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Introduction: Focal atrial tachycardia is commonly treated by radio frequency ablation

with an acceptable long-term success. Although the location of ectopic foci tends

to appear in specific hot-spots, they can be located virtually in any atrial region.

Multi-electrode surface ECG systems allow acquiring dense body surface potential maps

(BSPM) for non-invasive therapy planning of cardiac arrhythmia. However, the activation

of the atria could be affected by fibrosis and therefore biomarkers based on BSPM need

to take these effects into account. We aim to analyze the effect of fibrosis on a BSPM

derived index, and its potential application to predict the location of ectopic foci in the

atria.

Methodology: We have developed a 3D atrial model that includes 5 distributions of

patchy fibrosis in the left atrium at 5 different stages. Each stage corresponds to a

different amount of fibrosis that ranges from 2 to 40%. The 25 resulting 3D models were

used for simulation of Focal Atrial Tachycardia (FAT), triggered from 19 different locations

described in clinical studies. BSPM were obtained for all simulations, and the body

surface potential integral maps (BSPiM) were calculated to describe atrial activations. A

machine learning (ML) pipeline using a supervised learning model and support vector

machine was developed to learn the BSPM patterns of each of the 475 activation

sequences and relate them to the origin of the FAT source.

Results: Activation maps for stages with more than 15% of fibrosis were greatly

affected, producing conduction blocks and delays in propagation. BSPiMs did not always

cluster into non-overlapped groups since BSPiMs were highly altered by the conduction

blocks. From stage 3 (15% fibrosis) the BSPiMs showed differences for ectopic beats

placed around the area of the pulmonary veins. Classification results were mostly above

84% for all the configurations studied when a large enough number of electrodes were

used to map the torso. However, the presence of fibrosis increases the area of the

ectopic focus location and therefore decreases the utility for the electrophysiologist.
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Conclusions: The results indicate that the proposed ML pipeline is a promising

methodology for non-invasive ectopic foci localization from BSPM signal even when

fibrosis is present.

Keywords: atrial tachycardia, body surface potential map, structural remodeling, ectopic focus location, optimal

electrode location, machine-learning

1. INTRODUCTION

Focal atrial tachycardia (FAT) is a supraventricular tachycardia
that triggers fast atrial rhythms from a location outside the
sinoatrial node (Saoudi et al., 2001). FAT is commonly treated
by radiofrequency ablation (RFA) with a high long-term success
rate. The catheter ablation treatment targets the arrhythmogenic
electrical drivers and terminates them by localized energy
delivery. The end point of catheter based ablation is to
eliminate the triggers with the least amount of ablation necessary
(Santangeli and Marchlinski, 2017). In the case of FAT, the
localization of those drivers tends to appear in specific hot-spots
(Kistler et al., 2006), for example the pulmonary veins (PV)
ostia are the most common sites of origin of focal tachycardias
within the left atrium (LA) (Hoffmann et al., 2002), however
they can be found virtually in any region of the atria, which
makes their treatment difficult. The prevalence and distribution
of focal triggers in persistent and long-standing atrial fibrillation
has also been studied, showing a higher prevalence in the
pulmonary veins for most groups, although non-PV triggers were
observed in 11% of the cases (Santangeli et al., 2016). Electro-
anatomical 3D mapping (EAM) is the standard technique used
to obtain detailed intra-atrial activation sequences with the aim of
bounding the source of the tachycardia (Bhakta and Miller, 2008;
Santangeli and Marchlinski, 2017; Santoro et al., 2018).

Some factors might coexist with the tachycardia such as
heart disease, hypertension or diabetes that could induce a
structural remodeling process and the proliferation of fibrosis.
Atrial fibrosis increases also with age and grows in conjunction
with cardiomyopathy and heart failure (Go et al., 2001). Fibrosis
has been linked to an increased incidence of rhythm disturbances
via interaction with healthy tissue (Spach and Boineau, 1997). In
addition, fibrosis distribution and density have been proposed
as a predictor of recurrence in patients after a pulmonary vein
isolation procedure by RFA (Oakes et al., 2009).

Detailed biophysical and anatomical models of the atria and
torso have been successfully employed to reproduce complex
electrical activation patterns observed in experiments and clinics
(Trayanova and Boyle, 2014). Most of these studies, however,
have focused on understanding the mechanisms that maintain
certain types of arrhythmia such as atrial fibrillation (Zhao et al.,
2015; Guillem et al., 2016), or spiral wave dynamics (Jalife, 2011),
rather than providing solutions to tailor their treatment. In the
last years, the analysis of arrhythmic patterns from non-invasive
recordings such as multi-electrode surface ECGs using multi-
scale biophysical models is starting to draw some attention as an
alternative to EAMs (Shah et al., 2013; Giffard-Roisin et al., 2016).

The use of multi-electrode surface ECG systems allows for
dense body surface potential maps (BSPM) with the aim of

improving diagnosis of cardiac arrhythmia. A few attempts
have been already carried out in clinics to relate BSPM-derived
indices with atrial arrhythmic events induced artificially from
an intracardiac catheter (Shah et al., 2013). From the modeling
perspective, algorithms have been developed, mainly based on
decision trees, to help identify the source of FAT from BSPM
data (Kistler et al., 2006). In most of the previous studies, the
presence of fibrosis has been neglected or not considered in the
models. Ignoring the effects of fibrosis is a clear limitation since
current-resistant fibrotic tissue affects the activation patterns.

In this study, we aim to predict the triggering site of a FAT
using only BSPM data to help electrophysiologists pre- and intra-
operatively, reducing the time to find and ablate the source. To
achieve this goal, we have to be able to relate a BSPM-derived
index with the source of a FAT even in the face of fibrosis
patches that are present in different distributions and densities.
In addition, we set out to ascertain the effect of fibrosis on
the BSPM-derived indices. The proposed method uses machine
learning techniques to develop a prediction pipeline that should
be able to learn the relationship between BSPMs and ectopic
foci location. We trained this system with a simulation database,
generated by means of a detailed biophysical model of 3D human
atria, in which we have control of the input parameters, and can
simulate the desired scenarios.

2. MATERIALS AND METHODS

2.1. Anatomical Model
The 3D geometrical model of the atria and torso used in this
study was previously developed (Ferrer et al., 2015). It consists
of a highly detailed 3D geometric model of the atria (754,893
nodes and 515,005 hexahedral elements with a homogeneous
resolution of 300 µm) coupled to a torso model (254,976 nodes
and 1.5 M tetrahedral elements) made up of lungs, bones, liver,
ventricles, blood, and general torso, see Figure 1A. The atrial
model includes specific fiber orientations in 21 different atrial
regions, heterogeneous tissue conductivity and anisotropy ratios
and heterogeneous cellular properties adjusted following the
model by Ferrer-Albero et al. (2017) and summarized in Table 1.

On the base atrial model, we included 5 different random
distributions of patchy fibrosis in the left atrium. To define the
fibrotic regions we included 50 seeds distributed among the
following LA regions: Pulmonary veins, coronary sinus, ring fosa
ovalis, and posterior LA wall in different proportions as in Zhao
et al. (2013). Following, we grew each of the seeds using the region
growing technique, so that fibrosis expanded forming patches.
However, to avoid unrealistic perfect spherical fibrotic regions,
we randomly reassign patchy elements back to healthy in the
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FIGURE 1 | Model of the human atria and torso. (A) 3D torso model of tetrahedral elements, made up of lungs, bones, liver, ventricles, blood and general torso; (B)

Localization of the 57 ectopic foci on the atria, together with their region of influence or patch. (C) The 3D atria including stages of patchy fibrosis. Case 1 shown for

the 5 stages of fibrosis; (D) Stage 3 shown for the 5 different cases.

