, ∀(i, j) ∈ E (4)
xij , xji integer, ∀(i, j) ∈ E (5)

Traversing inequalities (1) oblige the tour x to traverse each required edge at least once (in
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any direction). Symmetry equations (2) force the tour x to depart from each vertex as many
times as it arrives at it. Given any edge cutset of G, (S, V \S), by combining some of the
equations (2), ∑

i∈S, j /∈S

xij =
∑

i∈S, j /∈S

xji

is obtained. Connectivity inequalities (3) prevent the formation of subtours. Since inequalities
(1) guarantee that x traverses each edge cutset containing required edges, inequalities (3) are
only needed for edge cutsets joining different R-sets. Finally, (4) and (5) assure that all the
variables are non-negative and integer.

3 The WGRP polyhedron

Let WGRP(G) denote the convex hull of all the tours for the WGRP on graph G, i.e., all the
integer vectors x ∈ R2|E| satisfying (1) to (4). WGRP(G) is an unbounded polyhedron which
has the following properties:

Theorem 1 If G is a connected graph, the dimension of WGRP(G) is 2|E|−|V |+1.

Proof: The matrix defined by the coefficients of equations (2) has rank |V |−1, therefore it
follows that dim(WGRP (G)) ≤ 2|E| − (|V | − 1). On the other hand, it is not difficult to see
that aff(WGRP (G)) = {x ∈ R2|E| : x satisfies (2)}. Therefore, dim(WGRP (G))≥2|E|−|V |+1
and the result follows. ¨

Note that WGRP(G) is not of full dimension and different inequalities can induce the same
facet of it. Such inequalities are called equivalent. In this section we show that inequalities (4),
(1) and (3) from the formulation of the problem are facet-inducing for WGRP(G).

Theorem 2 If edge e=(i, j)∈E is not a bridge of G, then inequalities xij ≥0 and xji≥0 are
facet-inducing for WGRP(G). If in addition e = (i, j) ∈ ER, then inequality xij +xji ≥ 1 is
facet-inducing for WGRP(G).

Proof: We will only study the case when e∈ER. If e is not a bridge of G, graph G\{e} is con-
nected and there are K−1 affinely independent tours for the WGRP on G\{e}, x1, x2, . . . , xK−1,
where K = dim(WGRP(G)). All these tours are not tours for the WGRP on G because they
do not traverse the required edge e. Let C1 be a cycle on G traversing e once from j to i. Then,
x1+C1, x2+C1, . . . , xK−1+C1, x1+2C1 are K affinely independent tours for the WGRP on G
satisfying xij =0. Hence, inequality xij≥0 is facet-inducing for WGRP(G).

Consider now the inequality xij +xji≥1 and let C2 be a cycle on G traversing e once from
i to j. Then, x1+C1, x2+C1, . . . , xK−1+C1, x1+C2 are K affinely independent tours for the
WGRP on G satisfying xij+xji =1. ¨

Before discussing the facet-defining property of connectivity and other families of inequalities,
we will present some properties that are common to all of them in what follows.

3.1 Weak Configuration inequalities

The polyhedra based on standard formulations using only one variable per edge corresponding to
the routing problems in figure 1 satisfy the following property. All the facet-inducing inequalities
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(except the trivial ones) are configuration inequalities (Naddef & Rinaldi, 1991). An inequality
F (x)≥b0 is a configuration inequality if there is a partition B = {B1,B2, . . . ,Br} of V such that
the subgraphs G(Bk) are connected, the variables associated with links in the sets E(Bk) have
coefficient zero in the inequality and the variables associated with links from a given set Bp to
another given set Bq have the same coefficient in the inequality.

It is easy to see that WGRP(G) does not satisfy the above property. Connectivity inequalities
(3), for example, are configuration inequalities with B = {S, V \S}, while traversing inequalities
(1), and others that will be presented later, are not configuration inequalities. In what follows
we will show that all the facet-inducing inequalities for WGRP(G), except the trivial and the
traversing ones, share some of the properties described above for the configuration inequalities.
This will allow us to define a new wider class, the weak configuration inequalities.

Lemma 1 Let F (x)≥b0 be a facet-inducing inequality for WGRP(G) different from the trivial
and the traversing ones.
(a) For each variable xij there is a tour x satisfying F (x)=b0 and xij≥1.
(b) For each required edge e = (i, j)∈ER there is a tour x satisfying F (x)=b0 and xij +xji≥2 .

Proof: If (a) is not satisfied, every tour x such that F (x)=b0 satisfies xij =0. Then,

{x WGRP-tour on G : F (x)=b0} ⊆ {x WGRP-tour on G : xij =0}

and, hence, either F (x)≥ b0 is equivalent to a trivial inequality or it is not facet-inducing. In
a similar way, if (b) is not satisfied, every tour x such that F (x)= b0 satisfies xij +xji =1 and
either F (x)≥b0 is equivalent to a traversing inequality or it is not facet-inducing. ¨

Part (a) in lemma 1 implies that for each variable xij associated with a non-required edge
(i, j), there is a tour x such that F (x) = b0 and uses xij an extra time. This means that if a
copy of the arc (i, j) is removed from the directed graph associated with x and is replaced by
any other path from i to j, another WGRP tour is obtained. Part (a) also implies that for each
variable xij associated with a required edge (i, j), there is a tour x such that F (x)=b0 and uses
xij at least once, although not necessarily an extra time. Finally, part (b) implies that at least
for one variable of each pair xij , xji associated with a required edge (i, j), there is a tour x such
that F (x)=b0 and uses it an extra time.

An inequality F (x) ≥ b0 will be called a weak configuration inequality if there is a partition
B = {B1,B2, . . . ,Br} of V such that the subgraphs G(Bk) are connected, the variables associated
with edges in the sets E(Bk) have coefficient zero in the inequality and the variables associated
with non-required edges from a given set Bp to another given set Bq have the same coefficient in
the inequality. Note that if, in addition, the variables associated with required edges from Bp to
Bq also have the same coefficient in the inequality, we have a (strong) configuration inequality.

Theorem 3 All the facet-inducing inequalities for the MGRP(G), except those equivalent to the
trivial or the traversing ones, are weak configuration inequalities.

Proof: Let F (x) :=
∑

(i,j)∈E(aijxij + ajixji) ≥ b0 be such an inequality and let E0 = {e =
(i, j)∈E : aij =aji =0}. Let S be the node set of a connected component of G0 = (V,E0).

