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A B S T R A C T

In this work, the application of a laser backscattering image technique as a non-destructive quality control
technique for fluid food matrices was studied. The used food matrices were vegetable-based creams, which were
modified according to the combination of four production factors (raw material, biopolymer type, biopolymer
concentration and homogenisation system) in order to obtain a wide space of variance in terms of physico-
chemical properties (52 different creams). All the creams were characterised based on that imaging technique
using pre-designed descriptors extracted from the captures of the generated laser patterns. The capacity to
characterise creams presented by the imaging and physico-chemical data (rheology and syneresis) was com-
pared, and the effect of each production factor on their captured variance was evaluated. Both characterisations
were similar. This parallelism was proved by modelling the relationship between them by carrying out regression
studies. The regression coefficients were successful for most physico-chemical variables. However, the prediction
of creams’ properties was maximised when done over the linear combination of them all. Thus the imaging
descriptors collected enough variance from the cream categories to place them according to their physico-
chemical properties into the generated space of physico-chemical variance. The results allowed us to conclude
that this technique can be applied for the non-destructive quality control of fluid-food matrices for production
processes with a wide spectrum of product categories.

1. Introduction

The continuous improvement of processing control in the food in-
dustry is based on motivation, which affects both the most traditional
and the newest quality and safety processes. The main improvement
areas focus on reducing operation times, energy costs and waste. These
improvements in control and inspection on production lines can be
generally made by substituting outdated equipment and technologies,
modifying equipment materials, etc. Indeed modifying and adapting
new techniques to the analysis and control procedures in production
processes can lead to major short-term improvements without them
implying high economic and time costs (Abdul Halim Lim, Antony,
Garza-Reyes and Arshed, 2015; Lim and Antony, 2016). One of the most
important tendencies of this approach is to implement techniques that
quickly collect vast amounts of data from process chain operations. The
collected data can be used as a basis to generate a database of the entire
production plant features for information about all processes, opera-
tions and products to be represented on a plausible map. From this map,

knowledge about the entire activity can increase given the possibility of
using automatic learning applications to then improve decision making
about any modifications required at any time.

The tendency for developing devices and techniques for this purpose
is being operating non-destructively. This implies using some physico-
chemical principle to collect data without coming into contact with, or
modifying, samples. In the food industry, this research area represents
not only optimising resources for processing, but also major advances in
quality/safety control terms that range from raw material reception to
end product storage given the reduction of plausible contamination
points (Arendse et al., 2018).

Some of the techniques are based on spectroscopic determinations
(Barbin et al., 2015), ultrasounds (de Prados et al., 2015), electronic
tongues (Fuentes et al., 2017), image analyses (Verdú et al., 2017), and
some combinations of them all. The physico-chemical nature of the food
matrix, as well as the specific transformations that take place during a
given operation, restrict the suitability of each technique to measure a
given analyte and then condition the requirements of applications. In
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collect it. The last phase was to analyse both data blocks jointly to study
the correlation between them (Figs. 1–4). In this phase, the regression
coefficients were evaluated to obtain models to predict the physico-
chemical features of all the cream categories in the generated variance
space using the image features information.

2.2. Raw materials

All the cream categories were produced based on four main for-
mulae. These formulae were produced according to a common base of
ingredients, where the specific ingredient of each formula varied be-
tween two different vegetables or two different animal tissues. The
common ingredient base contained 63% water, 10% carrot, 7% potato,
4% tomato, 3.5% red pepper, 2.5% onion, 1.5% extra olive oil and 0.7%
salt (w.b). The remaining 10% was completed with the specific in-
gredients of each main formula: zucchini, spinach, fish (hake) or
chicken (breast) (Fig. 1). All the ingredients were acquired as fresh
products in local distributors.

2.3. Creams processing

The amount of processed cream was 1 kg/category in triplicate. All
the cream categories were prepared according to the following phases:

1. Preparing raw material: operations to peel, wash and remove un-
desired parts manually (bones, thorns, skin, crusts, etc.)

2. Reducing particle size: products were cut with a cooking robot
(Thermomix®, Worwerk) into a small particle size (≤10mm) to
increase the surface.

3. Mixing and cooking: the cut products were mixed with water and
boiled for 1 h.

4. Blending: After boiling time, the mix of products was blended for
5min at 300 rpm in a cooking robot (Thermomix®, Worwerk).