TABLE 1 | Parameters used to reproduce cellular and tissue atrial heterogeneity.

Prop. RA PM CT/BB TVR RAA LA FO MVR LAA PV CS

gto 1.00 1.00 1.00 1.00 0.68 1.00 1.00 1.00 0.68 1.00 1.00

gCaL 1.00 1.00 1.67 0.67 1.00 1.00 1.00 0.67 1.00 1.00 1.00

gKr 1.00 1.00 1.00 1.53 1.00 1.60 1.60 2.44 1.60 2.20 1.60

σl 0.003 0.0075 0.0085 0.003 0.003 0.003 0.000 0.003 0.003 0.0017 0.006

σt/σl 0.35 0.15 0.15 0.35 0.35 0.35 1.00 0.35 0.35 0.5 0.5

CVL 63.3 115.4 100.0 63.3 63.3 63.3 0.0 62.9 63.3 75.0 97.2

contours of the growing patch in each iteration, forming random
fibrotic tissue shapes that might include surviving healthy tissue
surrounded by fibrosis.

The fibrotic areas were grown according to the Utah
classification (Oakes et al., 2009; Daccarett et al., 2011), that
defines up to four levels of LA remodeling (quartiles) of fibrosis
associated to the ratio of fibrosis to atrial volume [Utah stage I:

< 8.1% (Q1); Utah Stage II: < 16% (Q2); Utah Stage III: < 21%
(Q3) ; Utah Stage IV: > 21% (Q4)]. Therefore, from the initial
5 fibrotic distributions, fibrosis was grown, as describe above,
generating a total of 25 3D models. Note that for each of the
5 initial distributions we developed two models for quartile Q4
that we called Stage IV and Stage V. Figure 1C shows the atrial
model for one of the 5 fibrotic distributions (Case 1) with fibrotic
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patches at each of the stages, and Figure 1D shows the atrial
model for Stage 3, and for the 5 cases of fibrotic distribution. The
figure shows how fibrotic areas can have any shape and include
small islands of surviving tissue within the patches. Figure S2
shows the 25 distributions of patchy fibrosis used.

2.2. Electrophysiology Modeling
For the electrophysiology simulations, we considered
electrophysiological cellular heterogeneity in 10 different
regions by adjusting Ito, ICaL, and IKr in the Courtemanche-
Ramirez-Nattel (CRN) ionic model (Courtemanche et al., 1998),
plus the well-established fibroblast cell model by MacCannell
et al. (2007) coupled to the CRNmodel. The tissue conductivities
for each region defined together with their anisotropy ratios
were obtained from Ferrer-Albero et al. (2017) and summarized
in Table 1. The first three rows are the multiplicative factors used
for the maximum conductance of three (gto, gCaL, and gKr) ion
channels with respect to the base Courtemanche-Ramirez-Nattel
(CRN) ionic model (Courtemanche et al., 1998), and the next
three rows are the longitudinal conductivity (σl), the ratio
between the transverse and longitudinal conductivities (σt/σl),
and the longitudinal conduction velocity (CVL).

Propagation of excitation in the atria was calculated solving
the reaction-diffusion, mono-domain equations, Equations (1)
and (2), given by Geselowitz and Miller (1983) with the finite
element method using the operator splitting numerical scheme
by ELVIRA software (Heidenreich et al., 2010),

∇ .
(

D∇V
)

= Cm .
∂V

∂t
+ Iion in �H (1)

n .
(

D∇V
)

= 0 in ∂�H (2)

where D is the equivalent conductivity tensor, Iionis the
transmembrane ionic current that depends on the cellular model,
Cmis the membrane capacitance and �H is the heart domain.

The extracellular potentials Ve in the torso model coupled to
the atria were calculated using an approximation of the bidomain
model. The first step was to interpolate the transmembrane
potentials (V) obtained in the hexahedral mesh nodes of the atria
to the tetrahedral torso mesh, overlapping the atrial region. The
second step corresponds to the calculation of the extracellular
potential by solving the passive term of the bidomain model
(Keller et al., 2010), Equation (3), using the finite element method
with Dirichlet and Neumann boundary conditions (Weber et al.,
2011).

∇ .
(

D∇V
)

+ ∇ .
((

Di +De

)

∇ Ve

)

= 0 (3)

where Di and De are the volume-average conductivity tensors of
the intra and extracellular domains (Niederer et al., 2011).

2.2.1. Analysis of Cell Coupling
In order to analyze the coupling of the different cell models with
the fibrosis, we performed a preliminary analysis on a 3D slab
of tissue that combined healthy atrial tissue and fibrotic tissue
to assess: (i) changes in action potential duration (APD), and
(ii) conduction velocities. The 3D slab dimensions were 50 ×

50 × 0.3 mm and were built with voxel elements of 300µm in

size. Several configurations of the fibrotic tissue were designed to
evaluate: (i) theminimum amount of fibrosis required to produce
a conduction block in a wavefront advancing perpendicular
to the line of fibrosis; (ii) the minimum conduction channel
(healthy tissue surrounded by fibroblast) necessary to allow the
propagation of the electrical impulse.

2.3. Simulation of BSPM During Focal Atrial
Tachycardia
The 3D atrial models were prepared for simulation of FAT
from 19 different triggering locations (including sinus rhythm)
following clinical studies (SippensGroenewegen et al., 2004).
See Figure S1 for a graphical description of the 19 triggered
locations selected out of the 57 initial locations included in
Figure 1A. Triggering points were present in both the left
and right atria, and were chosen to cover most of the atrial
wall, in regions prone to elicit ectopic activity. Only in the
case of the atrial model without fibrosis, did we consider an
additional set of 38 extra triggering points in order to have
more information on the healthy activation maps as in Ferrer-
Albero et al. (2017). Figure 1B shows the 57 ectopic locations
used. For a more detailed description, see Table S1, in which
the different anatomical regions in the atria with simulated
ectopic foci are shown. Figure S3 shows the LATs for all
ectopic foci (Case 1), while Figure S4 shows their corresponding
BSPiMs.

Before triggering the FAT, all 3D models were stabilized by
simulating 20 heart beats in sinus rhythm with a basic cycle
length (BCL) of 500 ms. This was necessary to homogenize the
coupling of the different cellular populations and the fibrotic
tissue, smoothing differences between neighboring regions. Next,
simulations corresponding to each of the 19 ectopic beat
locations were carried out for each fibrotic configuration which
resulted in 475 simulations in the 3D atrial models with fibrosis,
plus 57 simulations in the non-fibrotic model.

Body surface potential maps (BSPM) were obtained for all the
simulations by calculating the extracellular potential at all the
nodes of the torso surface. To obtain more realistic results, we
added white Gaussian noise to simulate the effect of noise from
muscles or other sources on the BSPM. An average P wave had
a mean power of 0.003 mW (i.e., −55.2 dBW), and we added
white Gaussian noise with amean power of 0.001mW (i.e.,−60.0
dBW), yielding an approximate power ratio of 3 and S/N ratio of
4.8 dB. Afterward, we filtered the signal using a Savitzky-Golay
smoothing filter that minimizes the least-square error in fitting a
polynomial to frames of noisy data. It is optimal in the sense that
performs much better than the standard FIR filters, which tend
to filter out a significant portion of high frequency content along
with the noise (Orfanidis, 1995).

