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cDepto. de Arquitectura de Computadores y Automática, Universidad Complutense de
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Abstract

Dense linear algebra libraries, such as BLAS and LAPACK, provide a rele-
vant collection of numerical tools for many scientific and engineering appli-
cations. While there exist high performance implementations of the BLAS
(and LAPACK) functionality for many current multi-threaded architectures,
the adaption of these libraries for asymmetric multicore processors (AMPs)
is still pending. In this paper we address this challenge by developing an
asymmetry-aware implementation of the BLAS, based on the BLIS frame-
work, and tailored for AMPs equipped with two types of cores: fast/power-
hungry versus slow/energy-efficient. For this purpose, we integrate coarse-
grain and fine-grain parallelization strategies into the library routines which,
respectively, dynamically distribute the workload between the two core types
and statically repartition this work among the cores of the same type.

Our results on an ARM R© big.LITTLETM processor embedded in the
Exynos 5422 SoC, using the asymmetry-aware version of the BLAS and a
plain migration of the legacy version of LAPACK, experimentally assess the
benefits, limitations, and potential of this approach from the perspectives of
both throughput and energy efficiency.
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1. Introduction

Dense linear algebra (DLA) is at the bottom of the “food chain” for many
scientific and engineering applications, which can be often decomposed into a
collection of linear systems of equations, linear least squares (LLS) problems,
rank-revealing computations, and eigenvalue problems [1]. The importance
of these linear algebra operations is well recognized and, from the numerical
point of view, when they involve dense matrices, their solution can be reliably
addressed using the Linear Algebra PACKage (LAPACK) [2].

To attain portable performance, LAPACK routines cast a major frac-
tion of their computations in terms of a reduced number of Basic Linear
Algebra Subprograms (BLAS) [3, 4, 5], employing an implementation of the
BLAS specifically optimized for the target platform. Therefore, it comes as
no surprise that nowadays there exist both commercial and open source im-
plementations of the BLAS targeting a plethora of architectures, available
among others in AMD ACML [6], IBM ESSL [7], Intel MKL [8], NVIDIA
CUBLAS [9], ATLAS [10], GotoBLAS [11], OpenBLAS [12], and BLIS [13].
Many of these implementations offer multi-threaded kernels that can exploit
the hardware parallelism of a general-purpose multicore processor or, in the
case of NVIDIA’s BLAS, even those in a many-core graphics processing unit
(GPU).

Asymmetric multicore processors (AMPs), such as the recent ARM R©
big.LITTLETM systems-on-chip (SoC), are a particular class of heterogeneous
architectures that combine a few high performance (but power hungry) cores
with a collection of energy efficient (though slower) cores.1 With the end of
Dennard scaling [14], but the steady doubling of transistors in CMOS chips
at the pace dictated by Moore’s law [15], AMPs have gained considerable
appeal as, in theory, they can deliver much higher performance for the same
power budget [16, 17, 18, 19].

In past work [20], we demonstrated how to adapt BLIS in order to attain
high performance for the multiplication of two square matrices, on an ARM

1AMPs differ from a heterogeneous SoC like the NVIDIA Tegra TK1, in that the cores
of the AMP share the same instruction set architecture (ISA).
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big.LITTLE AMP consisting of ARM Cortex-A15 and Cortex-A7 clusters.
In this paper, we significantly extend our previous work by applying similar
parallelization principles to the complete Level-3 BLAS (BLAS-3), and we
evaluate the impact of these optimizations on LAPACK. In particular, our
work makes the following contributions:

• Starting from the reference implementation of the BLIS library (ver-
sion 0.1.8), we develop a multi-threaded parallelization of the complete
BLAS-3 for any generic AMPs, tailoring it for the ARM big.LITTLE
AMP embedded in the Samsung Exynos 5422 SoC in particular. Fur-
thermore, we demonstrate the generality of the approach by applying
the same parallelization principles to develop a tuned version of BLIS
for the 64-bit ARM big.LITTLE AMP in the Juno ARM development
platform.
These tuned kernels not only distinguish between different operations
(e.g., paying special care to the parallelization of the triangular sys-
tem solve), but also take into consideration the operands’ dimensions
(shapes). This is especially interesting because, in general, the BLAS-
3 are often invoked from LAPACK to operate on highly non-square
matrix blocks.

• We validate the correction of the new BLIS-3 by integrating them with
the legacy implementation of LAPACK (version 3.5.0) from the netlib
public repository.2

• We illustrate the computational performance and practical energy ef-
ficiency that can be attained from a straight-forward migration and
execution of LAPACK, on top of the new BLIS-3 for the Exynos 5422,
that basically adjusts the algorithmic block sizes and only carries out
other minor modifications.
In particular, our experiments with three relevant matrix routines from
LAPACK, key for the solution of linear systems and symmetric eigen-
value problems, show a case of success for a matrix factorization rou-
tine; a second scenario where a significant modification of the LA-
PACK routine could yield important performance gains; and a third
case where performance is limited by the memory bandwidth, but a

2Available at http://www.netlib.org/lapack.
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multi-threaded implementation of the Level-2 BLAS [4] could render a
moderate improvement in the results.

To conclude, we emphasize that the general parallelization approach pro-
posed in this paper for AMPs can be ported, with little effort, to present
and future instances of the ARM big.LITTLE architecture as well as to any
other asymmetric design in general (e.g. the Intel QuickIA prototype [21],
or general-purpose SMPs with cores running at different frequencies).

The rest of the paper is structured as follows. In Section 2, we briefly re-
view the foundations of BLIS, and we discuss two distinct approaches (though
complementary under certain conditions) to extract parallelism from LA-
PACK, based on a runtime that exploits task-parallelism and/or by lever-
aging a multi-threaded implementation of the BLAS. In Section 3, we in-
troduce and evaluate our multi-threaded implementation of the complete
BLIS-3, for matrix operands of distinct shapes, tuned for the big.LITTLE
AMP architectures in the Exynos 5422 SoC and the ARM Juno platform. In
Section 4, we illustrate the impact of leveraging our platform-specific BLIS-3
from LAPACK using three key operations. Finally, in Section 5 we offer a
few concluding remarks and discuss future work.

