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ABSTRACT 17 

The rapid and easy discrimination of almond varieties with similar morphology, 18 

different quality properties and in most cases different prices is interesting to protect 19 

both almond industry and consumers from fraud. Therefore, in this work, intact almond 20 

kernels coming from four Spanish varieties (‘Guara’, ‘Rumbeta’, ‘Marcona’ and 21 

‘Planeta’) were analysed using both near infrared (NIR) and attenuated total reflectance 22 

Fourier-transform infrared (ATR-FTIR) spectroscopy. After spectra measurement, an 23 

attempt to classify almonds according to their variety was tried using two classification 24 

methods (partial least square-discriminant analysis (PLS-DA) and quadratic 25 
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discriminant analysis (QDA)) applied to both NIR and ATR-FTIR pre-treated spectral 26 

data. An overall accuracy of 94.45% was obtained with both PLS-DA of ATR-FTIR 27 

and QDA of NIR data. These results confirm that both spectroscopic techniques, if the 28 

optimal statistical model is selected, are powerful tools to reliable discriminate almonds 29 

according to their varieties.  30 

 31 
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1. Introduction 40 

 41 

Almond (Prunus dulcis (Mill.) D.A.Webb) is one of the main nut tree crops in 42 

terms of commercial production around the world (FAOSTAT, 2012). Spain is the 43 

second largest almond world producer after the US (López-Ortiz, Prats-Moya, 44 

Sanahuja, Maestre-Pérez, Grané-Teruel, & Martín-Carratalá, 2008), being almond trees 45 

very extended due to Spanish mild weather conditions that favour its cultivation 46 

(Vázquez-Araújo, Enguix, Verdú, García-García, & Carbonell-Barrachina, 2008). In 47 

addition, Spain is also an important consumer country, in which almonds are consumed 48 

raw, roasted, fried or as an important ingredient in different foodstuffs like ice creams or 49 

sweets as “turrón”, among others. Almond quality covers different features, such as 50 

kernel and shell physical aspect and kernel organoleptic characteristics and composition 51 

(with its different protein, lipid and sugar contents, among others). All these 52 

characteristics are influenced by almond variety, which could define the industrial use 53 

of each one of them (Cordeiro, Oliveira, Ventura, & Monteiro, 2001). There are several 54 

almond varieties grown in Spain. Among them, the Marcona variety is the principal one 55 

(Varela, Chen, Fiszman, & Povey, 2006), which is mainly consumed as roasted or fried 56 

snack or as the main ingredient of the Protected Designations of Origin of the 57 

“turrones” Jijona and Alicante. However, Marcona variety is very expensive due to their 58 

excellent organoleptic properties and low production rate (Vázquez-Araújo et al., 2008). 59 

Another variety to be highlighted is Guara, which has experimented and important 60 

commercial triumph due to its late-flowering, self-compatibility and high quality 61 

(Kodad, Estopañán, Juan, Alonso, & Espiau, 2014). Other important Spanish varieties 62 

due to their large production volume are ‘Largueta’, ‘Planeta’, ‘Rumbeta’ or 63 

‘Desmayo’, among others. Therefore, it is important to find analytical methodologies 64 
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able to discriminate almond varieties with similar morphology or with lower prices in 65 

order to protect both almond industry and consumers from fraud.  66 

 There are some studies published in literature that cover almond variety 67 

discrimination (Gil Solsona, Boix, Ibáñez, Sancho, 2017; Piscopo, Romeo, Petrovicova, 68 

& Poiana, 2010; Prats-Moya, Grané-Teruel, Berenguer-Navarro, & Martín-Carratalá, 69 

1997; García-López, Grané-Teruel, Berenguer-Navarro, García-García, & Martín-70 

Carratalá, 1996), or in which almond components or physical characteristics from 71 

different varieties have been established and compared (Oliveira, Meyer, Afonso, 72 

Ribeiro, & Gonçalves, 2018; Zamany, Samadi, Kim, Keum, & Saini, 2017; Yada, 73 

Lapsley, & Huang, 2011; Valdés, Vidal, Beltrán, Canals, & Garrigós, 2015, Kodad et 74 

al., 2014; Özcan, Ünver, Erkan, & Arslan, 2011; López-Ortiz et al., 2008; Cherif, Sebei, 75 