Once all the filtered noisy BSPMs were obtained, the body
surface potential integral maps (BSPiM) were calculated, as
described in SippensGroenewegen et al. (2004). As a result, for
each ectopic focus simulated we summarized each P-wave signal
on the torso surface into a single value obtained from integrating
the corresponding P-waves at each torso point, which resulted
in the BSPiM. The integration of the BSPiM is equivalent to the
average of the electrical cardiac vector over time, and therefore
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describes how the depolarization wavefront advances during the
activation. The BSPiMs were all normalized in the range [−1,1].

2.4. Machine Learning Pipeline
The simulation of ectopic foci allowed us to obtain a data set
formed by the ectopic locations on the atria (3D points) and
the corresponding BSPiMs they produced on the torso. Using
this data set, machine learning techniques could be applied
to establish a relationship between the location of an ectopic
focus and the BSPiM map it produced. Following this idea, we
designed the pipeline shown in Figure 2 to solve the ectopic
localization problem. This pipeline had five main steps. Firstly,
we performed the simulations for every ectopic focus on the atria
and obtained the corresponding BSPiM. Next, we performed a
dimensionality reduction on the BSPiMs, followed by a clustering
of BSPiMs. We validated all the clusters obtained to evaluate
their quality. Finally, we performed a stratified cross-validation,
to assess the classification accuracy of the ectopic foci into the
different clusters defined. Note that in this context, a cluster of
ectopic foci corresponds to a region on the atria.

The first two steps in the pipeline can be considered as
a pre-processing stage, and they were necessary to generate
and reduce the resolution of the raw BSPiMs, which originally
had more samples than those in a real clinical setting. In this
pipeline, we used two datasets, one corresponding to the 57
ectopic foci simulated without fibrosis, which contained 57
activation sequences. The second data set corresponded to the 25
fibrotic configurations × 19 triggering locations containing 475
activation sequences.

Step 1 - Atria/Torso Model simulation: In this step the
simulation of ectopic foci was performed by solving Equation (1)
in the atria domain and Equation (3) in the torso domain, which
generated the BSPMs. After adding noise to the P-wave signals
for all the computational nodes, we filtered the resulting signals.
We performed a trapezoidal integration of the noisy P-wave to
obtain the BSPiMs. As an example, Figure 2 (step 1) contains the
activation patterns produced by the ectopic focus LA1 (located
on the left atrium (LA) posterior wall), for a configuration with
fibrosis remodeling in stage III, together with the corresponding
BSPiM with and without noise (frontal views) for the same
ectopic focus.

Step 2 - Dimension reduction and BSPiM clustering: This
step corresponded to an unsupervised learning phase to classify
the filtered noisy BSPiMs that result from the activation of the
different ectopic foci (457+ 57 simulations).

The computational torso model used in this pipeline had
14,157 surface nodes, and therefore provided BSPiMs with that
resolution. Before the clustering phase, these dense BSPiM data
sets were reduced to a more feasible clinical scenario, since
current BSPM vest system technologies allow a maximum of
about 256 electrodes placed on the torso of a patient (Shah et al.,
2013). Therefore, the dimension of each input data set of filtered
noisy BSPiM, was homogeneously reduced to a maximum of
256 nodes, (i.e., features) (see Figure 2, step 2, top). To select
the nodes, we divided the torso domain into 256 equally-sized
patches (55 nodes per patch in average), and choose randomly
one of the nodes in each patch to represent the whole region. This

is a sensible approach since in a clinical BSPM acquisition system
the exact location and spacing of the mapping electrodes may not
be perfectly preserved across patients.

The unsupervised clustering of the 256-dimensional BSPiM
patterns was performed using hierarchical/agglomerative
clustering. One of the benefits of hierarchical clustering is that
one does not need to know in advance the number of clusters K
in the dataset, assigning each sample to its natural class. We used
the Ward et al. variance minimization algorithm (Ward, 1963).
We started with a single cluster for each sample and iterated
by finding, at each step, the pair of clusters that, after merging,
produced the minimum increase in the total within-cluster
variance.

We also used dendrograms for visualization in the form of
trees showing the order and distances of merges during the
hierarchical clustering process. We repeated this phase imposing
a distance limit in the algorithm, obtaining K clusters ranging
from 2 to 10 clusters (see Figure 2, step 2, down).

Step 3 - Clusters validation on the atrial surface: The
assignation of every BSPiMs to a cluster induced a clustering on
the set of ectopic foci that produced the corresponding BSPiM;
if a certain BSPiM was assigned a label j by the clustering
algorithm, then we assigned the same label to the ectopic location
that produced that BSPiM. Now, the question to resolve was
whether the clustering that was mapped onto the atria had some
geometrical meaning to identify the location of the ectopic focus.
To analyze this, we associated to each ectopic focus a region or
patch formed by the points in the atria closer to that focus than
to any other. From the clustering induced in the atria, we could
associate also a patch to every BSPiM cluster, built as the union
of the patches of the associated ectopic foci. In Figure 2 (step
3, top) we show an example of the clustering generated on the
atria surface. Each atrial patch associated to an ectopic focus has
a color that corresponds to its class. In the example, ectopic LA1
(for K = 6 groups and fibrosis Stage III) was associated to the
purple class.

Recall that our goal was to build a system that takes a
measured BSPiM and predicts the location of the ectopic focus
that generated it or, at least, a region where it could be located.
Thus, the ideal situation would be that two BSPiM that are in
the same cluster are the result of the same ectopic focus or, at
least, of two ectopic foci that are in nearby patches in the atria. By
contrast, an adverse situation would happen when similar BSPiM
would be clustered together due to their similarity, but the ectopic
foci that generated them were distributed along the atria and
did not form a connected region on the surface. We defined a
well formed region/cluster as a union of ectopic patches that was
connected and only included ectopic foci from the same cluster.

Thus, we sought to assess the quality of the patches formed
from the BSPiM clustering. To be able to verify this requirement
we created an ectopic graph, where the nodes represent the
ectopic foci and are connected by an edge if their associated
patches share a border. The geodesic distances on the atria were
obtained by a Fast Marching algorithm (Kimmel and Sethian,
1996). According to the ectopic graph created, a well formed
patch could be identified as a connected subgraph containing all
the ectopic foci of a class (see Figure 2, step 3, down). In this way,
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FIGURE 2 | Machine learning pipeline. The pipeline consists of 5 steps. Steps 1 and 2 are performed for each ectopic focus and fibrosis configuration. Steps 3, 4,

and 5 are the training and validation phases and carried out with all the simulation results. The different torso and atrium figures shown correspond to ectopic focus

LA1, located on the LA posterior wall.

we reduced the problem of deciding if a cluster is well formed to
a connectivity test on the associated subgraph.

It is important to note that for each ectopic location we had
25 simulations (5 different fibrosis configurations × 5 different
fibrosis stages) with differing fibrosis distribution. An ideal result
would be that all the BSPiM simulations produced by the same
ectopic focus end up in the same cluster, regardless of the
fibrosis configuration or stage. However, due to the changes
in LAT due to fibrosis such a result would have been highly
unlikely.

Considering K as the number of clusters, we define the
persistence of an ectopic location x as the number of different
clusters that contains ectopic foci located at x, divided by the
number of clusters, K. The best situation for an ectopic is
produced when it only appears in one class (fully persistent),
with a persistence value of 1/K, while the worst situation occurs
when it appears in all the classes, with a persistence value of 1.
Ectopic locations with a poor value of persistence would indicate
that several cluster patches overlap on that ectopic patch. This
situation will be represented in our figures with regions that have
spots of more than one color.