5. Homogenisation: this phase was applied only to the modified
creams. Biopolymers were added and homogenised with one of
these three different systems (Fig. 1) for 3min at 500 rpm:
- Cooking robot (Thermomix®, Worwerk)
- Industrial mixer (Neptune Gear Drive Mixer JG-2.0)
- Homogenizer (IKA® Ultra-Turrax® T25 Digital Homogenizer)

6. Packing: creams were packaged at 65 °C in 250-mL glass jars with a
twist-off closing system.

7. Sterilization: the packaged creams were heat-treated in an autoclave
(Rodwell Ensign) at 121 °C/15min/2.2 Bar.

2.4. Physico-chemical characterisation of creams

2.4.1. Rheological analysis
The rheological characterisation of creams was carried out by ana-

lysing flux behaviour in a rotational rheometer (Haake Rheostress 1,
Thermo Electric Corporation, Karlsruhe, Germany) with a type Z34DIN
Ti sensor system of coaxial cylinders. Shear stress (σ) was measured
according to the shear rate (γ) from 0 to 200 s−1 and from 200 to 0 s−1.
Maximum shear stress was maintained for 2min between both sweeps
to determine tixotropy by calculating the hysteresis area (H). The ob-
tained curves were modelled using Oswald's power law, from which the
consistence index (K) and flux behaviour index (n) were deduced
(Equation (1)). The apparent viscosity values were calculated at 100
s−1 for both curves.

= Kσ γn (1)

Finally, seven rheological features were used for each cream: the
consistence index (K), the flux behaviour index (n) and apparent visc-
osity (η) from the first sweep, the same from the second sweep (K′, n´
and η′), and the hysteresis area (H). The analysis was done in triplicate
for each cream category.

line with this, laser light backscattering image techniques match this 
purpose since food matrices are frequently semi-transparent or opaque, 
and thus allow light to pass at specific wavelengths (Mireei et al., 
2010). It has been used successfully to control and model fruit in-
spection, classification and drying processes, and to determine moisture 
and solutes of some vegetables. Mollazade et al. (2012) and Adebayo 
et al. (2016) reported important compilations about applications of this 
technique in agro-food products. Meat processing has also been mod-
elling in terms of water content and proteolysis, concretely for dry 
cured ham (Fulladosa et al., 2017).

These applications share the feature that they have been applied to a 
solid matrix to determine variables that imply important physico-
morphological changes. Nevertheless, studies into fluid foods where 
subtle variations happen are lacking. This is a large field of applications 
since other light scattering-based techniques are already used to analyse 
this type of food matrix in laboratory assays. Some measure the droplet 
size distributions of emulsions by the laser diffraction technique, or take 
multiple light scattering measurements according to ageing time to 
estimate their physical stability.

There are numerous types of fluid-matrix foods; e.g. smoothies, 
vegetable creams, soups, spreadable, dairy, etc., which texture re-
presents the main quality attribute of products. In that sense, these 
products are usually provided homogeneous in terms of texture; how-
ever, some factors could modify this property. These factors could be: 
changes in the origins of raw material, fats reduction, fibre increasing, 
etc. That modification could be a problem for certain type of consumer. 
For some fluid foods, the exhaustive control of texture represents not 
only organoleptic acceptance, but also one of the most important safety 
features of products. One relevant example of this is texture-modified 
foods for the elderly, which have a group of products with these 
characteristics, specifically the categories from “thin drinks” to 
“pureed” (from 50 to 1750 cP) according to the IDDS (International 
dysphagia diet standardization initiative). Therefore, rapidly increasing 
knowledge about the range of products generated in a production 
process could improve the quality and safety assurance possibilities of 
the last-hour changes produced because above mentioned modifications 
due to external causes.

Following this idea, the aim of this work was to study the effects of 
several production factors on the capability of laser light backscattering 
imaging to characterise the physico-chemical properties of vegetable-
based creams.

2. Material and methods

2.1. Experiment procedure

The experiment aims to model a defined space of vegetable-based 
cream categories in terms of physico-chemical properties using a 
computer vision system and machine-learning procedures (Fig. 1). The 
objective of this procedure was to collect information non-destructively 
about all the cream categories produced on a plausible production plant 
to improve quality control once the product is finished. The first phase 
was the production of all the cream categories by combining four fac-
tors: F1 = raw material, F2 = biopolymer type, F3 = biopolymer con-
centration and F4 = homogenisation system. Factors were combined at 
different levels and into sub-categories to generate an extended space of 
variance for the physico-chemical properties from a many different 
products: fifty-two cream categories (Fig. 1–1). The second phase in-
volved the characterisation of all the cream categories by means of 
physico-chemical analytics (rheology and syneresis procedures) and 
imaging analyses (previously developed image descriptors) (Figs. 1–2). 
Then two data blocks (physico-chemical and imaging descriptors) were 
obtained from each cream category in parallel. The third experiment 
phase involved exploring both data blocks to analyse the variance 
generated due to the effect of the factors combination (Figs. 1–3), and 
to thus evaluate the capacity of the imaging descriptors obtained to