Assume there is an edge e=(i, j)∈E(S) with aij 6=0 (necessarily aij > 0). Let x∗ be a tour
for the WGRP on G such that F (x∗)=b0 and x∗ij ≥ 1 (it exists from lemma 1). Let us replace
in x∗ arc (i, j) by a path from i to j in E0(S). If x∗ uses xij an extra time, we obtain a tour
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x∗∗ for the WGRP on G satisfying F (x∗∗) < b0, which is a contradiction. From lemma 1, this
is true for all the variables associated with non-required edges and for one variable of each pair
associated with a required edge. Then, if x∗ does not use xij an extra time, we add to x∗ the
arcs in a cycle formed by the arc from j to i (whose associated variable xji, which is used an
extra time, has coefficient zero) and a path in E0 from i to j, obtaining a tour for the WGRP on
G violating the inequality. Therefore, if B={B1,B2, ...,Br} are the vertex sets of the connected
components of G0, the induced graphs G(Bk) are connected and aij =aji =0, ∀e=(i, j)∈E(Bk),
k = 1, 2, · · · , r.

Let us suppose now that there are two non-required edges e=(i, j), f =(u, v) with i, u∈Bp

and j, v∈Bq such that aij >auv. Let x∗ be a tour for the WGRP on G using xij an extra time
and F (x∗)=b0. Replace in x∗ arc (i, j) by a path in G(Bp) from i to u, the edge f traversed from
u to v and a path in G(Bq) from v to j. This way, a tour violating the inequality is obtained,
which is a contradiction. ¨

Then, associated with each facet-inducing inequality for the WGRP(G) we have a con-
figuration graph, GC = (V C , EC). This is the graph resulting from shrinking vertex sets Bk,
k = 1, . . . , r, into a single vertex each and, after that, shrinking each set of non-required parallel
edges into one single non-required edge, but keeping all the required edges. If two costs equal to
the coefficients of the corresponding variables in the inequality are associated with each edge in
GC , this graph keeps all the information about the inequality, since b0 is the length of the shortest
tour for the WGRP on graph GC . Hence, each facet-inducing inequality for the WGRP(G) can
be represented by means of its corresponding configuration graph GC . The following theorem
implies that in order to show that a given inequality is facet-inducing for WGRP(G) it will
suffice to prove it for the polyhedron associated with the configuration graph, which is simpler
in general.

Theorem 4 If a weak configuration inequality is facet-inducing for WGRP(GC), it is also facet-
inducing for WGRP(G).

Proof: It suffices to prove the result for a graph G obtained from GC by replacing vertex B1

(for example) by a connected graph G(B1) = (V B1 , EB1). For simplicity, F (x) ≥ b0 will denote
both the inequality on G and the inequality on GC . Note that given a tour x for the WGRP on
G, by shrinking G(B1) into a single vertex we obtain a tour x∗ for the WGRP on GC satisfying
F (x) = F (x∗) ≥ b0.

Let K = dim(WGRP(GC)) and let us suppose that b0 6= 0. Then, there are K linearly
independent tours for the WGRP on GC satisfying F (x)=b0, say x1, x2, . . . , xK . After replacing
B1 by the graph G(B1), some non-required edges may appear between the vertices of G(B1) and
nodes Bi, i 6= 1. Let us call G′

C the graph obtained from GC by adding Q non-required edges
e′1, e

′
2, . . . , e

′
Q, where each e′i is parallel to a non-required edge (not necessarily distinct) ej of GC .

For each e′i, i = 1, 2, . . . , Q, we will construct two tours in G′
C . Let ej = (B1,Bq) be the

original edge of GC to which e′i is parallel. From lemma 1, there is a tour in GC satisfying
F (x)=b0 and that traverses ej from B1 to Bq, and another one that traverses it in the opposite
direction. By replacing the edge ej by the edge e′i in these two tours, we obtain two new tours
on G′

C satisfying F (x)= b0. Then we have K+2Q linearly independent tours on G′
C satisfying

F (x) = b0. These tours can be completed with edges of G(B1) to obtain K +2Q tours on G,
x1, x2, . . . , xK+2Q, also satisfying F (x) = b0 because the variables associated with the edges of
G(B1) do not appear in the inequality.

Consider now the WGRP defined on graph G(B1). Let M = dim(WGRP(G(B1))) and let
y1, y2, . . . , yM be M linearly independent tours for the WGRP on G(B1). Then, x1+y1, x1+
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y2, . . . , x1+yM are also tours for the WGRP on G satisfying F (x) = b0. Expressing the K+2Q+M
tours as rows of a matrix and subtracting the first row x1 from the last M rows, we obtain a
full rank matrix. Then, since K = 2|EC | − |V C | + 1 and M = 2|EB1 | − |V B1 | + 1, we have
K+2Q+M = 2(|EC |+ |EB1 |+Q)−(|V C |−1+ |V B1 |)+1 =dim(WGRP(G)) linearly independent
tours satisfying F (x) = b0. ¨

As mentioned before, strong and weak configuration inequalities only differ in the fact that,
in the first one, ‘parallel’ variables (variables xij , xkm associated with edges in (Bp,Bq), with
i, k∈Bp and j, m∈Bq) have equal coefficients, while the last one can have ‘parallel’ variables with
different coefficients. By arguing as in the proof of theorem 3 above it can be shown that if for
each variable xij there is a tour satisfying F (x)=b0 and using xij an extra time, then F (x)≥b0

is a strong configuration inequality, with all the variables in (Bp,Bq) having a coefficient equal
to apq or aqp. A variable with a different coefficient in a weak configuration inequality is then a
variable xij associated with a required edge (i, j) ∈ (Bp,Bq), such that there is no tour satisfying
F (x) = b0 which uses xij an extra time. It can be seen that, in this case, the coefficients of
variables xij and xji are, respectively, apq+k and aqp, for some k satisfying 0 < k ≤ apq + aqp.

Therefore, if a given facet-inducing inequality F (x) ≥ b0 for WGRP(G) is not a strong
configuration inequality, then there is at least one variable xij (associated with a required edge)
such that every tour x satisfying F (x)= b0 also satisfies either xij =0 or xij +xji =1. In other
words, if a given facet F of WGRP(G) is not induced by a strong configuration inequality,
then every tour for the WGRP on G which lies in F also lies either in a trivial facet or in a
traversing facet of WGRP(G). Hence, we think that there must be relatively few such facets
in WGRP(G). In fact, the only case of this type that we have found is a subset of the class
of Zigzag inequalities. All the other inequalities presented in the following sections are strong
configuration inequalities.