2. BLIS and other Related Work

2.1. BLIS

The conventional and easiest approach to obtain a parallel execution of
LAPACK, on a multicore architecture, simply leverages a multi-threaded
implementation of the BLAS that partitions the work among the computa-
tional resources, thus isolating LAPACK from this task. For problems of
small to moderate dimension, platforms with a low number of cores, and/or
DLA operations with simple data dependencies (like those in the BLAS-3),
this approach usually provides optimal efficiency. Indeed, this is basically the
preferred option adopted by many commercial implementations of LAPACK.

Most modern implementations of the BLAS follow the path pioneered by
GotoBLAS to implement the kernels in BLAS-3 as three nested loops around
two packing routines, which orchestrate the transfer of data between consec-
utive levels of the cache-memory hierarchy, and a macro-kernel in charge of
performing the actual computations. BLIS internally decomposes the macro-
kernel into two additional loops around a micro-kernel that, in turn, is im-
plemented as a loop around a symmetric rank-1 update (see Figure 1). In
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Loop 1 for jc = 0, . . . , n− 1 in steps of nc

Loop 2 for pc = 0, . . . , k − 1 in steps of kc
B(pc : pc + kc − 1, jc : jc + nc − 1) → Bc // Pack into Bc

Loop 3 for ic = 0, . . . ,m− 1 in steps of mc

A(ic : ic + mc − 1, pc : pc + kc − 1) → Ac // Pack into Ac

Loop 4 for jr = 0, . . . , nc − 1 in steps of nr // Macro-kernel
Loop 5 for ir = 0, . . . ,mc − 1 in steps of mr

Cc(ir : ir + mr − 1, jr : jr + nr − 1) // Micro-kernel
+= Ac(ir : ir + mr − 1, 0 : kc − 1)
· Bc(0 : kc − 1, jr : jr + nr − 1)

endfor
endfor

endfor
endfor

endfor

Figure 1: High performance implementation of the matrix multiplication in BLIS. In the
code, Cc ≡ C(ic : ic + mc − 1, jc : jc + nc − 1) is just a notation artifact, introduced to
ease the presentation of the algorithm, while Ac, Bc correspond to actual buffers that are
involved in data copies.

practice, the micro-kernel is encoded in assembly or in C enhanced with
vector intrinsics; see [13] for details.

A multi-threaded parallelization of the matrix multiplication (gemm) in
BLIS for conventional symmetric multicore processors (SMPs) and modern
many-threaded architectures was presented in [22, 23]. These parallel imple-
mentations exploit the concurrency available in the nested five–loop organiza-
tion of gemm at one or more levels (i.e., loops), taking into account the cache
organization of the target platform, the granularity of the computations, and
the risk of race conditions, among other factors.

In [20] we leverage similar design principles to propose a high performance
implementation of the gemm kernel from BLIS for an ARM big.LITTLE
SoC with two quad-core clusters, consisting of ARM Cortex-A15 and ARM
Cortex-A7 cores. Specifically, starting from the BLIS code for gemm, we
modify the loop stride configuration and scheduling policy to carefully dis-
tribute the micro-kernels comprised by certain loops among the ARM Cortex-
A15 and Cortex-A7 clusters and cores taking into consideration their com-
putational power and cache organization.

2.2. Runtime-based task-parallel LAPACK

Extracting task parallelism has been recently proved to yield an efficient
means to tackle the computational power of current general-purpose multi-
core and many-core processors. Following the path pioneered by Cilk [24],
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several research efforts ease the development and improve the performance of
task-parallel programs by embedding task scheduling inside a runtime. The
benefits of this approach for complex DLA operations have been reported,
among others, by OmpSs [25], StarPU [26], PLASMA [27, 28], Kaapi [29],
and libflame [30]. In general, the runtimes underlying these tools decom-
pose a DLA routine into a collection of numerical kernels (or tasks), and then
take into account the dependencies between the tasks in order to correctly
issue their execution to the system cores. The tasks are therefore the “in-
divisible” scheduling unit while the cores constitute the basic computational
resources.

The application of a runtime-based approach to schedule DLA operations
in an AMP is still quite immature. Botlev-OmpSs [31] is an instance of the
OmpSs runtime that embeds a Criticality-Aware Task Scheduler (CATS)
specifically designed with AMPs in mind. This asymmetry-conscious runtime
relies on bottom-level longest-path priorities, and keeps track of the criticality
of the individual tasks to place them in either a critical queue or a non-critical
one. Furthermore, tasks enqueued in the critical queue can only be executed
by the fast cores, and the enhanced scheduler integrates uni- or bi-directional
work stealing between fast and slow cores.

Botlev-OmpSs required an important redesign of the underlying schedul-
ing policy to exploit the asymmetric architecture. Alternatively, in [32] we
proposed an approach to refactor any asymmetry-oblivious runtime task
scheduler by i) aggregating the cores of the AMP into a number of sym-
metric virtual cores, which become the only computational resources visible
to the runtime scheduler; and ii) hiding the difficulties intrinsic to dealing
with an asymmetric architecture inside an asymmetry-aware implementation
of each individual task, in our case invocations to BLAS-3.

The benefits of these two AMP-specific approaches have been demon-
strated in [31, 32] for the Cholesky factorization. Unfortunately, applying
the same principles to the full contents of a library as complex as LAPACK
is a daunting task. First, one would need to transform all the algorithms
underlying the library to produce task-parallel versions, which can then be
adapted for and fed to a specific runtime scheduler. While this work has
been done for some combinations of basic matrix factorizations (for the solu-
tion of linear systems, LLS, and eigenvalue problems), runtimes, and target
platforms [33, 34, 35], the effort is far from negligible.