2.4.2. Syneresis
The generated variability of the cream matrix's capacity to maintain

the liquid phase of the product was tested by analysing syneresis
(Mizrahi, 2010). This analysis was done by centrifuging 30 g of cream
at 14,500 rpm/30min. After this phase, the supernatant was collected
and weighed. The analysis was done in triplicate for each cream cate-
gory. The result was expressed as a percentage of syneresis (Sy), which

was calculated based on Equation (2):

= ∗Sy
g supernatant

g of cream
100

(2)

2.4.3. Proximal composition
Proximal composition was analysed to know the effect of the raw

Fig. 1. Scheme of experimental procedure. Defined space of physicochemical variance by combining cream production factors. Numbers mean the order for ac-
tivities.

Fig. 2. A: Scheme of device setup (red arrow represents laser beam). B: The sample image obtained by the device (real image of light pattern generated onto cream
surface). The green line crossing the laser pattern is located to compute the profile. C: Profile widths at the selected heights (w0, w1, w2 and w3: Profile widths (in
pixels) at 20%, 40%, 60% and 80% of the maximum value). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)



material on moisture (Xw), fat (Xf), protein (Xp), fibre (Xfi) and total
solutes (Xs) content. Moisture content was calculated based on the
weight loss that the sample underwent when dried at a temperature
between 130 °C and 133 °C. The Kjeldahl method was used to analyse
protein content (AOAC 984.13 (A-D), 2006). Fat content was de-
termined by the Soxhlet Extraction Method (AOAC 920.39). Total
dietary fibre was measured by the McCleary Method (AOAC,
2009.01)2−4.

2.4.4. Imaging device and data processing
2.4.4.1. Diffraction patterns capturing device. To obtain diffraction
patterns, a device consisting in a red laser diode and a camera
connected to a computer was built.

Fig. 2A shows the device setup. The laser beam was pointed through
a Petri plate (55mm ᴓ) containing 15 g of the cream sample (1 cm
high). The distance between both was 9 cm. The distance between Petri
plate and camera was 15 cm. An image of the scattered laser beam
formed on the food surface and was captured by the camera (see 2A).
The device was placed inside a black box to obtain uniform illumina-
tion. Temperature of capture was 20 °C.

The setup parameters and acquisition conditions were stablished
taking into account the simplicity and reproducibility for a possible
online job. The distances between elements, laser beam diameter, Petri
plate diameter and thickness of sample were stablished based on the
aim of obtaining a laser pattern with a correct distribution of colour
zones, which allow us capturing a correct contrast in the images

Fig. 3. Profile computation: Original image (a). Channel decomposition (b). Laser pattern blob detection (c). Profile lines selection (d). Profile extraction (e).

Fig. 4. Spaces of variance (PCAs) from the physico-chemical (top) and imaging (bottom) results. A and D (F1 labelling), B and D (F2 labelling) and C and E (F4
labelling). Yellow circumferences: descriptors (variables, only represented in A and D): ●: zucchini; : fish; : chicken; : spinach; ○: xhantan gum; : alginate; ▲:
cooking robot; : industrial mixer; : ultraturrax. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)



The software performs two different tasks:

• Laser pattern detection, line selection and profile computation

• Profile analysis and descriptors extraction
2.4.4.2.1. Laser pattern detection, line selection and profile

computation. An automatic algorithm was developed to detect the
laser pattern and to compute its centre of mass (see Fig. 2B, green
circumference). Once the centre of mass is detected, profile lines in any
angle can be computed.

The algorithm works as follows (Fig. 3): captured images are RGB
colour images. Every image is decomposed into four monochrome
images (channels). Three of them represent the red, green and blue
channels, and a fourth image is obtained from the grey conversion of
the original image. The grey image is used to detect the laser pattern
because it is obtained as a weighted mean of the other three.