3.2 Connectivity inequalities

To finish this section, we will study the conditions under which connectivity inequalities (3) are
facet-inducing for WGRP(G). Furthermore, the proof of theorem 5 shows the usefulness of the
configuration issue and illustrates the use of theorem 4 above.

Theorem 5 Connectivity inequalities (3) are facet-inducing for WGRP(G) if subgraphs G(S)
and G(V \S) are connected.

Proof: The configuration graph GC associated with connectivity inequalities has only two
nodes, say 1 and 2, corresponding to S and to V \ S, respectively, joined by a single non-
required edge. Therefore, dim(WGRP(GC))= 1 and, since the tour x12 = x21 = 1 satisfies∑

i∈S, j /∈S xij = x12 = 1, the inequality is facet-inducing for WGRP(GC). By applying theorem
4, connectivity inequalities (3) are facet-inducing for WGRP(G). ¨

4 Other Facets of the WGRP polyhedron

In the presence of the integrality conditions (5), equations (2) and inequalities (4), (1) and (3)
in the formulation are enough to describe all the tours for the WGRP on G. Nevertheless, this
is not the case when the integrality conditions are relaxed. In this section we study some other
families of inequalities which are facet-inducing for WGRP(G). In particular, we obtain valid
inequalities for the WGRP from known valid inequalities for the undirected GRP.
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Let G = (V, E) be an undirected graph and let GRP(G) be the polyhedron associated with
the formulation of the undirected GRP using one variable ye per edge e=(i, j)∈E, representing
the number of times the edge is traversed in any direction. Consider now the same graph
G = (V,E) but with two non-negative costs associated with each edge and let WGRP(G) be the
polyhedron studied in this paper. In Benavent et al. (2003) it is shown that if

∑
e∈E βeye ≥ b0 is a

valid inequality for GRP(G), the inequality
∑

e=(i,j)∈E βe(xij +xji) ≥ b0 is valid for WGRP(G).
Therefore, the R-odd cut, K-C, Path-Bridge and Honeycomb inequalities presented in what
follows are valid inequalities for the WGRP(G).

4.1 R-odd cut inequalities

An edge cutset δ(S) is called R-odd if it contains an odd number of required edges. Given that
any tour must cross any given edge cutset an even number of times, the following R-odd cut
inequalities

x(δ(S)) ≥ |δR(S)|+ 1, ∀S ⊂ V such that δ(S) is R-odd (6)

are valid for WGRP(G). It can be proved (Plana, 2005) that they are facet-inducing for
WGRP(G) if subgraphs G(S) and G(V \S) are connected.

4.2 K-C inequalities

K-C inequalities were introduced in Corberán & Sanchis (1994) for the undirected RPP and in
Corberán, Romero & Sanchis (2003) they were generalized to the Mixed GRP in two families,
the K-C and the K-C02 inequalities. In this section we will study their generalization to the
WGRP.

Consider a partition of V into K+1 subsets {M0,M1,M2, . . . , MK−1, MK}, K≥3, such that
each R-set Vi, is contained by one of the node sets M0 ∪MK , M1,M2, . . . , MK−1, the induced
subgraphs G(Mi), i = 0, 1, 2, . . . , K are connected and (M0,MK) contains a positive and even
number of required edges. Furthermore, we will assume that sets (Mi,Mi+1) are non-empty,
i = 0, 1, . . . , K−1. Such a partition defines the configuration graph shown in figure 2a, where the
costs of its edges are c(M0,MK) = c(MK ,M0) = K−2 and c(Mi,Mj) = |i − j| for all i, j
such that {i, j} 6= {0,K}. These costs, shown in figure 2a, correspond to the coefficients of
the variables in the inequality. Each number represents the coefficient of the variable associated
with the traversal of the edge from the nearest node to the farthest one. The K-C inequality is
then

(K−2) x
(
M0,MK

)
+

∑

0 ≤ i < j ≤ K
{i, j} 6= {0, K}

| i−j | x
(
Mi,Mj

)
≥ 2(K−1) + (K−2)|(M0,MK)R| (7)

Since K-C inequalities are a particular case of Path-Bridge inequalities, which will be pre-
sented later, the proof that K-C inequalities are facet-inducing is omitted here.

4.3 K-C02 inequalities

With the same underlying configuration graph, K-C02 inequalities differ from the standard ones
in that integer K can now take value 2 and in that the coefficients of the variables and the RHS
change as follows:

• c(M0,MK) = c(MK ,M0) = K−1 ,
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Figure 2: K-C and K-C02 configurations.

• c(M0,M1) = 0 , c(M1,M0) = 2

• c(Mi,Mi+1) = c(Mi+1,Mi) = 1, i = 1, 2, . . . ,K−1

• otherwise, c(Mi, Mj) is the shortest path cost from Mi to Mj in GC , i.e.

– c(M0,Mj) = j − 1, 1 ≤ j ≤ K−1

– c(Mj ,M0) = j + 1, 1 ≤ j ≤ K−1

– c(Mi,Mj) = |i− j|, 1 ≤ i, j ≤ K

The corresponding K-C02 inequality is then
∑

(i,j)∈E

(aijxij + ajixji) ≥ 2(K−1) + (K − 1)|(M0,MK)R| (8)

where aij = c(Mp,Mq) if i ∈Mp and j ∈Mq. These inequalities are also a special case of the
Path-Bridge02 inequalities presented next.

4.4 Path-Bridge inequalities

Path-Bridge inequalities were introduced by Letchford (1997) for the undirected GRP and are
based on the Path inequalities for the GTSP proposed by Cornuèjols et al. (1985). In this
section we study their extension to the WGRP. Let P ≥ 1 and B ≥ 0 be integers such that
P + B ≥ 3 is an odd number and let ni ≥ 2, i = 1, . . . , p be integer numbers. Let us define a
partition {A,Z, {V i

j }i=1,...,P
j=1,...,ni

} of V satisfying that each R-set is contained either in A∪Z or in a
set V i

j , the induced subgraphs G(V i
j ) are connected, i=1, 2, . . . , P , j =0, 1, 2, . . . , ni+1 (where

for the sake of simplicity we identify A with V i
0 and Z with V i

ni+1 for all i) and (A,Z) contains a
number B of required edges. Furthermore, we will suppose that sets (V i

j , V i
j+1) are non-empty.