Boukhchina, Kallel, Belkacemi, & Arul, 2004; Cordeiro et al., 2001); however, the 76 

analytical techniques employed are in most cases expensive, destructive and time-77 

consuming, and sample pre-treatment is normally required. Therefore, there is a need of 78 

non-destructive and fast alternative methodologies able to cover this issue. In this 79 

regard, the employment of spectroscopic techniques, such as infrared (IR) spectroscopy, 80 

could be an excellent alternative. The potential of this technique in both, near and 81 

medium IR regions, has been demonstrated in several previous works in the almond 82 

field. For example, Fourier-transform infrared spectroscopy (FTIR) has been applied to 83 

quality control of medicinal almonds (Chun-Song et al., 2017), while near infrared 84 

spectroscopy (NIR) has been used to detect hidden damage in raw almonds (Rogel-85 

Castillo, Boulton, Opastpongkarn, Huang, & Mitchell, 2016), to inspect internal 86 

damages in almonds (Nakariyakul, 2014), to discriminate sweet and bitter almonds 87 

(Borrás, Amigo, van den Berg, Boqué, Busto, 2014; Cortés, Talens, Barat, & Lerma-88 

García, 2018), and to detect fungal infection in almond kernels (Liang, Slaughter, 89 
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Ortega-Beltran, & Michailides, 2015), among others. We have only found three articles 90 

regarding almond discrimination according to their variety using IR data. Two of these 91 

articles were from a research group of the University of Alicante (Beltrán Sanahuja, 92 

Prats Moya, Maestre Pérez, Grané Teruel, Martín Carratalá, 2009; Beltrán, Ramos, 93 

Grané, Martín, & Garrigós, 2011), in which almond varieties were discriminated after 94 

almond oil extraction according to its thermal stability after application of a forced 95 

oxidative treatment. For this purpose, oil degradation was studied by registering the 96 

changes produced in the most abundant fatty acids (established by gas chromatography 97 

(GC)) (Beltrán Sanahuja et al., 2009) or volatile compounds (established by headspace 98 

solid-phase microextraction/GC–mass spectrometry (HS-SPME/GC–MS) (Beltrán et 99 

al., 2011) and to changes produced in the FTIR spectra (Beltrán Sanahuja et al., 2009; 100 

Beltrán et al., 2011). Using stepwise linear discriminant analysis (LDA), authors were 101 

able to classify almond varieties using fatty acid contents and FTIR data in the first 102 

work (Beltrán Sanahuja et al., 2009), and using HS-SPME/GC–MS data in the second 103 

one (Beltrán et al., 2011).In the third article, Valdés et al. (Valdés, Beltrán, & Garrigós, 104 

2013) employed FTIR and two thermal analysis techniques (differential scanning 105 

calorimetry and thermogravimetric analysis) to classify almonds according to their 106 

cultivar, after almond grounding and sieving. Next, LDA models were constructed 107 

using FTIR and thermal data all together and separately. With these models, good 108 

almond classifications according to their variety were obtained. However, an as far as 109 

were are concern, any article has been published regarding the employment and 110 

comparison of both NIR and FTIR data to classify almonds according to their variety by 111 

directly measuring spectra on intact almonds surface. 112 

 Therefore, the aim of this work was to explore the viability of both NIR and 113 

FTIR data to reliable classify Spanish almonds according to their variety. For this 114 
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purpose, almonds belonging to four of the main varieties cultivated in Spain (‘Guara’, 115 

‘Rumbeta’, ‘Marcona’ and ‘Planeta’) were directly measured on both spectrometers. 116 

Using both, NIR and FTIR data, two different classification methods (partial least 117 

square discriminant analysis (PLS-DA) and quadratic discriminant analysis (QDA)) 118 

were constructed and their overall accuracies compared.  119 

 120 

2. Materials and methods 121 

 122 

2.1. Raw material 123 

 124 

A total of 120 almonds, coming from four different Spanish varieties (‘Guara’ 125 