In this paper we depart from previous work by hiding the asymmetry-
aware optimization inside a parallel implementation of the complete BLAS-3

6



Figure 2: Exynos 5422 block diagram.

for ARM big.LITTLE architectures, which is then invoked from the legacy
implementation of LAPACK. We note that, though we do not address the
BLAS-1 and BLAS-2 in our work, the parallelization of the kernels in these
two levels of the BLAS is straight-forward, even for an AMP.

3. Asymmetric-Aware BLAS for the Exynos 5422 SoC

3.1. Target architecture

The AMP employed in the experimentation is an ODROID-XU3 board
furnished with a Samsung Exynos 5422 SoC. This processor comprises an
ARM Cortex-A15 quad-core processing cluster (1.4 GHz) plus a Cortex-
A7 quad-core processing cluster (1.6 GHz). Each core has its own private
32+32-Kbyte L1 (instruction+data) cache. The four ARM Cortex-A15 cores
are out-of-order processors and share a 2-Mbyte L2 cache; the four ARM
Cortex-A7 cores are in-order processors and share a smaller 512-Kbyte L2
cache. In addition, the two clusters access a DDR3 RAM (2 Gbytes) via
128-bit coherent bus interfaces; see Figure 2.

3.2. BLIS kernels

The specification of the BLAS-3 [5] basically comprises 6–9 kernels offer-
ing the following functionality:

1. Compute (general) matrix multiplication (gemm), as well as specialized
versions of this operation where one of the input operands is symmet-
ric/Hermitian (symm/hemm) or triangular (trmm).

7



2. Solve a triangular linear system (trsm).
3. Compute a symmetric/Hermitian rank-k or rank-2k update (syrk/herk

or syr2k/her2k, respectively).

The specification accommodates two data types (real or complex) and two
precisions (single or double), as well as operands with different “proper-
ties” (e.g., upper/lower triangular, transpose or not, etc.). Note that hemm,
herk, and her2k are only defined for complex data, providing the same
functionality as that of symm, syrk, and syr2k for real data.

For brevity, in the following study we will address the real double-precision
version of these operations. Furthermore, we will only target the cases in Ta-
ble 1, where we will consider upper triangular matrices and we will operate
with/on the upper triangular part of symmetric matrices. However, we note
that, due to the organization of BLIS, our optimized implementations for the
Exynos 5422 SoC cover all other cases.

Kernel Operation Operands
A B C

gemm C := C + AB m× k k × n m× n

symm
C := C + AB or Symmetric m×m

m× n m× n
C := C + BA Symmetric n× n

trmm
B := AB or Triangular m×m

m× n –
B := BA Triangular n× n

trsm
B := A−1B or Triangular m×m

m× n –
B := BA−1 Triangular n× n

syrk C := C + ATA k × n – n× n
syr2k C := C + ATB + BTA k × n k × n n× n

Table 1: Kernels of BLIS-3 considered in the evaluation.

The steps to attain high performance from these kernels in the Exynos
5422 SoC require:

1. to develop highly optimized implementations of the underlying micro-
kernels for the ARM Cortex-A15 and Cortex-A7 cores;

2. to tune the configuration parameters mc, nc, kc (see Figure 1) to the
target core type; and

3. to enforce a balanced distribution of the workload between both types
of cores.
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The following subsection offers some hints on the first two tasks, which have
been carried out following a development and experimental optimization ap-
proach similar to those necessary in a homogeneous (non-asymmetric) archi-
tecture.

Our major contribution is introduced next, in subsection 3.4, where we
investigate the best parallelization strategy depending on the kernel and the
operands’ shape. This is a crucial task as, in practice, the invocations to the
BLAS-3 kernels from LAPACK generally involve nonsquare operands with
one (or more) small dimension(s).

3.3. Cache optimization of BLIS

For the ARM Cortex-A15 and Cortex-A7 core architectures, the BLIS
micro-kernels are manually encoded with mr = nr = 4. Furthermore, via an
extensive experimental study, the configuration parameters are set to mc =
(152, 80) for the ARM (Cortex-A15,Cortex-A7) cores; and kc = 352, nc =
4096 for both types of cores. With these values, the buffer Ac, of dimension
mc×kc (408 KBytes for the Cortex-A15 and 215 KBytes for the Cortex-A7),
fits into the L2 cache of the corresponding cluster, while a micro-panel of Bc,
of dimension kc×nr (11 KBytes), fits into the L1 cache of the each core. The
micro-kernel thus streams Ac together with the micro-panel of Bc into the
floating-point units (FPUs) from the L2 and L1 caches, respectively; see [20]
for details.

3.4. Multi-threaded parallelization of the BLIS-3

3.4.1. Asymmetric BLIS

The development of multi-threaded versions of BLIS has been previously
analyzed for conventional symmetric multicore processors (SMPs) [22] and
modern many-threaded architectures [23]. The insights gained from these
studies about the loop(s) in Figure 1 to be parallelized can be summarized
as follows:

• Loop 1. This option is equivalent to extracting the parallelism outside
of BLIS. Each thread packs its own memory buffers so that this is
reasonable in a multi-socket with separate L3 caches.

• Loop 2. The parallelization of Loop 2 is discarded because it requires
a synchronization mechanism to deal with race conditions which may
reduce performance.
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• Loop 3. This option uses a common Bc memory buffer, but each thread
packs it own Ac memory buffer. When there is a shared L2 cache, the
size of Ac will have to be reduced by a factor equal to the degree
of parallelization of this loop. However, reducing mc is equivalent to
parallelizing Loop 5.

• Loop 4. Different threads access the same memory buffer Ac in the L2
cache. In general, the amount of parallelism is larger than in Loop 5
since nc is usually larger than mc.

• Loop 5. This is similar to the previous case, but with less parallelism.