To detect the laser pattern, an adaptive thresholding algorithm was
employed to binarise the grey image to, thus, obtain a set of binary
blobs. These blobs are located in the image by a labelling algorithm.
The laser pattern is located as a circular blob near the centre of the
image. Once detected, its centre of mass and circularity were computed.
The centre of mass of a binary blob (cx,cy) was calculated as:

= =c m
m

c m
m

; ;x y
01

00

10

00 (3)

where mij are the moments of order (i+ j) defined as,

∑ ∑=m x y f x y( , )ij
x y

i j

(4)

and f(x,y) are the binary image values.
Circularity (φ) was computed as,

=φ area
π r. 2 (5)

where area is the blob area (in pixels) and r is the radius of the minimal
circle that encloses the blob. A value far from 1.0 means that the blob is
not circular, which thus indicates an error. Normally this is due to a
laser pattern misdetection or to an image not being correctly captured.
This value allows us to automatically detect problems in the process
and prevents us from computing bad descriptors.

Once the centre of mass is computed, we can use it to select the lines
crossing the laser pattern in the images and to compute its profiles.

2.4.4.2.2. Profile analysis and descriptors extraction. Given the wide

captured variability in each image, it is worth analysing the profiles
from the four channels because they provide different information. For
each profile, several geometrical descriptors are computed to represent
and simplify the profile data.

The set of profile descriptors computed for each cannel included:
Mv: maximum profile value; Area: total profile area in pixels; w0, w1, w2

and w3: Profile widths (in pixels) at 20%, 40%, 60% and 80% of the
maximum value (Fig. 2C); w30: w3/w0 ratio; w31: w3/w1 ratio.

The Mv and the Area provide information about the profile dimen-
sion. Values wi contain information about the profile shape. They are
calculated as the profile width at several heights (Fig. 2C). Finally, the
wij descriptors provide more detailed information about the profile
shape (profile slopes). Using this algorithm a set of 32 descriptors (8
descriptors per channel) is assigned to each captured image. If the
confidence value (φ) goes below a certain threshold, the image is re-
jected or reviewed, which thus avoids bad captures being taken into
account.

2.5. Statistical analysis

The rheological properties data were studied by a one-way variance
study (ANOVA). In those cases with a significant effect (P-value <
0.05), the average was compared by Fisher's least significant difference
(LSD). Analytical error (AE) and relative percentage of difference (RPD)
were included to compare the results with the reference technique. A
principal component analysis (PCA) was used to reduce the di-
mensionality of the rheological and image analysis data to perform a
joint comparative analysis. A PCA is a multivariate unsupervised sta-
tistical method used to describe and reduce the dimensionality of a
large set of quantitative variables to a small number of new variables,
called principal components (PCs), which are the result of linear com-
binations of the original variables. Support Vector Machines (SVM) for
regression (SVM-R) was applied to study the dependency between the
rheological data and the image data by evaluating calibration (R2),
crossvalidation (R2cv), prediction (R2pred) coefficients and the root
mean square errors (RMSE). Prediction procedures were followed using
60% of the samples as a training batch and 40% as a testing batch. SVM
is a supervised learning methodology based on the statistical learning
theory, which is commonly used for spectral data analyses (Boser et al.,
1992). Procedures were performed with PLS Toolbox, 6.3 (Eigenvector
Research Inc., Wenatchee, Washington, USA), a toolbox extension in
the Matlab 7.6 computational environment (The Mathworks, Natick,
Massachusetts, USA).

3. Results and discussion

3.1. Physico-chemical characterisation

The proximal composition of creams according to raw materials is
collected in Table 1. The results showed the highest statistically dif-
ference was in fibre fraction (Xfi), with the amount of zucchini and
spinach doubling that of chicken and fish. The rest of the parameters
also presented some statistical differences, although similar values with
around a 3% difference as a maximum (e.g Xp and Xw). The variance of
the physico-chemical descriptors was analysed to know the role of each

Table 1
Proximal composition of the produced creams according to F1 (raw material).

Raw material Xp Xf Xfi Xw Xs

Zucchini 0.015 ± 0.001b 0.020 ± 0.005b 0.012 ± 0.002b 0.89 ± 0.03a 0.11 ± 0.01a
Fish 0.011 ± 0.002a 0.017 ± 0.003a 0.007 ± 0.002a 0.871 ± 0.01a 0.129 ± 0.02b
Chicken 0.015 ± 0.001b 0.018 ± 0.005 ab 0.007 ± 0.001a 0.869 ± 0.01a 0.131 ± 0.01 ab
Spinach 0.012 ± 0.001a 0.017 ± 0.002a 0.012 ± 0.002b 0.888 ± 0.02a 0.112 ± 0.01a

Xp: protein content, Xf: fat content, Xfi: fibre content, Xw: moisture content, Xs: total solutes content. Letters within columns mean significant differences at α≤ 0.05.