It is noteworthy, however, that a poor persistence value does
not necessarily lead to a bad prediction situation. Although an
ectopic location is in, say, three clusters, if the three clusters are
well formed the system will still be able to indicate a meaningful
region for the ectopic when a BSPiM is processed.

Step 4 - Feature selection: In addition to the dimensionality
reduction carried out before the clustering step, we performed
a feature selection step, in this case to select the best features
among the 256 (see Figure 2, step 4, top). The reason for this
further selection is that in many clinical procedures the number
of available electrodes is far below 256.We wished to establish the
minimum number of electrodes necessary to build a successful

prediction system and to determine what their optimal locations
are.

In our context, we will consider that a feature (representing
an electrode location) is less relevant than another when its
value is independent of the classification of the sample, from a
probabilistic point of view. We performed a hypothesis contrast
on the data set to assess the dependence of each component
of the BSPiMs data with the class distribution of the samples.
Given a feature, we consider its value and the class of the
samples in the data set as random variables. Using the chi-
square (χ2) test, if a small p-value is found for a given feature,
it shows statistical evidence that the value of that feature is
not independent from the class of the sample. Then, we keep
the N best features and disregard those that are most likely to
be independent of the class label. This process is repeated for
N = 2, 4, 8, 16, 32, 64, 128, 256, which permits us to compare the
performance of the system as a function of the final number of
features selected.

Step 5 - Ectopic foci Classification: As a result of the cluster
validation process, the generated clusters can be viewed as
groups of patches on the atrial surface that relate to BSPiMs
patterns. We trained a classifier able to classify any BSPiM into
one of the clusters defined, that would point to a patch group
[atrial region(s)]. For each number of clusters (K = 2,...10), we
constructed a supervised learning model using a support vector
machine (SVM) using the implementation in Pedregosa et al.
(2011) and Buitinck et al. (2013). The SVM does the classification
of the data finding the best hyperplane that separates all data
points of one class from those of other classes. We used a 4-
fold stratified cross validation process where different SVMs
were trained to avoid over-fitting and to evaluate the prediction
accuracy and the generalization level obtained. We adjusted the
parameters (i.e., a regularization term) of a radial basis kernel
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for the decision function. Folds were selected so that the mean
response value was approximately equal in all of them. Each fold
contains the same proportion of ectopic foci from each cluster,
and all the ectopic foci were tested. Having 4-folds leaves 75% of
samples for training and 25% of samples for testing in each fold.

3. RESULTS

3.1. Simulations on a 3D Slab of Tissue
In a first evaluation, we analyzed the amount of fibrosis required
to produce a conduction block. We included in the slab modeled
as LA posterior wall tissue, a cross-wise line of fibroblast cells with
different width (x-axis) to evaluate the effect on the propagation
(see Figures 3A–D). We stimulated the slab with a cross-wise
flat impulse that progressed activating the full width of the slab
from bottom to top. Figure 3A shows a slab configuration free
of fibrosis. The time required for the wavefront to travel the full
size of the slab was 59 ms. Figure 3B, shows a slab that includes
a cross-wise line of 0.3 mm modeled as fibroblast cells. The
activation time was 62 ms, therefore the fibroblasts introduced a
delay in the propagation wavefront of 3 ms (5% increase). When
the fibrotic barrier was 0.6mm, the wavefront took 71ms to reach
the top of the slab, that is a 12 ms delay (20% increase) with
respect to the healthy configuration (see Figure 3C). When the
barrier was increased to three voxels, i.e., 0.9 mm width, there
was a conduction blockage (see Figure 3D). The results clearly
show that the effect of fibrosis on the propagation wavefront in
our model is not linear.

In a second evaluation, we inverted the configuration of
the tissue types of the slab, that is, all tissue was modeled as
fibroblast, except a conduction channel modeled as healthy atrial
tissue, with different width {[1.4, 1.5, 1.8, 2.4, and 2.7 mm]
(x-axis) × [0.3 mm] (z-axis)}. The goal was to determine the
minimum width required for a conducting channel to propagate
the electrical impulse when it is surrounded by fibrotic tissue.
Figure 3E shows a slab of fibrosis tissue with a conduction
channel of 1.8× 0.3 mm, where we studied the AP at 4 locations
distributed along the conduction channel. Table 2 summarizes
the results obtained. Location 1 (trace in red color) shows the
largest AP amplitude, since it is closer to the initial electrical
shock delivered. Resting potential is elevated in all cases, but the
effect is larger at locations 2, 3, and 4. Table 2 shows the AP
values for locations 1 and 4, and for each channel width tested.
The channel with a width of 1.2 mm produced a propagation
block a fewmillimeters from the initial impulse. The intermediate
channel (1.5 mm), propagated the signal, but the amplitude of
the signal at the channel exit (location 4) was reduced by 54%,
whereas in the wider channel (1.8 mm) it was reduced by 48%.
All the APDs90 measured, for all locations in the conduction
channel, were greatly reduced with respect to the APD for the
original model. With respect to the delay, it was clear that the
electrotonic coupling affected the AP rising time, with an increase
of 40 ms in the propagation delay when channels were reduced to
1.5 mm. That delay equates to a decrease in conduction velocity
from 0.85 to 0.50 m/s, due only to the effect of fibrosis coupling.
Channels larger than 3.0 mm permitted a normal propagation of

FIGURE 3 | 3D slabs of left atrial tissue including fibrosis barriers. (A) Shows a

slab free of fibrosis with an activation time of 59 ms; (B) a slab with the same

properties and a cross-wise barrier of one voxel element width (x-axis) of

fibroblast cell model, taking a time for activation of 62 ms; (C) 3D slab

including a cross-wise barrier of two voxel elements width (x-axis) of fibroblast

cell model, taking a time for activation of 71 ms; (D) 3D slab including a barrier

of three voxel elements width (x-axis) of fibrosis tissue model where the

propagation front is blocked; (E) Study of the effect on the AP at 4 locations

along a conduction channel of healthy atrial tissue with a width y-axis of 1.8

and 0.3 mm, on a slab of fibrosis tissue.

the signal in the center of the channel, with respect to conduction
velocity and APD morphology.

Finally, using the same size and number of voxel elements, we
analyzed the propagation changes as a function of the 5 different
stages of patchy fibrosis, from less dense (Stage I) to more dense
(Stage V) of fibrosis (see Figure 4A). The figure shows that as
we increase the level of fibrosis, paths are formed by the fibrosis
patches.

We also assessed the influence of the electrotonic interactions
between atrial tissuemyocytes and random shape and size fibrotic
patches on the AP, APD, and the resting membrane potential
(RMP); with that purpose, we used six probes located in different
positions within the 3D slab of tissue with Stage IV of fibrosis.
Those locations were selected to go across different areas of the
slab, from a channel free of fibrosis to an area well inside a higher
density zone of fibrosis, see Figure 4A, labeled Stage IV.

To appreciate the changes in the AP when coupling myocytes
to fibroblasts, and the cell-to-cell electrotonic interaction, we
overlapped the AP signals measured at each probe, together with
an AP measured in a healthy myocyte, as control. Figure 4B
together with Table 3 show those effects.

Electrophysiological effects on the Courtemanche-Ramirez-
Nattel myocytes when coupling to the active formulation of
MacCannell fibroblast model due to the cell-to-cell electrotonic
interaction, caused a reduction of AP amplitude which can be
appreciated with respect to the control trace as soon as the
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TABLE 2 | Properties of AP in the entrance and exit [locations (1)/(4)] of a conduction channel.