Then, the configuration graph has P paths from A to Z, each of them with ni + 2 vertices and
ni + 1 edges. The edges joining the sets A and Z form the bridge. This configuration graph is
shown in figure 3, where only one number near an edge means that the coefficients of its two
corresponding variables are equal. These coefficients are:

• c(A,Z) = c(Z,A) = 1

• c(V i
j , V i

k ) = |j−k|
ni−1 ∀j, k ∈ {0, 1, . . . , ni+1}, i∈ {1, . . . , P}
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• c(V i
j , V r

k ) = 1
ni−1 + 1

nr−1 +
∣∣∣ j−1
ni−1 − k−1

nr−1

∣∣∣ , ∀ i 6=r ∈ {1, . . . , P}, j ∈ {1, . . . , ni},
k ∈ {1, . . . , nr}

The Path-Bridge inequality, PB, is then

∑

(i,j)∈E

(aijxij + ajixji) ≥ 1 +
P∑

i=1

ni + 1
ni − 1

+ |(A,Z)R| (9)

where, again, aij =c(V k
p , V l

q ) if i∈V k
p and j∈V l

q .
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Figure 3: Path-Bridge configuration graph.

A Path-Bridge inequality is called n-regular if all the paths have the same length n. In this
case, by multiplying it by n−1, the inequality (9) can be rewritten in an easier way. Note that a
K-C inequality is a particular case of a Path-Bridge inequality with P = 1 and that Path-Bridge
inequalities reduce to the s-Path inequalities for the GATSP, introduced by Chopra & Rinaldi
(1996), when there are no required links crossing from A to Z.

Theorem 6 Path-Bridge inequalities (9) are facet-inducing for WGRP(G).

Proof: Let us first suppose that the number B of required edges joining A and Z is even. Then,
the number P of paths from A to Z is odd. If we consider in GC all the required edges as
non-required and we replace each edge by a pair of opposite arcs, we obtain an instance G′

C of
the GATSP. By subtracting |(A,Z)R| from the RHS of the PB inequality, an s-path inequality is
obtained, which is facet-inducing for GATSP(G′

C) (see Chopra & Rinaldi, 1996). The dimension
of this polyhedron is 2|EC | − |VC |+ 1 and there is this number of affinely independent tours for
the GATSP on G′

C satisfying the inequality as an equality. Each one of these tours can be easily
transformed into tours for the WGRP on GC (by adding to them one arc per each required edge
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in (A,Z), half of them directed from A to Z and the other half from Z to A) satisfying the PB
inequality (9) as an equality. Hence, PB inequalities are facet-inducing for WGRP(GC) and,
from theorem 4, for WGRP(G).

Let us now suppose that B is odd and P is even. Let ē be a given required edge in (A,Z).
We construct the tour x1 as the one traversing edge ē once in each direction, half of the edges in
(A,Z)R\{ē} from A to Z and the other half from Z to A. Tour x1 traverses half of the paths
from A to Z and the other half from Z to A. From x1 we construct the following tours:

(a) For each edge e ∈ (A,Z)\{ē} we define a tour traversing e from A to Z once more than tour
x1 does and traversing ē only from Z to A. All the other edges are traversed as in x1. Another
similar tour traversing e from Z to A and ē from A to Z is considered. Then we have 2|(A,Z)|−2
tours.

(b) For each edge e = (V k
i , V k

i+1), we construct a tour x that traverses all the edges in the path
k, except e, in both directions. Edge ē is traversed by x in the same direction as path k is
traversed by x1. All the other edges are traversed by x as they are traversed by x1. Then we
have

∑P
i=1(ni + 1) tours.

(c) For each path k, it is possible to build ni+1 different tours using the opposite orientations
to those used in (b) for the other P−1 paths. From among them we select, for each path k, only
the tour that does not traverse the edge (V k

0 , V k
1 ) and we then have P tours.

(d) For each of the remaining edges (if any) there are always two tours for the WGRP in GC
satisfying (9) as an equality, traversing this edge exactly once in one direction each, edges in
(A,Z) and edges in the P paths. Then, if E′ is the set of such remaining edges, we have obtained
2|E′| tours.

Including x1 we have 1+2|(A,Z)|−2+
∑P

i=1(ni +1)+P +2|E′| tours, all of them satisfying
the PB inequality as an equality. Hence we have 2|EC | −

∑P
i=1 ni − 1 =dim(WGRP(GC)) tours.

If we subtract x1 from all the other tours and express them as the rows of a matrix (sorted as
(a), (b)+(c) and (d) above) and the variables associated with the edges as columns (sorted as ē,
(A,Z) \ {ē}, (V k

i , V k
i+1) for all i, k and E′), we obtain the matrix shown in figure 4. Submatrix B

ē (A,Z) \ {ē} Paths E′

(a) * I 0 0

(b)+(c) * 0 B 0

(d) * * * I

Figure 4: Matrix appearing in the proof of theorem 6

is a full rank matrix (see Plana 2005 for details) and, hence, also the complete matrix in figure 4.
Therefore, the PB inequality is facet-inducing for WGRP(GC) and then it is also facet-inducing
for WGRP(G). ¨
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4.5 Path-Bridge02 inequalities

Path-Bridge02 inequalities were presented in Corberán, Mej́ıa and Sanchis (2005) for the MGRP.
The configuration graph corresponding to a Path-Bridge02 inequality is similar to the previous
one except that integers ni can now take value 1 and the paths are classified into two types: AZ
paths and ZA paths. The associated configuration graph is shown in figure 5, where the two
coefficients associated with an edge are represented only if they are different.
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Figure 5: PB02 configuration graph.

The coefficients are:

• c(A,Z) = c(Z,A) = 1

• c(V i
0 , V i

1 ) = 0 and c(V i
1 , V i

0 ) = 2
ni

for each AZ path i

• c(V i
0 , V i

1 ) = 2
ni

and c(V i
1 , V i

0 ) = 0 for each ZA path i

• c(V i
j , V i

j+1) = c(V i
j+1, V

i
j ) = 1

ni
.

• c(V i
j , V i

k ), with |j−k|>1, is the shortest path cost from V i
j to V i

k using edges of the path
i, i.e.,

– c(V i
j , V i

k ) = |j−k|
ni

∀ j 6=k ∈ {1, 2, . . . , ni+1}
– c(V i

0 , V i
k ) = k−1

ni
and c(V i

k , V i
0 ) = k+1

ni
if path i is of type AZ, 1≤k≤ni.

– c(V i
0 , V i

k ) = k+1
ni

and c(V i
k , V i

0 ) = k−1
ni

if path i is of type ZA, 1≤k≤ni.