(Fig. 2B). A high contrast and the colour zones well differentiated are 
essential in this technique to obtain correct colour profiles, from which 
the descriptors are generated (Fig. 2C). Both the laser diode (650 nm, 
50 mW, 3 mm ∅) and the camera (HD cam Logitech C920) are low-cost 
components, and were connected to a conventional computer which ran 
Linux.

2.4.4.2. Image processing and extracting descriptors. Specific software 
was developed to automatically process and extract descriptors from 
images. As seen in Fig. 2B, a profile was obtained by selecting a line of 
the image crossing the laser pattern. The profile was obtained to 
represent the pixel intensity of each pixel of this line. This profile is a 
good representation of the laser pattern structure and several numerical 
descriptors can be derived from it.



factor and to determine the significance of their main effects. The F-
ratio and its p-value from each factor and per descriptor were calcu-
lated and are found in Table 2. The p-values showed significance for all
the main effects on all the physico-chemical descriptors, except F3 for n'
and F4 for Sy. F1 (raw material) generally presented the maximum F-
ratio values, followed by F3 (concentration) in most of cases. With n,
K'and Sy, F2 was the second highest. The raw results of the physico-
chemical analyses can be consulted in Table 4 (Supplementary
Material).

However, to improve the understooding and visualisation of that
variance space, a PCA was done with all the physico-chemical de-
scriptors. This procedure allowed the reduction of dimensionality and

the analysis of the total variance in the experiment simultaneously.
Fig. 4A shows the biplot of the generated PCA space, where the average
scores from each cream category and the loadings from each physico-
chemical descriptor are represented. Two PCs, which are linear com-
binations of the original variables, delimited this space of physico-
chemical variance. PC1 collected 56.99% of variance, with 20.72% for
PC2. Samples were placed in different zones of the space, but the
clustering following raw material (F1) was maintained. The four raw
materials were differentiable from the physico-chemical descriptors
with different intensities. Each raw material displayed wide variance,
which was induced by the other factors. In some cases, samples were
placed inside another cluster because of their high level of modifica-
tion. The zucchini creams appeared in a high relationship with Sy, H
and n', but two samples appeared in a high relationship with K, K',η and
η'. These creams were those with 0.6% of biopolymers and turrax.
Spinach also showed a high loading with Sy, n'and H, but also with K,
K', η and η'. This means that high viscosity and consistence were in-
duced because of spinach properties compared to zucchini. With
chicken, the properties were similar to zucchini, but trended to high n
values, and inversely with H. The fish creams presented a higher
loading of n, K', and η' than chicken. Overall, animal tissues appeared to
increase the stability of creams by reducing Sy and H, and having high
values for K', and η'. When the PCA was studied according to the other
production variables, F2 (biopolymer, Fig. 4B), F3 (biopolymer con-
centration) or F4 (homogenisation system, Fig. 4C), no clustering pat-
tern was observed according to the multifactor ANOVA results
(Table 2). So we concluded that the variance generated by F2, F3 and
F4 depended on F1.

3.2. Imaging characterisation

To make a comparison with the physico-chemical results, the ima-
ging data exploration was done directly by PCA due to the high

Factors K n η K' n' η' H Sy

F1 99.53/0.0001 37.16/0.0001 98.09/0.0001 28/0.0001 4.09/0.01 75.7/0.0001 204.23/0.0001 216.1/0.0001
F2 15.33/0.0001 12.39/0.001 14.6/0.004 31.81/0.0001 163.93/0.0001 16.30/0.0001 25.12/0.0001 151.2/0.0001
F3 81.88/0.0001 0.16/0.69 56.91/0.0001 95.79/0.0001 8.64/0.005 55.56/0.0001 33.09/0.0001 116.3/0.0001
F4 22.9/0.0001 3.49/0.038 4.22/0.02 13.6/0.0001 4.52/0.015 5.15/0.009 32.25/0.0001 2.08/0.13

The results express F-ratio/p-value. F1: raw material; F2: biopolymer; F3 biopolymer concentration; F4: homogenisation system; K: consistence index; n: flux
behaviour index; η: apparent viscosity, H: hysteresis area; Sy: syneresis. Symbols with ´ mean the same parameter from the second sweep (K′, n´ and η′) and the
hysteresis area (H). Bold numbers mean the maximum value for the F-ratio within each column.

Table 3
Modelling results for single physico-chemical descriptors and the physico-chemical space of variance from the imaging data.