Taking into account the previous guidelines, and the lack of an L3 cache in
the target Exynos 5422 chip, we adopted a two-level parallelization strategy.
The coarse-grain (or inter-cluster) partitioning extracts 2-way parallelism in
either Loop 1 or Loop 3 to distribute the iteration space between the two
clusters. These loops are appropriate candidates for parallelization across
cores with a separated and isolated L2 cache, as is the case of each cluster
in the Exynos 5422 SoC. The coarse-grain partitioning cannot be carried out
in Loops 4 nor 5 because the threads would access to the same Ac memory
buffer, which would have to be replicated in both L2 caches, degrading per-
formance. In addition, the fine-grain (or intra-cluster) partitioning leverages
up to 4-way parallelism in either Loop 4 or Loop 5 to distribute the itera-
tion space among the four cores of the same cluster. These loops are good
candidates for parallelization across cores sharing a common L2 cache, as is
the case of cores in the same cluster of the Exynos 5422 SoC. The fine-grain
partitioning is set for the threads that share the same memory buffer Ac,
which in BLIS is located in the L2 cache.

With this partitioning in mind, the coarse-grain (or inter-cluster) parti-
tioning can be used to distribute the computational workload among the big
and LITTLE clusters leading to a Static schedule. If the differences in per-
formance between the two types of cores is known in advance, a predefined
distribution ratio can be employed to distribute the computational workload
among the clusters. For example, a distribution ratio R indicating that a big
core is R times more powerful than a LITTLE core requires that the “amount
of workload” mapped to the big cluster is R times larger than to the LITTLE
one. However, a Dynamic schedule can provide a more flexible implementa-
tion that is able to adapt itself to the computational resources (e.g., due to a
variation of operating frequency). In our particular case, a dynamic schedule

10



of a given loop means that, at each iteration of that loop, a single thread
bound to a big core and a single thread bound to a LITTLE core select the
current chunk size (2-way parallelism for inter-cluster partitioning), which
depends on the configuration parameter mc of each type of core. The fine-
grain partitioning then distributes the computational workload among the
cores of a given cluster with the same computing capabilities. Therefore, for
the intra-cluster partitioning a Static schedule is sufficient.

In the remainder of this paper we use the letters “S” and “D” to re-
spectively indicate that a Static or a Dynamic schedule is applied. The
number following each letter identifies the loop to which this scheduling is
applied. Thus, for example, D3S4 denotes a strategy that extracts inter-
cluster dynamic parallelism from Loop 3 and intra-cluster static parallelism
from Loop 4.

3.4.2. Square operands in gemm

The asymmetry-aware parallelization of this kernel in [20] targeted only a
matrix multiplication with square operands (m = n = k), applying a dynamic
schedule to Loop 3 in order to distribute its iteration space between the two
types of clusters (coarse-grain partitioning). In addition, a static schedule was
internally applied to distribute the iteration space of either Loop 4 or Loop 5
among the cores of the same cluster (fine-grain partitioning). However, the
parallelization of Loop 1 was discarded, when applying the dynamic workload
distribution, because nc = 4096, and this large value turns very difficult to
attain a balanced workload distribution between the two clusters.

Following the solution adopted in [20], we will use “D3S4” and “D3S5” to
refer to strategies based on a dynamic coarse-grain parallelization of Loop 3
combined with a static fine-grain parallelization of either Loop 4 or Loop 5,
respectively. To assess the efficiency of these two options, we will measure the
GFLOPS rates (billions of floating-point arithmetic operations per second)
they attain and compare those against an “ideal” execution where the eight
cores incur no access conflicts and the workload is perfectly balanced. To
estimate the latter, we experimentally evaluate the GFLOPS achieved with
the serial gemm kernel, using either a single ARM Cortex-A15 core or a
single ARM Cortex-A7 core, and then consider the ideal peak performance
as the aggregation of both rates multiplied by 4 (matching the number of big-
LITTLE core pairs in the system). We have applied the same methodology to
derive ideal peak execution rates for all BLAS kernels and LAPACK routines
developed/evaluated in our work.
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Unless otherwise stated, the stride configuration parameter for Loop 3 is
set to mc = (152, 32) for the ARM (Cortex-A15,Cortex-A7) cores. The value
selected for the Cortex-A7 architecture is thus smaller than the experimental
optimal (mc = 80), but this compromise was adopted to roughly match the
ratio between the computational power of both types of cores as well as to
improve the workload distribution.

The top-left plot in Figure 3 reports the performance attained with the
dynamic-static parallelization strategies for a matrix multiplication involving
square operands only. The results show that the two options, D3S4 and D3S5,
obtain a large fraction of the GFLOPS rate estimated for the ideal scenario,
though the combination that parallelizes Loops 3+4 is consistently better.
Concretely, from m = n = k ≥ 2000, this option delivers between 12.4 and
12.7 GFLOPS, which roughly represents 93% of the ideal peak performance.
In this plot, we also include the results for an strategy that parallelizes Loop 4
only, distributing its workload among the ARM Cortex-A15 and Cortex-A7
cores, but oblivious of their different computational power (line labelled as
“ObS4”). With this asymmetry-agnostic option, the synchronization at the
end of the parallel regions slows down the ARM Cortex-A15 cores, yielding
the poor GFLOPS rate observed in the plot.

3.4.3. gemm with rectangular operands

The remaining three plots in Figure 3 report the performance of the
asymmetry-aware parallelization strategies when the matrix multiplication
kernel is invoked, (e.g., from LAPACK,) to compute a product for the fol-
lowing “rectangular” cases (see Table 1):

1. gepp (general panel-panel multiplication) for m = n 6= k;
2. gemp (general matrix-panel multiplication) for m = k 6= n; and
3. gepm (general panel-matrix multiplication) for n = k 6= m.