• Order the remaining edges (edges in (V i
j , V k

l ), i 6=k, if any) in an arbitrary way e1, e2, . . . , eh.
For i=1 to h, if ei =(u, v), we assign to cuv the maximum value such that there is a WGRP
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tour on GC with cost P+1+|(A,Z)R| traversing ei just from u to v but not traversing the
edges {ei+1, . . . , eh}. Similarly, we assign to cvu the maximum value such that there is a
tour of c-length P +1+|(A,Z)R| traversing ei from v to u (perhaps also from u to v) but
not traversing the edges {ei+1, . . . , eh} (sequential lifting).

The Path-Bridge02 inequality, PB02, is then
∑

(i,j)∈E

(aijxij + ajixji) ≥ P + 1 + |(A,Z)R| (10)

Note that the main difference between PB02 and PB inequalities is that variables in sets
(A,V i

1 ) have different coefficients for its two associated variables. One of these coefficients is 2
ni

,
twice the cost of the other edges in path i, while the other coefficient is 0 (see figure 5). The
direction represented by the variable with coefficient 0 in each path determines whether the path
is of type AZ or ZA. In a Path-Bridge02 configuration graph, the pair of asymmetric coefficients
( 2

ni
, 0) for each path i can be associated with any edge (V i

j , V i
j+1) in the path, thus obtaining

different but equivalent inequalities (given the same ordering in the sequential lifting process).
Finally, when P =1 the Path-Bridge02 inequality (10) reduces to a K-C02 inequality.

Theorem 7 Path-Bridge02 inequalities (10) are valid for WGRP(G)

Proof: The proof is similar to that in Corberán et al. (2005) for the MGRP and is omitted
here for the sake of brevity. ¨

Theorem 8 Let F (x)≥b0 be a Path-Bridge02 inequality (10) and let PAZ and PZA be the number
of paths of types AZ and ZA, respectively. Then, F (x)≥ b0 is facet-inducing of WGRP(G) if
|(A,Z)R| ≥ |PAZ − PZA|+ 1.

Proof: The proof is similar to that of theorem 6 and is omitted here. Note only that condition
|(A,Z)R| ≥ |PAZ − PZA| + 1 is needed in order to construct WGRP tours traversing the paths
of type AZ (type ZA) from A to Z (from Z to A) and satisfying F (x)=b0. ¨

As for the (standard) PB inequalities, when all the paths are of the same length n, we obtain
the n-regular PB02 inequalities, which can be written in an easier way.

4.6 Honeycomb inequalities

Honeycomb inequalities were first proposed by Corberán & Sanchis (1998) for the undirected
GRP and by Corberán et al. (2005) for the MGRP. These inequalities also generalize the K-C
inequalities. Consider a partition {A1, A2, . . . , AL, AL+1, . . . , AK} of V , 3≤K≤p, 1≤L≤K,
such that each R-set is contained by one Ai and the induced subgraphs G(Ai) are connected.
Each set Ai, i=1, 2, . . . , L, is divided into γi ≥ 2 subsets, Ai = B1

i ∪ B2
i ∪ . . . ∪ Bγi

i , satisfying
that each Bj

i contains an even number of R-odd nodes and the induced subgraphs G(Bj
i ) are

connected, j = 1, 2, . . . , γi, and the graph defined by nodes B1
i , B2

i , . . . , Bγi
i and the required

edges (Bj
i , B

k
i ) is connected (and even).

Note that when Ai consists of several R-sets, the last condition implies that the partition of
Ai into the Bj

i is made by cutting the R-sets. For notational convenience, we denote B0
i = Ai,

i=L+1, . . . , K. Therefore we have the following partition of V :

B = {B1
1 , B2

1 , . . . , Bγ1
1 , B1

2 , B2
2 , . . . , Bγ2

2 , . . . , B1
L, B2

L, . . . , BγL
L , B0

L+1, . . . , B
0
K}
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This partition B defines the configuration graph GC = (B, E). Let T be a set of non-required
edges in GC joining nodes corresponding to different Aj such that (B, T ) is a spanning tree (see
figure 6, where the arcs in T are represented by thin lines and the required links by bold lines).
Then, for each pair of nodes Bj

i , Bq
p in B, let d(Bj

i , B
q
p) denote the number of edges in the unique

path in (B, T ) joining Bj
i to Bq

p. We will also assume that d(Bj
i , B

q
i ) ≥ 3 ∀ i = 1, . . . , L and

∀ j 6= q.

We divide the set E into 3 subsets: the set C formed by the edges joining nodes Bp
i , Bq

i with
p, q 6= 0 (the nodes obtained by ‘cutting’ the sets Ai, i = 1, . . . , L), the set of edges in T and
the set formed by the remaining edges, which will be called In. The costs of the edges of graph
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Figure 6: Honeycomb Configuration

GC = (B, E) are (see figure 6):

I) For the edges (Bi
q, B

j
q) ∈ C, such that the path in (B, T ) joining Bi

q and Bj
q does not con-

tain more than one node related to the same As (except the nodes Bi
q and Bj

q), c(Bi
q, B

j
q) =

c(Bj
q , Bi

q) = d(Bi
q, B

j
q)− 2.

II) For the edges (Bi
r, B

j
q) ∈ T ∪In, r 6= q, such that the path in (B, T ) joining Bi

r and Bj
q does

not contain more than one node related to the same As, c(Bi
r, B

j
q) = c(Bj

q , Bi
r) = d(Bi

r, B
j
q).

III) For the remaining edges (if any), we compute their two costs with a process of sequential
lifting like the one described for PB02 inequalities.

The corresponding Honeycomb inequality is then
∑

(i,j)∈E

(aijxij + ajixji) ≥ 2(K−1) +
∑

(Bi
q ,Bj

q)∈ER

c(Bi
q, B

j
q) (11)

where aij =c(Bi
r, B

j
q) if i∈Bi

r and j∈Bj
q .

Note that when the configuration graph has no edges of type III, all the coefficients in the
Honeycomb inequality can be computed in terms of the shortest distances in the graph (B, T ).
This occurs, for example, when every node Bi

q, i 6= 0, has degree 1 in (B, T ). Given that the
sequential lifting process for a set of edges guarantees the validity of an inequality if it is valid
without this set of edges, and that this is also true for the facet inducing property, in what
follows we will assume that the Honeycomb configuration has no edges of type III.

Before proving that the Honeycomb inequalities are facet-inducing for WGRP(G), let us
show how to build tours for the WGRP on GC = (B, E) satisfying the Honeycomb inequality,
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F (x) ≥ b0, as an equality. Let (Ā, TĀ) denote the graph with node set Ā = {A1, A2, . . . , AL,
AL+1, . . . , AK} and having an edge (Ai, Aj) for each edge (Bp

i , Bq
j ) in T (figure 7a). Then, by

traversing all the K−1 edges of any spanning tree of (Ā, TĀ) once in each direction, and each
required edge in GC once, we obtain a tour of cost b0 (figure 7b).
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Figure 7: Graph (Ā, TĀ) and a WGRP tour on GC satisfying (11) as an equality.