Modelling parameter K n η K' n' η' H Sy PC1 PC2

RMSECal 1.07 0.01 120 0.84 0.01 87 546.0 1.38 0.99 0.48
RMSECV 1.8 0.01 161.5 1.44 0.01 123 628.5 3.88 1.72 1.51
RMSEPred 1.71 0.01 111 1.14 0.01 79 552.9 2.96 1.78 1.29

BiasCal 0.01 0.01 −20.58 0.01 0.01 −10.70 −188.6 0.04 −0.05 0.01
BiasCV 0.03 0.01 −31.72 −0.12 0.01 −18.80 −208.6 −0.25 0.04 0.02
BiasPred −0.21 0.01 −19.15 −0.1 0.01 −8.9 −188.7 0.06 −0.31 −0.05

R2
Cal 0.98 0.96 0.81 0.98 0.88 0.85 0.81 0.98 0.99 0.99

R2
CV 0.93 0.92 0.59 0.9 0.81 0.68 0.73 0.88 0.96 0.95

R2
Pred 0.97 0.94 0.83 0.96 0.81 0.87 0.8 0.94 0.97 0.96

AE 0.95 0.02 24.6 0.18 14.00 6.82 18.1 0.21 0.33 0.21
SD 2.15 0.01 47.2 1.03 0.01 43.0 210.8 1.10 0.95 0.82
RPD 0.09 0.18 3.3 0.79 3.28 1.63 3.06 0.09 0.97 0.59

K: consistence index, n: flux behaviour index and η: apparent viscosity at 100s−1 from the first sweep; the same from the second sweep K', n' and η'; H: hysteresis area;
Sy: syneresis. PC1and PC2: principal components 1 and 2 from the physico-chemical space of variance (Figure X–A). RMSE: root mean square error; Bias: differences
in expected value; Cal: calibration; CV: cross-validation; Pred: prediction; AE: analytical error; SDFQ: standard deviation of the physicochemical properties; RPD:
relative percentage difference.

Table 4
Glossary of terms, symbols and abbreviations.

Symbol Symbol

F1 raw material Φ circularity
F2 biopolymer concentration Mv maximum profile value
F3 biopolymer type w0 20% Profile width
F4 homogenisation system w1 40% Profile width
w.b wet basis w2 60% Profile width
σ shear stress w3 80% Profile width
γ shear rate w30 w3/w0
H histeresys area w31 w3/w1
K consistence index PCA principal component analysis
n flux behaviour index PCs principal components
η apparent viscosity SVM-R Support Vector Machines
Sy syneresis R2 calibration coefficient
Xw water fraction R2cv crossvalidation coefficient
Xf fat fraction R2pred prediction coefficient
Xp protein fraction RMSE root mean square errors
Xfi fibre fraction AE analytical error
Xs solutes fraction RPD relative percentage difference
RGB red, green, blue BIAS differences in expected value
C centre of mass

Table 2
Results of the main effect significance for each factor.



Thus by taking into account the observed results and the complexity
of the studied food matrix herein, various sources of laser patterns
variance were suggested following studies by other authors and their
conclusions. The main source was the effect of solid particles from a
physical point of view. Each raw material provided solid particles with
different sizes and compositions (e.g., cellulose, starch, muscular fibres,
etc.) that influenced the diffractive properties of the matrix (Nicolaï
et al., 2007). Moreover, the solubilised components from each raw
material also generated variability because of the influences on the
refractive properties of liquid phase (e.g., myoglobin, chlorophyll,
peptides, vitamins, polyphenols, sugars, soluble fibres, minerals, etc.).
From a chemical point of view, and for both the solid particles and
solubilised compounds, the plausible presence of chemical bonds ab-
sorbing part of radiation gave rise firstly to modifications to transmit-
tance, and then to the generated laser patterns (Mireei et al., 2010).
This could explain why the spinach creams had the lowest w3-red
(Fig. 5). The reason for this is because spinach contains large amounts
of chlorophyll, which has an absorption peak at around 650 nm, which
is precisely the wavelength of the laser used in this experiment
(Tamburini et al., 2015). This effect was also reported by Romano et al.
(2012). In that study, the moisture of red, yellow and green peppers
were predicted using laser backscattering, however weak correlations
were obtained for the green samples when 650 nm was used due to the
influence of strong absorption band of chlorophyll. The presence of
biopolymers also led to alterations being made to the optical properties
by themselves, such as the refractive index and increasing opacity
(Basavaraju et al., 2007). All the above-mentioned effects can be
modified because of the homogenisation process. This process reduces
particle size and makes dispersions more homogeneous, which thus
influences the light-matrix interaction.

Overall, the crossing effects of the four selected factors made it
difficult to explain the observed results of a variance space of produc-
tion using descriptor by descriptor from the image data block. However
following the results of other authors, it seems that it might adequately
used as a multivariate database to model the behaviour of creams.