Channel width 1.2 mm 1.5 mm 1.8 mm 2.4 mm 2.7 mm >3.0 mm

RMP (mV) −63.6/– −66.3/−65.8 −68.5/−68.0 −71.4/−71.0 −72.7/−72.2 −79.91

Peak value (mV) 39.4/– 43.0/−15.2 46.7/−9.0 50.7/−1.7 52.9/0.2 0.73

APD90 (ms) 65.0/– 104/122 127/168 153/189 161/195 252

Delay (4)-(1) (ms) – 99.0 76.0 60.0 60.0 59.0

FIGURE 4 | Electrophysiological effects on the Courtemanche-Ramirez-Nattel

myocytes when coupling to the active formulation of MacCannell fibroblast

model. (A) shows the local activation time map on 3D slabs of tissue that

include fibrotic tissue in increasing amount (left to right). The color corresponds

to the local activation time in ms. (B) shows the action potential on specific

locations obtained from the 3D slab with fibrosis in Stage 4. Note that the color

of each plot refers to the corresponding color-coded disc in the figure above.

probe was near a more dense patchy fibrosis area. It produced
a reduction of AP plateau, and a clear shortening of the myocyte
APD90 with respect to the control AP and variable depending the
location of the probe and the density of fibrosis. APD50 showed
a more constant reduction of the APD as we went deep inside
fibrotic areas showing a clear deformation of the AP profile. Also,
it produced a prolonged repolarization of the AP compared to
the uncoupled myocyte, and more significantly, fibroblasts had
a higher resting membrane potential (RMP) and hence affected
directly the myocyte RMP, which was constantly elevated (see
Figure 4B).

3.2. Simulations on the Atria-Torso Model
Once the atrial simulations were completed, from the 475
simulations that included fibrosis, 54 of them were excluded
because they did not trigger the FAT activity due to the proximity
between the ectopic location and the fibrotic tissue. The excluded
simulations were 5 from the Stage 3, 20 from the stage 4, and
29 from the stage 5. Activation maps for stages with more

than 15% of fibrosis showed both conduction blockades and
delays in propagation, fundamentally around the pulmonary
veins, but also in some critical areas that prevented the electrical
communication between both atria through standard pathways.
As expected the larger changes in LAT maps were for stages 4
and 5 due to the conduction delays and blockades that changed
the standard activation sequences (see Figure 5A and Figure S3).
Figure 5 shows the LAT maps and BSPiM for two ectopic foci,
LA1 located in the posterior LA wall and LA10 located in the area
of the bicuspid mitral valve ring embraced by the coronary sinus.
LA1 activation sequence was not greatly affected by the fibrosis
along the different stages, except for the left atrial appendage
and the pulmonary veins which did show very low voltage
potentials that did not contribute to the activation sequence
(Figure 5A, red regions). The corresponding BSPiM patterns
showed little differences where the maximum values drifted
slightly and the isochrones expanded. On the other side, LA10
showed important differences between stages for several reasons.
Firstly, the communication between atria through Bachmann’s
Bundle was compromised, delaying the activation of the RA.
Second, the activation of the LA appendage was also delayed
as happened with LA1. As a result, LA10 BSPiM for stages 4
and 5 resembled LA1 more than LA10, which could hamper the
training system that classifies ectopic foci.

3.2.1. Clustering of BSPiM Maps
For the clustering, learning, and classification of the ectopic
foci we created six different subsets of BSPiMs named
M0, . . . , M5. Table 4 summarizes the data included in
each of those models. Model M0 includes the control
data set without fibrosis, where FAT is triggered from 57
ectopic foci. The rest of models M1–M5 include fibrosis
and are triggered from 19 locations. For instance, model
M1 includes cases 1 to 5 with fibrosis stage 1 which makes
95 simulations. In some models simulations that did not
propagate were excluded: 5 for M3, 20 for M4, and 29 for
M5.

The clustering of the BSPiM maps obtained with the
hierarchical/agglomerative clustering predicted a number of
groups. Figure 6 shows, as an example of the performed
hierarchical/agglomerative algorithm, the dendrograms for the
model M1. The hierarchy levels (from 1 to 9) as a function of the
separation distance (green arrow) are indicated by the horizontal
dotted lines, and the clusters (K) being formed at each iteration,
which are shown on the y right axis from K = 2 to K = 10. At
each iteration the clusters being split have the smallest distance
according to the Ward et. al. linkage algorithm (Ward, 1963).
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TABLE 3 | Effects of fibroblast-myocyte interaction on the Action Potential (Shown for the Stage 4 of fibrosis).

AP measurement/trace Control Red Green Blue Magenta Black Orange

RMP (mV) −79.9 −78.2 −75.7 −73.4 −69.4 −70.3 −57.5

Peak value (mV) 0.73 0.39 −0.16 −11.67 −22.85 −21.04 −42.58

Amplitude (mV) 80.66 78.59 75.60 61.77 46.63 49.33 14.97

APD90 (ms) 252 209 212 224 219 218 200

APD50 (ms) 153 105 94 101 85 87 52

FIGURE 5 | Local activation time (LAT) maps and BSPiMs generated by ectopic foci (A) LA1 and (B) LA10 for the 5 Stages of fibrosis and simulated for case 1, and

the 5 stages of fibrosis.

Figure 6 shows how in its first iteration the linkage algorithm
decided to split the 95 original samples of model M1 in two
clusters (K = 2), one with 30 samples (number of samples per
cluster shown in blue) and the other with 65 samples, with a large
separation distance. In the second iteration, the cluster with 65
samples was divided by the algorithm in two clusters, generating
3 clusters in total with 30, 25 and 40 samples respectively (K =

3). Following iterations keep dividing and merging the data set,
up to the imposed limit of level 9 and K = 10, where the clusters
formed had few samples and a quite small separation distance,

making further iterations pointless in terms of the subsequent
classification stage.

The x axis shows the color coded labels of the ectopic foci
grouped for K = 10 (i.e., level 9 and last iteration). It is important
to recall that a particular ectopic focus should be the same for any
of the 5 different distributions of fibrosis (i.e., Case 1 to Case 5).
The groups formed are shown separated by a thick black vertical
line. At this hierarchy level, the simulations for ectopic focus LA5
(simulated 5 times for M1, corresponding to Case 1 to Case 5)
did not fall in the same cluster, but 3 BSPiMs were classified

Frontiers in Physiology | www.frontiersin.org 9 May 2018 | Volume 9 | Article 404

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Godoy et al. Fibrosis Hampers Ectopic Foci Localization

into Class 3, and 2 BSPiMs to Class 4 (see Figure 6, encircled
labels). This fact indicates how the presence of fibrosis, already in
Model M1, starts to affect the BSPiM profiles, and consequently
the clustering process.

The clustering of the BSPiM maps obtained above
corresponds to groups formed by ectopic locations on the
atria. When we choose K = 2, for example, all ectopics were
arranged into cluster 1 or 2, if we chose K = 6, all ectopics were
then distributed into clusters 1–6.

3.2.2. Association of BSPiM Clusters to Regions on

the Atria
After clustering the BSPiM maps, we associated to each cluster
the ectopic beats that generated the corresponding BSPiM in the
cluster. Next, for each cluster, we summed the areas on the atria

TABLE 4 | Models created for the clustering, learning, and classification steps of

the pipeline.