Theorem 9 Honeycomb inequalities (11) are facet-inducing of WGRP(G) if the shrunk graph
(Ā, TĀ) is 2-connected.

Proof: The dimension of WGRP(GC) is 2|E| − |B| + 1 = 2|E| − |T | = 2|C| + 2|In| + |T | and
this is the number of linear independent WGRP tours x satisfying the inequality as an equality
that we build in what follows. Let xd be the incidence vector of a set of L cycles traversing each
required edge exactly once (such cycles exist since the required edges in GC form even graphs).

For each variable xuv associated with an edge in C ∪In, consider the tour that uses xuv

exactly once, the path in T from v to u and the required edges as in xd. The nodes still not
visited are connected with edges in T used once in each direction. Then we have 2|C|+2|In|
tours.

Since the graph (Ā, TĀ) is 2-connected, it can be proved that the only equation satisfied
by the incidence vectors of all its spanning trees is

∑
e∈TĀ

xe = |Ā|−1. Hence, |TĀ| = |T |
different spanning trees can be selected in such a way that their incidence vectors are linearly
independent. For each spanning tree of graph (Ā, TĀ) we can define a WGRP tour, such as the
one shown in figure 7b, which uses each edge in the tree once in each direction and the required
edges as in xd.

If we subtract xd from the 2|C|+ 2|In|+ |T | tours above and we express them as rows of a
matrix, then we obtain a full rank matrix. Hence, the Honeycomb inequality is facet-inducing
for WGRP(GC) and, by applying theorem 4, they are facet-inducing for WGRP(G). ¨

4.7 Honeycomb02 inequalities

As for K-C and Path-Bridge inequalities, there is another version of the Honeycomb inequalities
in which some edges have coefficients 0 and 2. Honeycomb02 inequalities were presented in
Corberán, Mej́ıa & Sanchis (2005) for the MGRP. As in that paper, we only consider here the
case L = 1, i.e. when only one R-set (or cluster of R-sets) is divided into γ1 parts. We have
not studied the general case because it is quite a bit more complicated. The reason is that after
replacing some pairs of coefficients (1, 1) in a Honeycomb configuration with L>1 by coefficients
(0, 2), a non-valid inequality can be obtained.

16



With a similar configuration graph GC = (B, EC) and tree T (see figure 8), the nodes in set
A1 are classified into two types, nodes of type O (those that will be incident with edges in T
with coefficients 0 and 2) and nodes of type I, in such a way that there is at least one node
of each type. We will assume that d(Bi

1, B
j
1) ≥ 3 if Bi

1, Bj
1 are nodes of the same type, while

d(Bi
1, B

j
1) ≥ 2 if Bi

1, Bj
1 are of different types. The coefficients are defined as:

• c(Bi
1, B

j
1) = d(Bi

1, B
j
1)−2 if Bi

1, Bj
1 are nodes of the same type.

• c(Bi
1, B

j
1) = d(Bi

1, B
j
1)−1 if Bi

1, Bj
1 are nodes of different types.

• c(Bi
1, B

0
q )=0 and c(B0

q , Bi
1)=2 if Bi

1 is of type O and (Bi
1, B

0
q )∈T

• for the remaining edges in T , c(Bi
q, B

j
r) = c(Bj

r , Bi
q) = 1

• otherwise, c(Bi
q, B

j
r) is the shortest path cost in T from Bi

q to Bj
r

With these coefficients, the Honeycomb02 inequality is expressed as in (11).
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Figure 8: Honeycomb02 Configuration graph with L=1

Theorem 10 Honeycomb02 inequalities are valid for WGRP(G)

Proof: The proof is similar to that in Corberán Mej́ıa & Sanchis (2005) for the MGRP and is
omitted here for the sake of brevity. ¨

Theorem 11 Honeycomb02 inequalities are facet-inducing for WGRP(G) if the shrunk graph
(Ā, TĀ) is 2-connected.

Proof: The proof is similar to that of theorem 9 and the details can be found in Plana (2005).
The main difference is the way the tours associated with variables that correspond to traversing
an edge e = (u, v) in C from a node u of type O to a node v of type I are defined. If (u, v) is
required, we construct a tour traversing each edge in the path in T from u to v twice and some
edges in T once in each direction to connect those nodes B0

i that have still not been visited. In
this case not all the required edges can be traversed as in xd and some of them are redirected
to obtain a symmetric graph. If e is not required, the tour is constructed in a similar way. ¨

4.8 Zigzag inequalities

Zigzag inequalities have been fully described in Corberán, Plana & Sanchis (2005). Here we
briefly present the two families of Zigzag inequalities: the Even and Odd Zigzag inequalities.
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Consider a partition of set V into 4 subsets, M1, M2, M3 and M4. Let αij denote the number
of required edges in (M i,M j) and suppose one of the following conditions is satisfied:

Even case: M1, M2, M3 and M4 are R-even and α12 = α34 = α14 = α23 = 0

Odd (simple) case: M1, M2, M3 and M4 are R-odd and α12 + α34 = α14 + α23

The configuration graphs GC associated with Even and Odd (simple) Zigzag inequalities are
shown in figures 9a and 9b (where the required edges are represented in bold lines) and are
defined by the partition of V above and by the following coefficients:

c(M1,M2) = c(M3,M4) = 0, c(M2,M1) = c(M4, M3) = 2, c(M i,M j) = 1 otherwise.

Then, the Even and Odd (simple) Zigzag inequalities can be expressed as:

x(δ(M1 ∪M2)) + 2x(M2 :M1) + 2x(M4 :M3) ≥ α13 + α24 + α14 + α23 + 2 (12)

where, given any set of edges (S1, S2), x(S1 :S2) =
∑

(i,j): i∈S1,j∈S2
xij .
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Figure 9: Zigzag configuration graphs.

In the above mentioned paper it is shown that Even and Odd (simple) Zigzag inequalities
(12) are valid and facet-inducing for WGRP(G) if the following conditions hold: If GC is a
complete graph and α13, α24 ≥ 2 (even case) or α13 ≥ |α12 − α14|+ 1 and α24 ≥ |α12 − α23|+ 1
(odd case). All these inequalities are strong configuration inequalities. Furthermore, it is also
proved that Odd (simple) Zigzag inequalities are equivalent to 3-wheel inequalities for the WPP
(Win, 1987).