In these three specialized cases, we vary the two equal dimensions in the range
R = {100, 300, 500, 1000, 1500, . . . , 6000} and fix the remaining one to 256.
(This specific value was selected because it is often used as the algorithmic
block size for many LAPACK routines/target architectures.)

The plots for gepp and gemp (top-right and bottom-left in Figure 3)
show GFLOPS rates that are similar to those attained when the same strate-
gies are applied to the “square case” (top-left plot in the same figure), with
D3S4 outperforming D3S5 again. Furthermore, the performances attained
with this particular strategy, when the variable problem dimension is equal
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or larger than 2000 (11.8–12.4 GFLOPS for gepp and 11.2–11.8 GFLOPS
for gemp), is around 90% of those expected in an ideal scenario. We can thus
conclude that, for these particular matrix shapes, this specific parallelization
option is reasonable.

The application of the same strategies to gepm delivers mediocre results,
though. The reason is that, when m = 256, a coarse-grain distribution of the
workload that assigns chunks of mc = (152, 32) iterations of Loop 3 to the
ARM (Cortex-A15,Cortex-A7) cores may be appropriate from the point of
view of the cache utilization, but yields a highly unbalanced execution. This
behaviour is exposed with an execution trace, obtained with the Extrae

framework [36], in the top part of Figure 4.
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Figure 3: Performance of (general) matrix multiplication with square matrices: gemm;
and three rectangular cases with two equal dimensions: gepp, gemp, and gepm.

To tackle the unbalanced workload distribution problem, we can reduce
the values of mc, at the cost of a less efficient usage of the cache mem-
ories. Figure 5 reports the effect of this compromise, revealing that the

13



pair mc = (116, 24) presents a better trade-off between balanced workload
distribution and cache optimization. For this operation, this specific pair
delivers 11.8–12.4 GFLOPS which is slightly above 80% of the ideal peak
performance. A direct comparison of the top and bottom traces in Figure 4
exposes the difference in workload distribution between the executions with
mc = (152, 32) and mc = (116, 24), respectively.

Figure 4: Execution traces of gepm using the parallelization strategy D3S4 for a problem
of dimension n = k = 2000 and m = 256. The top plot corresponds to the use of cache
configuration parameters mc = (152, 32) for the ARM (Cortex-A15,Cortex-A7) cores,
respectively. The bottom plot reduces these values to mc = (116, 24). The blue periods
correspond to actual work while the pink ones represent synchronization (idle time).
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Figure 5: Performance of gepm for different cache configuration parameters mc.
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3.5. Other BLIS-3 kernels with rectangular operands

Figure 6 reports the performance of the BLIS kernels for the symmet-
ric matrix multiplication, the triangular matrix multiplication, and the tri-
angular system solve when applied to two “rectangular” cases involving a
symmetric/triangular matrix (see Table 1):

• symp, trmp, trsp when the symmetric/triangular matrix appears to
the left-hand side of the operation (e.g., C := C + AB in symp);
• sypm, trpm, trps when the symmetric/triangular matrix appears to

the right-hand side of the operation (e.g., C := C + BA in sypm).

The row and column dimensions of the symmetric/triangular matrix vary in
the range R and the remaining problem size is fixed to 256. Therefore, when
the matrix with special structure is to the right-hand side of the operator,
m = 256. On the other hand, when this matrix is to the left-hand side,
n = 256. Also, in the left-hand side case, and for the same reasons argued
for gepm, we set mc = (116, 24) for the ARM (Cortex-A15,Cortex-A7) cores.

Let us analyze the performance of the symmetric and triangular matrix
multiplication kernels first. From the plots in the top two rows of the figure,
we can observe that D3S4 is still the best option for both operations, indepen-
dently of the side. When the problem dimension of the symmetric/triangular
matrix equals or exceeds 2000, symp delivers 11.0–11.9 GFLOPS, sypm
10.8–11.0 GFLOPS, trmp 11.0–11.6 GFLOPS, and trpm 7.8–8.9 GFLOPS.
Compared with the corresponding ideal peak performances, these values ap-
proximately represent fractions of 91%, 95%, 90%, and 80%, respectively.

The triangular system solve is a special case due to the dependencies
intrinsic to this operation. For this particular kernel, due to these depen-
dencies, the BLIS implementation cannot parallelize Loops 1 nor 4 when the
triangular matrix is on the left-hand side. For the same reasons, BLIS cannot
parallelize Loops 3 nor 5 when this operator is on the right-hand side. Given
these constraints, and the shapes of interest for the operands, we therefore se-
lect and evaluate the following three simple static parallelization strategies.
The first variant, S1S4, is appropriate for trsp and extracts coarse-grain
parallelism from Loop 1 by statically dividing the complete iteration space
for this loop (n) between the two clusters, assigning rc = 6× more iterations
to the ARM Cortex-A15 cluster than to the slower ARM Cortex-A7 cluster.
(This ratio rc was experimentally identified in [20] as a fair representation of
the performance difference between the two types of cores available in these
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clusters.) In general, this strategy results in values for nc that are smaller
than the theoretical optimal; however, given that the Exynos 5422 SoC is
not equipped with an L3 cache, the effect of this particular parameter is very
small. At a finer grain, this variant S1S4 statically distributes the iteration
space of Loop 4 among the cores within the same cluster.

The two other variants are designed for trps, and they parallelize either
Loop 3 only, or both Loops 3 and 5 (denoted as S3 and S3S5, respectively).
In the first variant, the same ratio rc is applied to statically distribute the
iterations of Loop 3 between the two types of cores. In the second vari-
ant, the ratio statically partitions (coarse-grain parallelization) the iteration
space of the same loop between the two clusters and, internally (fine-grain
parallelization), the workload comprised by Loop 5 is distributed among the
cores of the same cluster.