Model Fibrosis Stages # BSPiMs

M0 No – 57

M1 Yes [1] 95

M2 Yes [1,2] 190

M3 Yes [1,..,3] 280

M4 Yes [1,..,4] 355

M5 Yes [1,..,5] 421

The table shows the levels of fibrosis and the number of BSPiMs included in each model

as data set.

surface that were linked to each ectopic beat, i.e., the ectopic
patches. We obtained this measure for K =2 to K = 10. For
example in the case of K = 2 we had the area of cluster 1 and
cluster 2, and then calculated the mean area, and the standard
deviation in the areas, to obtain a single representative measure
of the atrial regions. Note that if a given patch in the atria had
two labels (it was expected to have a single label), its area would
be summed twice to take into account the existence of region
overlaps.

This measure is shown in Table 5 as x̂ ± σ (cm2). The results
show, as expected, a decrease in the mean and standard deviation
of the region area as we incremented the number of clusters from
K = 2 to K = 10 (row wise). When we analyzed those areas
moving from M1 to M5 (column wise), there was an increase of
the areas as the level of fibrosis increased. This finding is due to
the region label overlap, since when a patch is labeled with more
than one label it contributes to the sum of areas of more than
one region. Therefore, the sum of all areas of all regions is larger
than the area of the atria surface when there is label overlap. This
increment is explained with another measure which is the ectopic
persistence within the clustering process.

Figure 7 shows the 19 atrial patches for the models M1, M3,

and M5 ( an increasing level of fibrosis) color-coded with the

assigned label forK =6 andK = 8 (in three different atrial views).

Patches with the same color form a unique region that relates to a
group of BSPiM patterns. When a patch within a region shows
more than one color or label ( a region with different colored
dots), it means that two different BSPiM could be mapped to
the same patch due to the variability introduced by the fibrosis.

FIGURE 6 | Dendrogram of the hierarchical/agglomerative clustering algorithm for the model M1. Hierarchical levels are indicated by the horizontal dotted lines from 1

to 9 (green arrow), the y axis on the left shows the distance between levels, and on the right the clusters being formed after merging and splitting samples (number of

samples) at each level from K = 2 to K = 10. The x axis shows the color coded groups of ectopic labels separated by the thick vertical black line. The red ellipses

show the particular case of the BSPiM produced by the ectopic LA5, being grouped in two different clusters, 3 samples to cluster 3, and 2 samples in cluster 4.
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TABLE 5 | Clustering performance results for the models M0–M5.

Ki Measure M0 M1 M2 M3 M4 M5

K2

x̂ ± σ 66 ± 41 68 ± 39 78 ± 53 81 ± 49 68 ± 67 84 ± 44

OR – – 10.53 15.79 – 21.05

CR 100 100 100 100 100 100

CA 0.98 1.00 1.00 0.99 0.97 0.91

K4

x̂ ± σ 33 ± 14 34 ± 16 39 ± 22 40 ± 30 52 ± 28 61 ± 17

OR – – 10.53 15.79 42.11 52.63

CR 100 100 100 100 100 100

CA 0.94 0.85 0.93 0.84 0.90 0.90

K6

x̂ ± σ 22 ± 10 22 ± 13 27 ± 14 32 ± 20 42 ± 25 44 ± 25

OR – – 15.79 36.84 63.16 68.42

CR 100 89.4 100 94.7 94.7 94.7

CA 0.91 1.00 0.96 0.97 0.96 0.93

K8

x̂ ± σ 16 ± 9 17 ± 7 20 ± 13 27 ± 15 37 ± 20 43 ± 19

OR – – 15.79 47.37 68.42 73.68

CR 100 84.2 89.4 94.7 89.4 89.4

CA 0.92 1.00 0.98 0.96 0.93 0.88

K10

x̂ ± σ 13 ± 8 14 ± 8 17 ± 11 24 ± 15 32 ± 17 37 ± 17

OR – 5.26 21.05 52.63 78.95 78.95

CR 100 78.9 84.2 89.4 89.4 89.4

CA 0.85 1.00 0.98 0.96 0.89 0.88

x̂ ± σ : Mean Area ± Standard Deviation (cm2 ).

OR: Overlapped ratio (%).

CR: Connectivity ratio (%).

CA: Classification Accuracy - Results for 256 characteristics.

Therefore, patches colored as “red” and patches with “red dots”
were all considered as a single region. However, our goal was to
create regions that were as small as possible, in order to reduce
the search area of the ectopic focus.

3.2.3. Ectopic Focus Persistence Within a Clustering

Process
When models with fibrosis were included, they did not cluster
properly into non-overlapped groups since BSPiM were highly
altered by the conduction blocks. From stage 3 (i.e., 15% fibrosis)
onwards the BSPiMs showed large differences for ectopic beats
placed in the pulmonary veins, as can be seen in the example of
Figure 5B, where the LATs of ectopic LA10, from Stage 3 to Stage
5 of fibrosis, show clear blockades at the pulmonary veins and left
atrial appendage, and consequently completely different BSPiMs
with a lesser level of fibrosis.

From the dendrogram of Figure 6 we observed that for the
Model M1, when K = 10, due to the variability among these
BSPiMs, we found that 3 of the LA5 BSPiMs were grouped into
cluster 3 while the 2 remaining BSPiMs (with more fibrosis) were
in cluster 4. This result indicates that samples of the ectopic
LA5 have been spread into two clusters, so the corresponding
atrial patches will overlap on the atria surface exactly on LA5.
In Figure 7, ectopic foci locations with poor persistence values
show regions that have spots of more than one color, indicating
overlap. Figure S5 shows, as an example, the BSPiM together with
their labels for model M3 and K = 6. A given ectopic focus can

be classified into two different classes as a function of the fibrosis,
e.g., class green and red for LA1.

For the results of the persistence analysis, we calculated
the ratio of ectopics that appear in more than one cluster
with respect to the total number of ectopic foci in the atria,
(i.e., 57 ectopics for model M0, and 19 ectopics for models
M1 to M5); Table 5 displays this measure as Overlapped
Regions (OR).

The Model M0 (no fibrosis), showed, as expected, no overlap,
given that there was nomore than one label per ectopic focus (i.e.,
OR= 0). Results are summarized in Table 5. For the models with
fibrosis, there was an increase of overlap as we incremented the
level of fibrosis fromM1 to M5 (column wise) and an increase of
overlap as K increased from 2 to 5 (row wise), with the particular
case of M1 with no overlap except for K = 10 with LA5 being
spread in two clusters and OR= 5.26.

3.2.4. Geometrical Consistence of Clusters
The analysis of the cluster connectivity using graphs permitted
us to identify which clusters were not well formed, i.e., were not
connected. We always preferred connected regions without holes
or islands over the atria surface, otherwise when we associated
an ectopic focus to a cluster, the cluster was scattered in several
regions of the atria instead of having a connected and delimited
one.

We calculated the ratio of well-formed clusters or connected
clusters (i.e., well formed over all clusters) as the measure
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FIGURE 7 | Associated BSPiM clusters for models M1, M3, and M5, for K = 6 and K = 8 (color coded) to the 19 patches defined by the atrial ectopic foci simulated

with fibrosis (three different views). Regions including colored dots indicate that samples of a particular ectopic focus have spread into two or more clusters, and the

corresponding atrial patches overlapped on the atrial surface exactly at that ectopic focus. Model M1 shows no overlapping for K = 6 and K = 10, and models M3

and M5 show an intensification of overlapping as the fibrosis stage increased. The color legend indicates the class/cluster number assigned to each atria patch.

Connection Ratio (CR) from the validation process of the model
M0 without fibrosis, and the five model configurations (M1–M5)
with fibrosis, for K ranging from 2 to 10 clusters. Results are
summarized in the Table 5.