Condition α12+α34 = α14+α23 for the Odd (simple) case above is very strong and can be
relaxed as follows to obtain a more general version of Odd Zigzag inequalities. Let M1, M2,
M3 and M4 be a partition of V into R-odd sets. Let us represent the horizontal edges by
H = (M1,M2) ∪ (M3,M4) and the diagonal ones by D = (M2,M3) ∪ (M1,M4) and note that
H∪D = δ(M1 ∪M3). Let F ⊂ (H∪D)R be a subset of required edges (shown as bold lines in
figure 9c, where all the edges are required) satisfying

|HR\F|+ |DR ∩ F| = |DR\F|+ |HR ∩ F| (13)

The more general Odd Zigzag inequality is

x(δ(M1∪M2))+2x(M2 :M1)+2x(M4 :M3)+2x(Fzz) ≥ α13+α24+α14+α23+2|H∩F|+ 2 (14)
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where x(Fzz) denotes the variables associated with the edges in F in the direction given by the
zigzag, i.e. M1−M2−M3−M4−M1. The pairs of coefficients associated with each edge are
shown in figure 9c. Odd Zigzag inequalities (14) are valid and facet-inducing for WGRP(G) if
GC\F is a complete graph, there are two required edges e13∈(M1,M3) and e24∈(M2,M4) and
the remaining required edges in GC can be oriented to induce a symmetric graph satisfying that
all the edges in (H∪D)R\F are oriented in the direction of the zigzag and all the edges in F
are oriented in the opposite direction.

Odd Zigzag inequalities (14) are weak configuration inequalities when F 6= ∅. If F = ∅ they
reduce to inequalities (12) and condition (13) becomes α12+α34 =α14+α23.

5 The Mixed GRP Polyhedron

As mentioned in the Introduction, the MGRP is the General Routing Problem defined on a
mixed graph G = (V,E, A), where V is the set of vertices, E is the set of edges and A is the set
of arcs, and the MCPP is a special case of it.

Nobert & Picard (1996) proposed a formulation for the MCPP using only one variable per
edge expressing the number of times a given edge is traversed in any direction. Such an approach
has been also used for the MGRP in Corberán et al. (2003, 2005), where a wide polyhedral study
is carried out. We call this kind of formulation F1. On the other hand, different formulations
using two variables per edge were proposed for the MCPP by Christofides et al. (1984) and
Ralphs (1993). They will be called F2 formulations. A theoretical and computational comparison
of both formulations for ARP’s on mixed graphs can be found in Corberán, Mota & Sanchis
(2006). Although formulation F2 is perhaps a more intuitive approach to a problem defined on
a mixed graph, polyhedral investigations on it have not been presented up to now. That is the
subject of this section, where we will take advantage of the previous WGRP study.

As for the WGRP, we will assume again that the original graph has been transformed to
satisfy V =VR. In addition, it can also be assumed that E\ER =∅, because each non-required
edge can be replaced by a pair of opposite non-required arcs (Corberán Romero & Sanchis
2003). Although this last transformation is not as important for formulation F2 as it is for F1,
in what follows we suppose we are working on a strongly connected graph G = (V, E, A) :=
(VR, ER, AR ∪ANR).

An MGRP instance can be transformed into a WGRP instance in which the cost of traversing
the edges in the forbidden directions are set to infinity. Then, the variables associated with the
forbidden directions can be removed from the WGRP formulation, thus obtaining an MGRP
formulation with just one variable associated with each arc and two variables associated with
each edge. Hence, formulation F2 for the MGRP is exactly the one presented for the WGRP
in section 2 except that some variables do not exist (all the variables xji associated with arcs
(i, j)). Therefore, constraints (1) and (4) are replaced by

xij + xji ≥ 1 ∀(i, j) ∈ E(= ER) (15)
xij ≥ 1 ∀(i, j) ∈ AR (16)
xij ≥ 0 otherwise (17)

Let MGRP(G) represent the convex hull of all the feasible solutions of the F2 formulation
for the MGRP on G = (V, E, A) (MGRP tours). From the results obtained for the WGRP
polyhedron, it can be shown that, if G is a strongly connected graph, the dimension of MGRP(G)
is 2|E|+ |A|− |V |+1. Furthermore, traversing and trivial inequalities are facet-inducing for
MGRP(G) if the corresponding link (edge or arc) e = (i, j) satisfies that G\{e} is a strongly
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connected graph. All other facet-inducing inequalities for the MGRP(G) are weak configuration
inequalities and their associated configuration graphs can have ‘parallel’ variables with different
coefficients associated with their edges.

Obviously any valid inequality for the WGRP is also a valid inequality for the MGRP.
Furthermore, the facet-inducing inequalities for WGRP(G) described in this paper are also
facet-inducing for MGRP(G) if the arcs in G have the ‘appropriate direction’, i.e. if the removed
variables do not avoid the existence of all the tours needed to define a facet.

Before presenting the following inequalities, we need some more notation. If G = (VR, ER, AR∪
ANR) is a mixed graph and S1, S2 are two vertex sets, we denote

E(S1, S2) = {e = (i, j) ∈ E : i ∈S1, j∈S2 or j∈S1, i ∈S2}
A(S1, S2) = {a = (i, j) ∈ A : i ∈S1, j∈S2}
AR(S1, S2) = {a = (i, j) ∈ AR : i ∈S1, j∈S2}

A mixed graph is called balanced if, for every S⊂V , the difference between the number of arcs
leaving S and the number of arcs entering S is less than or equal to the number of edges in
E(S, V \S).

It can be shown that the following inequalities are facet-inducing for MGRP(G):

• Connectivity inequalities (3), if graphs G(S) and G(V \S) are strongly connected.

• R-odd cut inequalities (6), if G(S) and G(V \S) are strongly connected and ε > |α−β|,
where ε = |E(S, V \S)|, α = |AR(S, V \S)| and β = |AR(V \S, S)|.

• K-C inequalities (7) if ε≥ |α−β| and K-C02 inequalities (8) if ε≥ |α+1−β|+1, where
ε= |E(M0, MK)|, α= |AR(M0,MK)| and β = |AR(MK ,M0)|. Here we assume that all the
sets A(Mi, Mi+1), A(Mi+1,Mi) are non-empty.

• Path-Bridge inequalities (9), if ε≥|α−β| for P odd and ε≥|α−β| + 1 for P even, and
Path-Bridge02 inequalities (10), if ε≥|α+PAZ−β−PZA|+1, where PAZ and PZA are the
number of paths of types AZ and ZA, respectively, ε = |E(A,Z)|, α = |AR(A,Z)| and
β = |AR(Z, A)|. The existence of all the pairs of opposite (non-required) arcs forming the
P paths is assumed here.