(G), ‘Rumbeta’ (R), ‘’Marcona (M) and ‘Planeta’ (P)), were analysed in this study. All 126 

samples, gently provided by Agricoop (Alicante, Spain), were free of visual damage and 127 

of uniform colour and size.  128 

 129 

2.2. Spectra acquisition  130 

 131 

2.2.1. NIR 132 

 133 

An AvaSpec-NIR256-1.7 NIRLine spectrometer (AVS-DESKTOP-USB2, 134 

Avantes BV, The Netherlands) was used for collecting NIR spectra of intact almond 135 

kernel (with skin) over the range of 1000–1700 nm at an interval of 3.535 nm. The 136 

instrument is equipped with a 10-W tungsten halogen light source (AvaLight-HAL-S, 137 

Avantes BV, The Netherlands). Almond spectra were acquired in diffuse reflectance 138 

mode using a bi-directional fibre-optic probe (FCR-7IR200-2-45-ME, Avantes BV, The 139 
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Netherlands) designed under an angle of 45º to prevent direct back-reflection from 140 

almond surface. The probe, composed by two legs, is connected to the light source and 141 

to the spectrometer. The integration time (500 ms) was adjusted using a 99% reflective 142 

white reference (WS-2, Avantes BV, The Netherlands), so that the maximum 143 

reflectance value was over 90% of saturation (Lorente, Escandell-Montero, Cubero, 144 

Gómez-Sanchis, & Blasco, 2015). The dark spectrum was obtained by turning off the 145 

light source and covering the tip of the reflectance probe. 146 

A personal computer equipped with the commercial software AvaSoft version 147 

7.2 (Avantes, Inc.) was used to acquire the spectra. For each sample, five replicates 148 

were collected on both almond sides and mean spectra values were used for the 149 

analysis. All measurements have been performed at room temperature (22±1 °C).  150 

 151 

2.2.2. ATR-FTIR 152 

 153 

ATR-FTIR spectra were obtained using a Tensor 27 spectrometer (Bruker Optics, 154 

Milan, Italy) coupled to a deuterated triglycine sulphate (DTGS) detector and to an ATR 155 

accessory (Specac Inc., Woodstock, Georgia, USA) composed of a zinc selenide (ZnSe) 156 

crystal. Absorbance spectra were obtained in the wavenumber range from 4000 to 600 157 

cm
-1

 acquiring 32 scans per sample at a resolution of 4 cm
-1

. After every scan, a new 158 

reference air background spectrum was taken. Each intact almond kernel was put on the 159 

ZnSe crystal for measurements, and the crystal was carefully cleaned by scrubbing with 160 

acetone and dried with a soft tissue before measuring the next sample. The system was 161 

operated using the OPUS software version 5.0 provided by Bruker Optics. Two 162 

measurements were acquired for each almond (one measurement on each almond face), 163 

being spectra mean employed for statistical analysis. 164 



8 
 

 165 

2.3. Data pre-processing and multivariate analysis 166 

 167 

  To execute the pre-treatments and multivariate procedures, ‘The Unscrambler X’ 168 

software version 10.3 (Camo Process SA, Trondheim, Norway) was used.  169 

  Before multivariate analysis, the dispersion of almond NIR spectra was 170 

corrected by simultaneously applying Savitzky-Golay (S-G) smoothing (3 points gap), 171 

extended multiplicative scatter correction (EMSC) and second derivative (with a 2.3 172 

gap-segment). In the case of ATR-FTIR, standard normal variate (SNV) and S-G 173 

second derivate (with a second order polynomial) spectral pre-treatments were applied.  174 

  After spectra pre-treatments, principal component analysis (PCA) models were 175 

constructed to obtain qualitative information about the possible varietal discrimination 176 

and to identify possible outliers.  177 

In order to construct the chemometric models for both, NIR and ATR-FTIR 178 

data, the full sample set (N= 120) was divided into training (70% of almonds) and test 179 

sets (remaining 30% of almonds). Once the models were constructed, and before 180 

external validation with the test set, model were internally validated using full cross-181 

validation (CV; leave-one-out method) (Huang, Yu, Xu, & Ying, 2008). 182 

  Two classification models (PLS-DA and QDA) to differentiate almond varieties 183 

were constructed with both NIR and ATR-FTIR data. The PLS-DA models were 184 

constructed using the PLS algorithms (Wold, Sjöström, & Eriksson, 2011), where the 185 

variables in the X-matrix (which corresponded to the spectral data) were related to the 186 

classes included in the Y-matrix. This matrix contained dummy variables that describe 187 

the belonging of each training set sample to a given category. The Y- or dummy-matrix 188 

is composed by 4 columns (one column for each variety) with ones and zeros, such that 189 
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the entry in the first column is unity and the entry of the rest of the columns is zero for 190 

the samples of the first variety, and so on until completing the 4 columns. Almond 191 

classification according to their variety was performed using the 0.5 cutoff value 192 