The plots in the bottom row of Figure 6 show that, for trsp, the par-
allelization of Loops 1+4 yields between 9.6 and 9.8 GFLOPS, which corre-
sponds to about 74% of the ideal peak performance; for trps, on the other
hand, the parallelization of Loop 3 only is clearly superior to the combined
parallelization of Loops 3 and 5, offering 7.2–8.0 GFLOPS, which is within
65–75% of the ideal peak performance.

To conclude the optimization and evaluation of the asymmetry-aware
parallelization of BLIS in the ODROID-XU3 board, Figure 7 illustrates the
performance of the symmetric rank-k and rank-2k kernels, when operating
with rectangular operand(s) of dimension n × k. For these two kernels, we
vary n in the range R and set k = 256 (see Table 1). The results reveal
high GFLOPS rates, similar to those observed for gemm, and again slightly
better for D3S4 compared with D3S5. In particular, the parallelization of
Loops 3+4 renders GFLOPS figures that are 12.0–12.4 and 11.8–12.3 for
syrk and syr2k, respectively, when n is equal or larger than 2000. These
performance rates are thus about 93% of those estimated for an the ideal
scenario.

From a practical point of view, the previous experimentation reveals D3S4
as the best choice for all BLIS-3 kernels, except the triangular system solve;
for the latter kernel we select S1S4 when the operation/operands present a
trsp-shape or S3 for operation/operands with trps-shape. Additionally, in
case m is relatively small, our BLIS-3 kernels optimized for the Exynos 5422
SoC set mc = (116, 24), but rely on the default mc = (152, 32) otherwise.
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Figure 6: Performance of two rectangular cases of symm (symp for C := C + AB and
sypm for C := C + BA), trmm (trmp for B := AB and trpm for B := BA), and trsm
(trsp for B := A−1B and trsm for B := BA−1).

3.6. BLIS in 64-bit AMPs

In order to validate the generality of our approach for AMPs, we applied
the same strategies to the 64-bit processor in a Juno ARM development
platform. This processor features an ARM Cortex-A57 dual-core cluster
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Figure 7: Performance of a rectangular case of syrk and syr2k.

Figure 8: ARM Juno SoC block diagram.

(1.1 GHz) plus an ARM Cortex-A53 quad-core cluster (850 MHz), both
implementing the ARMv8 microarchitecture; the two ARM Cortex-A57 cores
share a 2-Mbyte L2 cache, while the four ARM Cortex-A53 cores share a
smaller 1-Mbyte L2 cache; see Figure 8.

Figure 9 reports the performance of the BLIS kernels on the Juno board,
using matrices with square operands (m = n = k). In our previous exper-
iments, D3S4 was identified as the best strategy to distribute the computa-
tional workload for all BLIS-3 routines except trsm. Therefore, the same
strategy was leveraged to produce the results in this graph comparing the
performance of all BLIS-3 routines. Moreover, for comparison purposes, the
graph also includes a curve for the ideal peak performance rate of gemm, a
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routine which usually delivers the highest performance rate among all BLAS.
The results show that, for all routines, the D3S4 strategy delivers a large

fraction of the GFLOPS estimated for the gemm ideal scenario. Concretely,
for m = n = k = 2000, this option renders between 10.4 and 11.1 GFLOPS,
which roughly represents 82–87% of gemm’s ideal peak performance. For
larger problem sizes, the graph reveals than even a larger fraction of the ideal
is achieved, yielding between 12 and 12.5 GFLOPS which corresponds to 92–
96% of gemm’s ideal. An additional observation from this experiment is that,
for small problem dimensions, gemm and symm consistently outperform the
GFLOPS reported for all other routines, but for large problem dimensions
only trmm delivers slightly lower performance results.
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Figure 9: Performance of BLAS-3 on Juno SoC.

4. LAPACK for the Exynos 5422 SoC

Armed with the asymmetry-aware implementation of the BLIS-3 de-
scribed in the previous section, we now target the execution of LAPACK
on top of these optimized basic (level-3) kernels for the Exynos 5422 SoC.
For this purpose, we employ version 3.5.0 of LAPACK from netlib. Here,
our initial objective is to validate the soundness of our parallel version of
BLIS-3 for the ARM big.LITTLE architecture, which was confirmed by suc-
cessfully completing the correct execution of the testing suite included in the
LAPACK installation package.

In the following subsections, we analyze the computational performance
and energy efficiency of our migration of LAPACK to the Exynos 5422 SoC.
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In this study, we are interested in assessing the (computational) performance
of a “plain” migration; that is, one which does not carry out significant
optimizations above the BLIS-3 layer. We point out that this is the usual
approach when there exist no native implementation of the LAPACK for the
target architecture, as is the case for the ARM big.LITTLE-based system.
Furthermore, we include an analysis of the energy efficiency of LAPACK,
using the GFLOPS/W (GFLOPS per Watt) metric, which determines the
energy cost per flop. The impact of limiting the optimizations to this layer
will be exposed via three crucial dense linear algebra operations [37], illus-
trative of quite different outcomes:

1. The Cholesky factorization for the solution of symmetric positive defi-
nite (s.p.d.) linear systems (routine potrf).

2. The LU factorization (with partial row pivoting) for the solution of
general linear systems (routine getrf).

3. The reduction to tridiagonal form via similarity orthogonal transforms
for the solution of symmetric eigenproblems (routine sytrd).

For brevity, we will only consider the real double precision case.
For the practical evaluation of these computational routines, we only in-

troduced the following minor modifications in some of the LAPACK contents
related with these routines:

1. We set the algorithmic block size NB employed by these routines to
b = NB = 256 by adjusting the values returned by LAPACK routine
ilaenv.

2. For the Cholesky factorization, we modified the original LAPACK code
to obtain a right-looking variant of the algorithm [37], numerically anal-
ogous to that implemented in the library, but which casts most of the
flops in terms of a syrk kernel with the shape and dimensions evaluated
in the previous subsection, with n in general larger than k = b = 256.