• Honeycomb inequalities (11), if the subgraph of GC induced by the required links E∪AR is
balanced and the graph (Ā, TĀ) is 2-connected. Honeycomb02 inequalities if, in addition,
for each edge or arc (u, v), with node u of type O and node v of type I, the subgraph of
GC induced by the required links plus two extra arcs from u to v is a balanced graph. We
assume the existence of all the pairs of opposite (non-required) arcs forming the tree T .

• Zigzag inequalities (12) and (14), if there are 4 links defining a zigzag M1-M2-M3-M4-M1

and,
(a) for the even case: the subgraph of GC induced by the required links is balanced.
(b) for the odd case: there are two required edges e13∈(M1,M3) and e24∈(M2,M4), and
the remaining required edges in GC can be oriented in such a way that, together with the
required arcs in GC , they induce a symmetric graph in which all the links in (H∪D)R \F
are oriented in the direction of the zigzag and all the links in F are oriented in the opposite
direction.

Given that the MCPP and MRPP are special cases of the MGRP, the above inequalities are
also facet-inducing for the polyhedra associated with these problems when they are formulated
with two variables.
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6 Conclusions

Given a ‘windy’ graph (an undirected graph with two costs associated with each edge, repre-
senting the costs of traversing it in each direction) and given a subset of ‘required’ edges and a
subset of ‘required’ vertices, the Windy General Routing Problem consists of finding a minimum
cost tour traversing each required edge and visiting each required vertex at least once. Since
undirected, directed and mixed graphs can be modelled with a windy graph, and the GRP gen-
eralizes the CPP, RPP and GTSP, all the routing problems represented in figure 1 are special
cases of the WGRP. Therefore, most of the theoretical and practical results obtained for the
WGRP can be applied to these important problems.

In this paper we have presented a polyhedral study of the WGRP. In addition to describing
some basic properties of its associated polyhedron, WGRP(G), we have shown that all its facet-
inducing inequalities, except those equivalent to the trivial or the traversing ones, are weak
configuration inequalities. This is a generalization of the (strong) configuration property related
to the polyhedra associated with the problems in figure 1. Then, each facet-inducing inequality
can be represented by means of a configuration graph and we have proved that, if a given
inequality is facet-inducing for the polyhedron defined on this simple configuration graph, then
it is also facet-inducing for the whole polyhedron WGRP(G).

We have also described wide families of facet-inducing inequalities. This partial description
of WGRP(G) has been recently used in Corberán, Plana and Sanchis (2005b) to develop a
branch & cut algorithm capable of solving WGRP instances of large size and other difficult
instances of some of the problems shown in figure 1. Although slightly different versions of most
of these inequalities were already known about for other routing problems polyhedra, it is in
this paper that they have been generalized for the WGRP and proved to be facet-inducing of
WGRP(G).

On the other hand, a partial description of the polyhedra associated with ARP’s defined
on mixed graphs whose formulation uses two variables per edge has also been obtained. This
polyhedral study had not been done before.

A final contribution of this paper is that it also provides a global view of most of the
known facet-inducing inequalities for the polyhedra associated with the problems in figure 1,
since versions of facet-inducing inequalities for other problems with formulations using only one
variable per link are very similar.
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[13] G. Cornuèjols, J. Fonlupt & D. Naddef (1985): “The traveling salesman problem on a graph
and some related integer polyhedra”. Mathematical Programming 33, 1-27.

[14] M. Dror (Ed.), ARC Routing: Theory, Solutions and Applications, Kluwer Academic Pub-
lishers, Massachusetts, 2000.

[15] J. Edmonds & E. Johnson (1973):“Matching, Euler Tours and the Chinese Postman Prob-
lem”. Mathematical Programming 5, 88-124.

[16] H.A. Eiselt, M. Gendreau & G. Laporte (1995a): “Arc-Routing Problems, Part 1: the
Chinese Postman Problem”. Operations Research 43, 231-242 .

[17] H.A. Eiselt, M. Gendreau & G. Laporte (1995b): “Arc-Routing Problems, Part 2: the
Rural Postman Problem”. Operations Research 43, 399-414.

[18] B. Fleischmann (1985): “A cutting-plane procedure for the traveling salesman problem on
a road network”. European Journal of Operational Research 21, 307-317.

[19] M. Grötschel & Z. Win (1988): “On the windy postman polyhedron”. Report No. 75,
Schwerpunkt-progam der Deutschen Forschungsgeneinschaft, Universität Augsburg, Ger-
many.

[20] M. Grötschel & Z. Win (1992): “A Cutting Plane Algorithm for the Windy Postman
Problem”. Mathematical Programming 55, 339-358.

22



[21] M. Guan (1962): “Graphic Programming using odd and even points”. Chinese Mathematics
1, 273-277.

[22] M. Guan (1984): “On the Windy Postman Problem”. Discrete Applied Mathematics, 9,
41-46.

[23] H. Gun (1993): “Polyhedral structure and efficient algorithms for certain classes of directed
rural postman problem”. PhD Dissertation, University of Maryland at College Park, USA.

[24] A. Letchford (1997): “New inequalities for the General Routing Problem”. European Jour-
nal of Operational Research 96, 317-322.

[25] E. Minieka (1979): “The Chinese Postman Problem for Mixed Networks”. Management
Science 25, 643-648.

[26] D. Naddef & G. Rinaldi (1991): “The Symmetric Traveling Salesman Polytope and its
Graphical Relaxation: Composition of Valid Inequalities”. Mathematical Programming 51,
359-400.

[27] Y. Nobert & J.C. Picard (1996): “An optimal algorithm for the mixed chinese postman
problem”. Networks 27, 95-108.

[28] C. Orloff (1974):“A fundamental problem in vehicle routing”. Networks 27, 95-108.

[29] I. Plana (2005): “The Windy General Routing Problem”. PhD Dissertation, University of
Valencia, Spain.

[30] T. Ralphs (1993): “On the Mixed Chinese Postman Problem”. Operations Research Letters
14, 123–127.

[31] A. Romero (1997): “On the Mixed Rural Postman Problem”. PhD Dissertation, University
of Valencia, Spain.

[32] J.V. Savall (1990): “Polyhedral results and approximate algorithms for the Directed Rural
Postman Problem”. PhD Dissertation, University of Valencia, Spain.

[33] Z. Win (1987): “Contributions to Routing Problems”. PhD Dissertation, University of
Augsburg, Germany.

23