(Cortés, Ortiz, Aleixos, Blasco, Cubero, & Talens, 2016). Predicted values higher than 193 

0.5 indicated that the sample belongs to a given class, while values lower than 0.5 194 

indicated that the samples does not belong to this category.  195 

  PLS-DA models accuracy was evaluated by the number of latent variables 196 

(LVs), the coefficient of determination of calibration (R
2

C), the root mean square error 197 

of calibration (RMSEC), the coefficient of determination for cross-validation (R
2

CV) and 198 

the root-mean square error of cross-validation (RMSECV).  199 

  For QDA models, a categorical value (Y-variable) was assigned with a different 200 

letter (G, M, P and R) for each variety. To construct QDA models, a number of 201 

variables lower than the number of objects is required (Sádecká, Jakubíková, Májek, & 202 

Kleinová, 2016). Then, a variable reduction is needed before model construction. This 203 

variable reduction is performed using PCA scores, since principal components (PCs) are 204 

found as linear transformations that are uncorrelated (Rodriguez-Campos, Escalona-205 

Buendía, Orozco-Avila, Lugo-Cervantes, & Jaramillo-Flores, 2011). 206 

 Finally, PLS-DA and QDA models performance was evaluated by considering the 207 

percentage of correctly classified test samples.  208 

 209 

3. Results and discussion 210 

 211 

3.1. Characteristics of NIR and ATR-FTIR almond spectra 212 

 213 
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 Fig. 1 represents the typical raw and pre-processed (a) NIR and (b) ATR-FTIR 214 

almonds spectra. The main absorbance bands in the NIR spectra (Fig. 1a) were 215 

evidenced at 1120, 1200 and 1440 nm. These bands are representative of the chemical 216 

or functional groups of components present in the almonds. The 1120 and 1200 nm 217 

bands denote absorptions that may occur due to the second overtone vibration of C-H 218 

stretching, while the band at 1440 nm may belong to the first overtone of O-H 219 

stretching of water (Workman Jr, & Weyer, 2008).  220 

 Fig. 1b represents the almond ATR-FTIR spectra showing the major peaks at 221 

2940, 2460, 2350, 2220, 1860, 1750, 1390, 1220 and 1040 cm
-1

. Absorbance at 2940 222 

cm
-1

 is due to the asymmetric bands arising from CH2 stretching vibrations (Sinelli, 223 

Cosio, Gigliotti, & Casiraghi, 2007), whereas the peaks at 2460, 2350 and 2220 cm
-1

 224 

could be assigned to alkane stretching (Kök, Varfolomeev, & Nurgaliev, 2017). The 225 

two absorption peaks at 1860 and 1750 cm
-1

 are the characteristic peaks of the C=O 226 

stretching vibrations (Beltrán Sanahuja et al., 2009; Vlachos, Skopelitis, Psaroudaki, 227 

Konstantinidou, Chatzilazarou, & Tegou, 2006; Zhang, Guo, & Zhang, 2002). The peak 228 

at 1390 cm
-1

 may be due to CH bending (Hernández, & Zacconi, 2009), while the peak 229 

at 1220 cm
-1

 could be associated with the C-O stretching vibration (Paradkar, 230 

Sakhamuri, & Irudayaraj, 2002). Finally, the peak at 1040 cm
-1

 may be due to 231 

combination of vibrations of C(1)H bending (that is C-H bond at C1 position) of 232 

carbohydrates (Paradkar et al., 2002).  233 

 234 

3.2. PCA analysis  235 

 236 

 Both NIR and ATR-FTIR spectra were pre-processed before PCA model 237 

construction. A preliminary data exploration with PCA was carried out with the training 238 
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set samples. As observed in the PCA score plots (Fig. 2a,b), an evident separation of 239 

almonds according to the different varieties is observed with both NIR and ATR-FTIR 240 

data. The two first PCs summarized 76% and 97% accumulative contribution of the 241 

original data for NIR and ATR-FTIR data, respectively, which means that nearly all the 242 

variation of the variables were explained by these PCs. Next, the X-loading plots (Fig. 243 