3. For the Cholesky and LU factorizations, we changed the routines to
(pseudo-)recursively invoke the blocked variant of the code (with block
size b̃ = 32) in order to process the “current” diagonal block and column
panel, respectively [37].

4.1. Cholesky factorization

Figure 10 reports the GFLOPS and GFLOPS/W rates obtained with (our
right-looking variant of the routine for) the Cholesky factorization (potrf),
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executed on top of the asymmetry-aware BLIS-3 (AA BLIS), when applied
to compute the upper triangular Cholesky factor. Following the kind of
comparison done for the BLIS-3, in the performance plot we include the
performance estimated for the ideal configuration (scale in the left-hand side
y-axis). Additionally, in both plots we also include the execution of the
factorization on top of the unmodified BLIS library using either four Cortex-
A15 (4A15) or four Cortex-A7 cores (4A7). Furthermore, we offer the ratio
that the actual GFLOPS rate represents compared with that estimated under
the ideal conditions (line labeled as Normalized, with scale in the right-hand
side y-axis).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0  1000  2000  3000  4000  5000  6000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

G
F

L
O

P
S

N
o

rm
a

liz
e

d
 r

a
ti
o

 t
o

 I
d

e
a

l

Problem dimension n (b=256)

POTRF on Exynos 5422 SoC

Ideal
AA Blis

Normalized
4A15
4A7


 0

 0.5

 1

 1.5

 2

 2.5

 0  1000  2000  3000  4000  5000  6000

G
F

L
O

P
S

/W

Problem dimension n (b=256)

POTRF on Exynos 5422 SoC

AA Blis
4A15
4A7


Figure 10: Performance and energy efficiency of potrf for the solution s.p.d. linear
systems.

For this particular factorization, as the problem dimension grows, the gap
between the ideal peak performance and the actual GFLOPS rate rapidly
shrinks. This is quantified in the columns labeled as Normalized in Table 2,
which reflect the numerical values represented by the normalized curve in
Figure 10. Here, for example, the implementation obtains over 70% and 88%
of the ideal peak performance for n = 2000 and n = 3000, respectively.

This appealing behaviour is well explained by considering how this algo-
rithm, rich in BLAS-3 kernels, proceeds. Concretely, at each iteration, the
right-looking version decomposes the calculation into three kernels, with one
of them being a symmetric rank-k update (syrk) involving a row panel of
k = b rows [37]. Furthermore, as n grows, the cost of this update rapidly
dominates the total cost of the decomposition; see the columns for the nor-
malized flops in Table 2. As a result, the performance of this variant of the
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Cholesky factorization approaches that of syrk; see in Figure 7. Indeed, it
is quite remarkable that, for n = 6000, the implementation of the Cholesky
factorization attains slightly more than 93% of the ideal peak performance,
which is basically the same fraction of the ideal peak observed for syrk and
a problem of dimension n = 6000, k = 256.

Focusing on energy efficiency, the first aspect to point out is that, as
expected, the most energy efficient solution corresponds to the use of the
Cortex-A7 only, though we note that this results in significantly lower per-
formance. Second, for small problem dimensions, the performance of the
asymmetry-aware BLIS-3 is similar to that obtained by using the Cortex-
A15 cores only, yielding lower energy efficiency for the former as that option
keeps all cores in operation. Third, for large problem dimensions, the energy
efficiency of the asymmetry-aware BLIS-3 improves the energy efficiency of
the alternative that relies on the Cortex-A15 cores only, since the increment
in power dissipation is compensated by the increment in performance.

potrf getrf
n Normalized Normalized Normalized Normalized

GFLOPS flops of syrk GFLOPS flops of gepp

500 26.73 36.67 12.56 36.67
1000 45.12 64.97 28.59 64.97
1500 59.49 75.90 45.22 75.90
2000 70.85 81.65 53.27 81.65
2500 77.46 85.18 60.70 85.18
3000 83.06 87.58 65.11 87.58
3500 86.05 89.31 69.36 89.31
4000 88.06 90.61 70.80 90.61
4500 89.39 91.63 74.51 91.63
5000 91.29 92.46 75.21 92.46
5500 91.42 93.15 80.00 93.15
6000 93.16 93.69 84.30 93.69

Table 2: Performance of matrix factorizations for the solution of s.p.d. and general lin-
ear systems (potrf and getrf, respectively) normalized with respect to the ideal peak
performance (in %); and corresponding theoretical costs of the underlying basic building
blocks syrk and gepp normalized with respect to the total factorization cost (in %).

4.2. LU factorization

Figure 11 displays the GFLOPS and GFLOPS/W attained by the routine
for the LU factorization with partial row pivoting (getrf), linked with the

22



asymmetry-aware BLIS-3, when applied to decompose square matrices of
dimension m = n.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0  1000  2000  3000  4000  5000  6000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

G
F

L
O

P
S

N
o

rm
a

liz
e

d
 r

a
ti
o

 t
o

 I
d

e
a

l
Problem dimension m=n (b=256)

GETRF on Exynos 5422 SoC

Ideal
AA Blis

Normalized
4A15
4A7


 0

 0.5

 1

 1.5

 2

 2.5

 0  1000  2000  3000  4000  5000  6000

G
F

L
O

P
S

/W

Problem dimension m=n (b=256)

GETRF on Exynos 5422 SoC

AA Blis
4A15
4A7


Figure 11: Performance and energy efficiency of getrf for the solution general linear
systems.

The actual performance and energy efficiency of the LU factorization fol-
lows the same general trend observed for the Cholesky factorization, though
there are some differences worth of being discussed. First, the migration of
the Cholesky factorization to the Exynos 5422 SoC was a story of success,
while the LU factorization reflects a less pleasant case. For example, the rou-
tine for the LU factorization attains over 53% and 65.11% of the ideal peak
performance for n = 2000 and n = 3000, respectively. Compared with this,
the Cholesky factorization attained more than 70% and 83% at the same
points. A case-by-case comparison can be quickly performed by inspecting
the columns reporting the normalized GFLOPS for each factorization in Ta-
ble 2.