For the Model M0 (no fibrosis), from K = 2 to 10, the
Connection Ratio (CR) was 100%. The results for the model M1
(with fibrosis), for K = 2 and K = 4 show that the connection
ratio was 100% and maintained with all models and levels of
fibrosis (column wise). When we increased the number of groups
from K = 6 to K = 10 (row wise), but also with the increase

of fibrosis from M1 to M5 (column wise) there was a variable
decrease of the ratio CR, implying the loss of connection or
isolation of some ectopics from the groups. This effect depended
on the different configurations of the patchy fibrosis (seeTable 5).

As an example, the Figure 8 depicts at the top row, on
the left, the complete ectopic graph of the atria with the
nodes representing the 19 ectopic foci connected by edges;
the rest of the figure shows the 6 subgraphs of each class,
formed after clustering the model M1 for K = 6. The
subgraph in the middle row, on the right, shows the ectopic
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FIGURE 8 | Geometrical consistence of clusters. Top row, on the left, shows the complete graph of the atria where the nodes represent the ectopic foci connected by

edges. The rest of the figure shows all the subgraphs that represent the classes of the model M1 and K = 6. All of them are well formed connected subgraphs, except

for the one at the middle row, on the right, representing ectopic foci LA1 and LA6 of the class 2 and indicating no connected nodes.

foci LA1 and LA6 with no connection, (i.e., 2 isolated
nodes with respect to 19 total nodes, therefore a CR of
89.4%).

We observed that the isolated ectopics for the particular case
of model M1 were mainly the LA1 and LA5, both located at the
center of the posterior wall of the left atrium, lower and upper
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regions, respectively, and LA6 at the upper Right pulmonary vein.
More ectopics were located in the right atrium, RA7 and RA11,
right above the pectinate muscles. In the case of the model M2,
the isolated ectopics were the same as in model M1, except for
LA1; for the models M3 to M5, the isolated ectopics were LA7, at
the lower right pulmonary vein, and LA9 at the left appendage.

3.3. Classification of Atrial Ectopic Focus
After the analysis of the persistence and geometrical consistence
of the clustering process, we performed a classification of the
ectopic foci, according to the step 5 of our pipeline. The Figure 9
gives an example of the calculation of the accuracy for the model
M0, no-fibrosis, and the extreme case of the model M5 that
includes all the stages of fibrosis. The values obtained came
from the cross-validation process which averages the accuracy
obtained for each fold and summarizes the result. We used 4-
folds to split and stratify homogeneously the training set and the
test set. We have also included in the plot a dotted line (accuracy
= 0.90) that is the minimum level of accuracy that we considered
necessary to use the model in a clinical environment.

3.3.1. Classification of Non-fibrotic Cases
Table 5 shows the measured classification accuracy (CA) for 256
features for the model M0 (i.e., no-fibrosis) and for K = 2
to K = 10. The results show that for this case of no-fibrosis
we obtained an accuracy CA > 0.90 for K = 2 to K = 8,
and a minimum accuracy CA = 0.85 for K = 10. Figure 9A,
shows the complete accuracy obtained by the classification of
the model M0 for features or electrodes from 2 to 256. In the
cases K = 2 to K = 8 we recorded an accuracy of CA >

0.90 even with only 64 features or electrodes, and for K = 10
the accuracy was entirely below the dotted line of CA = 0.90.
Inset Figure 9A, shows a torso with an example of the optimal
electrode locations selected from the 256-electrode BSPiM to
perform the ectopic foci classification in groups. For example,
yellow spheres correspond to the best set of 2 electrodes, whereas
yellow together with green spheres correspond to the best set of
4 electrodes. Larger sets of optimal electrodes always contained
smaller sets. There were no intersecting classes, and all the ectopic
groups were associated to different regions.

3.3.2. Classification of Fibrotic Cases
We introduced incrementally in the training phase for
classification those fibrotic cases from model M1 to model
M5 (i.e., data from all FAT simulations, and all configurations
of fibrosis). Table 5, shows the measured CA for the models M1
to M5 for K = 2 to K = 10 and 256 features, where the values
of accuracy remained almost all above CA > 0.90 for all the
models with slight variations, except for model M3 and K = 4,
that showed a minimum of CA= 0.84.

Figure 9B shows the complete accuracy obtained for the
extreme case of M5 (i.e., Stage 5 of fibrosis). We see, in this case,
from K = 2 to K = 6 that we need a minimum of 16 features
to obtain an accuracy CA = 0.90, and a maximum of CA = 0.93
with 256 features for K = 6. From K = 8 to K = 10 the values of
accuracy are below the dotted line of 0.90, obtaining values of CA

= 0.8 for both, K = 8 and K = 10. Figure S6 includes accuracy
plots for all the models, M0–M5.

4. DISCUSSION

4.1. Coupling Atrial Myocytes and
Fibroblast
Several modeling studies have illustrated the impact of fibrosis
on atrial electrophysiology and conduction as well as on ECGs
and showed in a realistic atrial anatomy that increased anisotropy
in the atria due to fibrosis can be responsible for the breakup of
PV ectopic waves into multiple re-entrant circuits. Maleckar et al.
(2009) coupled a human atrial myocyte to a variable number of
fibroblasts and investigated the effect of altering the intercellular
coupling conductance, electrophysiological fibroblast properties,
and stimulation rate on the atrial AP. The results demonstrated
that the myocyte resting potential and AP waveform are
modulated strongly by the properties and number of coupled
fibroblasts, the degree of coupling, and the pacing frequency.
Jacquemet et al. developed a 2D model of atrial tissue including
microfibrosis incorporated as a set of thin collagenous septa
(sheets) of cardiac muscle to determine whether they, like thick
collagenous septa, could affect electrical impulse propagation
and disconnect transverse coupling (Jacquemet, 2012). The
density and length of these septa were varied and the analysis
of unipolar electrograms showed that the septa decreased
conduction velocity (CV) by up to 75%. Another important
aspect to be considered is the existence of collagen layers
in the fibrosis model. Atrial models incorporating transverse
collagen deposition have underlined the significant interruption
and disorder in atrial conduction patterns (Boyle et al., 2016).
Not only the total amount of collagen was important, but also
the specific spatial distribution of collagen deposition, which
governed the occurrences of conduction block. Another novel
arrhythmicmechanism being considered inmodels is percolation
(slow and difficult fluid flow through a porous medium). It
has been shown that simulation of conduction obstacles derived
from LGE-MR images of AF patient atria, give rise to excitation
patterns resembling near-threshold percolation (Vigmond et al.,
2016). In this context, the percolation threshold is the fraction of
lattice points that must be filled to create a continuous path of
nearest neighbors from one side to another.

In our study, we evaluated the degree to which coupling
fibroblasts to atrial myocytes altered the electrophysiology of
the normal myocytes. Our simulations confirmed that the
coupling of fibroblasts to myocytes significantly affects the
electrophysiological properties of the myocytes, as described by
MacCannell et al. (2007),Maleckar et al. (2009), andMorgan et al.
(2016).