2c,d) were analysed to evidence which variables showed the greatest separation among 244 

almond varieties. As observed in PC1 and PC2 X-loading plots for the NIR data (Fig. 245 

2c), the most prominent peaks were observed at 1150 nm (second overtone vibration of 246 

C-H stretching) (Workman Jr et al., 2008), 1490 and 1520 nm (O–H bond stretching 247 

and first water overtone) (Blanco, Coello, Iturriaga, Maspoch, & Pages, 2000), 1570 nm 248 

(N–H first overtone) (Kaddour, Mondet, & Cuq, 2008) and 1610 nm (related to 249 

carbohydrate content) (Teena, Manickavasagan, Ravikanth, & Jayas, 2014), while for 250 

the ATR-FTIR data the most relevant peaks were those located at 2350 (alkane 251 

stretching) and 1750 cm
-1

 (C=O stretching vibrations) (Kök et al., 2017; Zhang et al., 252 

2002). 253 

 254 

3.3. Classification of almonds according to their variety  255 

 256 

Two different classification techniques (PLS-DA and QDA) were applied to 257 

both NIR and ATR-FTIR pre-processed spectra in order to discriminate almonds 258 

according to their variety. 259 

The PLS-DA models were constructed using 7 and 14 LVs for NIR and ATR-260 

FTIR spectra, respectively. The accuracy of the PLS-DA models obtained using both 261 

NIR and ATR-FTIR pre-treated data with the training set samples is included in Table 262 

1. As it can be observed in this table, both spectroscopic techniques provided similar 263 
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and good results, with R
2

CV and RMSECV values comprised between 0.85-0.92 and 264 

0.12-0.18, respectively. When these models were validated with the test set samples, 265 

satisfactory classification rates were obtained (see Table 2). The best PLS-DA model 266 

which produce the highest overall rate of correct classification was obtained using ATR-267 

FTIR data, with a 94.45% of correctly classified almonds, being this value lower 268 

(86.13% of overall accuracy) for the model constructed with NIR data. The same results 269 

are confirmed in Fig. 3.  270 

Next, QDA models using both spectroscopic techniques data were constructed 271 

using the first 9 PCs. An overall rate of 100% and 96% of correct classified samples of 272 

the training set samples were obtained using NIR and ATR-FTIR data, respectively. 273 

The results obtained for the test set samples are shown in Table 2. As it can be observed 274 

in this table for NIR data, the almonds coming from ‘Guara’ and ‘Rumbeta’ 275 

varietieswere both 100% correctly classified, while the samples of ‘Marcona’ and 276 

‘Planeta’ varitieswere both 88.9% correctly classified. In the case of ATR-FTIR data, 277 

the overall accuracy classification is lower (77.8%) than those obtained using NIR 278 

(94.45%). Concretely, the samples of ‘Planeta’ and ‘Rumbeta’ varieties were both 279 

88.9% correctly classified, while samples of ‘Marcona’ and ‘Guara’ varieties provided a 280 

77.8% and 55.6% correctly classified samples, respectively. The QDA plots obtained 281 

with both NIR and ATR-FTIR data are shown in Fig. 4. The same results of Table 2 are 282 

also evidenced in this figure, where there is a good classification of samples into their 283 

corresponding category for the QDA model constructed with NIR data (Fig. 4a). On the 284 

other hand, the QDA model constructed with the ATR-FTIR data (Fig. 4b) evidenced 285 

several misclassified samples.  286 

Finally, when PLS-DA and QDA models obtained using NIR and ATR-FTIR 287 

data were compared, it is possible to conclude that the best results in terms of overall 288 
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performance were obtained using PLS-DA of ATR-FTIR and with QDA of NIR data. 289 

Therefore, these results confirm that both spectroscopic techniques, if the optimal 290 

statistical model is selected, are useful for almond varietal discrimination. 291 