Let us discuss this further. Like potrf, routine getrf casts most flops
in terms of efficient BLAS-3 kernels, in this case the panel-panel multiplica-
tion gepp. Nonetheless, its moderate performance behavior lies in the high
practical cost (i.e., execution time) of the column panel factorization that
is present at each iteration of the LU procedure. In particular, this panel
factorization stands in the critical path of the algorithm and exhibits a lim-
ited amount of concurrency, easily becoming a serious bottleneck when the
number of cores is large relative to the problem dimension. To illustrate this
point, the LU factorization of the panel takes 27.79% of the total time dur-
ing a parallel factorization of a matrix of order m = n = 3000. Compared
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with this, the decomposition of the diagonal block present in the Cholesky
factorization, which plays an analogous role, represents only 10.42% of the
execution time for the same problem dimension.

This is a known problem for which there exist look-ahead variants of the
factorization procedure that overlap the update of the trailing submatrix
with the factorization of the next panel, thus eliminating the latter from the
critical path [38]. However, introducing a static look-ahead strategy into
the code is by no means straight-forward, and therefore is in conflict with
our goal of assessing the efficiency of a plain migration of LAPACK. As an
alternative, one could rely on a runtime to produce the same effect, by (semi-
)automatically introducing a sort of dynamic look-ahead into the execution
of the factorization. However, the application of a runtime to a legacy code
is not as simple as it may sound and, as argued in the discussion of related
work, the development of asymmetry-aware runtimes is still immature.

4.3. Reduction to tridiagonal form

To conclude this section, Figure 12 reports the performance and energy
efficiency behaviour of the LAPACK routine for the reduction to tridiagonal
form, sytrd. Here, we also execute the routine on top of the asymmetry-
aware BLIS-3; and apply it to (the upper triangle of) symmetric matrices.
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Figure 12: Performance and energy efficiency of sytrd for the reduction to tridiagonal
form.

The first difference to discuss between the results observed for this routine
and those of the Cholesky and LU factorization is the scale of the left-hand
side y-axis, with an upper limit at 4 GFLOPS for sytrd against 13 for
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the other two. The reason is that the reduction procedure underlying sytrd
casts half of its flops in terms of the symmetric matrix-vector product, symv,
a memory-bound kernel that belongs to the BLAS-2. Concretely, this kernel
approximately performs 4 flops per memory access only and cannot take full
advantage of the FPUs available in the system, which will be stalled most of
the time waiting for data (the symmetric matrix entries) from memory. A
second aspect to point out is the low fraction of the ideal peak performance
attained with the asymmetry-aware implementation. Unfortunately, even
though sytrd performs the remaining 50% of its flops via the highly efficient
syr2k, the execution time of this other half is practically negligible compared
with the execution of the symv kernels (for the problem dimensions evaluated
in the paper, less than 5%). In addition, we note that BLIS does not provide
parallel versions of the symv (nor any other routine from the Level-1 and
Level-2 BLAS), which helps to explain the low performance attained with
our plain migration of this LAPACK routine on top of a parallel BLIS-3
implementation. As a consequence, no visible benefits are obtained when
using the asymmetry-aware BLIS-3, so that the performance reported is the
same as that observed for the unmodified version of the library configured to
use four Cortex-A15 cores only. For the same reason, the energy efficiency of
the asymmetric-aware option is lower because all cores in the SoC are kept
active.

5. Conclusions and Future Work

We have leveraged the flexibility of the BLIS framework in order to intro-
duce an asymmetry-aware (and in most cases) high performance implemen-
tation of the BLAS-3 for AMPs, such as the ARM big.LITTLE SoC, that
takes into consideration the operands’ dimensions and shape. The key to
our development is the integration of a coarse-grain scheduling policy, which
dynamically distributes the workload between the two core types present in
this architecture, combined with a complementary static schedule that repar-
titions this work among the cores of the same type. Our experimental results
on the target platform in general show considerable performance acceleration
for the BLAS-3 kernels, and more moderate for the triangular system solve.

In addition, we have migrated a legacy implementation of LAPACK that
leverages the asymmetry-aware BLIS-3 to run on the target AMP. In do-
ing so, we have explored the benefits and drawbacks of conducting a sim-
ple (plain) migration which does not perform any major optimizations in
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LAPACK. Our experimentation with three major routines from LAPACK
illustrates three distinct scenarios (cases), ranging from a compute-bound
operation/routine (Cholesky factorization) where high performance/energy
efficiency are easily attained from this plain migration; to a compute-bound
operation (LU factorization) where the same level of success will require a
significant reorganization of the code that introduces an advanced schedul-
ing mechanism; and, finally, a memory-bound case (reduction to tridiagonal
form) where an efficient parallelization of the BLAS-2 is key to obtain even
moderate performance/energy efficiency.

As argued at the beginning of this section, the main goal in our work was
to develop a high performance implementation of the BLAS-3 for asymmetric
multicore architectures, and to evaluate its impact using several key routines
from LAPACK. However, we recognize that, for low-power systems-on-chip,
such as the Exynos 5422 or the Juno, an appealing complementary and/or
alternative objective could be to minimize energy consumption instead of op-
timizing performance, or to minimize energy consumption while satisfying a
certain response time (performance). As part of ongoing work, we are inves-
tigating these topics, especially for sytrd, as the memory-bound behaviour
of this operation constrains the performance benefits that can be achieved by
adding more cores to the computation, significantly lowering the energy effi-
ciency of the solution. As part of future work, we will also explore alternative
parallelization strategies that better suite the triangular system solve kernel;
we plan to introduce an asymmetry-aware static look-ahead scheduling into
one-sided panel-operations such as the LU and QR factorizations; and we
will develop an asymmetry-conscious version of the BLAS-2 from the BLIS
framework.
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