3.3. Modelling the defined space of variance

The relationship between the physico-chemical descriptors and
image descriptors was studied by modelling with SVM. These studies
were performed by correlating the image descriptors data matrix with
each physico-chemical descriptor singly and with the PC1 and PC2
scores from the space of physico-chemical variance (Fig. 4A), which
simultaneously represent the physico-chemical behaviour of the sam-
ples. This approach allowed us to determine if the image data could
predict the place of produced cream categories in this generated space
of physico-chemical variance.

Table 3 shows the results of the modelling parameters. Overall, the
coefficients of calibration, cross-validation and prediction came close to
1, be it with differences between parameters. The maximum prediction
coefficients regarding single parameters went to K (0.97), K' (0.96), n
(0.94) and Sy (0.94). These parameters also presented high fit values for
both calibration and cross-validation. Moreover, there were parameters
with lower coefficients, such as η (0.83), η' (0.87), n' (0.81) and H
(0.80). The prediction of these parameters was more difficult than the
first ones, but no coefficient was lower than 0.8. These results were in
accordance with the observed analytical error (AE), where those
parameters with reduced prediction coefficients also had higher error
compared to the observed values. When those results were expressed as
the relative percentage difference (RPD) the maximum relative differ-
ence was 3.28% for η and n', while K and Sy the minimum ones around
0.09%. Thus the technique did not predict with 0% of error, however
the results seemed satisfactory enough to characterise those studied
physicochemical properties at experimental conditions. Moreover,
when standard deviation of physicochemical data was observed, the
highest values were also for parameters with lowest coefficients. That

dimensionality of the generated image information. Fig. 4D shows the 
PCA, space of image variance, which was delimited by PC1 and PC2, 
having collected 67.18% and 13.61% of the total image data variance, 
respectively. In this case, the spontaneous clustering based on F1 was 
also observed, although the relative places of raw materials showed 
differences in this case. The zucchini and fish creams were close to one 
another, although the zucchini creams once again maintained the 
samples with 0.6% biopolymers and turrax placed away from the nu-
cleus of their raw material cluster. Spinach and chicken appeared to be 
quite isolated from the rest, although one spinach cream category was 
placed with the fish creams and the non-modified chicken sample 
within the zucchini cluster. Thus the effect of factors seemed to be the 
same for this block of descriptors. When PCA space was labelled ac-
cording to F2, F3 or F4 (Fig. 4E and F), the results were according to the 
physico-chemical PCA. No clustering based on biopolymer type or 
homogenisation system was observed.

Most of the image descriptors presented high loadings in PC1. Some 
of the most important ones were w2 and w3 from all the image channels, 
which implies a high colinearity. This colinearity can be explained by 
these descriptors having an equivalent response to the modifications to 
shape the laser pattern due to differences in the optical properties of the 
cream matrix. Moreover, PC2 gave a high explanation level for the 
variability of the chicken creams, where the main descriptors were the 
maximum profile values for all the channels, with w30 and w31 for R 
and the grey images. These descriptors revealed modifying profile 
slopes for this cream cluster.

The observed results proved the sensitivity of the selected image 
descriptors with the variability of the creams due to processing. In the 
same way as the physico-chemical descriptors, a space of variability 
was described, where F1 was the factor with the strongest impact on 
sample distribution. The fact that both data blocks showed an equiva-
lent PCA behaviour under the same conditions could not mean either 
correlation or causality because the placing of samples showed differ-
ences in the respective PCA distributions. In fact the generated changes 
in the physico-chemical properties might not have any equivalence with 
the laser patterns. However, after exploring the single relationships 
between both blocks of descriptors, modelling tendencies were ob-
served. Fig. 5 provides an example of two rheological descriptors (K and 
n) vs. descriptor w3 from the red channel (one of the most important 
descriptors in PC1 of the space of image variance; PCA). We can observe 
a covariation of w3-red with these rheological descriptors. Across the 
generated model, samples were also grouped following the raw mate-
rials: spinach was placed on the maximum extreme for K, but on the 
minimum for n and w3-red. The chicken creams were placed on the 
inverse extreme, while the most of the zucchini and fish creams were 
placed around the central zone. The observed model showed the inverse 
relationship between consistence (K) and w3. This means that when 
consistence increased, laser pattern profile width narrowed, and then 
less light was transmitted across the cream matrix. This effect proved 
the dependence of the light-matrix interaction on the resulting signal 
due to the differences in the proximal composition of each raw mate-
rial. Some studies agree with this observation: Udomkun et al. (2014) 
and Romano et al. (2011) have reported that the evolution of moisture 
and solutes in a vegetal matrix (apple, papaya, etc.) during drying 
processes brings about changes in this type of laser patterns, which 
correlate with measured moisture, sugars and other solutes. Apart from 
the chemical composition, vegetal matrices have also been char-
acterised by laser backscattering imaging in terms of mechanical 
properties by Mollazade et al. (2013). Moreover, those phenomena 
have also been applied to processed muscular tissues, concretely 
Fulladosa et al. (2017) reported the capability of this technique to de-
tect changes due to drying and proteolysis on dry-cured hams.