 292 

4. Conclusions 293 

 294 

 The results obtained by the two classification methods (PLS-DA and QDA) 295 

applied to both NIR and ATR-FTIR pre-processed data demonstrated that, when the 296 

optimal classification method was applied, it is possible to correctly discriminate 297 

Spanish almonds according to their variety. Concretely, the best overall accuracies 298 

(94.45%) were obtained with the PLS-DA model of ATR-FTIR and the QDA model of 299 

NIR data. Therefore, both spectroscopic techniques could be successfully applied for 300 

the rapid and non-destructive varietal classification of intact almonds. The developed 301 

methodology could be very useful to protect both almond industry and consumers from 302 

fraud, since the almond varieties studied are from similar appearance and cover 303 

different price ranges in the market. 304 
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Figure captions 449 

 450 

Fig. 1. Representative raw and pre-treated (a) NIR and (b) ATR-FTIR spectra of intact 451 

almonds. 452 

 453 

Fig. 2. PCA score and X-loading plots of the two first PCs using (a,c) NIR and (b,d) 454 

ATR-FTIR pre-treated spectral data, respectively. 455 

 456 

Fig. 3. Predicted values for the test set almonds of the PLS-DA models constructed with 457 

(a) NIR and (b) ATR-FTIR data. 458 

 459 

Fig. 4. QDA plots constructed with (a) NIR and (b) ATR FT-IR data for the 460 

discrimination of the test set almonds according to their variety. 461 



Highlights 

- Varietal classification of intact Spanish almonds using NIR and ATR-FTIR. 

- QDA and PLS-DA were applied to both NIR and ATR-FTIR pre-treated spectral 

data. 

- A performance of 94.45% was obtained with both PLS-DA of ATR-FTIR and 

QDA of NIR. 

 

*Highlights (for review)
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Table 1 

Results of the accuracy of the PLS-DA models constructed to classify almonds 

according to their variety using training set samples.  

 

 Categories 
Calibration Cross-validation 

R
2

C RMSEC R
2

CV RMSECV 

NIR 

Guara 0.93 0.10 0.91 0.12 

Marcona 0.94 0.11 0.91 0.13 

Planeta 0.93 0.11 0.90 0.14 

Rumbeta 0.91 0.14 0.85 0.18 

ATR-FTIR 

Guara 0.94 010 0.87 0.15 

Marcona 0.93 0.11 0.86 0.16 

Planeta 0.97 0.08 0.92 0.13 

Rumbeta 0.96 0.09 0.91 0.13 

 

R
2

C = coefficient of determination for calibration; RMSEC = root mean square error of 

calibration; R
2

CV = coefficient of determination for cross-validation; RMSECV = root 

mean square error of cross-validation. 

Table 1



Table 2 

PLS-DA and QDA classification results of test set almond samples using NIR and 

ATR-FTIR data. 

   Correct classification 

  Categories Guara Marcona Planeta Rumbeta Total (%) 

P
L

S
-D

A
 

N
IR

 

Guara 6/9 (66.7%) 3 0 0 

86.13 
Marcona 0 9/9 (100%) 0 0 

Planeta 0 0 9/9 (100%) 0 

Rumbeta 0 0 2 7/9 (77.8%) 

      

A
T

R
-F

T
IR

 

 

 Categories Guara Marcona Planeta Rumbeta Total (%) 

Guara 8/9 (88.9%) 0 1 0 

94.45 
Marcona 0 9/9 (100%) 0 0 

Planeta 0 1 8/9 (88.9%) 0 

Rumbeta 0 0 0 9/9 (100%) 

            

  Categories Guara Marcona Planeta Rumbeta Total (%) 

Q
D

A
 

N
IR

 

Guara 9/9 (100%) 0 0 0 

94.45 
Marcona 1 8/9 (88.9%) 0 0 

Planeta 0 0 8/9 (88.9%) 1 

Rumbeta 0 0 0 9/9 (100%) 

      

A
T

R
-F

T
IR

 

 

 Categories Guara Marcona Planeta Rumbeta Total (%) 

Guara 5/9 (55.6%) 2 2 0 

77.80 
Marcona 1 7/9 (77.8%) 1 0 

Planeta 1 0 8/9 (88.9%) 0 

Rumbeta 0 0 1 8/9 (88.9%) 

            

 

Table 2