The coupling of the CRN (Courtemanche et al., 1998) atrial
myocyte model to the active formulation of the MacCannell
fibroblast model (i.e., 4 membrane currents including, the
time and voltage dependent fibroblast current IKv, the inward
rectifying current IK1, the Na

+-K+ pump current INaK , and the
background Na+ current Ib,Na) (MacCannell et al., 2007), and
the cell-to-cell electrotonic interaction, caused: (i) a reduction
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FIGURE 9 | Classification of ectopic foci. (A) Accuracy of classification for the model M0, no fibrosis; (B) Accuracy of classification for the model M5, extreme case of

fibrosis (i.e., from Stage1 to Stage 5). In both cases, the graphs were performed for different number of ectopic clusters (from K = 2 to K = 10), and different number

N of features used (i.e., 2, 4, 8, 16, 32, 64, 128, and 256). Inset (A), example of optimal selected features (electrodes) for: 2 (yellow), 4 (+green), 8 (+red), 16 (+blue)

features.

of myocyte APD; (ii) a prolonged repolarization of the AP
compared to the uncoupled myocyte control model AP; and
importantly since fibroblasts have a higher resting membrane
potential (RMP), (iii) changes of the myocyte RMP, see
Figure 4B.

Furthermore, this shortening of the APD generates a spatial
heterogeneity within the atrial tissue due to variations in the
fibroblast density and the number of coupled fibroblasts to
myocytes, generating a variation of the APD that depends, to a
great extent, on the point where the measurement is taken in our
virtual human atrial mesh. Although there were variations in the
APDs90, dependent on the test location, density of fibrosis, and
the number of coupled fibroblast to that point, all the APDs were
shorter than the uncoupled myocyte control case, see Figure 4B.

4.2. Ectopic Foci Localization
Computational modeling of the human atria has changed during
the last 15 years, evolving from very simple structures to very

detailedmodels including atrial wall and fiber directions (Doessel
et al., 2012). Several models exist today that include structures
of intracellular compartments and atrial heterogeneity, and
furthermore they include pathological structures, modeling atrial
remodeling and fibrotic tissue.

MacLeod et al. (2008) emphasized the importance of including
information about structural changes of the atrial myocardium
into geometrical models. Previous results from Kistler et al.
(2006) suggest that FATs have a particular electrical pattern on
the torso (Morton et al., 2001; Kistler et al., 2003a,b, 2005),
and that those patterns have a singular P wave morphology in
specific locations providing a potential way to predict the origin
of FATs. They developed a decision tree algorithm based on the
P-wave morphology in specific surface ECG leads to provide
some help in the search for ectopic foci sources to allow for
the identification of the origin of the tachycardia. Therefore,
using only the P wave morphology, they prospectively evaluated
the algorithm with a number of patients, finding a predictive
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accuracy of 93% for a few focal trigger locations that could be
distinguishable.

Other biomarkers such as P-wave integral maps
(SippensGroenewegen et al., 1998) have been recommended
to summarize different atrial activation sequences and relate
them to ectopic foci. In the ventricles, other complex techniques
such as electrocardiographic imaging (ECGi), have been
widely studied in the last few decades to directly compute
the cardiac action potentials by solving an ill-posed inverse
problem (Ramanathan et al., 2003; Van Oosterom, 2012).
However, many of those approaches use a priori information
to improve their results, such as constraints in spatial and
temporal domains, physiological knowledge about the
activation sequence or localization of activation onset. In
addition, those methods need a segmentation of the atria
and torso models from an image sequence stack, and the
construction of a finite element model to simulate cardiac
electrophysiology. All those requirements, which are very
time consuming, hamper the use of those tools in clinical
environments.

In our previous work Ferrer-Albero et al. (2017), we
used machine learning techniques to spatially cluster and
classify ectopic atrial foci into clearly differentiated atrial
regions by using the body surface P-wave integral map
(BSPiM) as a biomarker. Ectopic foci with similar BSPiM
naturally clustered into differentiated, non-intersected atrial
regions and new patterns could be correctly classified with
an accuracy of 97% when considering 2 clusters and 96%
for 4 clusters (Ferrer-Albero et al., 2017). However, we only
considered non-fibrotic cases, which are not very common cases
clinically.

To learn this association, (i.e., ectopic location-BSPiM),
regression techniques could appear to be a reasonable approach.
However, as the total number of ectopic locations is reduced (i.e.,
57= 19 with fibrosis+ 38 without fibrosis), there are not enough
ectopic locations to apply regression techniques.

In this multi-scale biophysical 3D model simulation study,
we used machine learning techniques to focus also on the
localization of the arrhythmogenic electrical drivers (i.e., ectopic
foci), that contribute to the generation of focal atrial tachycardia
(FAT) with regional LA patchy fibrosis as a variable of structural
remodeling according to the Utah classification scale (Oakes
et al., 2009). This study introduces a new methodology which
improves previous results and obtains an accuracy above 90%
for classifying ectopics into 6 different atrial regions (i.e., from
K = 2 to K = 6). In addition, we reduced the dimensionality
of the BSPiM patterns and included noise to obtain data similar
to that acquired in a clinical environment. It is important to
remark that our simulated P-waves do not include QRS complex
and are not affected by baseline wandering. In a real scenario, it
will be fundamental to use filters such as bidirectional high-pass
Butterworth filter to correct baseline wandering, or Template
Matching Subtraction to eliminate the QRS complex. Feature
selection analysis was used to find the minimum number of
electrodes required to predict, with high accuracy, the location
of ectopic foci during FAT. For cases without fibrosis, we could
obtain predictions (dividing the atria in K = 4 regions) with an

accuracy of 0.90 with only 16 features or electrodes placed on
the torso front. When detection considered more and smaller
regions (from K = 6 to K = 10), the accuracy was reduced to
a minimum accuracy of 0.81 for K = 10, and a maximum of 256
electrodes.

As soon as LA patchy fibrosis comes into play, (i.e., Stage 1
to Stage 5), together with an increase in the number of regions
analyzed, (i.e., K = 2 to K = 10), the measure of overlapped
regions ratio increases, confirming that overlapping (see Figure
S6), and the ratio of well formed clusters, or convexity, decreases,
demonstrating the presence of ectopics disconnected or isolated
from their group. However, the classification accuracy, remained
above the value of 0.90 for numbers electrodes ranging from 128
to 256, even for the most extreme case, which is the model M5.
The high accuracy was obtained because we allowed the clusters
of patches to be disconnected. Therefore, if the model predicts
that a given BSPiM relates to class n, the patches that form the
class could belong to more than one single atrial region. From a
clinical point of view, the location of the atrial trigger will not
be so efficient since the area of search increases, but still the
method improves current clinical practice. A positive point is
that in cases in which a given atrial patch has more than one
label, the main patches associated with the label are in general
neighbors. That means that patches in the borders of two regions
sometimes are classified as label “a” and sometimes a neighboring
region “b.”

4.3. Study Limitations
There are several limitations of the proposed methodology that
need to be acknowledged. The most important is that although
the activation patterns were validated against a clinical database,
they have been simulated and do not correspond to real patients.
In addition, patient atrial shape variability could introduce slight
differences in the P wave morphology that in turn will affect the
BSPiM patterns in some cases. Finally, the localization of ectopic
focus is based on regions, and therefore the electrophysiologist
still has to determine where exactly the focal point is within the
predicted region.

5. CONCLUSIONS

The methodology presented here could be useful to help an
electrophysiologist to reduce the search area of an ectopic
focus non-invasively and plan the intervention a priori. The
pipeline presented can produce results in real time, since all
the simulations and the training phase are performed offline
and a priori. The effect of fibrosis on the atrial activation
and BSPiM is large when stage 3 (>15% fibrosis) is used. The
machine learning system obtains high accuracy at the expense
of increasing the size of the region where the ectopic focus
is located. The most complex locations determined in our
simulation study were in certain pulmonary veins when the
stages of fibrosis were 3, 4, or 5. However, patients that show
a stage of fibrosis higher than 3 are not recommended for
treatment.
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