In the case of the cream samples, moisture (Xw) and the solutes 
fraction (Xs) are similar. The main differences between creams were 
seen for fibre fraction (Xfi). Although proteins and lipids were similar, 
their chemical nature could also modify image descriptors.



fact could mean that the observed error could be influenced not only by
analytical error of the technique but also by the heterogeneity of
samples at rheological analytics.

This behaviour was in accordance with the covariation observed in
Fig. 5 which, in this case, could be improved because of the combina-
tion of all the image descriptors. This covariation allowed the modelling
of the physico-chemical descriptors using the image data, be it with
different accuracy levels. Other authors have also reported different
accuracy levels in modelling coefficients for several physico-chemical
properties of food matrices using this technique. Some of them are
quality control properties in tomato fruit (Tu et al., 2000), quality
control properties and presence of seeds in watermelon (Mohd Ali,
Hashim, Bejo and Shamsudin, 2017a, 2017b), quantifying chilling da-
mage in bananas (Hashim et al., 2013), etc. This means that the tech-
nique is useful for these purposes. However, the noise generated in the
signal differently affects the single prediction of each parameter. Thus
the modification of some elements in a given device configuration
would probably reduce the signal noise and optimise the results for
individual physico-chemical parameters predictions.

In PC1 and PC2 modelling, the prediction coefficients were 0.97 and
0.96, respectively. The calibration, cross-validation and prediction
parameters were successful, and showed that the technique was capable
of correctly placing the samples in the space of physico-chemical var-
iance. This result indicates that, despite some physico-chemical de-
scriptors presenting less modelling coefficients individually, their var-
iances were better predicted when they were all combined linearly to
generate PCs. This effect could be explained because, in this case, the
variance of the laser patterns did not depend on only one factor. The
combination of factors generated common rheological behaviours
among the cream categories for a given parameter, but it was not
parallel for the laser patterns, which presented different image in-
formation for each category. Thus the laser pattern was unable to dis-
play good dependency on an individual physico-chemical parameter,
rather with the combinational response of them all, such as PC1 and

PC2, which collected most of the variance from the physico-chemical
descriptors at the time like a “physico-chemical fingerprint”.

When the predicted PC1 and PC2 data were included in the space of
physico-chemical variance, we observed how samples from the test
batch were placed around the correct coordinates (Fig. 6). This shows
how the observed relationship between the physico-chemical and image
information can be used to characterise creams quite accurately. Thus
the physico-chemical properties of a cream from this production space
can be controlled by the proposed image descriptors, and by placing the

Fig. 5. Relationship between rheological descriptors consistence index (K) and flux behaviour index (n) with image descriptor w3-red (80% profile width from red
channel) from all the creams. Plots are examples of laser-pattern profiles from the red image channels, where w3 is indicated by a dotted line. ●: zucchini; : fish; :
chicken; : spinach. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. The observed (physico-chemical) and predicted (by the image tech-
nique) PC1 and PC2 coordinate in the physico-chemical space of variance.
Values represent the average of each cream category. Points are labelled based
on F1 (raw materials) ●: zucchini; : fish; : chicken; : spinach. Empty sym-
bols indicate the average predicted values.



4. Conclusions

The proposed technique was capable of collecting the variance 
generated in creams because of the effect of the raw material, biopo-
lymers and homogenisation system according to the laser-patterns 
modifications, which were defined by the developed image descriptors 
system. The prediction models obtained between the image descriptors 
and the physico-chemical properties of creams were able to characterise 
different samples in a non-destructive and rapid way. It seems that this 
new technique contains new possibilities in applications focused on 
fluid foods, which could obtain rapid information from a high amount 
of samples in a reduced time.
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produced at one time. Thus being able to know whether a given cream 
category batch was produced with correct physico-chemical properties 
in a short time with the appropriate technical requirements is plausible. 
In addition, new formulae with similar physico-chemical features can 
be included in the model to increase captured variability and to im-
prove the learning process and the accuracy of a given quality control.
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